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Abstract

Recent multicast routing protocol proposals such as
PIM and CBT have been based on the notion of group-
shared trees. Since constiruction of a minimal-cost tree
spanning all members of a group is difficult, they rely
on center-based trees, and distribute packets from all
sources over a single shortest-path tree rooted at some
center. While PIM and CBT provisionally use admin-
istrative selection of centers or trivial heuristics for
locating the center of a group, they do not preclude the
use of other methods as long as they provide an or-
dered list of centers. Other previously proposed heuris-
tics typically require knowledge of the complete network
topology, a requirement which is not always practical
for a distributed problem such as Internet routing. In
this paper we investigate the problem of finding a good
center in distributed fashion, study various heuristics
for automating center selection, and ezamine their ap-
plicability to real-world networks. We also propose sev-
eral new algorithms which we feel to be more practical
than ezisting methods. We present simulation results
showing that of the methods potentially feasible in the
Internet Multicast Backbone, ours offer the best results
in terms of cost and delay.

1 Introduction

Multicast technology allows point-to-multipoint
communication and enables the use of multimedia ap-
plications such as voice and video transmission over
the Internet. Multicast methods typically use span-
ning trees, and minimize delay by distributing pack-
ets along the shortest path between a receiver and a
sender. The collection of shorfest paths from a data
source to all receivers is known as a source-specific tree.

The collection of routers in today’s Internet with
multicast capability form the Multicast Backbone
(MBone) [1], in which multicast groups consist of dy-
namic sets of receivers, and senders to a group are not
required to be members of the group. A group may
have a single data source, as for a video broadcast,
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but in the general case there can be many sources per
group.

As the number of multicast groups and sources
grows, the amount of state required at each multicast
router grows. One method to reduce this state uses
group-shared trees, in which data from all sources in
a multicast group is distributed along a single shared
tree, rather than a separate tree for each source. This
obviates the need to keep per-source information for
the multicast group at each intermediate router.

Ideally, a group-shared tree would use a minimal
spanning tree to minimize total bandwidth usage, at
the expense of end-to-end delay. Finding this tree for
some subset of nodes in a graph is known as the Min-
imal Steiner Tree problem, and is known to be NP-
complete [2]. Previously proposed heuristics, surveyed
in [3], typically require knowledge of the complete net-
work topology, which is impractical for the Internet.

A simpler approach to group-shared trees, pro-
posed by Wall [4], is to use a center-specific tree. In
this approach, a single node is chosen near the center
of the group. The group-shared tree then becomes the
shortest-path tree rooted at that center. Wall shows
that a topologically centered tree gives a delay bound
of twice that of source-specific trees. If the root is
moved to a group member, the bound becomes three
times that of source-specific trees.

The advantages of a center-specific tree over a
Minimal Steiner Tree thus include bounded delay and
simpler implementation. Wei and Estrin [3] show that
in terms of total bandwidth usage, center-specific trees
lie somewhere between the Minimal Steiner Tree and
source-specific trees.

Recent multicast routing protocol efforts, such as
PIM [5] and CBT [6], rely on the notion of center-
specific trees. In CBT, group-shared trees have centers
called “cores”. In PIM, a group-shared tree is rooted
at a Rendezvous Point (RP). Both terms are concep-
tually equivalent, and we will refer to the root of a
center-specific tree as simply a center.

While locating the best center is simple given comn-
plete topological information, such information is not
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always available in distributed routing protocols. Cur-
rent approaches typically use either administrative se-
lection of centers or some trivial heuristic.

In this paper we investigate the problem of find-
ing a good center in a distributed fashion, and examine
various heuristics for automating center selection. We
also propose new heuristics and center-location proto-
cols.

The remainder of this paper is organized as fol-
lows. Section 2 details several previous proposals. In
section 3, we present new center-location algorithms.
Section 4 describes our simulation results, and sec-
tion b covers conclusions and the future.

