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Abstract-Much effort has gone into studying navigation al- 
gorithms for mobile-robot systems. However, although mobile- 
robot systems often suffer from a lack of adequate on-board 
memory and communication bandwidth, little work has been 
done on techniques to solve these problems. Two algorithm- 
implementation strategies are examined to solve the memory- 
limitation and communication-bandwidth-limitation problems 
associated with the navigation of single or multiple robots in 
large dynamic environments. On-board main-memory-man- 
agement mechanisms, cache policies, auxiliary-memory data 
structures, and two path planners are explored by simulations 
based on a new navigation algorithm. One- and two-level caches 
with one- and two-level planning, respectively, are investi- 
gated; these can easily be extended to schemes with more levels. 
Our results show that among the seven (three local and four 
global) cache policies studied, the predicted-window, aisle, and 
via-point policies overcame the above limitations without com- 
promising robot performance. Therefore, one or more of these 
three policies can be used with implementation strategies to deal 
with the memory-limitation and communication-bandwidth- 
limitation problems encountered in real-world mobile-robot 
navigation. Our results can also be very useful in the domain 
of Intelligent Vehicle Highway Systems (IVHS), where the main 
memory of the on-board computer may be too small to hold all 
of the road network and other useful information. 

I. INTRODUCTION 
ARGE dynamic environments pose great challenges Lf or single or multiple mobile-robot navigation sys- 

tems. These challenges are both at the level of algorithms 
and in their implementation. In this paper, we address the 
latter set of challenges by studying strategies for imple- 
menting these algorithms under hardware constraints. 

When mobile robots travel in very large environments, 
the amount of information they must access is typically 
very large. As an example, our experimental robot needs 
a 128 X 128 array to represent a small 12.8 X 12.8 m2 
indoor test field. Since memory requirements tend to in- 
crease as the square of the field size, an outdoor environ- 
ment would need much more memory. Although main 
memory sizes have been increasing, they are still not large 
enough to contain very large data sets. An alternative must 
be used; that is, the data must be stored in an auxiliary 

memory instead. Similar difficulties arise in the newly de- 
veloping field of Intelligent Vehicle Highway Systems 
(IVHS). In order to find the best route connecting the or- 
igin and destination points for a vehicle over a road net- 
work, the system must store in memory the details of the 
road network. Typically, at least 30 Mbytes are required 
for a metropolitan area, such as Chicago or Detroit. 
Therefore, an auxiliary memory is commonly used [ 161. 

This situation raises some problems. First, access to the 
auxiliary memory is typically several orders of magnitude 
slower than access to main memory. Therefore, how to 
access data from the auxiliary memories is an issue criti- 
cal to the success of this approach. One technique to ad- 
dress this memory-management problem is the cache. 

A cache is a collection of data blocks that logically be- 
long on the auxiliary memory, but which are being kept 
in the on-board memory for performance reasons. In other 
words, a cache provides a high-speed buffer in the on- 
board main memory to act as a temporary store for the 
auxiliary memory. Caching is an old technique, and cache 
memories have been used in computers for a long time. 
Relevant references on this topic are [5], [12]-[14]. In 
this paper, we do not study the various aspects of cache 
memory design, or their implementation policies for gen- 
eral-purpose high-speed computers. For instance, we will 
not examine cache design issues such as the optimal cache 
size [ 131, block (line) size [14], degree of associativity 
[ 5 ] ,  and whether to update memory by write-though or 
copy-back approaches [ 121, [ 131. We focus instead on 
how to use cache memories to implement algorithms for 
mobile-robot navigation, and on the effects of the pro- 
posed implementation strategies for mobile-robot per- 
formance. 

We intend to use these strategies and associated cache 
policies to solve the memory-limitation and communica- 
tion-bandwidth-limitation problems which we have de- 
scribed. While many caching techniques exist for general- 
purpose computers, we believe they are quite inappro- 
priate for our application domain. 
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A .  
There are several reasons why general-purpose schemes 

are for Our purposes* First, a genera' caching 
policy deals with both instruction and data caches. In our 
domain, code access patterns are thoroughly predictable, 
but data management poses great challenges. A com- 
monly used cache replacement policy for general-purpose 
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computer systems is least recently used (LRU). Whenever 
the CPU needs a block of data which is not in the cache, 
it will fetch that block from a disk and replace the one in 
the cache which is least recently used. 

Now, the LRU idea assumes that the locality patterns 
need not be precisely known, but that they are captured 
well by the LRU technique. In our case, we know much 
more about the data access patterns. As discussed in the 
next section, the navigation code is often focused strongly 
on one data window at a time. Also, the LRU technique 
focuses on how to replace blocks of data in the cache as 
new blocks are brought in. In our domain, we are con- 
cerned less with where to put new data, and much more 
with what data will be accessed next. In other words, in 
a classical LRU algorithm, a miss brings in a new block 
of data, the extent and definition of which is determined 
without pro-actively considering program semantics or 
characteristics. The same fetchheplacement strategy may 
be used for both mobile-robot applications and for super- 
computing applications even though these applications 
have different characteristics. In contrast, we concentrate 
particularly on the issue of navigation and on relevant 
data. 

Furthermore, in our domain there are time-critical rou- 
tines in the robot control system. If the CPU is forced to 
fetch a block of data during the execution of a time-crit- 
ical routine, the system may miss deadlines, leading to a 
dangerous accident. This issue is discussed in greater de- 
tail in Sections 111-A and 111-C. 

We have observed, in particular, that using a general- 
purpose LRU-style algorithm for global path planning can 
lead to a disastrous situation called thrashing, where the 
system is constantly demanding access to blocks which 
have been swapped out to disk by the LRU algorithm. 
This situation creates enormous traffic between the main 
store and auxiliary store, and the system performance de- 
grades severely. For example, a best-first heuristic-search 
algorithm used for global path planning must find a path 
along the one branch that is the best among the rest of the 
branches in the search tree, so it often jumps from one 
branch to another during execution. As the algorithm 
searches a new branch, the blocks of data brought for the 
previous branch tend to get swapped out of the cache. If 
the algorithm jumps back to the previous branch, it must 
refetch the data surrounding this branch. These data must 
be fetched from the auxiliary memory, creating tremen- 
dous traffic between the cache and auxiliary memory, and 
forcing the CPU to wait. In an actual case, it was ob- 
served that using a best-first search for planning with an 
LRU-based cache caused the CPU to idle 50% of the time 
waiting for the caching algorithm to fetch data from aux- 
iliary memory. Therefore, an in-depth study of different 
implementation strategies is clearly necessary. 

A look at the literature in the mobile-robot field [8], 
[17] suggests that much attention has been paid to devel- 
oping new navigation algorithms, and to extracting and 
representing different sorts of sensory information for 
navigation. On the other hand, we have seen no studies 
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which deal with the challenge of how to implement al- 
gorithms with multilevel map representations for single- 
or multi-robot navigation in large environments with 
memory and communication bandwidth limitations. We 
address these problems here in the context of the navi- 
gation algorithm developed in [20]. It is generally agreed 
that mobile-robot navigation algorithms should be based 
on multiple levels of spatial representation or global-local 
map models. This navigation algorithm (Appendix A) uses 
a node-based map for global planning and a grid-based 
map for local planning, which is very similar to the hi- 
erarchical representation proposed by other researchers. 
Therefore, we anticipate that our studies will provide in- 
formation of direct use to others in the field. 

