
Addressing Click Fraud in Content Delivery
Systems

Saugat Majumdar, Dhananjay Kulkarni and Chinya V. Ravishankar
University of California, Riverside, CA 92521

{smajumdar, kulkarni, ravi}@cs.ucr.edu

Abstract—Mechanisms for data access and payment are central
to the success of content delivery systems. However, not much
attention has been paid to the issues of dishonest intermediaries
(brokers) or client collusion with dishonest brokers. We propose
protocols to verify broker honesty for data accesses under
standard security assumptions in such systems. Analytical and
experimental results show that our protocols are robust against
replay and fabrication attacks, and are consistently able to
identify broker dishonesty.

I. INTRODUCTION

On-line information and data service is a growing industry.
Stock exchanges, news services, and on-line vendors such as
Yahoo, already market stock quotes, news, and music, respec-
tively, on the Internet. Roles are also becoming specialized.
Publishers may have data domain expertise, but may not be
able to disseminate data or manage clients efficiently.

Therefore, an ancillary industry of data brokers has devel-
oped in parallel with the content creation industry. Brokers
may maintain servers to enhance data delivery quality, man-
age subscriptions, provide anonymity guarantees, and support
different payment options for clients and publishers. Examples
of brokers or intermediaries can include Akamai and C&W,
which provide enhanced data dissemination features.

Current systems typically require publisher to trust brokers
to behave honestly, though such trust may not always be
warranted. We do not assume that brokers are honest, and
propose methods to detect broker dishonesty.

Click inflation, a topic of current interest, can be caused by
broker dishonesty or neglect, with reports suggesting that up to
20% of reported clicks may be fraudulent. Major players such
as Yahoo and Google have already been settling significant
allegations [1] of click fraud.

As the content brokerage industry grows, so will the need
for security protocols to guard against broker dishonesty. Work
exists on pricing techniques in this domain [15], [24], but
such work tends to assume honest brokers and clients. This
assumption is increasingly becoming untenable. We propose
schemes to alert publishers to broker dishonesty.

A. Content Delivery Systems

A Content Delivery System (CDS) is a networked system of
computers cooperating transparently to deliver content to end-
users. We consider a CDS (see Figure 1) in which publishers
produce information and disseminate information to clients
through a supporting network of brokers. Clients register and

p

p

p

ps

s

s

s

Broker network Publishers

dσ

3

2

1

|S|

1

2

3

|P|

Clients

Fig. 1. Schematic Model of A Content Delivery System

interact with brokers, and never directly with publishers. The
broker network maintains a set of servers optimized for fast
data search and delivery, the details of which are not relevant
to publishers or clients.

1) Payment Models: We classify content delivery systems
based on the payment mechanism. In the broker-payee model,
the publisher pays the broker based on the number of times
the published data is accessed. For example, consider a service
that allows advertisers (“ publishers”) to post advertisements
on websites owned by a web-host (“broker”). Internet users
(“clients”), such as online shoppers click on the advertisements
and are directed to target sites for more information on the
product. The web-host monitors the web-clicks and charges
the advertiser based on the number of web-clicks seen by the
advertisement.

In the publisher-payee model, the broker pays the publisher
an amount proportional to the number of accesses to the
published data. This amount is an agreed-upon percentage
of the total payments made by the clients for accessing the
published data. For example, a news agency may distribute
articles through a broker, who generates readership and dis-
tributes articles. Readers register with the broker, read the
articles online, and pay the broker per article read. The broker
shares a certain fraction of these revenues with the publisher.

B. Broker-Driven Click Fraud

Since payments in both models depends on the number of
client accesses to published data, the broker has an incentive
to report a wrong number of accesses. In our model, any data
access that results in data delivery corresponds to a click.
Using this analogy, we will have click fraud at the broker
level if it reports a wrong count of the number of accesses (or
clicks) to the published data.

In the broker-payee model, a broker can cheat the publisher
by reporting an overcount for the number of data accesses. In
the publisher-payee model, the broker can cheat by reporting

U.S. Government work not protected by U.S. Copyright

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

240

an undercount. In practice, the payment function is likely to
be linear or piecewise linear. Hence, to increase profit by a
factor of k, the broker would have to report a count different
by a factor of at least k.

We have found no previous work that is resilient to broker
and client dishonesty. Broker dishonesty is briefly mentioned
in [24], but not solved. We believe our work is first in defining
the problem setting and to provide a solution for both payment
models.

C. Our Approach

We address the issue of reporting incorrect counts by
requiring the broker to report every data access request to the
publisher, who will validate the report. We must also guarantee
that client identities are not disclosed to publishers without
permission, and ensure that our protocols are efficient.

1) Stable Bloom Filter-based Solution for Broker-payee
Model: We track report replays by using an extension of the
classical Bloom Filter [7], called the Stable Bloom Filter [13],
at the publisher. Hits in the Stable Bloom Filter signal replays.
We eliminate false positives through a challenge-response
protocol between the publisher and the client. We provide
clients an incentive to give up anonymity, and propose a
probabilistic approach for identifying fabricated reports. Our
solution identifies most replays and reduces false positives, at
a very low storage cost.

2) Challenge-Response-based Solution for Publisher-payee
Model: We run a challenge-response protocol between the
client and the publisher, such that all the legitimate data
deliveries are successfully reported to the publisher. This
solution rewards clients that initiate access notification, and
hence is able to identify all the legitimate data accesses.

