A Service Acquisition Mechanism for the Client/Service Model in
Cygnus*

Rong N. Chang
Bell Communications Research
rong@thumper.bellcore.com

Abstract

Three of the most important issues in exploiting net-
work servers concern (1) how to specify services so
that service-server bindings can be changed dynamically
without disturbing clients, (2) how to make clients re-
silient to network or server failure, and (3) how to ac-
commodate server protocol heterogeneity to provide a
single system view to the clients. This paper presents
a service acquisition mechanism for solving these is-
sues. This mechanism is designed under a client/service
model in which the abstraction of service is a first-class
entity. The mechanism comprises (1) a service request
mechanism for establishing client-service (and service-
server) bindings, (2) a service access mechanism for in-
voking server interface operations, (3) a service recon-
figuration mechanism for making the service access op-
erations resilient to network or server failure, and (4) a
service cancellation mechanism for terminating the serv-
ices in use gracefully. Our preliminary results show that
the mechanism can be implemented efficiently.

1 Introduction

Most current distributed systems use the client/server
model as their structuring paradigm. The abstraction
of service in this model is a second-class entity, and is
usually viewed as an abstraction of a set of (operating
system) kernel calls, of a set of operations exported by
language-level entities, or of a message exchange proto-
col between programs in execution (or active computing
objects).

‘When the service is an abstraction of a set of kernel calls,
the servers are operating system kernels. Clients access
services by invoking kernel calls. For example, Locus
kernels [Popek85] running on different machines coop-
eratively support a Unix-compatible distributed file sys-
tem and a location-transparent remote tasking facility.
This approach permits better control and usage of net-
worked resources. However, it requires kernel changes
to support new type of resources and new ways of uti-
lizing existing resources. In light of the rising degree
of heterogeneity of networked resources, this approach
could result in very complex operating systems that are
costly to maintain.

*This research was supported in part by a grant from Bell
Northern Research, Inc.

CH2996-7/91/0000/0090$01.00 © 1991 IEEE

Chinya V. Ravishankar
University of Michigan—Ann Arbor
ravi@eecs.umich.edu

When the service is an abstraction of a set of opera-
tions exported by language-level entities, both clients
and servers are language-specific objects and clients ob-
tain services by invoking server interface operations.
For example, in the Emerald [Black87] distributed lan-
guage, an abstract type represents a service interface
and every object is inherently the implementation of
a set of services. The compiler type checks service
access invocations, and the distributed language run-
time supports the invocation mechanism in a location-
transparent fashion.

Distributed systems with language support provide
much better programming and run-time environments
than do systems with kernel-level support alone. How-
ever, this approach requires existing software to be
rewritten in the chosen distributed language. The lan-
guage runtime must also be available on all the nodes
1n the system. Consequently, requiring language homo-
geneity on diverse networked computers to make use of
various resources is not a preferred system design ap-
proach.

When the service is an abstraction of a message-
exchange protocol between programs in execution, both
clients and servers are usually user-level processes run-
ning on different machines. Services in this category in-
clude the ISO/CCITT X.500 directory service and the
Internet DNS. The biggest advantage of this approach
is that it requires neither changes to the underlying op-
erating systems to provide new services, nor extensive
distributed language runtime support. However, consid-
ering the variety of client-server binding and message-
exchange protocols that may be in use, finding a uniform
way of utilizing the servers could be a formidable task.

Many leading computer companies have agreed on
a vendor-neutral distributed computing environment
(DCE) architecture proposed by the Open Software
Foundation [OSF90]. This architecture is designed un-
der the client/server model, and requires the interac-
tions between its components follow the RPC paradigm.

Although the DCE architecture helps reduce the het-
erogeneity of server access protocols, three important
issues are still outstanding: service specification, fault
tolerance support, and system integration. The serv-
ice specification issue concerns how to specify services
so that service-server bindings can be changed dynam-
ically without disturbing clients. This issue is still out-
standing because the RPC subsystem [Kong90, Lamp-

son86] binds clients to servers directly. Once a client-
service-server binding is established, the server cannot
be changed transparently to the client.

The fault tolerance issue concerns how to make clients
resilient to network or server failure. Clients of the RPC
package in DCE are not protected well from such failures
because the RPC subsystem is ignorant of the features
of the services (and servers) in use. Tedious server-
dependent reconfiguration algorithms must be imple-
mented by the clients to exploit the case where more
than one server is willing to provide the desired service.