2 Previous Work

A number of methods have already been proposed
for center location. In this section we present a brief
overview of such methods and their performance. As
a reference for comparison, we use an “Optimal”
Center-Based Tree (OCBT) chosen by calculating
the actual cost of the tree rooted at each node in the
network, and picking one which gives the lowest max-
imum delay over all those with the lowest cost.

In the Random Source-Specific Tree (RSST)
heuristic, the center is chosen randomly among the
sources and does not move. Doar and Leslie[7] found
the ratio of the costs of this approach to the optimal
Minimal Steiner Tree cost to be typically between 1
and 2 in random graphs of average node degree 3 to
6. The RSST approach is also equivalent to selecting
the first source or the initiator of the multicast group,
as suggested by PIM [5] and CBT [6]. Note that this
approach only gives a single center, rather than a list
of possible centers which is required for fault tolerance.

Wei and Estrin [3] show that the Minimum
Shortest Path Tree (MSPT) approach performs al-
most as well as OCBT, and suggest that it is adequate
for use with center-based trees. This approach requires
calculating the actual costs for the trees rooted at each
group member, and chooses the member with the low-
est cost. Wall [4] shows that such a tree has a delay
bound of 3 times that of a source-specific tree for each
source (whereas a topologically centered tree has a de-
lay bound of 2 times that of a source-specific tree for
each source). We observe that the MSPT approach
reduces to OCBT when all nodes are group members.

Wall presents the following three center-location
algorithms in [4], which operate on all nodes in the
network:

The Maximum-Centered Tree (MCT) algo-
rithm picks the node with the lowest maximum dis-
tance to any group member. The Average-Centered
Tree (ACT) algorithm picks the node with the low-
est average distance to all group members. The

Diameter-Centered Tree (DCT) algorithm finds
the node which is the midpoint of the lowest maxi-
mum diameter, defined as the sum of the distances to
the two furthest away nodes.

The tournament-based Center-Location Proto-
col (TOURNEY), proposed by Shukla, Boyer, and
Klinker[8, 9], runs a tournament between nodes to
determine a center. Sources are initially paired with
group members in decreasing order of distance, and re-
maining nodes are paired randomly with byes inserted
appropriately. The winner of a pairing is determined
by finding the node intermediate on a path between
the pair. This requires either knowledge of the network
topology, or an exchange of route tracing messages for
each pair in order to discover the necessary topological
information. The tournament continues for [log, M|
rounds until one winner remains, where M is the num-
ber of sources and members in the multicast group. It
thus potentially involves cooperation between 2M — 1
nodes.

3 Issues and Alternatives

In a distributed environment, topological infor-
mation is often distributed across all nodes, so that
no single node has complete topological information.
Thus, an ideal algorithm to locate the center of a mul-
ticast group should require only a small amount of
information at each node, and minimal interaction be-
tween neighboring nodes. We emphasize that multi-
cast groups have dynamic memberships, and thus the
optimal center location will evolve over time.

This paper studies the problem of finding good
centers in distributed fashion. We will examine a few
previously proposed heuristics below, and then pro-
pose a few new ones. To insure reliability, we extend
the problem to that of finding the n best nodes to
use as centers. By finding the n best nodes, we can
construct an ordered list of centers to use as backups,
should the best center fail.

We define the cost of a tree to be the sum of the
costs of the links in the tree. If the cost of every link
is 1, the tree cost is the number of links in the tree.
The cost for a group-shared tree currently in use by a
multicast group can be determined with a simple algo-
rithm. “Leaf” nodes would report a subtree cost of 1
to their parent, while intermediate nodes would add up
the subtree costs reported by child nodes, and report
the sum (plus one for itself), up to its own parent.

Such a method is less useful in finding the best
root to use for a center-specific tree in a network of N
nodes. In practice, it is not feasible to construct all N
trees for a given multicast group in a distributed envi-
ronment. Also, subtree costs can only be calculated in
this manner for a functioning multicast group. Other
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off-tree nodes may not have the necessary information
to do this calculation.