We propose one-level and two-level cache mechanisms 
to solve the memory-limitation and communication-band- 
width-limitation problems. Only portions of local and 
global map data are stored in the main memory of an on- 
board computer, with the rest of the data being stored in 
an auxiliary memory. The auxiliary store may either be- 
long to one robot or be shared by several robots, and may 
either be a disk or a large off-line main store. Whenever 
the required data are not in the on-board memory, they 
are brought in from the auxiliary store. This mechanism 
is useful not only for the case where on-board memory is 
insufficient, but also for low-budget projects which can- 
not afford to upgrade to large-memory computer systems. 
Our results can also be very useful in the domain of In- 
telligent Vehicle Highway Systems (IVHS), where the on- 
board computer’s main memory for a vehicle cannot hold 
all of the road-network information, which is so large that 
CD-ROM compact disks are required for the auxiliary 
memory [ 161. 

We have constructed a simulator to study the proposed 
mechanisms using our navigation algorithm. For multi- 
robot navigation, we assume a distributed approach. That 
is, each robot in the field uses its own planning algorithm 
and views all other robots as moving obstacles. Research- 
ers in distributed artificial intelligence often take a differ- 
ent approach, e.g., [3], in which robots are not passive 
obstacles, but participants in a cooperative problem-solv- 
ing endeavor. Since the emphasis in our study is on mem- 
ory management, we will limit discussion of such algo- 
rithmic and strategic issues. Furthermore, our two-level 
cache mechanism can be extended to a multilevel cache 
mechanism if a multi-layer map is used for navigation. 
We will introduce these implementation strategies, and 
provide simulation results of these strategies and associ- 
ated cache policies. 

Our results suggest that the recommended cache poli- 
cies and suggested implementations overcome the on- 
board memory and communication-bandwidth limitations 
without compromising robot performance. Therefore, they 
can be used to deal with memory-limitation and commu- 
nication-bandwidth-limitation problems. There are many 
aspects of the multirobot navigation which are not han- 
dled well by the LRU-like general cache schemes. Our 
work addresses these issues and provides new mecha- 
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nisms for the memory management of multirobot navi- 
gation in large environments. 

11. IMPLEMENTATION STRATEGIES FOR LARGE DYNAMIC 
ENVIRONMENTS 

One of the main problems in the autonomous naviga- 
tion of mobile robots is coping with large volumes of dy- 
namic environmental information when the on-board 
memory and communication bandwidth are limited. Two 
algorithm-implementation strategies are proposed and 
discussed in detail. 

A .  Problem Formulation 
For this study, we choose a scenario where one or more 

robots work on the same floor of either a big warehouse 
or an environment with many random obstacles. The 
warehouse scenario can be extended to supermarkets , busy 
hospitals, etc. The environment is dynamically updated 
whenever aisles become blocked or opened in the ware- 
house. Furthermore, we assume that the main memory of 
the on-board computer is too small to store all the envi- 
ronmental data for the robot. Therefore, each robot will 
need to communicate through buses, radio links, or other 
transmission carriers to obtain the rest of the data from an 
auxiliary memory, which could either be a disk or main 
memory in an off-line central control unit. This memory 
is either owned by one robot exclusively, or is shared and 
accessed by several robots through transmission carriers. 
Each robot need not hold all the environmental informa- 
tion when a pool of memory is shared by several robots. 
Sharing memory also frees up memory for other important 
tasks. 

A robot not only detects obstacles dynamically with its 
sensors, but also uses the relatively static environmental 
information preregistered in the auxiliary memory. This 
preregistered information will help filter out the errors 
caused by sensor inaccuracies, and also help to estimate 
robot position, so crucial to navigating robots in large en- 
vironments. Because a dead-reckoning position system 
accumulates errors as the robot travels and an extemal- 
sensor position system requires modifications to the en- 
vironment, it is becoming common to use both preregis- 
tered and sensor-detected environmental information to 
correct the errors accumulated by a dead-reckoning sys- 
tem [2] , [9]. Therefore, both sensor-detected environ- 
mental information and known map data are assumed as 
important for navigation. 

We propose two strategies to address memory-limita- 
tion problems. First, if only one robot is operating in a 
relatively static environment, a local path planner could 
be used. Since a local path planner uses only the local data 
immediately surrounding the robot, it is clear that only a 
very small portion of the on-board memory is needed for 
this planner. The rest of the memory can be released for 
other robot functions, for example, for a vision system. 
This strategy can also be used for environments where 
traps can occur, as discussed in [18], [20]. However, this 

case does not represent fully autonomous navigation, be- 
cause the robot must wait either for the obstacles to be 
removed or for a human operator to reset the robot. We 
call this strategy and the associated memory-management 
mechanism to be introduced the local strategy. 

If one or more robots work in an area where the envi- 
ronmental information is updated very frequently, hier- 
archical integration of local and global path planners 
would be a good choice. In this integration strategy, a 
detailed local map is used by the local path planner, and 
a global, more abstract map is used by the global path 
planner. Clearly, the memory-limitation problem is worse 
now because it is less likely that all of the required infor- 
mation could be stored in the main memory of the on- 
board computer. We call this integration strategy and the 
associated memory-management mechanism described 
below the global strategy. 

A memory-management mechanism must be devised to 
solve the on-board memory-limitation problems for both 
the local and the global strategies. In order to implement 
our proposed mechanism we use caching to manage on- 
board memory, as depicted in Fig. 1. For the local strat- 
egy, only a local data cache is needed. For the global 
strategy, both global and local caches are required. We 
assume that when any robot finds new information, the 
relevant local and global maps will be updated. Based on 
research results on distributed cache consistency [lo], 
[15], we can safely assume that our map-data caches are 
also consistent. 

We have studied the effects of various caching policies 
for robots working in large environments through simu- 
lation. The strategies considered here can be implemented 
with any local and global path planners, but the results 
obtained will vary. Our study uses a potential-field-based 
local path planner and a heuristic-search-based global path 
planner [20]. 

B. Navigation with a Local Data Cache: Local Strategy 
In this subsection we obtain two criteria for guiding local 
path planner design and discuss three local-cache poli- 
cies. 

1) Design Specification: By definition, a local path 
planner uses local data for its planning process. This plan- 
ner must acquire environmental data surrounding the ro- 
bot in real time. In our system, this segment of data is 
called an active window W, and is limited by the sensor 
viewing distance. Fig. 2 shows two active windows Wt, 
and Wtl + , used by the local path planner at sampling times 
ti and ti + respectively. The center of the robot is indi- 
cated by the small circle in the center of the active win- 

We now obtain some simple analytical estimates of the 
possible efficacy of caching. To simplify, we omit the jus- 
tification of the following criteria and associated exam- 
ples, which can be found in [17]. First, we note that in a 
successful obstacle-avoidance algorithm, the active win- 
dow must be used in accordance with the following cri- 
terion: 

dow W 8 + , .  
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Criterion 1: For safe maneuver, the new active win- 
dow must overlap the previous active window, so that the 
current location of the vehicle is included in the previous 
active window. 