The system integration issue concerns how to accommo-
date server protocol heterogeneity to provide a uniform
system view to the clients. Although the DCE archi-
tecture provides a framework for developing distributed
applications, it does not suggest a practical means of
integrating existing server access protocols so that the
clients can request, access, and cancel services through
a uniform service acquisition mechanism.

These three issues are important because they hinder
the development of robust client software, shorten the
life cycle of client software when changes to network-
ing technologies are inevitable, and discourage the ex-
ploration of new server access protocols for specialized,
high-performance servers.

1.1 Client/Service Model

The above problems are not unique to the DCE archi-
tecture, and arise in all systems using the client/server
model. Since the abstraction of service is a second-class
entity in the model, a service cannot be realized in a
server-independent fashion. When this dependency ex-
ists, the problems are formidable.

This paper presents a service acquisition mechanism for
solving these problems. This mechanism is designed un-
der a client/service model in which the abstraction of
service is a first-class entity. This model permits the re-
alization of the service entity to (1) support the client’s
view of service operations, (2) accommodate server ac-
cess protocol heterogeneity, and (3) handle server access
failure on behalf of client.

The service acquisition mechanism is composed of (1) a
service request mechanism for establishing client-service
(and service-server) bindings, (2) a service access mech-
anism for invoking server interface operations, (3) a
service reconfiguration mechanism for making the serv-
ice access operations resilient to network or server fail-
ure, and (4) a service cancellation mechanism for termi-
nating the services in use gracefully.

1.2 Organization

In the remainder of this paper, Section 2 introduces
the Cygnus model, a service acquisition model in the
Cygnus distributed system. This system has been built
at the University of Michigan—Ann Arbor. Section 3
presents the software architecture of the Cygnus dis-
tributed system in which our service acquisition mech-
anism is evaluated. Section 4 illustrates the design and
implementation of the Cygnus service acquisition mech-
anism. Section 5 explains how the service acquisition

91

m:n

Service\ n:1
ntities,

Figure 1: The Cygnus model.

operations can be composed to access a network serv-
ice. Section 6 analyzes the cost of using the Cygnus
service acquisition mechanism to access local or remote
servers. Finally, a conclusion is drawn in Section 7.

2 Cygnus Model

The Cygnus model is an instance of the client/service
model, and uses four classes of abstractions: servers,
service entilies, service types, and clients. The servers
export sets of related operations to the clients. The
service entities represent server interfaces. The service
types are abstractions of service (see Figure 1).

2.1

A service type is identified by a set of attributes. Ex-
amples of attributes are: a system-wide category for
the service operations, the identity of a server adminis-
tration domain, a version number, a service operation
name, a performance criterion, and so on.

From the viewpoint of the clients, identifications of the
service types are also service specifications. For exam-
ple, the attribute list

Service Types

((category, compile), (source, c), (target, mc68020),
(compile, yes), (1ink, no), (go, no)

may signify, in Lisp-like syntax, a compile service which
translates a C program into a series of MC 68020 ma-
chine instructions. The attribute list ((compile, yes),
(Link, no), (go, no); requires the selected server to pro-
vide at least compile operations. The client will send
neither link nor compile-and-go requests. As long as
the server has the features specified, it may run on an
IBM 3090 main frame, a Sun 3 workstation, an Apple
Mac II personal computer, or any other machine.

We have made a commitment to attribute-based de-
scriptive naming for service types. Such a commitment
preserves the generality of the model, and the nam-
ing technology fits well with the model. We regard
attribute-based naming as technically feasible because
it has been used in several distributed name and/or di-
rectory services to help clients discover objects in the
system [Oppen83, Peterson88, Neufeld89]. However,
this naming technology is used differently in the Cygnus
model. We use it to let the clients specify the services
they want to access and to facilitate the establishment
of bindings between service types and service entities.
Instead of getting back a list of values, Cygnus clients
obtain references to client-service bindings.

2.2 Service Entities

Service entities are used to capture the precise nature
of service-server bindings, because a server may be will-
ing to export more than one interface to clients through

Client Host Server Host
, Client
Client Agent Server
Client Server
Code Code
Cygnus Server
Runtime [« Interface
Library
Language
Runtime 4—
- Cygnus
Distributed
Database

Figure 2: Cygnus distributed system architecture.

several different access mechanisms. For example, in the
Mach/Mig environment [Jones86), a server may possess
several kernel-protected communications channels to ex-
port different interfaces.