To calculate the actual cost of a tree for an ar-
bitrary center, we must know the complete network
topology and the list of group members. While link-
state routing protocols such as OSPF [10] maintain
topological information for a local domain, complete
global network knowledge is not available. Any algo-
rithm which requires complete knowledge is not useful
across the MBone, as we require. Algorithms which
compute actual tree costs may thus not be practical.

The list of multicast group members may also be
unknown. PIM, for example, assumes that a Ren-
dezvous Point (i.e. center) has a list of sources only,
rather than a list of all group members. On the other
hand, it may be possible to modify the routing proto-
col to maintain membership lists, or perhaps to obtain
the list of group members from some external protocol
or application. For example, existing MBone appli-
cations such as vat, wb, and vic all maintain lists of
group members.

Finally, the question arises as to when or how often
a center-location algorithm should be executed. Over-
head arises both from the cost of protocol messages
and, where required by applications, retransmissions
due to loss of data. Currently, it is not well under-
stood how much of an effect changing the center of an
active group in PIM or CBT will have on the loss of
data, but we believe that the effects can be made arbi-
trarily small by controlling the frequency at which the
algorithm is executed. When applications know the
sources a priori but not necessarily the receivers, tech-
niques which only require knowledge of sources would
be useful. In such cases, an algorithm could be run
once at the outset and never again.

The optimal center is unlikely to move very much
for relatively large groups at steady state, with mem-
bers leaving and joining randomly. On the other
hand, once the center location has been determined
for small groups with dynamic membership, the tree
will gradually degrade towards a randomly-centered
tree as nodes join and leave the group until the center-
location algorithm is performed again. Thus there ex-
ists a tradeoff between overhead and maintaining a
good tree.

3.1 New Approaches

Although some approaches such as RSST or
TOURNEY are exceptions, many center-location al-
gorithms operate by picking a node with minimum
weight, where the weight is some function of measures
such as cost or delay. Existing algorithms of this type
generally fall into one of the following two classes:

Class A: All network nodes participate, using a list
of group members. This includes algorithms such
as OCBT, MCT, ACT, and DCT.

Class B: All group members participate, using a list
of group members. This includes algorithms such
as MSPT.

In addition to these classes, we propose for study
the following four new classes of algorithms in this pa-
per:

Class C: All network nodes participate, using only a
list of sources.

Class D: All group members participate, using only
a list of sources.

Class E: A hill-climbing algorithm (detailed below in
Section 3.1.1) finds a local minimum, using a list
of group members.

Class F: A hill-climbing algorithm finds a local min-
imum, using a list of sources.

Classes C, D, and F may be appropriate for rout-
ing protocols such as PIM which avoid enumerating all
group members, but do require centers to enumerate
all sources. We should expect that these classes will
pick a node near the center of all the sources, rather
than the receivers.

3.1.1 Two Minimization Protocols

Distributed algorithms which require all nodes in the
network to participate (as classes A and C do), typi-
cally work by having all nodes exchange information
with their neighbors, keeping the best costs thus far.
However, in a large network such as the MBone, it is
infeasible to require that every node in the network
have a list of all members for every multicast group.
It is quickly becoming impractical even to require ev-
ery node to maintain a list of sources for each multi-
cast group, which was a strong motivation for center-
specific trees in the first place. Thus, while classes
A and C are not practical for general use, we include
them for comparison.

For classes B and D, we propose the following pro-
tocol to find the n best nodes which minimize a weight
function using a list of group members/sources.

Minimal Member Protocol (MIN-MEMB):

1. When the multicast group is created, it has only
one member, which becomes the center. As nodes
join or leave the multicast group, the center can
migrate as group members execute the following
steps periodically.
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2. The center starts a timer 77 with a fixed duration
and waits until it expires. This timer determines
how frequently the center location algorithm runs,
and thus how much overhead the protocol will in-
cur.

3. The center calculates its own weight according
to some predefined function such as the ones de-
scribed below in Sections 3.1.2 and 3.1.3. It then
multicasts its own weight plus the list of group
members/sources if necessary, to all group mem-
bers and starts a second timer 75 with a fixed
duration.

