
58 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 24, NO. I , JANUARY 1994

Coping with Limited On-Board Memory and
Communication Bandwidth in Mobile-Robot Systems

Yilin Zhao, Member, IEEE, Chinya V. Ravishankar, and Spencer L. BeMent Senior Member, IEEE

Abstract-Much effort has gone into studying navigation al-
gorithms for mobile-robot systems. However, although mobile-
robot systems often suffer from a lack of adequate on-board
memory and communication bandwidth, little work has been
done on techniques to solve these problems. Two algorithm-
implementation strategies are examined to solve the memory-
limitation and communication-bandwidth-limitation problems
associated with the navigation of single or multiple robots in
large dynamic environments. On-board main-memory-man-
agement mechanisms, cache policies, auxiliary-memory data
structures, and two path planners are explored by simulations
based on a new navigation algorithm. One- and two-level caches
with one- and two-level planning, respectively, are investi-
gated; these can easily be extended to schemes with more levels.
Our results show that among the seven (three local and four
global) cache policies studied, the predicted-window, aisle, and
via-point policies overcame the above limitations without com-
promising robot performance. Therefore, one or more of these
three policies can be used with implementation strategies to deal
with the memory-limitation and communication-bandwidth-
limitation problems encountered in real-world mobile-robot
navigation. Our results can also be very useful in the domain
of Intelligent Vehicle Highway Systems (IVHS), where the main
memory of the on-board computer may be too small to hold all
of the road network and other useful information.

I. INTRODUCTION
ARGE dynamic environments pose great challenges Lf or single or multiple mobile-robot navigation sys-

tems. These challenges are both at the level of algorithms
and in their implementation. In this paper, we address the
latter set of challenges by studying strategies for imple-
menting these algorithms under hardware constraints.

When mobile robots travel in very large environments,
the amount of information they must access is typically
very large. As an example, our experimental robot needs
a 128 X 128 array to represent a small 12.8 X 12.8 m2
indoor test field. Since memory requirements tend to in-
crease as the square of the field size, an outdoor environ-
ment would need much more memory. Although main
memory sizes have been increasing, they are still not large
enough to contain very large data sets. An alternative must
be used; that is, the data must be stored in an auxiliary

memory instead. Similar difficulties arise in the newly de-
veloping field of Intelligent Vehicle Highway Systems
(IVHS). In order to find the best route connecting the or-
igin and destination points for a vehicle over a road net-
work, the system must store in memory the details of the
road network. Typically, at least 30 Mbytes are required
for a metropolitan area, such as Chicago or Detroit.
Therefore, an auxiliary memory is commonly used [161.

This situation raises some problems. First, access to the
auxiliary memory is typically several orders of magnitude
slower than access to main memory. Therefore, how to
access data from the auxiliary memories is an issue criti-
cal to the success of this approach. One technique to ad-
dress this memory-management problem is the cache.

A cache is a collection of data blocks that logically be-
long on the auxiliary memory, but which are being kept
in the on-board memory for performance reasons. In other
words, a cache provides a high-speed buffer in the on-
board main memory to act as a temporary store for the
auxiliary memory. Caching is an old technique, and cache
memories have been used in computers for a long time.
Relevant references on this topic are [5], [12]-[14]. In
this paper, we do not study the various aspects of cache
memory design, or their implementation policies for gen-
eral-purpose high-speed computers. For instance, we will
not examine cache design issues such as the optimal cache
size [131, block (line) size [14], degree of associativity
[5] , and whether to update memory by write-though or
copy-back approaches [121, [131. We focus instead on
how to use cache memories to implement algorithms for
mobile-robot navigation, and on the effects of the pro-
posed implementation strategies for mobile-robot per-
formance.

We intend to use these strategies and associated cache
policies to solve the memory-limitation and communica-
tion-bandwidth-limitation problems which we have de-
scribed. While many caching techniques exist for general-
purpose computers, we believe they are quite inappro-
priate for our application domain.

Manuscript received March 6, 1992; revised February 17, 1993 and April
21, 1993.
Y. Zhao was with the Department of Electrical Engineering and Com-

puter Science, The University of Michigan, Ann Arbor, MI 48109. He is
now with Motorola Inc., Northbrook, IL 60062.

C. V. Ravishankar and S. L. BeMent are with the Department of Elec-
trical Engineering and Computer Science, The University of Michigan, Ann
Arbor, MI 48109.

IEEE Log Number 9212924.

A .
There are several reasons why general-purpose schemes

are for Our purposes* First, a genera' caching
policy deals with both instruction and data caches. In our
domain, code access patterns are thoroughly predictable,
but data management poses great challenges. A com-
monly used cache replacement policy for general-purpose

0018-9472/94$04.00 0 1994 IEEE

ZHAO et al.: LIMITED ON-BOARD MEMORY AND COMMUNICATION BANDWIDTH

computer systems is least recently used (LRU). Whenever
the CPU needs a block of data which is not in the cache,
it will fetch that block from a disk and replace the one in
the cache which is least recently used.