If this criterion is violated, there will a time period when 
the robot moves without knowing exactly what surrounds 
it. On the other hand, this criterion implies that if we can 
cache the entire active window into on-board main mem- 
ory (local cache), many elements or cells used for the pre- 
vious window are still useful for the next window, and do 
not need to be brought in from the auxiliary memory. The 
miss rate in the cache is lowered. 

Criterion 2: For a successful local caching policy, the 
transmission rate between the main memory and the aux- 
iliary memory (or a shared memory) should satisfy (1): 

t rZ  d, 

where p is the probability of diagonal updating for the 
active window attached to the robot, 1 is the active win- 
dow dimension, b is the number of bytes stored in the 
local map for each element, and a (bytes/second) is the 
expected or average transmission rate required for a suc- 
cessful cache. 
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Fig. 2. Active windows for local path planners. 

The robot itself can move in any direction. However, 
because of the integer indexing of the active window ar- 
ray, this window can only be updated horizontally, ver- 
tically, or diagonally. The first term in (1) is the case 
where the active window is updated diagonally. The next 
term corresponds to the situation where the active window 
is updated either horizontally or vertically. 

Similarly, we can estimate the active-window reference 
count which is the number of times an active window is 
continuously used. 

where d,, is the unit distance between adjacent cells of the 
array which stores the local data, Tl is the sampling 
period' of the navigation algorithm, u is the robot veloc- 
ity, and p is the probability of diagonal updating for the 
active window. For our experimental CARMEL robot,* 
the maximum velocity is 0.78 m / s  and the sampling pe- 
riod is 0.03 s. It turns out that the reference accounts for 
our robot are between 6.04 and 9.43 [17]. 

We have found that even with a relatively fast vehicle, 
the active-window reference count is greater than 1, which 
means that the same window will be used repeatedly by 
the vehicle. This result indicates that caching is likely to 
be effective. 

2) Local Cache Policies: In the following discussion, 
we assume that the buses, radio links or other transmis- 
sion carriers are fast enough to cache the required ele- 
ments without significant delay. Some implementations 
need to prefetch blocks of elements from the auxiliary 
memory into the cache. We assume that this prefetching 
will not cause noticeable delay in the planning process or 
the sampling period. How to deal with the delay problem 
(cache latency) using proper data structures for auxiliary 
memories can be found in [ 171. For the local cache, we 
consider the following three policies: 

When a cache miss3 occurs (or before it occurs), 

L,:  bring the exact active window into the cache (ex- 
act-window cache), 

&: bring a predicted active window into the cache 
(predicted-window cache), or 

L3: bring one element into the cache (one-element 
cache), which is equivalent to no caching. 

The exact-window cache (15,) is impractical. It is im- 
possible in practice to bring in the exact active window 
whenever a miss occurs, since it is possible neither to 
know the exact window nor to bring it in immediately. 
Therefore, this policy is presented solely for the purpose 
of comparison. When a missed element is identified, the 
system will bring in an active window which contains the 
missed element. 

'The sampling period is the time period required to issue two consecutive For the predicted-window cache (&dr two seg- 
speed and steering commands and to acquire the vehicle position and ori- ments are reserved in the cache. One segment Contains the 
entation values for the system state during navigation. 

mobile platform. 
*CARMEL is a modified commercially available CYBERMATION K2A 'A cache miss occurs when the expected element is not in the cache, SO 

that fetching from an auxiliary memory is necessary. 
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current active window and the other is used as a work area 
to bring in a predicted active window. That is, while the 
system is using one active window, another window is 
being brought in. When the navigation algorithm is fin- 
ished with the currently active window, it expects to find 
the next window in the cache. Criterion 1 requires the 
current active window to overlap the previous one. Thus, 
it turns out that there is no need to allocate two complete 
active windows in the cache. Theoretically, if the pre- 
dicted window always contains what the system needs, 
the cache hit ratio will be 100%. 

The navigation algorithm accesses map data elements 
in the on-board memory. We call the number of times the 
memory is referenced the memory reference count. The 
number of times a referenced element is found in the cache 
is called the hit count. The ratio of the hit count to the 
memory reference count is called the hit ratio. 

Different methods can be used to predict the next active 
window. Since estimating the next active window is 
equivalent to estimating the next location of the robot, we 
propose modifying the equation derived in [18] for this 
task, as described in Appendix B. 

For the one-element cache (L3),  only one element will 
be brought in whenever there is a miss in the cache. Com- 
pared with the previous two policies, this one should have 
the lowest hit ratio, unless the second policy makes par- 
ticularly bad predictions. A one-element cache may be the 
only option when the available memory is too small to 
allow prefetching. At any rate, it serves as another ex- 
treme for purposes of comparison. 

The following discussions indicate that the predicted- 
window cache (L2) is better than the one-element cache 
(L3) for dealing with communication-bandwidth limita- 
tion problems. Because the speed of the robot is low 
enough, the active-window reference count is always 
greater than one. This means that we have more than one 
sampling period to fetch the required elements from the 
auxiliary memory. 

From our earlier estimates of the active-window refer- 
ence counts (6.04 to 9.43), y e  can estimate that approx- 
imately 180 ms to 300 ms (y X T I )  are available for our 
robot to fetch new elements. This time is insufficient for 
a one-element cache which must fetch elements one by 
one. Assume that the. auxiliary memory is a disk. Disk 
access time includes seek time, rotational latency, and 
data transfer time. We use the disk access time estimates 
of Katz et al .  171, who have studied the disk performance 
characteristics of various classes of applications. Since our 
application is a scientific application in their classifica- 
tion, we obtain the average seek time as 15 ms, the av- 
erage rotational latency as 8 ms, and the average data 
transfer time as 15 ms. Therefore, the average data fetch 
time is 38 ms. Even in the worst case, the next window 
never differs from the present window by more than one 
new row and one new column. Therefore, for the one- 
element cache, in the worst case we must fetch at most 
65 elements for a new window (for one new row and one 
new column). Thus, the one-element cache needs 2.47 s 
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(38 ms X 65) to fetch all these elements. Even if we as- 
sume only two rotational latencies, one for the row ele- 
ments and another for the column elements, the fetch time 
still turns out to be around 1.966 s (30 ms x 65 + 8 ms 
X 2). This time is far beyond the available time (from 
180 ms to 300 ms). 

For the predicted-window cache (&), if we can fetch 
the row and the column separately as two blocks of ele- 
ments, the fetch time is only 76 ms (38 ms x 2), which 
is well below the required available time period. There- 
fore, for a system of low communication bandwidth, the 
predicted-window cache is a better choice. However, for 
the predicted-window cache to work as requested, we 
must find a good data structure to allow row access and 
column access with the same efficiency. How to store the 
data in the auxiliary memory to reduce the cache latency 
can be found in [ 171. 