4. Any group member which is willing to become
a center then computes its own weight using the
given list, and waits a random amount of time
(73) during which it listens for replies from other
group members.

5. When a member’s timer T3 expires, it multicasts
its own weight to all group members if its own
weight is less than the nth lowest weight heard so
far.

6. Once the initiator’s timer 75 expires, the node re-
porting the lowest weight is chosen as the next
center. The process then repeats from step 2.
To avoid frequent center migrations, the center’s
timers can be set to some reasonably high values,
and the center can refuse to relinquish the posi-
tion of center unless the weight improvement is
above some threshold. (Note that if the thresh-
old is infinite, this reduces to the simple RSST
model.)

The majority of the algorithms previously de-
scribed which are actually feasible limit the center to
be one of the group members, or one of the sources.
We now present a method to relax this restriction.

For classes E and F, we propose the following pro-
tocol to construct a list of up to n best nodes which
minimize a weight function using a list of group mem-
bers/sources.

Hill-Climbing Protocol (HILLCLIMB):

A path list holds the list of nodes in the “path” formed
by traversing towards neighbors with better weights.
This path list is used to ensure that the algorithm
terminates. It is also trivial to impose a maximum
path length so that the algorithm terminates after a
certain number of hops. The protocol works as follows,
starting with an empty path list, and a weight function
known to all nodes:

1. When the multicast group is created, it initially
has only one member, which becomes the only
center in the list of possible centers. The following
steps then occur periodically.

2. The center starts a timer T} with a fixed duration
and waits until it expires. It then starts a probe
as follows.

3. The probing node queries its neighbors for their
weights by sending them the list of group mem-
bers/sources. It then restarts the timer 7} so the
algorithm will eventually resume from this step if
a message below is lost.

4. Each neighbor calculates its own weight according
to the weight function, and responds.

5. The probing node then updates the list of n best
centers to account for the new information.

6. If the probing node’s own weight is lower than the
lowest neighbor weight, we proceed from step 11.

7. If all best neighbors are already in the path list,
we go to step 11.

8. The probing node adds itself to the list of visited
nodes.

9. The probing node picks an unvisited best neighbor
to be the next probing node.

10. The old probing node sends the path list and
group member/source list to the new probing
node, which then proceeds from step 3.

11. The final probing node sends a message back to
the center, which is the first node in the path list,
informing the center of its weight.

12. The final probing node then becomes the new cen-
ter and repeats the process from step 2. Again,
to avoid frequent center migrations, the center’s
timer can be set to some reasonably high value,
and the center can refuse to relinquish the posi-
tion of center to another node unless the weight
improvement is above some threshold. Thus, the
long-term overhead can again be made arbitrarily
low.

3.1.2 Weight Functions

Functions proposed by others for minimizing include
the actual tree cost[3], the average delay, the maxi-
mum delay, and the maximum diameter[4]. Although
previous work has only dealt with functions for a sin-
gle algorithm class, we will generalize the functions to
apply to any of the six classes described in Section 3.1.

Let S be the node list used by nodes participating
in the algorithm. Thus, S is the set of multicast group
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members for classes A, B, and E. For the remaining
classes, S is the set of sources. We then define the
following weight functions for a given set S and root.

Actual Cost = number of links in tree rooted at
root and extending to all of S (1)

Max Dist = maxyes d(root, u) 2)
Avg Dist = I%[ Y ues d(root, u) 3)
Max Diam = mazyesd(root,u) +

mazyes,v£ud(root, v) (4)

where d(a, b) is the distance from a to b.

To reiterate, Actual Cost does not lend itself
well to distributed computation for a large number of
groups. However, the other weight functions all rely
on local distance information available to each router.

3.1.3 The Estimated Cost Function

Our work suggests that it is useful to define another
function describing an estimated tree cost, calculated
by taking the average of the maximum and minimum
bounds on tree cost. To estimate costs, we will again
use the distance for each possible destination, infor-
mation which is already available to routers.