Now, the LRU idea assumes that the locality patterns
need not be precisely known, but that they are captured
well by the LRU technique. In our case, we know much
more about the data access patterns. As discussed in the
next section, the navigation code is often focused strongly
on one data window at a time. Also, the LRU technique
focuses on how to replace blocks of data in the cache as
new blocks are brought in. In our domain, we are con-
cerned less with where to put new data, and much more
with what data will be accessed next. In other words, in
a classical LRU algorithm, a miss brings in a new block
of data, the extent and definition of which is determined
without pro-actively considering program semantics or
characteristics. The same fetchheplacement strategy may
be used for both mobile-robot applications and for super-
computing applications even though these applications
have different characteristics. In contrast, we concentrate
particularly on the issue of navigation and on relevant
data.

Furthermore, in our domain there are time-critical rou-
tines in the robot control system. If the CPU is forced to
fetch a block of data during the execution of a time-crit-
ical routine, the system may miss deadlines, leading to a
dangerous accident. This issue is discussed in greater de-
tail in Sections 111-A and 111-C.

We have observed, in particular, that using a general-
purpose LRU-style algorithm for global path planning can
lead to a disastrous situation called thrashing, where the
system is constantly demanding access to blocks which
have been swapped out to disk by the LRU algorithm.
This situation creates enormous traffic between the main
store and auxiliary store, and the system performance de-
grades severely. For example, a best-first heuristic-search
algorithm used for global path planning must find a path
along the one branch that is the best among the rest of the
branches in the search tree, so it often jumps from one
branch to another during execution. As the algorithm
searches a new branch, the blocks of data brought for the
previous branch tend to get swapped out of the cache. If
the algorithm jumps back to the previous branch, it must
refetch the data surrounding this branch. These data must
be fetched from the auxiliary memory, creating tremen-
dous traffic between the cache and auxiliary memory, and
forcing the CPU to wait. In an actual case, it was ob-
served that using a best-first search for planning with an
LRU-based cache caused the CPU to idle 50% of the time
waiting for the caching algorithm to fetch data from aux-
iliary memory. Therefore, an in-depth study of different
implementation strategies is clearly necessary.

A look at the literature in the mobile-robot field [8],
[17] suggests that much attention has been paid to devel-
oping new navigation algorithms, and to extracting and
representing different sorts of sensory information for
navigation. On the other hand, we have seen no studies

-

59

which deal with the challenge of how to implement al-
gorithms with multilevel map representations for single-
or multi-robot navigation in large environments with
memory and communication bandwidth limitations. We
address these problems here in the context of the navi-
gation algorithm developed in [20]. It is generally agreed
that mobile-robot navigation algorithms should be based
on multiple levels of spatial representation or global-local
map models. This navigation algorithm (Appendix A) uses
a node-based map for global planning and a grid-based
map for local planning, which is very similar to the hi-
erarchical representation proposed by other researchers.
Therefore, we anticipate that our studies will provide in-
formation of direct use to others in the field.

We propose one-level and two-level cache mechanisms
to solve the memory-limitation and communication-band-
width-limitation problems. Only portions of local and
global map data are stored in the main memory of an on-
board computer, with the rest of the data being stored in
an auxiliary memory. The auxiliary store may either be-
long to one robot or be shared by several robots, and may
either be a disk or a large off-line main store. Whenever
the required data are not in the on-board memory, they
are brought in from the auxiliary store. This mechanism
is useful not only for the case where on-board memory is
insufficient, but also for low-budget projects which can-
not afford to upgrade to large-memory computer systems.
Our results can also be very useful in the domain of In-
telligent Vehicle Highway Systems (IVHS), where the on-
board computer’s main memory for a vehicle cannot hold
all of the road-network information, which is so large that
CD-ROM compact disks are required for the auxiliary
memory [161.

We have constructed a simulator to study the proposed
mechanisms using our navigation algorithm. For multi-
robot navigation, we assume a distributed approach. That
is, each robot in the field uses its own planning algorithm
and views all other robots as moving obstacles. Research-
ers in distributed artificial intelligence often take a differ-
ent approach, e.g., [3], in which robots are not passive
obstacles, but participants in a cooperative problem-solv-
ing endeavor. Since the emphasis in our study is on mem-
ory management, we will limit discussion of such algo-
rithmic and strategic issues. Furthermore, our two-level
cache mechanism can be extended to a multilevel cache
mechanism if a multi-layer map is used for navigation.
We will introduce these implementation strategies, and
provide simulation results of these strategies and associ-
ated cache policies.

Our results suggest that the recommended cache poli-
cies and suggested implementations overcome the on-
board memory and communication-bandwidth limitations
without compromising robot performance. Therefore, they
can be used to deal with memory-limitation and commu-
nication-bandwidth-limitation problems. There are many
aspects of the multirobot navigation which are not han-
dled well by the LRU-like general cache schemes. Our
work addresses these issues and provides new mecha-

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 24, NO. I , JANUARY 1994

nisms for the memory management of multirobot navi-
gation in large environments.

11. IMPLEMENTATION STRATEGIES FOR LARGE DYNAMIC
ENVIRONMENTS

One of the main problems in the autonomous naviga-
tion of mobile robots is coping with large volumes of dy-
namic environmental information when the on-board
memory and communication bandwidth are limited. Two
algorithm-implementation strategies are proposed and
discussed in detail.