3) Solution to Address Client-Broker Collusion: Publishers
in the broker-payee model guard against collusion by tracking
the number of reports received for any client, tagged anony-
mously through a public key received with reports.

When the number of colluding clients is not large, a broker
may generate large fraudulent profits only if each colluding
client participates in hiding a large number data accesses from
the publisher, and becomes subject to detection. Clients in
publisher-payee model have low incentive to participate in
such collusions.

II. RELATED WORK

Broker dishonesty is mentioned in [24], [15], but no
solutions are discussed. Work in [23] proposes a pricing
technique for publish-subscribe systems, but does not address
cheating by a broker. Traditional payment schemes [3], [6],
[11], [16] do not go through a broker network, hence they
are inapplicable in our problem setting. The problem of click-
inflation introduced in [4] is a related problem, but does not
address the security requirements we consider.

Bloom filters have been used in [18] to detect duplicate
clicks. This work is not useful because brokers could cheat by
replaying the entries that were deleted from the Bloom Filter.

B Broker
network

KMS Key Management
Service

p Publisher sigs() Signature of s
bm Master broker πp(πs) p(s)’s Public key
s Client cert(,) Certificate
ŝ Dishonest s (d, Id) (Data,Identifier)
b̂m Dishonest b c, ρ challenge,response
σ Predicate sigp() Signature of p
hi() Hash Function SBFp SBF at p
m Size of SBFp rd(rs) Record for d(s)
l # hash funcs anon Anonymity Flag
count Count at b̂m countp Count at p

Fig. 2. Our Notation

III. REQUIREMENTS IN CONTENT DELIVERY SYSTEMS

Content delivery systems (CDS) must typically satisfy at
least the information integrity and client anonymity require-
ments [24].

Definition 1. A CDS maintains information integrity if it
delivers each data item to clients with the same information
content as it had when it was published.

Definition 2. A CDS maintains client anonymity if it leaks
no information about client identities to publishers.

Information integrity is a data correctness guarantee. Client
anonymity preserves privacy and prevents malicious publishers
from sending inaccurate data to selected clients.

IV. PROTOCOLS WHEN EVERYONE IS HONEST

Consider a system with a set of publishers P , a set of clients
S, and a broker network B. We assume that public keys are
managed by a key management service (KMS).

For simplicity of exposition, we will assume that only one
“master” broker bm ∈ B holds each data item d to be returned
in response to a client request. We will describe the CDS in
terms of the four operations register, publish, access
and count in Figure 3.

1) The Register Protocol: This protocol allows a client
s to register with the broker network B. Upon successful
authentication and registration, a record rs is created within
B holding the client’s public key πs, a certificate cert(s, πs)
binding the client identity to πs, and an anonymity flag anon.
This flag is set to false if the client is willing to disclose its
identity, and to true otherwise. Master brokers have access to
these records.

2) The Publish Protocol: This protocol allows a publisher
p to publish a data item d through the broker network
B, and creates a new record rd at the master broker bm
that manages data item d. The record rd has the fields
{p, Id, d, count, sigp(d), cert(p, πp)}, where p is the publisher
identifier, Id is a data item identifier, d is the data item, count
is the number of times d has been delivered to clients, sigp(d)
is the publisher’s signature on d, and cert(p, πp) is a KMS
certificate on the publisher’s public key πp.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

241

3) The Access Protocol: This protocol allows a registered
client s to request and retrieve from B a data item d satisfying
a predicate σ. This request is propagated within the broker
network B, until broker bm delivers d to s, and increments
the value of count in the record rd.

The access protocol guarantees information integrity and
client anonymity. A client s can check the integrity of the
data by validating the signature sigp(d) using the public key
in cert(p, πp). Client anonymity is maintained if the broker
bm does not disclose any information that identifies s to the
publisher.

4) The Count Protocol: The count protocol allows a
broker and publisher to reconcile their count values. The
publisher p requests bm for count corresponding to a particular
data item d. The broker bm responds to p with the value of
count stored in rd.

The integrity of the messages exchanged between the clients
and brokers, and between publishers and brokers is maintained
by using digital signatures [22].

Register(s, B, πs, certs, anon) :
G1) B creates a record rs = {s, πs, certs, anon}.

Publish(p, bm, d) :
P1) p creates unique identifier Id.
P2) p sends {p, Id, d, sigp(d), cert(p, πp)} to bm.
P3) bm creates a record rd = {p, Id, d, sigp(d),

cert(p, πp), count} with count = 0.

Access(s, B, σ) :
A1) s sends predicate {σ} to bm ∈ B
A2) bm returns {d, sigp(d), cert(p, πp)}, for σ(d) = T .
A4) bm updates the value of rd.count.

Count(p, bm, Id) :
C1) p sends a request {Id} to bm.
C2) bm sends rd.count to p.

Fig. 3. Protocols when Everyone is Honest

V. PROBLEM FORMULATION AND ASSUMPTIONS

Definition 3. A broker is dishonest if it either reports a
wrong count for the number of accesses to the published data,
or colludes with clients to fool publishers into accepting the
wrong count for published data.

Definition 4. A content delivery system maintains count
integrity for a data item d if d’s publisher can correctly
determine the number of times d was accessed by the clients.