To get a lower bound on the cost of a tree rooted at
some node, we observe that the best-case tree is linear.
In this case, all group members lie on the path from
the root to the farthest member, so that the cost of the
tree is simply the maximum distance from the root to
any group member. When the distances are given as
hop counts, we can get a slightly tighter bound. Specif-
ically, if two group members are at an equal distance,
the distribution tree cannot be completely linear, but
must have at least one additional link. Thus,

Est Costmin = maxyes d(root, u) + number of

duplicate distance nodes in S

To get an upper bound on the cost of the tree
rooted at some node, we note that in the worst case,
no links are shared among the paths to each mem-
ber. Thus the maximum tree cost is the sum of the
member distances. If the number of group members
(other than the root, if it is a member) is greater than
the number of interfaces, we may tighten the bound by
subtracting the difference to account for the knowledge
of sharing those links. If distances are given in hop
counts, we get Est Costinaz = 3, g d(root, u) if |S] <
deg(root), and Est Costmar = () s d(root,u)) —
(1S] — deg(root)) otherwise.

Averaging the two bounds, we obtain:

Est Costyin + Est Costyas

Est Cost = 3 (5)

Although routers also keep the identity of the next
hop neighbor used to reach each destination, in gen-
eral one cannot make use of this information to draw
conclusions about distant nodes on the actual multi-
cast tree. This is because the actual tree may be using
reverse paths (shortest path from each group member
to the root) rather than forward paths (from the root
to each group member), so that a member may be on
a subtree rooted at a different neighbor than the listed
next hop. This typically occurs when multiple equal
paths exist.

3.2 Using the Estimated Cost Function

We now present several algorithms, corresponding
to several of the classes from Section 3.1, that use the
estimated cost heuristic of Section 3.1.3.

Class B: The Minimum Estimated Member-
Member Tree (MEMMT) heuristic uses the MIN-
MEMB protocol with the list of all multicast group
members to find the member with the lowest estimated
tree cost. This is equivalent to MSPT except that
tree costs are estimates only. This approach may be
feasible since, as has already been mentioned, group
members may already have a list of all other members.

Class D: The Minimum Estimated Member-
Source Tree (MEMST) heuristic is motivated by the
fact that in the existing PIM specification, a Ren-
dezvous Point (center) knows only the list of sources,
rather than the list of all group members. MEMST
uses the member whose tree to all sources (only) con-
tains the least number of estimated links, thus choos-
ing a node closest to the center of all sources. Note
that this reduces to RSST for a single source which
is a member, and to MEMMT when all members are
sources.

MEMST again uses the MIN-MEMB protocol, ex-
cept that the list of sources is used in place of the list
of group members. This approach is feasible in light of
the fact that the current center may already maintain
a list of sources, as in PIM.

Class E: The Member-Based Hill-Climbing
Algorithm (HC-M) uses the HILLCLIMB protocol
with Estimated Cost as its weight function. It re-
quires a list of all members in the multicast group to
be passed along the path.

Class F: The Sender-Based Hill-Climbing
Algorithm (HC-S) functions like HC-M except it uses
only a list of sources.

Table 1 summarizes the requirements of the vari-
ous algorithms which have been described above.

4 Performance Studies

In our simulations, all links were symmetric with
unit cost, so that tree cost is simply the total number

1c.2.5

79



H

- Z 3

E - q8> - £ %’); ; —‘2

Algorithm |3 & |S2|<&8|2% 8
OCBT No No Yes No
RSST No No No No
MCT No | Yes No No
ACT No | Yes No No
DCT No | Yes No No
MSPT No | Yes Yes No
TOURNEY | Yes | Yes No Yes
MEMMT No Yes No No
MEMST Yes No No No
HC-M No | Yes No No
HC-S Yes | No No No

Table 1: Requirements of center-location algorithms

of links in the tree. For the purpose of constructing
trees, we also assume all sources are also group mem-
bers. Each simulation point reflects an average over
500 runs, using an average node degree of 4 unless
otherwise specified.