A . Problem Formulation
For this study, we choose a scenario where one or more

robots work on the same floor of either a big warehouse
or an environment with many random obstacles. The
warehouse scenario can be extended to supermarkets , busy
hospitals, etc. The environment is dynamically updated
whenever aisles become blocked or opened in the ware-
house. Furthermore, we assume that the main memory of
the on-board computer is too small to store all the envi-
ronmental data for the robot. Therefore, each robot will
need to communicate through buses, radio links, or other
transmission carriers to obtain the rest of the data from an
auxiliary memory, which could either be a disk or main
memory in an off-line central control unit. This memory
is either owned by one robot exclusively, or is shared and
accessed by several robots through transmission carriers.
Each robot need not hold all the environmental informa-
tion when a pool of memory is shared by several robots.
Sharing memory also frees up memory for other important
tasks.

A robot not only detects obstacles dynamically with its
sensors, but also uses the relatively static environmental
information preregistered in the auxiliary memory. This
preregistered information will help filter out the errors
caused by sensor inaccuracies, and also help to estimate
robot position, so crucial to navigating robots in large en-
vironments. Because a dead-reckoning position system
accumulates errors as the robot travels and an extemal-
sensor position system requires modifications to the en-
vironment, it is becoming common to use both preregis-
tered and sensor-detected environmental information to
correct the errors accumulated by a dead-reckoning sys-
tem [2] , [9]. Therefore, both sensor-detected environ-
mental information and known map data are assumed as
important for navigation.

We propose two strategies to address memory-limita-
tion problems. First, if only one robot is operating in a
relatively static environment, a local path planner could
be used. Since a local path planner uses only the local data
immediately surrounding the robot, it is clear that only a
very small portion of the on-board memory is needed for
this planner. The rest of the memory can be released for
other robot functions, for example, for a vision system.
This strategy can also be used for environments where
traps can occur, as discussed in [18], [20]. However, this

case does not represent fully autonomous navigation, be-
cause the robot must wait either for the obstacles to be
removed or for a human operator to reset the robot. We
call this strategy and the associated memory-management
mechanism to be introduced the local strategy.

If one or more robots work in an area where the envi-
ronmental information is updated very frequently, hier-
archical integration of local and global path planners
would be a good choice. In this integration strategy, a
detailed local map is used by the local path planner, and
a global, more abstract map is used by the global path
planner. Clearly, the memory-limitation problem is worse
now because it is less likely that all of the required infor-
mation could be stored in the main memory of the on-
board computer. We call this integration strategy and the
associated memory-management mechanism described
below the global strategy.

A memory-management mechanism must be devised to
solve the on-board memory-limitation problems for both
the local and the global strategies. In order to implement
our proposed mechanism we use caching to manage on-
board memory, as depicted in Fig. 1. For the local strat-
egy, only a local data cache is needed. For the global
strategy, both global and local caches are required. We
assume that when any robot finds new information, the
relevant local and global maps will be updated. Based on
research results on distributed cache consistency [lo],
[15], we can safely assume that our map-data caches are
also consistent.

We have studied the effects of various caching policies
for robots working in large environments through simu-
lation. The strategies considered here can be implemented
with any local and global path planners, but the results
obtained will vary. Our study uses a potential-field-based
local path planner and a heuristic-search-based global path
planner [20].

B. Navigation with a Local Data Cache: Local Strategy
In this subsection we obtain two criteria for guiding local
path planner design and discuss three local-cache poli-
cies.

1) Design Specification: By definition, a local path
planner uses local data for its planning process. This plan-
ner must acquire environmental data surrounding the ro-
bot in real time. In our system, this segment of data is
called an active window W, and is limited by the sensor
viewing distance. Fig. 2 shows two active windows Wt,
and Wtl + , used by the local path planner at sampling times
ti and ti + respectively. The center of the robot is indi-
cated by the small circle in the center of the active win-

We now obtain some simple analytical estimates of the
possible efficacy of caching. To simplify, we omit the jus-
tification of the following criteria and associated exam-
ples, which can be found in [17]. First, we note that in a
successful obstacle-avoidance algorithm, the active win-
dow must be used in accordance with the following cri-
terion:

dow W 8 + , .

ZHAO et al.: LIMITED ON-BOARD MEMORY AND COMMUNICATION BANDWIDTH

~

61

Main Memory

Global Cache I Local Cache
_ _ _ _ _ _ - _ - _ _ _ _ - - -

Main Memory

I

Auxiliary Memory

Auxiliary Memory

n

Criterion 1: For safe maneuver, the new active win-
dow must overlap the previous active window, so that the
current location of the vehicle is included in the previous
active window.

If this criterion is violated, there will a time period when
the robot moves without knowing exactly what surrounds
it. On the other hand, this criterion implies that if we can
cache the entire active window into on-board main mem-
ory (local cache), many elements or cells used for the pre-
vious window are still useful for the next window, and do
not need to be brought in from the auxiliary memory. The
miss rate in the cache is lowered.

Criterion 2: For a successful local caching policy, the
transmission rate between the main memory and the aux-
iliary memory (or a shared memory) should satisfy (1):

t rZ d,

where p is the probability of diagonal updating for the
active window attached to the robot, 1 is the active win-
dow dimension, b is the number of bytes stored in the
local map for each element, and a (bytes/second) is the
expected or average transmission rate required for a suc-
cessful cache.