This requirement is vital because the payment between
the publisher and the broker proportional to the number of
accesses to the data. We will address the following problem:

Replay

Fabricated

Validated

Unaccounted

Fake

Report

Genuine

Fig. 4. Types of Report

Problem Statement. Given the set of clients S, set of pub-
lishers P and the broker network B, maintain count integrity
while ensuring information integrity and client anonymity.

Assumption 1. Brokers may be dishonest.

Assumption 2. Brokers and publishers do not collude.

Assumption 3. Clients do not deny an access after receiving
the requested data item from the broker.

Assumption 4. A broker discloses a client’s identity only
after seeking permission from the client.

Assumption 5. All communication links are reliable.

VI. USING REPORTS TO MAINTAIN COUNT INTEGRITY

We maintain count integrity by having the broker and the
publisher each maintain a count of the number of accesses for
each data item. We require the broker to report every access
request to the publisher to enable it to maintain this count.

Definition 5. A report is a claim by a broker that a client has
performed an access r to a data item d. A report is genuine
if request r caused the broker to deliver data d to the client.
A report is fake otherwise.

A. Verifiable Reporting in Broker-payee

We classify the reports as shown in Figure 4. In the broker-
payee model, a broker may replay a previous report, or
fabricate a new report to fool the publisher. We require each
report to be verifiable. Verifiable reports are validated by the
publisher as being fake or genuine.

A verifiable report includes a client signature on the value
(Id|p), where p is the publisher and Id is the identifier of
the data item d. A client will include this signature with the
request it sends to a broker, and the broker forwards it to the
publisher, and claims payment. If the publisher is able to verify
the signature on a report, it becomes a validated report.

We use a probabilistic signature scheme [17], [14], [19], so
that no two signatures from a client for a given data item are
the same. Broker replay of signatures is deterred as long as
the publisher can detect duplicate signatures.

B. Reporting in Publisher-payee

In the publisher-payee model, the dishonest broker may
generate undercounts by not reporting the data accesses to
the publisher and hence, resulting in unaccounted reports.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

242

C. Our Policy to Maintain Count Integrity

Publishers deter dishonest brokers with the following policies.
We assume that penalty can be imposed on a dishonest broker
by executing the function Penalty().

Validation-based Payment (Broker-payee Model): Publish-
ers make payments only for validated reports.

We argue that this policy maintains count integrity as long
as fabricated or replayed reports fail validation at the publisher.
Each client sends a correct signature with each access, so
the broker will forward it and claim payment, having no
incentive to fabricate a report in this case. These reports are
correctly validated and counted at the publisher. For good
signature schemes, we can discount the possibility of the
broker fabricating client signatures, so that fabricated reports
will be detected and discarded by publishers. If publishers can
also detect replays, we will have ensured count integrity.

Reward-based Notification (Publisher-payee Model): Pub-
lishers reward clients for participating in the report notifica-
tion process.

We argue that this policy maintains count integrity as long
as the client can initiate the notification and monitor the broker
behavior during the notification process. The clients are willing
to participate in the notification process to gain rewards.

VII. STABLE BLOOM FILTER-BASED SOLUTION FOR

BROKER-PAYEE MODEL

We propose a technique using Stable Bloom Filter
(SBF) [13] to stop replay and fabrication of reports. Each
publisher keeps track of the signatures received from the
broker by entering them into a SBF. The SBF mechanism
consists of a set of hash functions h1(), h2(), · · · , hl() with
output range {0, 1, · · · ,m}, and a vector v of m cells, all
initialized to 0.

Figure 5 shows the operations defined on a Stable Bloom
filter. The insert operation applies the hash functions to
the input, and sets each of the corresponding cells to M ,
where M is the maximum value that can be assigned to a
cell. Our Validation-based Payment Policy is implemented
by operation is_member in Figure 5, which verifies if a
received signature sigs(Id|p) corresponds to a replayed report.
Finally, the operation rand_decr selects t cells at random,
and decrements them. The execution of rand_decr after
every insert and is_member limits the false positive rate,
as shown in [13].

It is shown in [13] that when distribution of inputs does not
change over time, the policy of randomly decrementing entries
in the SBF causes the FP rate to converge very quickly to a
constant. This state of the SBF is called the stable state.

A. Proactive Approach to Stop Replay of Reports

A cell is set to M whenever a value hashes into it, but
there is a small probability that this cell will be selected for
decrement M times before any other input hashes to it. This
cell may possibly get cleared, causing a false negative (FN).

insert(γ): Set v[h1(γ)], v[h2(γ)], · · · , v[hl(γ)] to M .
is member (γ): If any of v[h1(γ)], v[h2(γ)],· · · , v[hl(γ)]

is 0, return false, else true.
rand decr():
1) Randomly select t distinct indexes {i1, . . . , it}.
2) If v[ij] ≥ 1 then v[ij] = v[ij] − 1, j = 1, 2, . . . , t.

Fig. 5. Stable Bloom filter v with hash functions h1(), · · · , hl()

The broker knows that the rand_decr operation randomly
selects and decrements t cells. In principle, a broker can replay
a report if it can guess which cells have been cleared. To
prevent this possibility, the t cells chosen in each execution of
rand_decr are kept secret. Consequently, successive states
of the SBF are also kept secret.

We prevent replay of reports by forcing the broker to guess
which cells are cleared. In Section VIII-C, we bound the
probability with which a dishonest broker can guess FNs.