Figure 1 showed the relationships between the abstract
entities in the Cygnus model. A one-to-many relation
exists between clients and service types because a client
can acquire more than one service type. The relation be-
tween service types and service entities is many-to-many
because a service type may represent several service en-
tities and a service entity many be associated with more
than one service type. Similarly, a many-to-one rela-
tion exists between service entities and servers because
a service entity represents a server interface and a server
may export several interfaces.

3 Cygnus Distributed System

The major components of the Cygnus distributed sys-
tem are server processes which realize the servers in
the Cygnus model, a distributed database for maintain-
ing service interfaces and server information, a series of
compiler-dependent runtime libraries, and a number of
client agents (see Figure 2).

The Cygnus distributed database maintains the rela-
tionships between service types, service entities, and
servers. Similar to the trader in the ANSA/ISA archi-
tecture [Herbert89], this database is queried to discover
adequate servers during the service request and recon-
figuration phases.

A Cygnus runtime.library includes a set of Cygnus-
specific operations for use by the client code to com-
municate with the client agents running on the same
machine. These operations are compiler-dependent
because the transformation between local service ac-
quisition invocations into inter-process communication
(IPC) messages depends on the language runtime asso-
ciated with the compiler. They are also OS-dependent
because the required IPC mechanism must be supported
by the local operating system.

The client agents are central to our realization of the
Cygnus model. They mediate service-server bindings
based on service specifications, accommodate server ac-
cess protocol heterogeneity, and handle server access
failures on behalf of the clients.

One client agent is, in principle, activated for every serv-
ice type needed by a client. We run the client agent on
the client host for two reasons. First, we want its link
to the client to remain intact even upon network fail-
ure or partition. Second, we assume the client has no
Jjurisdiction over other hosts. The implementation of
client agent depends on such factors as: (1) the client
host’s hardware and operating system, (2) the network
protocols available on the client host, and (3) the trust
model enforced on the client host. For example, on a
Sun 4/60 running SunOS 4.1, a client agent may be a
single heavy-weight process or a set of cooperating ones.
Local messages may be passed through BSD UNIX sock-
ets or hardware-supported shared memory. Servers on
the XNS network would not be reachable directly if the
client host sits only on the DARPA Internet. The client
agent would not be able to access the Kerberos ticket
granting service on behalf of its client if it is not privi-
leged enough to hold the client owner’s password.

The client agent provides two kinds of failure recovery
mechanisms to make its client more resilient to network
or server failure. The first of these depends on the server
protocol in use. For transaction-based servers, for exam-
ple, the client agent would stop its execution until the
server machine is up again so that the server state can
be restored correctly. The other is server-independent
and is a service-server (or ST-SE in the Cygnus model)
reconfiguration mechanism. A simple logging and re-
play algorithm is used in this mechanism such that, in
the event of server access failure, the client agent could
replay all the logged service access requests to the new
server. If the new server access protocol is different from
the old one, the client agent reconverts the logged serv-
ice access requests to server access requests for the new
server.

This logging and replay mechanism can be implemented
very efficiently for three reasons. First, the logs need not
be stored on stable storage when crash recovery support
for the client is not available. Second, the service-server
reconfiguration mechanism requires no more than one
server to be available at any one time. Unlike other
replication-based fault tolerance mechanisms like that
in the ISIS [Birman87] distributed system, this recon-
figuration mechanism does not incur the overhead of
synchronizing the executions of a group of function-
ally identical servers running on different hosts. Fi-
nally, since the logging and replay algorithm is ap-
plied on the basis of non-shared bindings between clients
and service types, it is far less complicated than those
used in transaction-based systems such as Quicksilver
[Haskin88]. The corresponding mechanisms in those
systems are designed to optimize the throughput of up-
dating shared persistent objects, and must be coupled
with check pointing and rollback mechanisms.

4 Service Acquisition Mechanism

The Cygnus service acquisition mechanism is a set of
facilities used by the client agents to (1) make client-
service (or Client-ST in the Cygnus model) bindings, (2)
convert each service request operation to one or more
server-specific remote invocations, (3) change service-

92

Cygnus
Distributed
Database

Agent Manager

[Request]

[Access]

of Service
Agent

Figure 3: Cygnus client agent architecture.

server (or ST-SE in the Cygnus model) bindings when-
ever necessary, and (4) shut down client-service links.