62 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 24, NO. I , JANUARY 1994

...... ' t i
ti+l

Fig. 2. Active windows for local path planners.

The robot itself can move in any direction. However,
because of the integer indexing of the active window ar-
ray, this window can only be updated horizontally, ver-
tically, or diagonally. The first term in (1) is the case
where the active window is updated diagonally. The next
term corresponds to the situation where the active window
is updated either horizontally or vertically.

Similarly, we can estimate the active-window reference
count which is the number of times an active window is
continuously used.

where d,, is the unit distance between adjacent cells of the
array which stores the local data, Tl is the sampling
period' of the navigation algorithm, u is the robot veloc-
ity, and p is the probability of diagonal updating for the
active window. For our experimental CARMEL robot,*
the maximum velocity is 0.78 m / s and the sampling pe-
riod is 0.03 s. It turns out that the reference accounts for
our robot are between 6.04 and 9.43 [17].

We have found that even with a relatively fast vehicle,
the active-window reference count is greater than 1, which
means that the same window will be used repeatedly by
the vehicle. This result indicates that caching is likely to
be effective.

2) Local Cache Policies: In the following discussion,
we assume that the buses, radio links or other transmis-
sion carriers are fast enough to cache the required ele-
ments without significant delay. Some implementations
need to prefetch blocks of elements from the auxiliary
memory into the cache. We assume that this prefetching
will not cause noticeable delay in the planning process or
the sampling period. How to deal with the delay problem
(cache latency) using proper data structures for auxiliary
memories can be found in [171. For the local cache, we
consider the following three policies:

When a cache miss3 occurs (or before it occurs),

L,: bring the exact active window into the cache (ex-
act-window cache),

&: bring a predicted active window into the cache
(predicted-window cache), or

L3: bring one element into the cache (one-element
cache), which is equivalent to no caching.

The exact-window cache (15,) is impractical. It is im-
possible in practice to bring in the exact active window
whenever a miss occurs, since it is possible neither to
know the exact window nor to bring it in immediately.
Therefore, this policy is presented solely for the purpose
of comparison. When a missed element is identified, the
system will bring in an active window which contains the
missed element.

'The sampling period is the time period required to issue two consecutive For the predicted-window cache (&dr two seg-
speed and steering commands and to acquire the vehicle position and ori- ments are reserved in the cache. One segment Contains the
entation values for the system state during navigation.

mobile platform.
*CARMEL is a modified commercially available CYBERMATION K2A 'A cache miss occurs when the expected element is not in the cache, SO

that fetching from an auxiliary memory is necessary.

ZHAO er al.: LIMITED ON-BOARD MEMORY AND COMMUNICATION BANDWIDTH

current active window and the other is used as a work area
to bring in a predicted active window. That is, while the
system is using one active window, another window is
being brought in. When the navigation algorithm is fin-
ished with the currently active window, it expects to find
the next window in the cache. Criterion 1 requires the
current active window to overlap the previous one. Thus,
it turns out that there is no need to allocate two complete
active windows in the cache. Theoretically, if the pre-
dicted window always contains what the system needs,
the cache hit ratio will be 100%.

The navigation algorithm accesses map data elements
in the on-board memory. We call the number of times the
memory is referenced the memory reference count. The
number of times a referenced element is found in the cache
is called the hit count. The ratio of the hit count to the
memory reference count is called the hit ratio.

Different methods can be used to predict the next active
window. Since estimating the next active window is
equivalent to estimating the next location of the robot, we
propose modifying the equation derived in [18] for this
task, as described in Appendix B.

For the one-element cache (L3), only one element will
be brought in whenever there is a miss in the cache. Com-
pared with the previous two policies, this one should have
the lowest hit ratio, unless the second policy makes par-
ticularly bad predictions. A one-element cache may be the
only option when the available memory is too small to
allow prefetching. At any rate, it serves as another ex-
treme for purposes of comparison.

The following discussions indicate that the predicted-
window cache (L2) is better than the one-element cache
(L3) for dealing with communication-bandwidth limita-
tion problems. Because the speed of the robot is low
enough, the active-window reference count is always
greater than one. This means that we have more than one
sampling period to fetch the required elements from the
auxiliary memory.

From our earlier estimates of the active-window refer-
ence counts (6.04 to 9.43), y e can estimate that approx-
imately 180 ms to 300 ms (y X T I) are available for our
robot to fetch new elements. This time is insufficient for
a one-element cache which must fetch elements one by
one. Assume that the. auxiliary memory is a disk. Disk
access time includes seek time, rotational latency, and
data transfer time. We use the disk access time estimates
of Katz et al . 171, who have studied the disk performance
characteristics of various classes of applications. Since our
application is a scientific application in their classifica-
tion, we obtain the average seek time as 15 ms, the av-
erage rotational latency as 8 ms, and the average data
transfer time as 15 ms. Therefore, the average data fetch
time is 38 ms. Even in the worst case, the next window
never differs from the present window by more than one
new row and one new column. Therefore, for the one-
element cache, in the worst case we must fetch at most
65 elements for a new window (for one new row and one
new column). Thus, the one-element cache needs 2.47 s

~

63

(38 ms X 65) to fetch all these elements. Even if we as-
sume only two rotational latencies, one for the row ele-
ments and another for the column elements, the fetch time
still turns out to be around 1.966 s (30 ms x 65 + 8 ms
X 2). This time is far beyond the available time (from
180 ms to 300 ms).