B. Reactive Approach to Identify False Positives

We call it a hit if the is_member operation returns true. To
determine whether the hit is due a false positive, the publisher
requests the client identity, and presents a challenge to which
the response can only be determined by a valid client. If the
client responds correctly, the publisher considers the report
to be genuine, and labels the hit as a false positive. Hence,
the publisher is able to successfully verify replays and false
positives that are signaled by a hit.

Since this protocol requires knowledge of client identity, it
is most appropriate when the number of false positives in the
SBF are expected to be low. The parameters, m, l and t can
be set to minimize false positives using prior knowledge of
the access request volume.

C. Probabilistic Identification of Fabricated Reports

A broker is required to include a client signature in a report,
but a publisher has no way of knowing whether this signature
is genuine. A dishonest broker may generate false public-
secret key pairs and create false signatures. If any signature
is challenged, it can respond with a public key matching the
signature in question.

Consequently, signatures could never be verified using only
information from the broker. Any public key supplied by the
broker must be tied to an identity that can be verified by a
trusted third party. Thus, clients must give up anonymity.

1) Incentive for Revealing Identity: Although clients prefer
anonymity, it is fortunately quite routine in commerce for
some clients to give up anonymity in exchange for monetary
incentives. Retail discount cards are the best example, where
customers permit tracking of their identities and purchases in
exchange for a discount on the purchased items.

It is easiest to model the incentive for a client to give up
anonymity as coming from the broker, who may, in turn, be
compensated by the publisher. The broker is not to reveal client

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

243

Access(s, B, σ) :
A1-A4) Execute steps A1–A4 in Figure 3
A5) s sends {sigs(Id|p), cert(s, πs)} to bm
A6) bm services request, sends sigs(Id|p), to p
A7) If (is member(sigs(Id|p))) then p initiates
the Identify Replay(s, b, p) protocol

A8) p initiates Identify Fabri(s, b, p) protocol

Fig. 6. SBF-based Protocol for Ensuring Count Integrity

Identify_Replay(s, b, p) :
R1) p executes

rand decr();
insert(sigs(Id|p));

R2) p requests the bm for the public key of s.
R3) If anon = 1, bm sends cert(s, πs) to p

else sends null to p.
R4) If p receives null, then p executes

+ + countp; HALT
R5) p executes

Mr = Rand string();
c = Es(Mr);

R6) p sends {c, sigp(m̃)} to bm, where
m̃ = c|sigs(Id|p).

R7) bm forwards {c, sigp(m̃)} to s.
R8) If sigp(m̃) is an invalid signature then s sends

{null} to p and executes
Penalty(bm); HALT

else s sends ρ = Ds(c) to p and HALT.
R9) If ρ = Mr then p executes

+ + countp; HALT
else p executes
Penalty(bm); HALT

Fig. 7. Identify Replay Protocol

identities without client’s permission. We do not address the
“bad world” scenario when brokers and publishers collude to
compromise client identities.

2) A Probabilistic Approach: Since it is cost prohibitive to
verify every report, the publisher chooses some small fraction
of reports to verify. The publisher verifies each arriving report
at random with a probability q, that can be tuned by the
publisher. The publisher requests the broker for the certified
public key πs and the KMS certificate cert(πs, s) of the
client s, and verifies the signature sigs(Id|p). Thus, fabricated
reports are detected when broker discloses the client identity.

Of course, dishonest brokers may fabricate reports, and
when challenged, simply claim that the client has chosen to
remain anonymous. We addresses this difficulty by having the
publisher monitor the frequency of such claims of anonymity.
If this frequency is suspiciously high, the publisher can take

Identify_Fabri(s, b, p) :
F1) p executes

flag = Set F lag(s, q); /*Returns 1 with
probability q and 0 with probability (1− q).*/

F2) If flag = 0, then p executes
+ + countp;
rand decr();
insert(sigs(Id|p)); HALT

F3) If flag = 1, then
3.1) p sends {sigs(Id|p), f lag} to bm.
3.2) If anon = 0 then bm sends cert(s, πs) to p

else sends null to p.
3.3) If p receives null then goto Step 3.5.a.
3.4) p verifies the validity of sigs(Id|p) by using
public key πs of s.

3.5) If sigs(Id|p) is valid then p executes
a)+ + countp;
rand decr();
insert(sigs(Id|p)); HALT

3.6) If sigs(Id|p) is invalid then p executes
Penalty(bm); HALT

Fig. 8. Identify Fabri Protocol

[d]

Master Broker Publisher

Deliver Data

[Sig, Cert]Send Confirm

If hit

Send Certified PublicKey [π]

Forward Challenge [c]

Response

Request Service [σ]

Send Report [Sig] Check SBF

Send Challenge [c]

Send Response [ρ]

Forward Response [ρ]
Verify

Request Certified PublicKey

Client

Fig. 9. Sequence Diagram for SBF-based Protocol

additional measures.

D. The SBF-based Protocol

Our protocol is presented in Figure 6. The sequence of
message exchanged in the protocol is shown in Figure 9.

When a publisher receives signature {id, sigs(Id|p)} with
a report, it invokes the is_member on the signature. If this
operation returns true, the publisher can choose to flag this
report to be a replay, if the SBF parameters were chosen to
make the steady-state false positive rate sufficiently small.
Alternatively, it can execute a challenge-response protocol
with the client to check if the hit is a false positive. If
is_member returns false, the publisher checks whether the
report may be a fabrication, as in Section VII-C.