C. Navigation with Local and Global Data Caches: 
Global Strategy 

In this subsection, we examine methods for the invo- 
cation of global planners. Four global-cache policies are 
also discussed. 

1)  Global Path Planner Triggering: A global path 
planner may be triggered in two ways: 1) whenever the 
global data are updated, and 2) whenever the robot be- 
comes trapped. We use the second trigger in our simula- 
tions. When several robots are working in the same en- 
vironment, the global map is updated as each robot detects 
new information. However, a robot will not need to re- 
plan its path at this point unless the planned path becomes 
blocked. Therefore, when the global map is updated, the 
cache process, not the global path planner, will be acti- 
vated if the corresponding elements are in the cache. We 
thus eliminate unnecessary invocations of the global path 
planner by implementing the second trigger. 

2)  Global Cache Policies: We examine four global 
cache policies: 

G ,  : hold a fixed portion of the global data in the cache 
(fixed cache), 

G2: hold all the global data along the path and as much 
surrounding data as the cache allows (path cache), 

G3: hold only aisle data4 in the cache (aisle cache), or 
G4: hold the global data along the preplanned path be- 

tween two via points5 in the cache (via-point 
cache). 

A fixed cache ( G , )  holds a predetermined portion of the 
data. This unsophisticated policy is used as a basis of 
comparison. For instance, if only half of the global data 
is permitted in the cache because of global cache memory 
limitations, we could hold the portion of data which rep- 
resents the lower half of the global map in the cache. Of 

4The aisle data are data that represent the free aisles or hallways in the 
environment. In the cases where there are no clearly defined aisles, the 
aisle data represent the free space. 

points are intermediate points (or goals) on the globally planned 
path for use by the local path planner to reach the final destination. 
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course, with slight modifications, different portions of the 
map data can be in the cache. One such choice is de- 
scribed in the second policy. 

A path cache ( G2) holds the data along the planned path 
together with some data around the path to permit path 
replanning. The amount of this extra cached data depends 
on the global cache memory size. To start with, the al- 
gorithm could permit only that portion of data immedi- 
ately adjacent to the starting position in the cache, or the 
data along the straight line from the starting position to 
an intermediate target position in the cache. Whenever a 
new path is planned, the data along this new path will be 
cached in. 

An aisle cache (G3) holds only the data representing the 
aisles. This policy is very useful for an environment where 
the aisle area is far less than the area occupied by obsta- 
cles, since there is no need to cache in a large amount of 
extraneous data. Many warehouse and building floors are 
examples of this situation. 

A via-point cache (G4) will only hold data in aplunning 
region that covers a number of via points on the path, 
including the current via point, together with some data 
around these via points. This policy is a combination of 
the fixed and path caches, and should be useful for envi- 
ronments with random obstacles. To use this policy, we 
must restrict on-line global planning to look at only this 
planning region, whose size is determined by the capacity 
of the global cache. Fig. 3 shows two simple planning 
regions, which are in the cache at time t, and tJ + , , re- 
spectively. These regions are portions of the global map 
and are shown as dashed and solid parallelograms. Small 
squares represent via points. 

Using Fig. 3 as an example, one way to implement this 
policy is to cache all data between two via points and in- 
clude some surrounding elements, or to start with, use the 
approach suggested for the path cache (G2). At time tJ all 
the elements inside the dashed region are in the cache. 
The first via point in the cache is the one at the bottom of 
the parallelogram, and the last one is on the upper bound- 
ary. The number of elements cached in depends on the 
global cache size selected. As the robot travels, the sys- 
tem will update the global cache contents. Whenever the 
vehicle passes a via point, it will refresh the global cache 
with the via point following the last cached-in via point, 
and eliminate the via point which the vehicle has just 
passed. Some surrounding elements must also be cached 
to facilitate replanning which requires surrounding con- 
text. Otherwise, if one via point is invalid, a high hit ratio 
cannot be achieved for replanning using only these re- 
maining via points in the cache. Based on the real sensor 
viewing distance restriction, a pair of via points can be 
no more than 2 m apart in our navigation algorithm [20], 
and our robot travels that distance in about 4 s. Because 
each pair of via points is five nodes apart in the search 
graph, no more than five row elements from the global 
map are needed to refresh the cache. Thus, the global 
cache has 0.8 s to fetch each row from the global data 
array, which should be enough time if a disk is used as 

Fig. 3.  Via-point cache (GJ. 

the auxiliary memory. During the joumey, once the global 
path planner is invoked, it will use its last cached-in via 
point as a temporary target to replan the new path. 

D. Discussion 
Locality is the most important property for guarantee- 

ing the successful use of cache memories [12]. Locality 
has two characteristics: locality by time and locality by 
space. Locality by time means that the information which 
will be in use in the near future is likely to be in use al- 
ready. Locality by space means that portions of the ad- 
dress space which are in use generally consist of a small 
number of individually contiguous segments of that ad- 
dress space. 

For our local cache, locality is guaranteed because the 
continuous motion of the vehicle requires the use of ad- 
jacent windows from a local map. The three local cache 
policies will not violate the locality property. For the 
global cache, locality is less likely to be guaranteed be- 
cause of the nature of the global path planning algorithm. 
The elements of the global map array will most likely be 
randomly accessed during planning. Therefore, we expect 
that the fixed cache (GI) and the path cache (G2) are poor 
policies in terms of the locality criterion. These policies 
cannot guarantee locality by time and locality by space 
because it is difficult for them to predict the elements ac- 
cessed by the heuristic search. However, we still include 
them in later simulation studies to evaluate the efficacy of 
the fixed cache G2 and the path cache G2. Since the aisle 
cache (G3) and the via-point cache (G4) try to place the 
related elements for global planning in the cache, they 
should perform better than policies 1 and 2, based on the 
locality criterion. Details appear in Section 111-B. 

111. SIMULATION RESULTS 
Our cache-based planning simulator is constructed with 

the software actually used in our experimental mobile ro- 
bots. The local and global path planners are both briefly 
described in Appendix A and presented in detail in [ Z O ] .  
The first is potential-field based and the second heuristic- 

- 
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search based. Taking the IBM-compatible CPU used in 
our robot as a prototype, we assume that only 1 Mbyte of 
main memory is available, of which only 200 kbytes can 
be used for both local and global caches. Under this re- 
striction, we try to determine which policy performs best. 
We then change the cache size to see the effects of cache 
on the hit radio. 

A 1024 X 1024 array is used for detailed local data 
stored in the auxiliary memory. Each cell in this array 
represents a 10 X 10 cm2 floor area in the environment. 
A 256 X 256 array is used to store global data that 
coarsely represent the environment, and which are also 
sorted in the auxiliary memory. Each local element oc- 
cupies 1 byte and each global elements occupies 6 bytes. 
The active window size is 33 X 33. Therefore, if we place 
the current active window into the cache, only half of the 
global data can be cached into the global cache, assuming 
that only 200 kbytes are available for the local and global 
caches. 