Our prototype implementation of the Cygnus client
agent is composed of four kinds of processes: agent
managers, query agents, service agents, and loggers (see
Figure 3). The agent managers receive service requests
from clients and create query agents and loggers on de-
mand for each service acquisition session. Query agents
interpret service specifications, determine service-server
bindings, and create server-dependent service agents lo-
cally. Service agents hide server protocol heterogene-
ity so that existing servers need not be modified to
make them accessible to Cygnus clients. Loggers handle
server access failures on behalf of the clients.

The client agent was implemented by user-level pro-
cesses because we were more interested in the interfaces
between them than in optimizing performance. Only
one agent manager exists on each host. An instance of
each of the other components may be created locally for
each service requested.

4.1

We now briefly describe how these component processes
interact with each other during service request, access,
reconfiguration, and cancellation phases. The rationale
for the design and implementation of these processes
will be given in the following subsections.

4.1.1

For each service acquisition session, the client first con-
tacts the local agent manager to get a service request
port, which is a communication endpoint for the Cygnus
IPC facilities. It then composes a service request mes-
sage, ships out the request through the service request
port, and waits for an acknowledgment.

Service Acquisition Phases

Service request phase

When the agent manager gets the client’s request for a
service request port, it first creates a logger and a query
agent. It then passes one of the logger’s Cygnus IPC
ports back to the client so that the client can establish
a link to the logger. It then prepares to serve the next
request.

The logger first makes connections to the associated
query agent and client. It then accepts the client’s serv-
ice specification message, and forwards the message in

93

verbatim to the query agent. It also saves the specifi-
cation message internally to support our service-server
reconfiguration mechanism. After a service agent is cre-
ated by the query agent for the requested service, the
logger establishes a link to that service agent on behalf
of the client. Finally, the logger creates a new service
access port and returns it to the client.

4.1.2 Service access phase

For each service access request, the client composes a
service request message and sends it to the service access
port. It then blocks on the service access port until the
execution results are returned.

The logger receives the access message from the client
and forwards it to the service agent. The logger may
also save the access request and the execution results
into a log buffer as per the properties specified in the
Cygnus distributed database for the client-logger link
(or the Client-ST binding in the Cygnus model). Log-
ging must be performed if the access request must be
replayed when the logger-to-service agent link is broken.
The logger also receives the execution results from the
service agent and returns them in verbatim to the client.

4.1.3 Service reconfiguration phase

Figure 3 labels three links as (a), (b), and (c). Any
one of these links may be broken during the service ac-
cess phase. For example, link (a) may be broken be-
cause of server or network failure. The service agent
may close link (b) if it cannot get the execution results
from the server in time. Link (c¢) may be cut by the
query agent because the number of queries exceeds a
predefined limit.

To make the client’s service access link resilient to such
faults, the logger always asks the associated query agent
for a new service agent when it finds the current one
unavailable. If a new service agent can be created, the
logger replays the logged operations. It also compares
the new execution results with the old ones to ensure the
correctness of the replay procedure. When the new serv-
ice agent starts, it may be required to eliminate some
side-effects caused by the old one(s).

If link (¢) in the figure had been broken when the cur-
rent service agent dies, the logger asks the local agent
manager for another query agent. It then resends the
saved service specification to the new query agent, and
replays all the logged operations after link (b) is suc-
cessfully restored. If the agent manager is unable to
create the required query agent because, for example,
the kernel has run out of process table entries, the log-
ger sends the client a message saying that the service
was interrupted unexpectedly.

4.1.4 Service cancellation phase

The service acquisition session is terminated when the
client invokes the service cancellation operation in the
Cygnus runtime library. After the logger receives the
service cancellation message from the client, it (1) for-
wards that message to the service agent, (2) shuts down
its link to the query agent if that link is still active, and

(3) terminates itself after performing some other house-
keeping routines like deleting work files. The service
agent terminates after notifying the remote server(s) in
use. The query agent terminates after the service agent
exits.