Each execution of insert is accompanied by an execution
of rand_decr. Replayed reports and the genuine reports are
both inserted into the SBF. Inserting a replayed report in the

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

244

SBF, prevents this report from being a FN for at least M
consecutive rand_decr operations.

VIII. ANALYSIS OF THE SBF-BASED PROTOCOL

We argue that a dishonest broker can do no better in
guessing a FN than an honest broker. We will place the
weakest constraints on the broker, allowing him full freedom to
manipulate the SBF at the publisher, thereby showing optimal
resistance to the threat of FNs.

A. Limiting Brokers from Spoofing Public Keys

If we allow users to generate their own public keys, a broker
may fake (or spoof) public keys, and sign fabricated reports
with spoofed keys. We will hence require all entities to obtain
key pairs from a trusted authority, as in [8]. To prevent the
broker from obtaining too many key-pairs, the trusted authority
can keep a count of the number of key-pairs distributed to each
entity.

B. Optimal Resistance to Guessing False Negatives

Let Bob claim to be able guess an FN correctly. Let Alice
be assigned to evaluate Bob’s performance. Alice holds an
SBF, with all the cells initially set to 0. To provide maximum
advantage to Bob, we assume that he is the only source of
is_member and insert operations arriving at Alice. Alice
acts as a publisher who follows the rules in Protocol 6.
Rule 1: The t cells selected in the rand_decr operation are
chosen from a uniform random distribution, and the selection
is kept secret.
Rule 2: Alice performs rand_decr before executing each
insert request from Bob.
Rule 3: For every is_member(a) request, Alice executes
is_member(a), returns the result to Bob, and executes
rand_decr and insert(a), in that order.

At time t1, let Bob make a insert(r) request to Alice,
where r is chosen by Bob. Let cb = {c1, c2, . . . , cl} be the set
of cells set to M by insert(r). Let Bob specify r to be
the report for which it will correctly guess a false negative.

Bob continues making his operation requests to Alice. After
U operations, let Bob claim that r is a FN with a non-
negligible advantage over any honest broker.

1) Argument for Optimal Resistance: For Bob to guess that
r is an FN after U operations, he must be able to guess that at
least one of the cells in cb is 0. Since all cells in cb were
set, one them could have reached 0 only due to repeated
executions of rand_decr. However, the t cells decremented
in each execution of rand_decr were chosen independently
of Bob’s requests and the states of the SBF. Bob can have no
advantage over an honest broker in guessing if any cell in cb
is 0. Hence, a dishonest broker does not have any advantage
over a honest broker in guessing a FN.

C. Probability of Guessing False Negatives

Let us assume that a dishonest broker b̂m knows all the
reports ever entered in the SBF, the hash functions hi() used,
the size m of the vector v, and the value of M . Given a cell

in the SBF, b̂m can easily keep track of which reports causes
that cell to be set to M .

Let cell c have been set to M during some insert
operation. Let φ(c) be the number of operations for which c
has not been set. Since b̂m knows all reports, it can determine
φ(c) by counting the number of operations for which c has
not again been set.

The dishonest broker b̂m can target the cell c for which
φ(c) is highest, since this cell is the most likely to have been
decremented to 0 by the rand_decr operations. (We note
that v[c] can be 0 only if φ(c) ≥ M .) It can then replay
a report that causes this cell to be set, resulting in a false
negative.

Since hash function hi() sets one of the m cells in the
SBF, the the probability that c is set by any one of the l hash
functions is l/m. Similarly, since t cells are chosen randomly
by rand_decr, c is decremented with probability t/m.

Let φ(c) = u and α = t/m. The probability that v[c] is
zero is Pr[v[c] = 0 |φ(c) = u], and is equal to the probability
that c was chosen by rand_decr at least M times during
these u operations. This is the Binomial probability

u∑
i=M

(
u

k

)
αk(1 − α)u−k

The probability that c is not set during u consecutive opera-
tions is Pr[φ(c) = u] = (1 − l/m)u. Let δ = (1 − l/m).

Thus, the probability of v[c] = 0 after U operations is∑U
u=M Pr[φ(c) = u] × Pr[c = 0|φ(c) = u], or

Pr[FN] =
U∑

u=M

δu
u∑

k=M

(
u

k

)
αk(1 − α)u−k (1)

This probability is hard to express in closed form, since even
the partial Binomial probability in the inner sum has no known
closed form except in terms of the incomplete Beta function.
Instead, we will attempt to bound this probability from above.
We note that α = t/m is very small since t� m, and we can
use the Poisson approximation to the Binomial distribution.
That is, we can write

(
n
k

)
αk(1 − α)n−k ≈ (nα)k

k! enα. Using
this approximation, we rewrite Equation 1 as

Pr[FN] =
U∑

u=M

δu
u∑

k=M

(uα)k

k!
euα

=
U∑

u=M

(δeα)u
u∑

k=M

(uα)k

k!

=
U∑

u=M

(δeα)u (uα)M

M !

u−M∑
k=1

(uα)k

k!

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

245

 1e-24
 1e-22
 1e-20
 1e-18
 1e-16
 1e-14
 1e-12
 1e-10
 1e-08
 1e-06

 0.0001

 0 5 10 15 20 25 30 35

U
pp

er
 b

ou
nd

 o
n

P
r[

F
N

]

number of operation (u)

M=1
M=2
M=3

Fig. 10. Probability of guessing false negatives for 1 ≤ u ≤ 31

Clearly,
∑u−M

k=1
(uα)k

k! < euα, so that

Pr[FN] <

U∑
u=M

(δeα)u (uα)M

M !
euα

=
αM

M !