To test our policies, we simulated a warehouse envi- 
ronment for the first three experiments. Fig. 4 shows this 
warehouse, 102.4 m X 102.4 m square. Each aisle is 
2 m wide. We assume that the robot begins its journey at 
the lower left corner, marked “S” and navigates to its 
final destination at the upper right corner, marked “T.” 
New obstacles within sensor viewing distance of this and 
other robots are added dynamically to the local and global 
maps. 

A. Test of Local Strategy 

In this experiment, we tested three local cache policies 
for the first strategy, which uses only a local data cache. 
The robot traveled with the guidance of only a local path 
planner. The final trajectory of the robot is shown in Fig. 
4 as a continuous curve. 

The results from the three policies are listed in Table I. 
The cache misses for the exact-window cache (L , ) ,  the 
predicted-window cache (L2), and the one-element cache 
(L3) are 2135, 23685 and 69427 elements, respectively. 
All of these numbers are small compared to the hit count, 
so that every policy produced more than a 99% hit ratio, 
even for a one-element cache ( ~ 5 ~ ) .  These results are ex- 
pected because of the very high active-window reference 
count. This active-window reference count can be esti- 
mated from (2). 

From these results, we conclude that a local path plan- 
ner can be used in a very large environment even when 
there are practical limitations on the on-board memory and 
communication bandwidth, provided the local cache size 
is not smaller than the active-window size (augmented by 
a row and column for a predicted-window cache). Since 
only local planning is used, the problem with this strategy 
is that the robot can be trapped when the environment is 
dynamic. When this occurs, the alternatives are to wait 
until the obstacle is removed or the robot is redirected by 
an operator. 

When the robot speed is increased, more data must be 

U 

El 
Fig. 4 .  A warehouse environment and a robot joumey under a local path 

planner. 

TABLE I 
LOCAL CACHE POLICY COMPARISON 

Policies(v = 0.78 m/s,  T Memory Reference 
= 30 ms) Hit Ratio Hit Count Count 

Exact-Window Cache 99.98% 9 495 194 9 497 329 
Predicted-Window Cache 99.75% 9 473 644 9 497 329 
One-Element Cache 99.27% 9 427 902 9 497 329 

TABLE I1 
EFFECT OF VELOCITY AND SAMPLING PERIOD 

Hit Ratio 

30 ms ( T )  300 ms ( T )  600 ms ( T )  
Policies 3.9 m/s  ( v )  0.78 m/s ( v )  0.78 m/s  ( v )  

Exact-Window Cache 99.92% 99.90% 99.90% 
Predicted-Window Cache 97.86% 95.12% 92.12% 
One-Element Cache 97.18% 92.16% 84.89% 

fetched, affecting the hit ratios. The results of using a 
high-speed robot or long sampling periods with a local 
path planner are shown in Table 11. The second column 
gives the results for a robot running five times as fast as 
our experimental robot, i.e., maximum velocity 3.9 m/s,  
a likely speed for cross-country vehicles. In columns three 
and four, the results for sampling periods of 300 and 
600 ms are shown. These cases could arise even when the 
robot travels at normal velocity (maximum velocity 0.78 
m/s). For example, when a cache miss occurs, the sys- 
tem may need more time than previously expected to bring 
in required elements from the auxiliary memory. Alter- 
natively, as a project develops, other navigation functions 
may be added to the navigation process, forcing the sam- 
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pling time to be longer. Our simulation results indicate 
that the hit ratio gets worse when either the robot speed 
or the sampling period is increased. In particular, the hit 
ratio drops considerably for the one-element cache (L3) 
when the sampling period is 600 ms. 

Fig. 5 shows the hit ratios for robot speeds between 
0.78 and 3.90 m/s .  In this test, the predicted-window 
cache (L2) was used. The hit ratio begins to decrease rel- 
atively rapidly as the robot speed increases beyond 
1.5 m/s.  

1) Effects on Robot Performance: The hit ratio explic- 
itly reflects the performance of the local cache. It also 
implicitly reveals several problems which robot designers 
and users face. Because the exact-window cache (L , )  is 
used for comparison purposes only, we examine the re- 
sults for the predicted-window cache (L2)  and the one- 
element cache (L3) in Table I. Assume that the auxiliary 
memory is a disk and the transmission carrier is a bus. 

We first consider the time required to update one win- 
dow. As discussed in Section 11-B, fetching a single block 
of elements for the predicted-window cache takes only 38 
ms if row-data fetching and column-data fetching are 
made equivalent. We define cache latency to be the time 
taken to fetch the missed elements, so 38 ms is the cache 
latency. In this particular warehouse example, there is al- 
most no diagonal updating of the active-window because 
the vehicle moves either horizontally or vertically with 
respect to the world coordinate system. Thus, we assume 
that one fetch is enough to update the active window (for 
two fetches, the calculations below can be adjusted ac- 
cordingly). 

We then consider the effects of the predicted-window 
cache and one-element cache on robot navigation process. 
For the predicted-window cache, the 99.75 % hit ratio 
means that 0.25% of all memory references result in 
misses. Since the cache latency is 38 ms for this case, the 
navigation process will be delayed 38 ms when a miss 
occurs. For the one-element cache, the maximum number 
of elements we must fetch is the window width, i.e., 33 
elements. As discussed before, the disk-seek and data- 
transfer take 30 ms. Assuming only one rotation latency 
(8 ms) and a cache block size of one element, 33 fetches 
are required during one sampling period. Thus, even in 
the best case, the navigation process will take about 1 s 
(33 x 30 ms + 8 ms) to update the window (33 ele- 
ments). For the one-element cache, the 99.27% hit ratio 
means that 0.73% of all memory references result in 
misses, based on counting every single missed element. 
Comparing the 1 s cache latency for the one-element cache 
with the 38 ms cache latency for the predicted-window 
cache, we see that the predicted-window cache is much 
better. A one-second cache latency is much longer than 
the navigation process can afford (from 180 to 300 ms), 
so the robot must pause to satisfy the cache latency-re- 
quirement and Criterion 1 for the one-element cache. In 
contrast, for the predicted-window cache, the robot needs 
only to slow down briefly to compensate for the 38 ms 
delay. 
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Fig. 5 .  Effect of velocity with predicted-window cache ( L 2 ) .  

Finally, we consider the effects of cache misses on ro- 
bot performance. For most applications, slowing down to 
compensate for the cache latency is unnecessary if the 
predicted-window cache (L2) is used. We can initially ig- 
nore the missing elements. The robot misses at most 33 
elements of the current active window, i.e., 3% of the 
total window elements. Since our local navigation algo- 
rithm is potential-field based, elements close to the robot 
position will have a far greater influence than those farther 
away (see, for example, [ l ]  and [20]). The 33 elements 
that were missed lie on the boundaries of the active win- 
dow, and have little influence on the navigation process. 
Because the active-window reference count is always 
greater than one, the same active window is used again 
and again, so this missed row or column will soon be 
available. However, for the one-element cache (L3) ,  
missed elements (at least 33 elements for one sampling 
period) cannot be ignored, since this will violate Criterion 
1. After a short period the local cache will lose all of the 
window information related to the current location of the 
robot. Clearly this cannot be tolerated for safe robot ma- 
neuvering. Therefore, the one-element cache is not an ac- 
ceptable policy. 