4.1 Generating Random Graphs

To avoid limiting ourselves to any specific network,
we generate random network topologies which exhibit
connectivity characteristics approximating real-world
networks.

We use the random graph model presented by
Waxman [11], where nodes are randomly distributed
over a Cartesian coordinate system. The probability
that an edge exists between any two nodes « and v is
given by the probability function:

P({u,v}) = Bexp _—_dT('l;,_vl

where d(u,v) is the distance between the two nodes,
L is the maximum possible distance, and « and 8 are
parameters in the range 0 < o, 8 < 1. Larger values of
« increases the proportion of longer edges to shorter
edges, while larger values of B increase the average
node degree.

Graphs are then generated until one is found which
has a single connected component.
4.2 Parameters of Interest

We wish to analyze the performance of various
center-location algorithms according to two criteria:
actual tree cost and maximum source-to-destination
delay. Actual tree cost is measured using the Actual

! Although knowledge of the underlying topology is not ex-
plicitly assumed by OCBT and MSPT, some knowledge is nec-
essary for computing the actual tree costs.

Cost metric defined in Section 3.1.2. For delay, we
wish to measure the maximum distance between any
source and any other multicast group member over a
tree rooted at a given center. We use the following
definition, given a root, a set of sources S, and a set
of group members M:

Max Delay = max TreeDist(root,s,m)  (6)
seS,meM

€S
where TreeDist(root, s, m) is the length of the short-
est path between s and m along links in the tree rooted
at root.

We must bear in mind that this concept is funda-
mentally different from the Max Dist weight function
defined in Section 3.1.2, which only measures the max-
imum distance from the root to any group member,
rather than from a source.

In practice, a better tree cost lowers overall band-
width requirements and effectively raises the number
of multicast groups that can be supported by the net-
work. This is especially important since it is expected
that the number of multicast groups will become very
large in the future. A better maximum delay, on the
other hand, means that packets from sources will ar-
rive at their destinations sooner. A tradeoff exists be-
tween these two goals, as we will see in the following
sections. It must be pointed out, however, that delay
is much less critical than tree cost when the option
exists to use shortest-path trees for delay-sensitive ap-
plications, as allowed by PIM.

We now examine the performance of the various
classes of algorithms and weight functions according to
these criteria. Two other parameters that we expect
to significantly affect the performance are the fraction
of network nodes which are group members, and the
number of sources per group. These are important
because in practice, we require center-location algo-
rithms to scale well for large groups with many sources.
4.3 Analysis of Weight Functions

First, we will compare the effects of using weight
functions (1)-(5) from Sections 3.1.2 and 3.1.3. We
start by running Class A algorithms which will choose
the network node which minimizes each of Actual
Cost, Est Cost, Avg Dist, Max Dist, and Max Diam.
Figure 1 shows the results of 100 trials using 5 senders
in a 50 node network, as the number of members in
the group varies. Each weight function was used on
the same set of 100 graphs. The Y axis plots the ratio
between the average Actual Cost at a center located
using each weight function and the optimal center lo-
cation as determined by minimizing Actual Cost. Sev-
eral facts are apparent from these two plots.

We see that the weight functions which give the
best actual cost typically give the worst average delay,

1c2.6.

80



118 Tree Cost as a Function of Members
e, Max Diam ~+—
. LT hte
m vg Dist ~e-- |
8 114 Est Cost —+—
‘5 112 q
X 41901 ]
8
5 108
O
O 06t/ ]
| T N
5 104 e
<
102
100 —
10 20 30 40 50 60 70 80 90 100
% Membership
Figure 1: Cost
Tree Cost as a Function of Sources
107
106.8
b 1066
Q
O 1064
©
® 106.2
& 106
§ 105.8
s 1056
8
2 10547}
105.2
105 e
0 2 4 6 8 10 12 14 16 18 20
# Sources