U∑
u=M

uM (δe2α)u

<
αM

M !
UM

U∑
u=M

(δe2α)u

=
(αU)M

M !
(δe2α)M 1 − (δe2α)(U−M−1)

1 − (δe2α)

If we write b = δe2α, we have

Pr[FN] <
(αUb)M

M !
· 1 − b(U−M−1)

1 − b
(2)

Figure 10 shows how this upper bound on the probability
of false negatives changes with M . As in [13], we set t = 3,
l = 4 and m = 11073741824. The three curves correspond to
cases when M = 1, M = 2 and M = 3. Each curve presents
the change in the probability as U varies from 1 to 31.

D. Overall Success Probability for a Dishonest Broker

A replayed report will cause a false negative in the Bloom
filter with probability Pr[FN], so that the publisher considers
this as a fresh report with this probability. For replays, the
broker can provide a valid public key certificate on demand,
so the broker succeeds with probability Pr[FN] for replays.

For fabricated reports, the broker will be challenged with
probability q for a public-key certificate, so that he goes scot
free with probability 1 − q. Let the fraction of clients who
choose to remain anonymous be ψ. The broker can decline to
provide the public-key certificate, without arousing suspicion,
for a fraction of challenges no higher than ψ. So the expected
probability of success on the challenges is qψ. The overall
probability of success here is 1 − q + qψ = 1 − (1 − ψ)q.

If a dishonest broker replays reports with probability pr

and fabricate reports with probability pf , his overall success
probability is (Pr[FN] ·pr)+((1− (1−ψ)q) ·pf). A publisher
can now choose q and the SBF parameters to set this success
probability at any level he deems appropriate.

Claim VIII.1. Brokers are never penalized if they forward
genuine reports to publishers.

Proof: Let signature sigs(Id|p) corresponding to a valid
access arrive at publisher p. If sigs(Id|p) causes a hit in

SBF, p will run the challenge-response protocol to verify that
sigs(Id|p) is a false positive. If sigs(Id|p) does not causes a
hit in SBF, p considers it a non-replay report, with probability
q checks whether it is a fabricated report. Since the report
is legitimate, this validation succeeds. Thus, no broker is
penalized for forwarding a genuine report. �

IX. CHALLENGE AND RESPONSE-BASED SOLUTION FOR

PUBLISHER-PAYEE MODEL

The broker can report undercounts in this model. The
simplest solution is to have a subset of clients (the reporters)
notify the publisher of each request they make. The broker
does not know who the reporters are. If he is failing to report
to the publisher a fraction f of all client accesses, he will
also fail to report fraction f of the reporter accesses. Standard
results from sampling theory [21] tell us that we can estimate
f accurately with a modest number of reporters (1000–2000),
regardless of the client population size.

A. Challenge-Response Approach to Notify Publishers

After receiving requested data from the broker, the reporter
sends a report in the form of a challenge c to the publisher,
who verifies the challenge and returns a response ρ, which
confirms that the report was received by the publisher.

Optionally, the publisher may solicit additional reporters by
rewarding the them with e-cash sent with ρ. To stop broker
tampering or e-cash interception and replay, the publisher signs
a hash of the e-cash, concatenated with the challenge-response
pair. Techniques in [11], [9] ensure that e-cash cannot be
reused. Such schemes can also trace the publisher to whom
the e-cash was issued.

B. The Challenge-Response-based Protocol

Our protocol is presented in Figure 11. The sequence of
message exchanged in the protocol is shown in Figure 12. To
directly address the issue of broker tampering, we pretend in
these protocols that the broker explicitly forwards all messages
between the reporter and the publisher. We then show that the
protocol remains tamper-proof.

C. Properties of the Ciphertext Challenge

In Figure 11, the ciphertexts cId
notify the publisher of the

delivery of data item Id to a reporter. We identify the following
three requirements for our cryptosystem.

A) Label Attachability: The encryption function E() should
allow the reporter to attach the identity of data item
Id (the label) to the ciphertext. Labeling has been
previously used in [5], [10].

B) Label Verifiability: The decryption process should allow
the publisher to verify whether the reporter had attached
the given label to the ciphertext. D() and V () denotes
the decryption and the verification function, respectively.

C) Label Non-malleablity: It should be computationally
infeasible to remove the label attached by the reporter.

Encryption functions such as those in [10][12] that are
secure against adaptive-chosen ciphertext (CCA-2) attack [20]
satisfy these requirements, and can be used to construct cId

.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

246

Access(s, B, σ) :
A1-A4) Execute steps A1 to A4 from the access

protocol defined in Figure 3.
A5) s executes

Mr = Rand string();
cId

= E(Mr, πp, Id|p);
A6) s sends {cId

, Id|p} to bm
A7) bm forwards {cId

, Id|p} to p
A8) If V (cId

, Id|p) = false then p executes
Penalty(bm); HALT

A9) If V (cId
, Id|p) = true then p executes

+ + countp;
ρ = D(cId

);
9.1) p computes sigp(e|cId

|ρ), where e is the
e-cash reward.