B. Test of Global Strategy 
With the two-level hierarchical planner implemented in 

our simulator, the robot was able to perform path maneu- 
vers without human intervention. Three different situa- 
tions were tested in this study. First, fixed obstacles were 
placed on the warehouse floor to try to block the path of 
the robot. Second, random obstacles were placed on the 
warehouse floor. Finally, in a dynamic simulation fixed 
numbers of obstacles were randomly placed on an empty 
floor and obstacles were then removed and added ran- 
domly, keeping the total number of obstacles fixed. The 
predicted-window cache (L2) was used for the local cache, 
while different global policies were studied for the global 
cache. 

1)  Manually Updated Warehouse Environment: The 
robot first used the global path planner to plan its path 
from the initial position to the final target, as indicated by 
the small squares in Fig. 6. Immediately after the com- 
pletion of the initial global path planning phase, an obsta- 
cle was added to block the intended path of the robot (in- 
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dicated by arrow 1 in Fig. 6).  The robot moved along the 
planned path, as indicated in the figure, until it encoun- 
tered the first obstacle, wherefrom it planned a new path, 
backed out of the blocked aisle, and continued along a 
new path. Again this new path was blocked (arrow 2) and 
the robot replanned and continued until either no obstacle 
was in its way to the target or there was no way to reach 
the final destination. 

From Fig. 6 ,  we can see that the robot finished its jour- 
ney after planning the global path four times. The results 
for the three different policies for the global cache are 
listed in Table 111. It is confirmed here that the fixed cache 
(GI) and the path cache (G2) perform poorly, in accord- 
ance with our earlier expectations. The results of the three 
policies in the table show that the aisle cache (G3) is the 
only good choice in this case. The other two policies 
would result in much lower hit ratios. 

We now consider what these hit ratios tell us. Besides 
the high miss ration (1 - hit ratio), the cache latencies of 
the fixed cache (GI) and the path cache (G2) are also high. 
Assume that the auxiliary memory is a disk and that the 
cache block size is equivalent to the global data element 
size. From the discussion in Section 111-A, we know that 
the cache latency for each element is 38 ms. 

Our global planner uses a best-first strategy. This tech- 
nique can result in unpredictable jumps over the search 
space, and we model this situation as causing random ac- 
cesses to elements. The total cache latency thus is ob- 
tained by multiplying the number of misses by the one- 
element cache latency. For the fixed cache ( GI), this cache 
latency works out to be 23.76 min. Since the global path 
planner is invoked four times, the average cache latency 
for each on-line global planning is 5.9 min. For the path 
cache, the total cache latency is 15.26 min. The average 
cache latency for each on-line global planning is 3.8 min. 
Since the global path planner is invoked four times, the 
robot will spend an extra 15.26 min to reach a final des- 
tination that would have been reached in less than 10 min 
with no cache latency. 

In this particular experiment, only 12 105 elements are 
required in the cache for the aisle cache (G3) ,  while for 
the fixed cache (GI) and the path cache (G2), 32 768 ele- 
ments are required. Although only a small amount of data 
is in the cache for the aisle cache, some cache activity is 
still expected. For instance, newly discovered obstacles 
may require changes to elements currently in the cache. 
Because only three obstacles were added, 26, 78, and 66 
elements were dynamically cached for the fixed, path and 
aisle caches, respectively, in addition to regular cache ac- 
tivities. We call them additional elements fetched. Since 
only a fixed portion of the data is in cache for the fixed 
cache, not all newly detected obstacles required changes 
to elements in the cache. The fixed cache thus has the 
fewest additional elements fetched, even though obstacles 
are placed in the aisles. Our heuristic-search algorithm 
always expands the obstacle boundaries because of secu- 
rity considerations [20]. Because the aisle cache (G3) 
caches only aisle data and does not include some of the 
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Fig. 6. Navigation with manually updated obstacles. 

TABLE 111 
GLOBAL CACHE POLICIES WITH FIXED OBSTACLES 

~~ _______ ______ ~ ~ 

Policies Hit Ratio Hit Count Memory Reference Count 

Fixed Cache 44.09% 29 584 67 092 
Path Cache 64.08% 42995 67 092 
Aisle Cache 100.00% 67 092 67 092 

expanding boundaries surrounding newly added obsta- 
cles, the number of additional elements fetched is more 
than for the other two schemes. 

We see that the hit ratios of the fixed cache and the path 
cache are significantly worse than for the aisle cache. Al- 
though the memory reference count of the global cache is 
only 0.456% of the total memory reference count, the 
misses will significantly affect the performance of the sys- 
tem, as we learned above. The robot must halt to com- 
pensate for the long cache latency. 

In Fig. 7, we show how the cache size affects the hit 
ratio of the aisle cache (G3).  The hit ratio drops rapidly 
as the cache size is reduced below 12 105 elements since 
the global cache can no longer hold the entire aisle data. 
Therefore, below about twelve hundred elements the hit 
ratio decreases linearly with reduction in cache size. 

2) Randomly Updated Warehouse Environment: We 
then tested a situation where obstacles were randomly 
added to the environment. Fig. 8 shows the planned path 
and the actual trajectory generated by our simulator. The 
random obstacles are shown in the figure as small squares. 
We show here only the case where the random obstacles 
do not completely block all passages available to the ro- 
bot. From this figure, we see that some obstacles inter- 
sected the path of the robot but did not obstruct it, or were 
generated after the robot crossed these spots. 
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Fig. 7 .  Effect of cache size with aisle cache (G3):  manually updated ware- 
house. 

From Table IV, we see that the hit ratios for the fixed 
cache (G,) and the path cache (G2) are still low. The hit 
count is only about half of the memory reference count. 
As with the results of the manually updated warehouse 
environment, this low hit ratio compromises the perform- 
ance of the system. For the fixed cache (GI) ,  the total 
cache latency is 20.15 min. The average cache latency for 
each on-line global planning task is 6 .7  min. For the path 
cache (G2), the total cache latency is 16.9 min. The av- 
erage cache latency for each on-line global planning task 
is 5.63 min. Since the system planned its global paths 
three times, the robot will spend an extra 16.9 min to reach 
a final destination that is reached in less than 10 min with- 
out the cache latency. The additional elements fetched in 
this experiment were 9866, 8858, and 2743 for the fixed, 
path, and aisle caches, respectively. 

Fig. 9 depicts the results for the aisle cache policy (G3). 
The hit ratio drops rapidly as the cache size is reduced 
beyond about twelve hundred elements, because the global 
cache can no longer hold the entire aisle data. As with the 
results in Fig. 7, this means that the aisle cache cannot 
maintain a high hit ratio unless the global cache can fetch 
in almost all the aisle data. 