For the predicted-window cache (&), if we can fetch
the row and the column separately as two blocks of ele-
ments, the fetch time is only 76 ms (38 ms x 2), which
is well below the required available time period. There-
fore, for a system of low communication bandwidth, the
predicted-window cache is a better choice. However, for
the predicted-window cache to work as requested, we
must find a good data structure to allow row access and
column access with the same efficiency. How to store the
data in the auxiliary memory to reduce the cache latency
can be found in [171.

C. Navigation with Local and Global Data Caches:
Global Strategy

In this subsection, we examine methods for the invo-
cation of global planners. Four global-cache policies are
also discussed.

1) Global Path Planner Triggering: A global path
planner may be triggered in two ways: 1) whenever the
global data are updated, and 2) whenever the robot be-
comes trapped. We use the second trigger in our simula-
tions. When several robots are working in the same en-
vironment, the global map is updated as each robot detects
new information. However, a robot will not need to re-
plan its path at this point unless the planned path becomes
blocked. Therefore, when the global map is updated, the
cache process, not the global path planner, will be acti-
vated if the corresponding elements are in the cache. We
thus eliminate unnecessary invocations of the global path
planner by implementing the second trigger.

2) Global Cache Policies: We examine four global
cache policies:

G , : hold a fixed portion of the global data in the cache
(fixed cache),

G2: hold all the global data along the path and as much
surrounding data as the cache allows (path cache),

G3: hold only aisle data4 in the cache (aisle cache), or
G4: hold the global data along the preplanned path be-

tween two via points5 in the cache (via-point
cache).

A fixed cache (G ,) holds a predetermined portion of the
data. This unsophisticated policy is used as a basis of
comparison. For instance, if only half of the global data
is permitted in the cache because of global cache memory
limitations, we could hold the portion of data which rep-
resents the lower half of the global map in the cache. Of

4The aisle data are data that represent the free aisles or hallways in the
environment. In the cases where there are no clearly defined aisles, the
aisle data represent the free space.

points are intermediate points (or goals) on the globally planned
path for use by the local path planner to reach the final destination.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 24, NO. I . JANUARY 1994 64

course, with slight modifications, different portions of the
map data can be in the cache. One such choice is de-
scribed in the second policy.

A path cache (G2) holds the data along the planned path
together with some data around the path to permit path
replanning. The amount of this extra cached data depends
on the global cache memory size. To start with, the al-
gorithm could permit only that portion of data immedi-
ately adjacent to the starting position in the cache, or the
data along the straight line from the starting position to
an intermediate target position in the cache. Whenever a
new path is planned, the data along this new path will be
cached in.

An aisle cache (G3) holds only the data representing the
aisles. This policy is very useful for an environment where
the aisle area is far less than the area occupied by obsta-
cles, since there is no need to cache in a large amount of
extraneous data. Many warehouse and building floors are
examples of this situation.

A via-point cache (G4) will only hold data in aplunning
region that covers a number of via points on the path,
including the current via point, together with some data
around these via points. This policy is a combination of
the fixed and path caches, and should be useful for envi-
ronments with random obstacles. To use this policy, we
must restrict on-line global planning to look at only this
planning region, whose size is determined by the capacity
of the global cache. Fig. 3 shows two simple planning
regions, which are in the cache at time t, and tJ + , , re-
spectively. These regions are portions of the global map
and are shown as dashed and solid parallelograms. Small
squares represent via points.

Using Fig. 3 as an example, one way to implement this
policy is to cache all data between two via points and in-
clude some surrounding elements, or to start with, use the
approach suggested for the path cache (G2). At time tJ all
the elements inside the dashed region are in the cache.
The first via point in the cache is the one at the bottom of
the parallelogram, and the last one is on the upper bound-
ary. The number of elements cached in depends on the
global cache size selected. As the robot travels, the sys-
tem will update the global cache contents. Whenever the
vehicle passes a via point, it will refresh the global cache
with the via point following the last cached-in via point,
and eliminate the via point which the vehicle has just
passed. Some surrounding elements must also be cached
to facilitate replanning which requires surrounding con-
text. Otherwise, if one via point is invalid, a high hit ratio
cannot be achieved for replanning using only these re-
maining via points in the cache. Based on the real sensor
viewing distance restriction, a pair of via points can be
no more than 2 m apart in our navigation algorithm [20],
and our robot travels that distance in about 4 s. Because
each pair of via points is five nodes apart in the search
graph, no more than five row elements from the global
map are needed to refresh the cache. Thus, the global
cache has 0.8 s to fetch each row from the global data
array, which should be enough time if a disk is used as

Fig. 3. Via-point cache (GJ.

the auxiliary memory. During the joumey, once the global
path planner is invoked, it will use its last cached-in via
point as a temporary target to replan the new path.

D. Discussion
Locality is the most important property for guarantee-

ing the successful use of cache memories [12]. Locality
has two characteristics: locality by time and locality by
space. Locality by time means that the information which
will be in use in the near future is likely to be in use al-
ready. Locality by space means that portions of the ad-
dress space which are in use generally consist of a small
number of individually contiguous segments of that ad-
dress space.