9.2) p sends {e, sigp(e|cId
|ρ), ρ} to s; HALT

A10) If ρ = Mr and e, sigp(e|cId
|ρ) are valid

then s executes HALT
else s executes
Penalty(bm); HALT

Fig. 11. The Challenge-Response-based Protocol

Claim IX.1. Undercounts do not occur in the protocol when
the reporters are honest.

Proof: In the Access protocol, let reporter s send message
{cId

Id|p} in Step A5 of Figure 11. There are two possible
ways for bm to avoid reporting the access to p, and yet forward
a correct response to the reporter.

The first option is for bm to create another ciphertext
c′Id

, such that D(c′Id
) = D(cId

) so that the verification of
{c′Id

, I ′d|p′} at the publisher p returns true, where I ′d is a valid
data identifier and p′ is some valid publisher. However, as
E() is CCA-2 secure, it is computationally infeasible for bm
to construct such a c′Id

and then compute the response.
The second option is for bm can try to decrypt cId

. This is
also not possible, because E() is CCA-2 secure.

X. CLIENT-BROKER COLLUSION

We now consider the scenario where a dishonest broker
colludes with some clients. We expect most clients to be
honest, so only a small fraction of dishonest clients collude in
cheating the publisher.

Definition 6. A client is considered dishonest if it participates
in the generation of a fake report or if it helps the broker in
hiding the genuine reports from the publisher.

A. Identifying Dishonest Clients in Broker-payee Model

We will require the broker to include the public key πs of
the client in each report. In the absence of a certificate or some
other binding to identity, πs itself contains no information
about the client’s identity. Consequently, πs appears as a

[d]

Master Broker Publisher

Forward Response [ρ]

Forward Challenge [c]

Request Service [σ]

Deliver Data

Send Challenge [c]

Send Response [ρ]

Client

Fig. 12. Sequence Diagram for Challenge-Response-based Protocol

random tag to the publisher, who gains no information about
the identity of s.

Now, p uses a hash table to maintain a count for number of
validated reports that included each public key. As we have
already argued, the broker gains a premium for dishonesty in
proportion to the overcount. For a large profit, this overcount
must be large. If the number of dishonest clients is small, this
large overcount will cause the entries for these clients to be
disproportionately large. When the publisher detects this sort
of anomaly, it requests explicit verification of identity, or takes
other measures, as determined by policy considerations.

B. Tolerating Collusions in Publisher-payee Model

Consider a scenario where a legitimate data access caused
the delivery of data item d. The report corresponding to this
access goes unaccounted if the broker does not notify the
publisher about the data access.

Our techniques cannot completely stop client-broker collu-
sions. Hence, we propose that our protocol be used in scenarios
where a single unaccounted report results in very small profit
for the dishonest broker, for example MP3 song downloads
for Apple’s IPod. So, to generate a huge profit, the broker
needs to hide a large number of genuine reports. Under the
assumption that only a small number of clients are likely to
collude, each dishonest client would be required to participate
in hiding a large number of genuine reports. This is unlikely
because the client would have to pay for a large number of
data accesses, without any benefits for doing so. Hence, we
say that the publisher tolerate client-broker collusion that could
generate small frauds, but need not worry about collusions that
may result in huge losses.

XI. EXPERIMENTAL EVALUATION

We used the MSNBC anonymous web data [2] as a real-
world dataset to test our techniques. This dataset characterizes
the pages visited by users who visited the MSNBC website
for one day. URLs for MSNBC website categories, such as
“frontpage”, “news” or “tech” are considered as individual
items in our experiments. The webpages for the various
categories are accessed on an average 5.7 times by a total
of 989,818 clients. We augmented each of these 4,698,795
accesses with a 1024-bit signature to create verifiable reports.

A cheating pattern is skewed if the broker replays some
accesses after forwarding all the genuine accesses. It is uniform
if the broker distributes the replays uniformly over the one-
day period. The publisher maintains a SBF with the following

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

247

 80

 85

 90

 95

 100

 0 1 2 3 4

%
 r

ep
la

ys
 s

uc
ce

ss
fu

lly
 id

en
tif

ie
d

numbers of cells decremented (t)

skew
uniform

(a) Effect of varying t.

 0

 0.05

 0.1

 0.15

 0.2

 1 2 3 4

%
 a

cc
es

se
s

re
qu

iri
ng

 s
ub

sc
rib

er
 id

en
tif

ic
at

io
n

numbers of cells decremented (t)

skew
uniform

(b) Accesses requiring
client ID, 0 ≤ t ≤ 4

 80

 85

 90

 95

 100

 1 2 3

%
 r

ep
la

ys
 s

uc
ce

ss
fu

lly
 id

en
tif

ie
d

Max value of a cell in SBF

skew
uniform

(c) Effects of varying M .

 80

 85

 90

 95

 100

 10000 20000 30000 40000 50000

%
 r

ep
la

ys
 s

uc
ce

ss
fu

lly
 id

en
tif

ie
d

num replays attempted

skew
uniform

(d) Replays caught

Fig. 13. Simulation Results for Broker-payee Model

 50

 100

 150

 200

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5#
fa

ke
 a

cc
es

s
be

fo
re

 b
ro

ke
r

is
 c

au
gh

t

Probability of verifying reports (q)

uniform

Fig. 14. Probability of Fake Reports Going Undetected is Low

default parameters: SBF vector size 8.9MB (75,180,720 bits)
using two hash functions, with two bits decremented per
execution, with each cell holding a max value of 3.