3) Randomly Updated Environment: Finally, we stud- 
ied navigation in an unstructured environment where ob- 
stacles randomly appear and disappear on a floor. In this 
experiment, we used a random number generator to gen- 
erate 250 square obstacles and then used a global path 
planner to plan a path, as shown in Fig. IO,  where the 
robot has just begun to traverse its preplanned path in the 
low left comer. During the journey, obstacles were ran- 
domly generated and removed at the same rate (one every 
3 s). Which obstacle to remove next was determined by a 
second random-number generator. The total number of 
obstacles in the environment at any time remained at 250. 
The final trajectory of the robot and the locations of all 
the obstacles on the floor at the time the robot reached its 
target are shown in Fig. 1 1 .  

The experimental results are listed in Table V. The re- 
sults for the fixed cache (G,) and the path cache (G2) are 
a slight improvement over the results of the two previous 
experiments. However, the results for the aisle cache (G3) 
are worse. This paradox arises because in this experiment 

Fig. 8 .  Navigation with randomly updated obstacles. 
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Fig. 9 .  Effect of cache size with aisle cache (G3): randomly updated ware- 
house. 

TABLE IV 
GLOBAL CACHE POLICIES WITH RANDOM OBSTACLES 

Policies Hit Ratio Hit Count Memory Reference Count 

Fixed Cache 50.98% 33 089 64 907 
Path Cache 58.89% 38 226 64 907 
Aisle Cache 100.00% 64 907 64 907 

the global path planner was invoked only twice, as com- 
pared with three and four times in the previous experi- 
ments, so the chance of getting higher miss ratios was 
lowered. Conversely, the number of cache misses in- 
crease for the aisle cache since there are more newly de- 
tected obstacles in the aisles which require changes to ele- 
ments in the cache. Furthermore, this time the global 
cache memory could not hold all the aisle data in the 
cache. In this experiment the additional elements fetched 
were 40 056, 35 820, and 17 381, respectively. 
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Fig. 10. Navigation with randomly added and removed obstacles: inter- 
mediate stage. 

Fig. 1 1 .  Navigation with randomly added and removed obstacles: final 
stage. 

TABLE V 
GLOBAL CACHE POLICIES WITH RANDOM OBSTACLES ON A FLOOR 

Policies Hit Ratio Hit Count Memory Reference Count 

Fixed Cache 57.38% 93 144 162 330 
Path Cache 74.69% 121 239 162 330 
Aisle Cache 83.43% 135 427 162 330 

If we fix the local and global policies, the number of 
additional elements fetched indicates how dynamic the 
environment is. For instance, we know from the above 
three experiments that when a two-level cache is used for 
the predicted-window cache (L) and the aisle cache (G3), 
the numbers of additional elements fetched are 66, 2743, 
and 17 381, respectively. We confirm from these num- 
bers that the last environment (Figs. 10 and 11) is more 
dynamic than the other two (Figs. 6 and 8). 

The performance of the robot system is affected by the 
cache latency for all three policies investigated. For the 
fixed cache (G , ) ,  the total cache latency is 43.82 min. For 
the path cache (G2) ,  the total cache latency is 26.02 min. 
For the aisle cache (G3), the total cache latency is 17.04 
min. None of these is very promising for a robot working 
in this unstructured environment. These disappointing re- 
sults turned our attention to the via-point cache (G4) in- 
troduced in Section II-C. 

While we did not test the via-point cache in the ware- 
house environment, we did test it in the randomly updated 
open-floor environment. In the via-point cache policy 
(GJ, the global path planner does not examine the full 
environment, but bases its planning decisions on the in- 
formation contained in the planning region (Section II-C). 
In a warehouse environment, looking at a selected area 
will not guarantee that the global path planner can guide 
the vehicle out of trap situations. Therefore, we did not 
include this policy in that set of experimental studies. 

Our actual implementation of the via-point cache is 
slightly different from our earlier description in Section 
II-C. The robot’s position corresponds to the third via 
point in the cache. Thus, when the on-line global planner 
is invoked, it has the choice of viewing some points in 
the area it has just passed. This can be useful for the cases 
where the robot must backtrack in order to avoid a trap. 
Our experiments indicate that positioning the robot at the 
third via point is good enough. For different environ- 
ments, the choice of which via point to position the robot 
at might vary. In our implementation, 20 via points and 
their surrounding elements are in the cache. 

We show the results for the aisle cache (G3) and the 
via-point cache (G4) in Fig. 12 as the cache size changes. 
In this example, the via-point cache is much better be- 
cause the aisle cache cannot guarantee locality properties 
for the cache. On the other hand, the via-point cache can 
hold enough data to ensure a very high hit ratio. Another 
advantage of this policy is that it does not require a large 
global cache. However, the success of this policy depends 
heavily on whether the temporary target selected during 
replanning generates a planning region where the planner 
can find a solution. This was the case in our experimental 
study. 

C. Discussion 
Several conclusions can be drawn from these experi- 

mental results. For local policies, the predicted-window 
cache (L2) is better if the active-window prediction is rea- 
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Fig. 12. Comparison between aisle cache (G,) and via-point cache (G4). 

sonably good. For global policies, either the aisle cache 
(G3) or the via-point cache (G4) works well, depending 
upon the particular environment where the robots are trav- 
eling. If all the aisle data fit into the cache, the aisle-cache 
policy is best. If the temporary target selected for replan- 
ning generates a region where planning succeeds, the via- 
point cache is best. All the other policies, i.e., the one- 
element cache (&), the fixed cache (GI), and the path 
cache (G2) adversely affect robot performance. In each of 
these policies, the robot must pause to compensate for the 
long cache latency. In such circumstances, it will be bet- 
ter to plan global paths off-line instead. Finally, the local 
strategy saves more on-board memory than the global 
strategy, at the possible cost of losing maneuvering au- 
tonomy. 

For different local and global path planners, the amount 
of data that can be stored in the main memory may vary. 
In our case, since we use a two-dimensional grid to rep- 
resent local environments, only one byte is used for each 
element of the local data. Other implementations might 
be different, e.g., if three-dimensional information is 
needed, one byte is not enough to represent this infor- 
mation. Other applications may select an active window 
larger than the one we used if a better sensory system is 
available. Since the local path planner is used more fre- 
quently than the global path planner, we recommend 
keeping the current active window in the cache at the ex- 
pense of the reducing the global cache size, if there is a 
cache-memory size restriction. 

For single mobile-robot navigation, it may be possible 
to place a global path planner off-board to achieve a sim- 
ilar result. However, this is not the soundest strategy for 
multiple robot navigation in a very large environment. A 
centralized solution would scale very poorly in this case. 
Placing the global path planner in each individual vehicle 
will also make the system more flexible. Individual robot 
systems will not need to fight over the resources of a cen- 
tralized planning system. A distributed approach also im- 
proves reliability. The crash of the central computer sys- 
tem would force all the individual robots to stop 
functioning. 