For our local cache, locality is guaranteed because the
continuous motion of the vehicle requires the use of ad-
jacent windows from a local map. The three local cache
policies will not violate the locality property. For the
global cache, locality is less likely to be guaranteed be-
cause of the nature of the global path planning algorithm.
The elements of the global map array will most likely be
randomly accessed during planning. Therefore, we expect
that the fixed cache (GI) and the path cache (G2) are poor
policies in terms of the locality criterion. These policies
cannot guarantee locality by time and locality by space
because it is difficult for them to predict the elements ac-
cessed by the heuristic search. However, we still include
them in later simulation studies to evaluate the efficacy of
the fixed cache G2 and the path cache G2. Since the aisle
cache (G3) and the via-point cache (G4) try to place the
related elements for global planning in the cache, they
should perform better than policies 1 and 2, based on the
locality criterion. Details appear in Section 111-B.

111. SIMULATION RESULTS
Our cache-based planning simulator is constructed with

the software actually used in our experimental mobile ro-
bots. The local and global path planners are both briefly
described in Appendix A and presented in detail in [Z O] .
The first is potential-field based and the second heuristic-

-

ZHAO et al.: LIMITED ON-BOARD MEMORY AND COMMUNICATION BANDWIDTH 65

search based. Taking the IBM-compatible CPU used in
our robot as a prototype, we assume that only 1 Mbyte of
main memory is available, of which only 200 kbytes can
be used for both local and global caches. Under this re-
striction, we try to determine which policy performs best.
We then change the cache size to see the effects of cache
on the hit radio.

A 1024 X 1024 array is used for detailed local data
stored in the auxiliary memory. Each cell in this array
represents a 10 X 10 cm2 floor area in the environment.
A 256 X 256 array is used to store global data that
coarsely represent the environment, and which are also
sorted in the auxiliary memory. Each local element oc-
cupies 1 byte and each global elements occupies 6 bytes.
The active window size is 33 X 33. Therefore, if we place
the current active window into the cache, only half of the
global data can be cached into the global cache, assuming
that only 200 kbytes are available for the local and global
caches.

To test our policies, we simulated a warehouse envi-
ronment for the first three experiments. Fig. 4 shows this
warehouse, 102.4 m X 102.4 m square. Each aisle is
2 m wide. We assume that the robot begins its journey at
the lower left corner, marked “S” and navigates to its
final destination at the upper right corner, marked “T.”
New obstacles within sensor viewing distance of this and
other robots are added dynamically to the local and global
maps.

A. Test of Local Strategy

In this experiment, we tested three local cache policies
for the first strategy, which uses only a local data cache.
The robot traveled with the guidance of only a local path
planner. The final trajectory of the robot is shown in Fig.
4 as a continuous curve.

The results from the three policies are listed in Table I.
The cache misses for the exact-window cache (L ,) , the
predicted-window cache (L2), and the one-element cache
(L3) are 2135, 23685 and 69427 elements, respectively.
All of these numbers are small compared to the hit count,
so that every policy produced more than a 99% hit ratio,
even for a one-element cache (~ 5 ~) . These results are ex-
pected because of the very high active-window reference
count. This active-window reference count can be esti-
mated from (2).

From these results, we conclude that a local path plan-
ner can be used in a very large environment even when
there are practical limitations on the on-board memory and
communication bandwidth, provided the local cache size
is not smaller than the active-window size (augmented by
a row and column for a predicted-window cache). Since
only local planning is used, the problem with this strategy
is that the robot can be trapped when the environment is
dynamic. When this occurs, the alternatives are to wait
until the obstacle is removed or the robot is redirected by
an operator.

When the robot speed is increased, more data must be

U

El
Fig. 4 . A warehouse environment and a robot joumey under a local path

planner.

TABLE I
LOCAL CACHE POLICY COMPARISON

Policies(v = 0.78 m/s, T Memory Reference
= 30 ms) Hit Ratio Hit Count Count

Exact-Window Cache 99.98% 9 495 194 9 497 329
Predicted-Window Cache 99.75% 9 473 644 9 497 329
One-Element Cache 99.27% 9 427 902 9 497 329

TABLE I1
EFFECT OF VELOCITY AND SAMPLING PERIOD

Hit Ratio

30 ms (T) 300 ms (T) 600 ms (T)
Policies 3.9 m/s (v) 0.78 m/s (v) 0.78 m/s (v)

Exact-Window Cache 99.92% 99.90% 99.90%
Predicted-Window Cache 97.86% 95.12% 92.12%
One-Element Cache 97.18% 92.16% 84.89%

fetched, affecting the hit ratios. The results of using a
high-speed robot or long sampling periods with a local
path planner are shown in Table 11. The second column
gives the results for a robot running five times as fast as
our experimental robot, i.e., maximum velocity 3.9 m/s,
a likely speed for cross-country vehicles. In columns three
and four, the results for sampling periods of 300 and
600 ms are shown. These cases could arise even when the
robot travels at normal velocity (maximum velocity 0.78
m/s). For example, when a cache miss occurs, the sys-
tem may need more time than previously expected to bring
in required elements from the auxiliary memory. Alter-
natively, as a project develops, other navigation functions
may be added to the navigation process, forcing the sam-

~

66 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 24, NO. I , JANUARY 1994

pling time to be longer. Our simulation results indicate
that the hit ratio gets worse when either the robot speed
or the sampling period is increased. In particular, the hit
ratio drops considerably for the one-element cache (L3)
when the sampling period is 600 ms.