vs. Delay of Functions

100 Maximum Delay as a Function of Members

Max Diam ——

% r Max Dist —— |
L vg Dist -a-- |

%L Est Cost ~x—

Max Delay as % of OCBT

1

82 . . . S .
10 20 30 40 50 60 70 80 90 100
% Membership

Maximum Delay as a Function of Sources

110 T v T T v T
AN
ot ey,

105

100

95

90 L

85

Max Delay as % of OCBT

80 L

75 R e T
0 2 4 6 8 10 12 14 16 18 20
# Sources

Figure 2: Performance of Classes using a List of Members

showing that a cost vs. delay tradeoff exists. The Max
Diam weight function gave the best maximum delay,
while our Est Cost function gave the best tree cost.

Interestingly enough, the Max Dist measure pro-
vided worse maximum delay than did Max Diam. This
is due to the fundamental difference between the Max
Delay measured, which is from a source to a group
member, and the Max Dist function, which minimizes
the maximum delay between the root and the group
members. Max Diam, on the other hand, is not as
biased towards a single distant member.

The Avg Dist function did not perform as well
since 1t tries to provide a lower average delay at the
expense of the maximum. While the actual values in
all cases depend on parameters such as the number
of nodes and senders, the relative positions of points
remained relatively constant under different conditions
in our simulations.

Finally, when all nodes are members of the multi-
cast group, the tree will include every network node.

In this case, every tree will have exactly N — 1 links.
The location of the center has no effect on Actual Cost
and all algorithms converge as shown.

4.4 Analysis of Algorithm Classes

Next, we wish to see where the various algorithm
classes lie in terms of cost vs. delay. For this analysis,
we pick Est Cost as the weight function, and run the
algorithm for each class using this function. Figures 2
and 3 show the results of 500 trials using 20 members
in a 50 node network, as the number of sources in the
group varied. The Y axis again plots the average ra-
tio between the Actual Cost at a center located using
each class of algorithm and the optimal center location
as determined by minimizing Actual Cost. The hill-
climbing algorithm for classes E and F used a random
node as the initial location?. Each class of algorithm
was run on the same set of 500 graphs.

2Simulation showed that hill-climbing was relatively insensi-
tive to the location of the initial node.
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Figure 4: Effects of Group Size on Proposed Algorithms

For the relationships between classes A through D,
these results only point out what was already intuitive:
A and C gives better tree costs than B and D since
they find the best node in the network, while B and D
are limited to the best node which is a group member.
Similarly, A and B give better tree costs than C and D
since they use more complete information to compute
weights.

However, what is interesting from these graphs is
the performance of the hill-climbing classes E and F.
These results indicate that they provide better perfor-
mance than classes B and D which locate the center
at a group member. As a reminder, classes A and C
are infeasible in real world networks, but are shown
simply for comparison.

4.5 Analysis of Proposed Algorithms

Now that we have analyzed the performance of the
various algorithm classes and weight functions, we now
need to compare the actual center-location methods
which have been proposed, since several of them do not

fall into the category of algorithms analyzed above.

Figure 4 shows the effects of varying the group size
on the proposed algorithms. For simplicity, we have
limited these plots to those algorithms which may be
feasible. For reference, we include MSPT, which is
feasible only in a limited domain. This simulation was
run on 50-node graphs with 5 senders. The results for
other parameters were similar.

RSST performed the worst in terms of both cost
and delay, which is hardly surprising. Although none
of the algorithms performed as well as MSPT in terms
of cost, they each provide better performance than
RSST, with HC-M being the best overall, followed
closely by MEMMT.

When there are few members in the group, the
percent difference in delay is higher simply because
the tree cost is much lower. Therefore the difference
in maximum delay is a higher proportion of the actual
value.

It is interesting to note that near 100% member-
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Figure 5: Effects of Number of Sources on Proposed Algorithms

ship, the algorithms give worse delay. This is because
when all nodes are members, every tree has exactly
N — 1 links regardless of the center location. Thus,
the algorithms become more random since they do not
attempt to optimize for source-to-destination delay.