Figure 13 shows our simulation results for the SBF-based
protocol. Figure 13(a) shows that our protocol very efficiently
identifies replays, with a success rate of 99.99%. The success
rate drops, as expected, to 93% as we increase the number
of cells decremented at each operation to 4. We recommend
decrementing no more than two cells at each operation.

In Figure 13(b) shows that the fraction of clients who need
to give up anonymity is negligible (at 0.018%), which is the
number of false positives in our protocol. Figure 13(c) shows
that the rate of FNs, and hence the % replays identified, can
be maximized by setting the maximum value in each cell to
3. Finally, Figure 13(d) show that our protocol is scalable and
consistently identifies dishonesty at a high success rate.

Figure 14 shows that the number of fake accesses that go
undetected before getting caught is very low, assuming that 5%
of the total 4,698,795 reports are fraudulent (the broker wants
to generate 5% profit). Half the fraudulent reports are replays
and the other half are fabricated, and 5% of the clients are
willing to be identified. The x-axis represents q, the probability
with which the publisher verifies any broker report.

XII. CONCLUSION

We have presented a SBF-based protocol that stops replay
and fabrication of data accesses in a broker-payee model. This
solution efficiently identifies both kinds of fake accesses and
flags clients that collude with the broker to fool the publisher.
Our solution for publisher-payee ensures that unaccounted
data accesses cannot go unreported, unless clients collude
with a broker. This solution tolerates a small degree of
cheating and hence is applicable in payments schemes that
attach low monetary value per data access.

Acknowledgments: This project was supported by a grant
from Tata Consultancy Services, Inc.

REFERENCES

[1] Google click fraud, http://www.law.com/jsp/article.jsp?id=1153213525657.
[2] Msnbc dataset, http://kdd.ics.uci.edu/databases/msnbc/msnbc.html.
[3] B. Aiello, Y. Ishai, and O. Reingold. Priced oblivious transfer: How to

sell digital goods. Lecture Notes in Computer Science, 2045, 2001.
[4] V. Anupam, A. Mayer, K. Nissim, B. Pinkas, and M. K. Reiter. On the

security of pay-per-click and other Web advertising schemes. Computer
Networks (Amsterdam, Netherlands: 1999).

[5] N. Asokan and V. Shoup. Optimistic fair exchange of digital signatures.
EUROCRYPT ’98, 1998.

[6] M. Bellare, J. Garay, R. Hauser, A. Herzberg, H. Krawczyk, M. Steiner,
G. Tsudik, and M. Waidner. iKP – A family of secure electronic payment
protocols. pages 89–106.

[7] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors.
Communications of the ACM, 13(7):422–426, 1970.

[8] D. Boneh and M. K. Franklin. Identity-based encryption from the weil
pairing. In CRYPTO ’01: Proceedings of the 21st Annual International
Cryptology Conference on Advances in Cryptology, pages 213–229,
London, UK, 2001. Springer-Verlag.

[9] J. Camenisch, S. Hohenberger, and A. Lysyanskaya. Compact e-cash.
EUROCRYPT’05, volume 3494 of LNCS, pp. 302-321.

[10] J. Camenisch and V. Shoup. Practical verifiable encryption and decryp-
tion of discrete logarithms. Crypto 2003.

[11] D. Chaum, A. Fiat, and M. Naor. Untraceable electronic cash). CRYPTO
’88, pp. 319-327., 1989.

[12] R. Cramer and V. Shoup. A practical public key cryptosystem provably
secure against adaptive chosen ciphertext attack. LNCS, 1462, 1998.

[13] F. Deng and D. Rafiei. Approximately detecting duplicates for streaming
data using stable bloom filters. In ACM SIGMOD’06.

[14] A. Fiat and A. Shamir. How to prove yourself: Practical solutions to
identification and signature problems. In Crypto ’86.

[15] L. Fiege, A. Zeidler, A. P. Buchmann, R. Kilian-Kehr, and G. Mühl.
Security aspects in publish/subscribe systems. In Third Intl. Workshop
on Distributed Event-based Systems’04.

[16] M. K. Franklin and M. Yung. Secure and efficient off-line digital money.
In ICALP ’93, pages 265–276, London, UK. Springer-Verlag.

[17] S. Goldwasser, S. Micali, and R. L. Rivest. A digital signature scheme
secure against adaptive chosen-message attacks. SIAM Journal on
Computing, 17, 1988.

[18] A. Metwally, D. Agrawal, and A. E. Abbadi. Duplicate detection in
click streams. In WWW ’05, pages 12–21.

[19] D. Pointcheval and J. Stern. Security arguments for digital signatures
and blind signatures. Journal of Cryptology, 13, 2000.

[20] C. Rackoff and D. Simon. Non-interactive zero-knowledge proofs of
knowledge and chosen-ciphertext attack. LNCS, CRYPTO 91.

[21] H. Stark and J. W. Woods. Probability, Random Processes, and
Estimation Theory for Engineers. Prentice Hall, USA, 1994.

[22] D. R. Stinson. Cryptography: theory and practice. CRC Press, 1995.
[23] A. Tanner and M. A. Jaeger. Pricing in publish/subscribe systems. In

ICEC ’04.
[24] C. Wang, A. Carzaniga, D. Evans, and A. Wolf. Security issues and

requirements for internet-scale publish-subscribe systems. In HICSS’02.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

248