Fig. 5 shows the hit ratios for robot speeds between
0.78 and 3.90 m/s . In this test, the predicted-window
cache (L2) was used. The hit ratio begins to decrease rel-
atively rapidly as the robot speed increases beyond
1.5 m/s.

1) Effects on Robot Performance: The hit ratio explic-
itly reflects the performance of the local cache. It also
implicitly reveals several problems which robot designers
and users face. Because the exact-window cache (L ,) is
used for comparison purposes only, we examine the re-
sults for the predicted-window cache (L2) and the one-
element cache (L3) in Table I. Assume that the auxiliary
memory is a disk and the transmission carrier is a bus.

We first consider the time required to update one win-
dow. As discussed in Section 11-B, fetching a single block
of elements for the predicted-window cache takes only 38
ms if row-data fetching and column-data fetching are
made equivalent. We define cache latency to be the time
taken to fetch the missed elements, so 38 ms is the cache
latency. In this particular warehouse example, there is al-
most no diagonal updating of the active-window because
the vehicle moves either horizontally or vertically with
respect to the world coordinate system. Thus, we assume
that one fetch is enough to update the active window (for
two fetches, the calculations below can be adjusted ac-
cordingly).

We then consider the effects of the predicted-window
cache and one-element cache on robot navigation process.
For the predicted-window cache, the 99.75 % hit ratio
means that 0.25% of all memory references result in
misses. Since the cache latency is 38 ms for this case, the
navigation process will be delayed 38 ms when a miss
occurs. For the one-element cache, the maximum number
of elements we must fetch is the window width, i.e., 33
elements. As discussed before, the disk-seek and data-
transfer take 30 ms. Assuming only one rotation latency
(8 ms) and a cache block size of one element, 33 fetches
are required during one sampling period. Thus, even in
the best case, the navigation process will take about 1 s
(33 x 30 ms + 8 ms) to update the window (33 ele-
ments). For the one-element cache, the 99.27% hit ratio
means that 0.73% of all memory references result in
misses, based on counting every single missed element.
Comparing the 1 s cache latency for the one-element cache
with the 38 ms cache latency for the predicted-window
cache, we see that the predicted-window cache is much
better. A one-second cache latency is much longer than
the navigation process can afford (from 180 to 300 ms),
so the robot must pause to satisfy the cache latency-re-
quirement and Criterion 1 for the one-element cache. In
contrast, for the predicted-window cache, the robot needs
only to slow down briefly to compensate for the 38 ms
delay.

100 I 1 I I I I I I I

99.5

99

Ratio 98.5

98

Hit

(%)

k

97.5 97 i
0.5 1 1.5 2 2.5 3 3.5 4 4.5

Velocity (m / s)

Fig. 5 . Effect of velocity with predicted-window cache (L 2) .

Finally, we consider the effects of cache misses on ro-
bot performance. For most applications, slowing down to
compensate for the cache latency is unnecessary if the
predicted-window cache (L2) is used. We can initially ig-
nore the missing elements. The robot misses at most 33
elements of the current active window, i.e., 3% of the
total window elements. Since our local navigation algo-
rithm is potential-field based, elements close to the robot
position will have a far greater influence than those farther
away (see, for example, [l] and [20]). The 33 elements
that were missed lie on the boundaries of the active win-
dow, and have little influence on the navigation process.
Because the active-window reference count is always
greater than one, the same active window is used again
and again, so this missed row or column will soon be
available. However, for the one-element cache (L3) ,
missed elements (at least 33 elements for one sampling
period) cannot be ignored, since this will violate Criterion
1. After a short period the local cache will lose all of the
window information related to the current location of the
robot. Clearly this cannot be tolerated for safe robot ma-
neuvering. Therefore, the one-element cache is not an ac-
ceptable policy.

B. Test of Global Strategy
With the two-level hierarchical planner implemented in

our simulator, the robot was able to perform path maneu-
vers without human intervention. Three different situa-
tions were tested in this study. First, fixed obstacles were
placed on the warehouse floor to try to block the path of
the robot. Second, random obstacles were placed on the
warehouse floor. Finally, in a dynamic simulation fixed
numbers of obstacles were randomly placed on an empty
floor and obstacles were then removed and added ran-
domly, keeping the total number of obstacles fixed. The
predicted-window cache (L2) was used for the local cache,
while different global policies were studied for the global
cache.

1) Manually Updated Warehouse Environment: The
robot first used the global path planner to plan its path
from the initial position to the final target, as indicated by
the small squares in Fig. 6. Immediately after the com-
pletion of the initial global path planning phase, an obsta-
cle was added to block the intended path of the robot (in-

ZHAO et 01.: LIMITED ON-BOARD MEMORY AND COMMUNICATION BANDWIDTH

dicated by arrow 1 in Fig. 6). The robot moved along the
planned path, as indicated in the figure, until it encoun-
tered the first obstacle, wherefrom it planned a new path,
backed out of the blocked aisle, and continued along a
new path. Again this new path was blocked (arrow 2) and
the robot replanned and continued until either no obstacle
was in its way to the target or there was no way to reach
the final destination.