4.2 Cygnus Runtime Library

The Cygnus runtime library includes a set of compiler-
dependent service acquisition primitives. These primi-
tives are coded as per the abstractions of Cygnus IPC
links. The required set of OS-dependent IPC routines,
which realize the IPC links, are also included in the li-

brary.
4.2.1 Cygnus IPC operations

Cygnus IPC links are designed as reliable two-way com-
munication channels, and support atomic send and re-
ceive operations. They are implemented as follows.
Each Cygnus IPC link is associated with a shared mem-
ory segment and two (System V) FIFOs. To send a
message, the sender places the message in the shared
memory segment and writes a one-byte control token
through the sender-to-receiver FIFO. The receiver de-
termines whether a message is available through a read
operation on the same FIFO. Because the file descrip-
tors allocated to FIFOs are closed automatically when
their owners terminate, the write operation returns an
error code if the receiver dies unexpectedly. No special
exception-handling or time-out mechanism is required.

The message-passing control mechanism could have
been implemented mstead using semaphores, Unix-
domain stream sockets, or Internet-domain stream sock-
ets. FIFOs were chosen because they appear to perform
better under normal loading conditions on our client
host [Chang90].

We have exploited the shared memory mechanism even
further to reduce message-processing overhead. Cygnus
clients are required to initialize (or format) the shared
memory segments they acquire for accessing Cygnus
services. This format is carefully designed so that the
processes involved can compose and decompose mes-
sages efficiently through data structures resident in the
shared memory.

A set of name-based data types are defined to facili-
tate the communication among Cygnus clients and the
client agent component processes. The representation
scheme for these data types depends on the IPC facility
in use so that these processes can encode and decode
messages efficiently. This data representation approach
is different from structure-based ones like Sun’s XDR.

These internal data types are useful to the implemen-
tation of the Cygnus service acquisition mechanism be-
cause the client agent component processes must accom-
modate three kinds of heterogeneity. First, since the
Cygnus distributed database may comprise many spe-
cialized database servers, the query agents may have to
accommodate query protocol heterogeneity. For exam-
ple, most relational database servers like support SQL
queries, while most name servers like DEC’s distributed
name service {Lampson86] have their own query pro-

94

tocols to meet functional requirements such as access
and/or update performance.

Second, since different servers may use different data
representation protocols, the service agents must ac-
commodate such protocol heterogeneity in converting
service access operations to server operations. For ex-
ample, Sun RPC servers use Sun’s XDR representation
scheme, while DEC HDS [Falcone87] servers understand
NCL (Network Command Language) data types only.

Third, since different client language runtimes may sup-
port different sets of data types, using a single internal
data type representation scheme facilitates the develop-
ment of library routines for each language runtime.

4.2.2 Service acquisition primitives

RequestService, AccessService, and CancelService
are the three service acquisition primitives provided by
a Cygnus library. These three operations hide the im-
plementation details of the service acquisition mech-
anism by forcing the caller to refer to client-service
bindings through specialized opaque pointer structures
called service handles.

A service handle must be initialized to hold service re-
quest messages, and must be bound to a service before it
can carry access request messages. The Cygnus library
includes ShNew to create and initialize unbound serv-
ice handles and RequestService to make bound service
handles. To support the call-by-value-result parameter-
passing paradigm, the argument buffer of a bound serv-
ice handle must be initialized by ShClean for each access
request.

The Cygnus library also contains a routine called
service_errno which the client calls to get an in-
formative error code when a service acquisition oper-
ation cannot be executed successfully. The routine
service_errno_set permits the client code to save user-
defined error codes into the service handles. To fa-
cilitate the implementation of the library using OS-
and/or language-supported light-weight processes, the
error codes are not provided as global variables and can-
not be accessed directly from within the client code.

The library contains two routines to reset and
shut down the service acquisition runtime support:
ServiceRuntime start and ServiceRuntimestop.
These two operations are provided mainly to permit
the client code to reclaim resources (like file descriptors)
held by the Cygnus runtime.

4.3 Service Agent

Service agents convert service operations into server op-
erations. They are used mainly to accommodate server
protocol heterogeneity. They may also be used to in-
tegrate the functions of several existing servers and to
support various server-dependent recovery mechanisms.

4.3.1

During the service request phase, a service agent nor-
mally first initializes itself in accordance with a group of
configuration parameters set by the query agent which
activates the service agent.

Service request phase

The service agent then establishes a link to the service
requester. The requester is a Cygnus client when the
fault tolerance support provided by the logger is not
desired by the client or cannot be applied to the desired
service. From the viewpoint of the requester, the service
agent is a server which speaks the IPC protocol in use.