To investigate the effects of varying the number
of sources, we simulated the performance of each al-
gorithm on 50-node graphs with 10 members and 1 to
10 sources. Again, the results were similar for other
parameters. Figure 5 gives the results from this simu-
lation.

MSPT’s requirement to compute actual tree costs
is not feasible, but its performance is again shown
for comparison. We see that HC-M, followed by
MEMMT, give the best tree costs due to their use of a
list of all group members. HC-5 and MEMST reduce
to the simple RSST for only one sender, and to HC-
M and MEMMT, respectively, when all members are
sources. This is because they use a list of sources, and
hence locate the center near the center of all sources,
rather than the center of all group members.

From the plot on the right, we notice that RSST,
MEMST, and HC-S provide lower maximum delays
than the others when there are few sources. For a sin-
gle source, this is because the center will always be
located at the source. Thus all packets will follow the
shortest path tree, providing the least delay. As the
number of sources increases, the center of the sources
becomes closer to the center of all group members, and
the distance from each source to the center increases.
This latter fact explains the increase in maximum de-
lay.

Now that we have seen the effects of varying the
network conditions on the performance of the algo-
rithms, it is interesting to see where each lies on the
cost vs. delay axes. Figure 6 shows the results from
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Figure 6: Performance of Proposed Algorithms

the same simulation used for figure 4 for 50 nodes, 5
senders, and 10 members in the multicast group (20%
membership).

In this plot, we also include the performance of
Wall’s ACT and MCT algorithms for comparison as
well. We remind the reader that each of OCBT,
MSPT, ACT, and MCT are infeasible for general us-
age in the MBone today, either because they require
the ability to compute actual tree costs, or because
they require every node in the network to have a list
of group members.

From this plot, we see that of the potentially feasi-
ble algorithms, our algorithms HC-M, MEMMT, HC-
S, and MEMST provide better overall performance
than the others.

As pointed out in Section 3, once the center lo-
cation has been determined for small groups with dy-
namie membership, the cost and delay will degrade
towards random placement until the center-location
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algorithm is run again. This effect may be less signifi-
cant for large groups at steady state.

5 Conclusions

Recent multicast routing protocol proposals such
as PIM and CBT have been based on the notion of
center-specific trees and distribute packets from all
sources over a single shortest-path tree rooted at some
center. For locating the center of a group, they provi-
sionally use administrative selection of centers or triv-
ial heuristics, but do not preclude the use of other
methods as long as they provide an ordered list of cen-
ters.

In this paper we have investigated the problem
of finding a good center in a distributed fashion, and
examined various heuristics for automating center se-
lection. We have also proposed several new algorithms
which we feel to be more applicable to real-world net-
works than existing heuristics which require knowledge
of the complete network topology.

Simulation results of all the algorithms show that
of the ones which may be technically feasible in the
MBone, HC-M offers the best results in terms of both
cost and delay. Of those using a list of sources, HC-S
provides the best results.

Our simulations used random graphs. We have
also run simulations of the performance of these algo-
rithms over hierarchical graphs which more closely re-
semble real networks, and of the rate at which tree cost
degrades as members join and leave a group. These re-
sults will be available in [12].

A more difficult problem results when only a sub-
set of nodes are willing to become centers. This may
occur, for example, if only a subset of the routers
have been upgraded to use a new center-location algo-
rithm. In this situation, MEMMT and MEMST will
both work without modification. Since only members
willing to become centers will respond to a multicast
request, the best site will be chosen from among the
candidates for center. HC-M and HC-S, on the other
hand, must be modified so that each node keeps the
closest candidate center for each interface. The HILL-
CLIMB protocol would then use the list of closest can-
didate centers in place of the list of neighbors. When
all nodes are candidates, this becomes equivalent to

the existing HILLCLIMB protocol specification. If this
problem proves to be of practical significance, it will
require further investigation.
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