In our implementation, the mobile robot is controlled 
by the local navigation routines. Therefore, the local 
cache policy directly affects the low-level, time-critical 

control routines. Let d be the deadline for a time-critical 
task and let t be the time the robot takes to accomplish the 
task assuming that all the required navigational data is in 
main memory. Now, s = d - t is the amount of slack 
time available. If ti is the time for which the ith block of 
data in the cache is processed before the next block of data 
is required, we have t = Z i t i .  Let us assume that a pre- 
fetching strategy is used, and that prefetching on the (i + 
1)th block starts as soon the ith block has been fetched. 
IfJ is the time for prefetching the (i + 1)th block of data, 
we must have total waiting time 1 = Ck ( fk  - tk) ,  over all 
k such thatfk - t k  > 0. If deadlines are not to be missed, 
we must have s z 1. 

As discussed in Section 11-B, the recommended cache 
policy in the worst case takes 76 ms (fk) to update the 
active window for maneuvering activity. During one sam- 
pling period the active window needs to be updated at 
most once (k = i = 1) so that at most 30 ms (t i) is required 
to process the window data. Therefore, for our experi- 
mental robot I = Zk (fk - tk)  = 76 - 30 = 46 ms. The 
waiting time 1 of 46 ms is far below the slack time s of 
470 ms where s = d - t = 500 - 30 = 470 ms and the 
deadline d for our critical task is 500 ms. Therefore, there 
is enough time to guarantee the execution of time-critical 
control routines. Furthermore, we show in that section 
that with our recommended cache policies, the system can 
even afford to miss some elements for a short period. This 
means that our approach has some degree of flexibility. 
For instance, if the deadline for a particular system is 
shorter than our experimental system, we can cache fewer 
elements than requested without missing the deadline. 
That is, we can afford to reduce some of cache activity. 
In other words, since the performance of the system is not 
affected much by ignoring the missed elements, this par- 
ticular system can afford to do less caching (or ignore 
some of cache requests) in order to guarantee a deadline. 

Although we only investigated one-level and two-level 
caches, our proposed strategies can be easily generalized 
to a multilevel cache. In some applications, multilevel hi- 
erarchical planning is required. The ideas presented in this 
paper can help to solve similar problems that arise when 
a multilevel planner is used with a multilayer map. 

IV. CONCLUSIONS 
Our interest is in the use of cache memories to deal with 

memory- and communication-limitation problems inher- 
ent in mobile-robot navigation in large dynamic environ- 
ments, rather than in designing cache memories for high- 
speed computers. Therefore, we did not study cache de- 
sign issues such as choice of cache size, choice of block 
(line) size, degree of associativity, and updating memory 
by write-through or copy-back approaches [5], [ 121-[ 141. 

We proposed and simulated two algorithm-implemen- 
tation strategies to solve the on-board memory-limitation 
problem. We used a one-level local data cache for static 
environments and a two-level local and global cache for 
dynamic environments. We tested both strategies with dif- 
ferent cache policies. To solve the bandwidth limitation 
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problem, we presented the predicted-window cache (L2) 
and the corresponding data structures [17]. For a local 
cache, the predicted-window cache is the best choice. For 
a global cache, depending on the particular environment, 
either the aisle cache (G3) or the via-point cache (G4) could 
be better choice. Unlike other policies tested in simula- 
tion, none of the recommended cache policies in the sug- 
gested implementations impair the robot performance, as 
shown in the experiments. Our global path planner [20] 
searches a list of candidate nodes using a best-first strat- 
egy. One possible optimizaiton may be to cache the top k 
nodes on this list and their children for some suitable k. 
Another would be to cache the unexplored leaves of the 
search tree, provided the cache is large enough. We do 
not discuss such optimizations since we assume in this 
work that the low-level details of global planning are not 
available to the caching algorithm. 

We believe that our studies and simulation provide a 
useful initial phase and platform for further study of sin- 
gle- or multiple-robot navigation. We have demonstrated 
that navigation in large dynamic environments can be im- 
plemented in mobile robots with the help of proper im- 
plementation strategies. We have shown how to deal with 
memory and bandwidth limitations, without compromis- 
ing robot performance unduly, through proper choice of 
caching policy. Our work is likely to prove very useful to 
robot designers and users interested in implementing sin- 
gle- or multi-robot navigation algorithms in large and dy- 
namic environments. 

APPENDIX I 
THE NAVIGATION ALGORITHM 

The navigation algorithm used in this study is an inte- 
gration of the heuristic-search and potential-field meth- 
ods. The heuristic-search algorithm is used for both global 
path planning and trap recovery. The potential-field 
method is used for local path planning and path maneu- 
ver. 

As shown in Fig. 13, the potential-field method [6] uses 
the vector sum of the virtual repulsive forces from obsta- 
cles and a virtual attractive force from a target position to 
provide a resultant force to guide the vehicle. 

If preplanning is required, our algorithm uses heuristic 
search to generate a list of intermediate goals (via points) 
at the very beginning of the journey. If no preplanning is 
used, heuristic search will not be invoked at the begin- 
ning, and will be invoked only when the robot is trapped. 
The via points generated by the heuristic-search algorithm 
are used by the potential-field method to reach the final 
destination. For instance, whenever the robot is trapped, 
the heuristic-search algorithm is invoked to generate a list 
of via points as new temporary goals. This process con- 
tinues until the robot moves to the final target specified 
before the journey. 

The basis of our heuristic-search algorithm is a modi- 
fied version of the A* algorithm invented by Hart et al. 
[4]. Our application uses a node array to represent the 
two-dimensional (2-D) real world as an internal mau 
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Fig. 13. Potential-field control. 

stored in the memory of a mobile robot. The difference 
between the general A* algorithm [ 111 and our heuristic- 
search algorithm is that we include forbidden states (or 
nodes) in the knowledge base for each node. Forbidden 
states are set initially for boundary nodes, obstacle nodes, 
and their surrounding nodes. The forbidden states could 
also be determined according to safety considerations, 
e.g., clearance requirements. Our algorithm does not ex- 
amine forbidden nodes and therefore avoids known obsta- 
cles and forbidden paths automatically. For good per- 
formance, we allow eight surrounding nodes to be 
generated from a current “best” node. 

We have proved our navigation algorithm to be glob- 
ally convergent. Convergence was also demonstrated ex- 
perimentally with practical robots in both known and un- 
known environments. A detailed presentation and 
evaluation of this algorithm is described in [20]. 

APPENDIX I1 
ACTIVE-WINDOW PREDICTION 

As shown in Fig. 14, the system kinematic equations 
of our experimental robot are [ 181, [ 191 

where 0 I v I V,,,, ( w (  I Q,,,. V,,, and Qm,, are the 
maximum linear and angular velocities of a particular mo- 
bile robot. Integration of (3) yields the vehicle positions 

v cos 19 dr [!] = + [ u s i n d d T ]  

1 w d 7  
O +  

(4) 

where Xn, yo, and do are the initial positions of the vehicle. 
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Fig. 14. Mobile-robot motion 

Considering that during very small periods v, w ,  and 0 
are essentially constant, we obtain 

where a small hat indicates ap estimated value, c denotes 
the current parameters, and y can be estimated from (2). 
Equation (5) is used in our simulation for active-window 
prediction. This prediction is equivalent to the estimation 
of the next location of the vehicle. 
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