The service agent may also try to establish a link to
the associated server. If the service agent integrates
the functions of several servers, it establishes links to
all the supporting servers. If the link(s) cannot be set
up successfully, the service agent shuts down its link to
the requester and terminates itself. If the requester is a
Cygnus logger, it either contacts a local query agent for
a new service agent, or returns an error message to the
Cygnus client.

4.3.2 Service access phase

A service agent falls into a conditional loop during the
service access phase. The code segment which invokes
server operations is usually a multi-way branch state-
ment on the service operation names supported. For
each operation, the service agent first extracts the in-
put arguments from the client’s access request message,
and transforms those arguments into a form the server
expects. The abstract service operations are then im-
plemented by invoking one or more server operations.
Finally, the remote invocation results are converted into
Cygnus format and sent back to the requester.

4.3.3 Fault tolerance support

The service agent may also support various server-
dependent fault-tolerant mechanisms. This resilience
support complements our service access logging and
replay mechanism, especially when the associated
server(s) can be shared by other processes for manipu-
lating common data objects. For example, an optimistic
message logging and process checkpointing mechanism
can be used by the service agents and servers to make
the Cygnus services in use resilient to machine crashes
[Johnson88].

4.4 Query Agent

A query agent assumes several responsibilities. It
searches the Cygnus distributed database for appro-
priate service entities, activates service agents on de-
mand as per the data encoded in the service entities,
and returns necessary IPC information about the serv-
ice agents it activates to the service requester.

Each service entity in the Cygnus distributed database
contains a server descriptor, a logging-and-replay de-
scriptor, and a list of machine-dependent service agent
descriptors. The server descriptor records information
about the supporting server. The logging-and-replay
descriptor carries information on how to log and replay
service access requests selectively. The service agent de-
scriptors are used for activating local service agents.

Figure 4 depicts the structure of the query agent code.
Since the Cygnus distributed database is still under de-
velopment, different query modules are used as front
end routines to the various databases in the system.

95

Service Local Database
Service Request Message Request Front Bnd
Manipulation
Routines | Service Univers
Cygnus Entity | Front End
Service Agent IPC Port and Rolul:ﬁ)es Search Oracle
i Routi

Logging-and-Replay Descriptor s;;:;ff U Bront End
h Activation .
Routines :

Figure 4: Cygnus query agent structure.

These query modules are integrated by a generic serv-
ice entity search module through a standard interface so
that the query agent code can be easily maintained and
extended. This interface comprises three operations to
allow the generic service entity search module to initial-
ize, query, and terminate the front end modules.

The service request manipulation routines accept serv-
ice request messages, invoke service entity search rou-
tines, control the creation of service agents, and send
acknowledgment messages to the service requester. The
query agent keeps its link to the service requester active
during the service access phase if the requested service
type can be supported by more than one service entity.

The service agent activation routines create new service
agents upon request using the fork and execl system
calls. It also reclaims the resources held by the service
agents when they terminate by the signal and wait3
system calls.

4.5 Logger

The logger uses a logging and replay mechanism to make
its link to the client resilient to server access failure.
This fault tolerance mechanism is server-independent
because the logger records service access requests and
results, not server operations and execution states. The
applicability of this mechanism depends on the service
in use because not all server access failures can be re-
covered by simply replaying the access requests made
by the client.

To guide loggers in performing the logging and replay
operations correctly and efficiently, query agents always
return a logging-and-replay descriptor for each serv-
ice request message. A logging-and-replay descriptor
presently contains a log code and an optional set of re-
play records. The log code indicates what logging and
replay scheme is required. Each replay record comprises
a service operation name and a replay code which in-
dicates how to replay the service operation. When the
log code is LogNo, the logger lets the client communicate
with the service agent directly.

During the service access phase, the logger interprets
the value of the replay record only when it is instructed
to do selective logging and replay. An access request is
not logged when the replay code is ReplayNo. If the re-
play code equals ReplaySend, execution results of an ac-
cess request are not logged. Both the request and result
messages are logged when the replay code is ReplayAll.

01 #include <stdio.h>

02 #include <cygnus/cygnus.h>
03 #define S_to_cS(x) (x)

04 main()

05 {

06 ServiceHandle sh;

07 if (ServiceRuntime_start() < 0) exit(1);
08 if (ShNew(&sh) < 0) exit(1);

09 ArgIn_cString(sh, "CATEGORY", S_to_cS("display"));
10 RequestService(sh);

11 if (service_errno(sh) != 0) exit(1);

12 ShClean(sh);

13 ArgIn_cString(sh, "MSG", S_to_cS("hello"));
14 ArgIn_Op(sh, "display");

15 if (AccessService(sh) < 0) exit(1);

16 CancelService(&sh);

17 ServiceRuntime_stop();

18 } /* main() */

Figure 5: A simple Cygnus client.

During the service reconfiguration phase, the logger
replays the logged access requests. In addition, a
comparison-based validation scheme is adopted to en-
sure that the service in use would not be disrupted by
accessing the new service agent. The logger, however,
validates the new execution results only for the opera-
tions whose replay codes are ReplayAll.

The logger always asks for a new service agent when it
detects the unavailability of the current one during the
service access phase. It also does so when logged access
requests cannot be replayed correctly during the service
reconfiguration phase. The number of attempts to re-
cover from a server access failure is currently bound by a
configuration parameter set by the local agent manager.

5 An Example

Figure 5 shows a simple C program which sends the
string “hello” to a display server. The server returns an
acknowledgment message after displaying the string on
its output device. The numbers along the left margin
are provided for ease of reference and are not part of
the code.

The program starts its execution at line 7, which ini-
tializes the Cygnus service acquisition runtime. At line
8, the client code initializes an unbound service handle.
It then saves attribute CATEGORY with value "display"
into that service handle at line 9 and proceeds to request
the service at line 10. If the service requested can be
honored, the RequestService routine stores necessary
IPC information about the allocated logger or service
agent into the unbound service handle, otherwise it sets
an error code in the service handle.

Lines 12-15 show how to invoke a Cygnus service oper-
ation. At line 12, the client first cleans up the bound
service handle. It then stores the input-only keyword
argument MSG with value "hello" and the service op-
eration name display into the service handle at lines
13 and 14. The service access routine AccessService
at line 15 returns a non-negative number if the request

96

=—*— Inter-machine Sun RPC cost

—® Intra-machine Sun RPC cost

—=©— Service access overhead when logger exists

“— & Service access overliead when logger does not exist

12
= A

g 10 /'/"”'
g P
o /
£ ot
% il i
g. . / /—./'
2 e
8 ‘I—/
2
H o4 s

T v T
1024 2048 3072
Length of string argument (bytes)

4096

Figure 6: Performance of Cygnus service access mecha-
nism.

can be processed successfully.

Lines 16-17 cancel the requested service and terminate
the Cygnus runtime, respectively. These two statements
are not mandatory, though they are preferred.

6 Performance Analysis

We developed a pair of Sun RPC client and server to
estimate the performance overhead that Cygnus clients
may incur in using the service acquisition mechanism to
access local or remote servers. The client stub, server
stub, the main program of the server, and the required C
header files were generated by Sun’s rpcgen. The Rpcl
(RPC Language) code specifies only one void function
with one input argument of type string. The server
implements that function by a dummy routine.

We measured the cost of a Sun RPC call as the expected
elapsed time in executing the clnt_call statement in
the rpcgen-emitted client stub. With reference to Fig-
ure 5, it is the expected elapsed time in executing the
statements at lines 12-15. Thus, the overhead is the
difference between these two times.

Figure 6 shows that the overhead is small in absolute
terms and acceptable in absolute terms. The computing
environment was under very light load conditions when
the performance data were collected. For inter-machine
calls, the server ran on another Sun 4/60 workstation
sitting on the same ethernet and with the same config-
uration as the client host.

The overhead is small because, under normal load con-
ditions, it usually takes tens to hundreds milliseconds to
send a 1024-byte string remotely via Sun RPC. We are
satisfled with the performance of the current Cygnus
service access mechanism because the client agent is
implemented by heavy-weight processes. We have es-
timated that scheduling delays contribute about 97% of
the overhead for one-byte string.

We have also compared the performance of the Cygnus

—o— Cygnus runtime library
——4— Sun RPC library (TCP)

N
\

0.0

Expected CPU time (msec)

T T v
] 1024 2048 3072 4008

Length of string argument (bytes)

Figure 7: Performance of Cygnus runtime library.

runtime library with the Sun RPC library. The per-
formance of the Sun RPC library was measured as the
expected CPU time spent in executing the clnt.call
statement with no BSD socket invocations. The FIFO
system calls were commented out when we measured
the performance of the Cygnus runtime library. It turns
out the Cygnus runtime library even consumes less CPU
cycles when the size of the string argument is less than
1024 bytes (see Figure 7).

7 Conclusions and Future Work

The service specification, fault tolerance, and system in-
tegration issues are presently three of the most impor-
tant and different issues in exploiting network servers.
Our work shows that the client/service model provides a
perspective on these issues than the client/server model,
though the realization of this model can still be viewed
as a client/server system at some level of abstraction.
Our prototype implementation of the Cygnus service ac-
quisition mechanism demonstrates that these issues can
be solved effectively and efficiently under the Cygnus
model.

We have constructed several dramatically different dis-
tributed applications to explore the limitations of the
Cygnus service acquisition mechanism. We have also de-
veloped a language veneer over C to embed the Cygnus
model in the extended language [Chang90]. Future work
in progress includes performance enhancement, partic-
ularly for the client agent.

Acknowledgements

‘We would like to thank David Ballou, Peter Honeyman,
Stuart Sechrest, Toby Teorey, our reviewers, and the
members of the Cygnus project for their comments on
earlier versions of this work.

References

[Birman87] Birman, K. and T. Joseph, “Reliable
Communication in an Unreliable Environment,” ACM

Transactions on Computer Syst.ems 5:1 (February
1987), pp. 47-76.

[Black87] Black, A., N. Hutchinson, E. Jul, H. Levy,
and L. Carter, “Distribution and Abstract Types in

Emerald,” IEEE Transactions on Software Engineer-
ing SE-13:1 (January 1987), pp. 65-76.

[Chang90] Chang, Rong, “A Network Service Ac-
quisition Mechanism for the Client/Service Model,”
Ph.D. Thesis, Department of Electrical Engineering
and Computer Science, University of Michigan, 1990.

[Falcone87] Falcone, J., “A Programmable Interface
Language for Heterogeneous Distributed Systems,”
ACM Transactions on Computer Systems 5:4 (Novem-
ber 1987), pp. 330-351.

[Haskin88] Haskin, R., Y. Malachi, W. Sawdon, and
G. Chan, “Recovery Management in QuickSilver,”
ACM Transactions on Computer Systems 6:1 (Febru-
ary 1988), pp. 82-108.

[Herbert89] Herbert, Andrew, “The Computational
Projection of ANSA,” in Distributed Systems, ed. Sape
Mullender, Addison-Wesley, 1989.

[Johnson88] Johnson, D. and W. Zwaenepoel, “Re-
covery in Distributed Systems Using Optimistic Mes-
sage Logging and Checkpointing,” pp. 171-181in ACM
Symposium on Principles of Distributed Computing,
August 1988.

[Jones86] Jones, M. and R. Rashid, “Mach and
Matchmaker: Kernel and Language Support for
Object-Oriented Distributed Systems,” pp. 67-77 in
Proc. OOPSLA’86, September 1986.

[Kong90] Kong, M., T. Dineen, P. Leach, E. Martin,
N. Mishkin, J. Pato, and G. Wyant, Network Comput-
ing System Reference Manual, Prentice-Hall, 1990.

[Lampson86] Lampson, B. W., “Designing a Global
Name Service,” pp. 1-10 in ACM 5th Symposium on
Principles of Distributed Computing, August 1986.

[Neufeld89] Neufeld, G., “Descriptive Names in
X.500,” pp. 64-71 in Proc. SIGCOMM’89 Symposium
on Communicalions Architectures and Protocols, 1989.

Oppen83] Oppen, D. and Y. Dalal, “The Clearing-
ouse: A Decentralized Agent for Locating Named Ob-
jects in a Distributed Environment,” ACM Transac-
tions on Office Information Systems 1:3 (July 1983),
pp- 230-253.

[OSF90] OSF, OSF Distribuied Computing Environ-
ment Rationale, Open Software Foundation, May 1990.

[Peterson88] Peterson, Larry, “The Profile Naming
Service,” ACM Transactions on Computer Systems 6:4
(November 1988), pp. 341-364.

[Popek85’} Popek, G. and B. Walker, The LOCUS
Distributed System Architecture, MIT Press, 1985.