From Fig. 6 , we can see that the robot finished its jour-
ney after planning the global path four times. The results
for the three different policies for the global cache are
listed in Table 111. It is confirmed here that the fixed cache
(GI) and the path cache (G2) perform poorly, in accord-
ance with our earlier expectations. The results of the three
policies in the table show that the aisle cache (G3) is the
only good choice in this case. The other two policies
would result in much lower hit ratios.

We now consider what these hit ratios tell us. Besides
the high miss ration (1 - hit ratio), the cache latencies of
the fixed cache (GI) and the path cache (G2) are also high.
Assume that the auxiliary memory is a disk and that the
cache block size is equivalent to the global data element
size. From the discussion in Section 111-A, we know that
the cache latency for each element is 38 ms.

Our global planner uses a best-first strategy. This tech-
nique can result in unpredictable jumps over the search
space, and we model this situation as causing random ac-
cesses to elements. The total cache latency thus is ob-
tained by multiplying the number of misses by the one-
element cache latency. For the fixed cache (GI), this cache
latency works out to be 23.76 min. Since the global path
planner is invoked four times, the average cache latency
for each on-line global planning is 5.9 min. For the path
cache, the total cache latency is 15.26 min. The average
cache latency for each on-line global planning is 3.8 min.
Since the global path planner is invoked four times, the
robot will spend an extra 15.26 min to reach a final des-
tination that would have been reached in less than 10 min
with no cache latency.

In this particular experiment, only 12 105 elements are
required in the cache for the aisle cache (G3) , while for
the fixed cache (GI) and the path cache (G2), 32 768 ele-
ments are required. Although only a small amount of data
is in the cache for the aisle cache, some cache activity is
still expected. For instance, newly discovered obstacles
may require changes to elements currently in the cache.
Because only three obstacles were added, 26, 78, and 66
elements were dynamically cached for the fixed, path and
aisle caches, respectively, in addition to regular cache ac-
tivities. We call them additional elements fetched. Since
only a fixed portion of the data is in cache for the fixed
cache, not all newly detected obstacles required changes
to elements in the cache. The fixed cache thus has the
fewest additional elements fetched, even though obstacles
are placed in the aisles. Our heuristic-search algorithm
always expands the obstacle boundaries because of secu-
rity considerations [20]. Because the aisle cache (G3)
caches only aisle data and does not include some of the

n n

1I
Fig. 6. Navigation with manually updated obstacles.

TABLE 111
GLOBAL CACHE POLICIES WITH FIXED OBSTACLES

~~ _______ ______ ~ ~

Policies Hit Ratio Hit Count Memory Reference Count

Fixed Cache 44.09% 29 584 67 092
Path Cache 64.08% 42995 67 092
Aisle Cache 100.00% 67 092 67 092

expanding boundaries surrounding newly added obsta-
cles, the number of additional elements fetched is more
than for the other two schemes.

We see that the hit ratios of the fixed cache and the path
cache are significantly worse than for the aisle cache. Al-
though the memory reference count of the global cache is
only 0.456% of the total memory reference count, the
misses will significantly affect the performance of the sys-
tem, as we learned above. The robot must halt to com-
pensate for the long cache latency.

In Fig. 7, we show how the cache size affects the hit
ratio of the aisle cache (G3). The hit ratio drops rapidly
as the cache size is reduced below 12 105 elements since
the global cache can no longer hold the entire aisle data.
Therefore, below about twelve hundred elements the hit
ratio decreases linearly with reduction in cache size.

2) Randomly Updated Warehouse Environment: We
then tested a situation where obstacles were randomly
added to the environment. Fig. 8 shows the planned path
and the actual trajectory generated by our simulator. The
random obstacles are shown in the figure as small squares.
We show here only the case where the random obstacles
do not completely block all passages available to the ro-
bot. From this figure, we see that some obstacles inter-
sected the path of the robot but did not obstruct it, or were
generated after the robot crossed these spots.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 24, NO. I , JANUARY 1994 68

I (I I I I I I

:: 30 20 ;
5000 10000 15000 20000 25000 30000

Cache Size (elements)

Fig. 7 . Effect of cache size with aisle cache (G3): manually updated ware-
house.

From Table IV, we see that the hit ratios for the fixed
cache (G,) and the path cache (G2) are still low. The hit
count is only about half of the memory reference count.
As with the results of the manually updated warehouse
environment, this low hit ratio compromises the perform-
ance of the system. For the fixed cache (GI) , the total
cache latency is 20.15 min. The average cache latency for
each on-line global planning task is 6 .7 min. For the path
cache (G2), the total cache latency is 16.9 min. The av-
erage cache latency for each on-line global planning task
is 5.63 min. Since the system planned its global paths
three times, the robot will spend an extra 16.9 min to reach
a final destination that is reached in less than 10 min with-
out the cache latency. The additional elements fetched in
this experiment were 9866, 8858, and 2743 for the fixed,
path, and aisle caches, respectively.

Fig. 9 depicts the results for the aisle cache policy (G3).
The hit ratio drops rapidly as the cache size is reduced
beyond about twelve hundred elements, because the global
cache can no longer hold the entire aisle data. As with the
results in Fig. 7, this means that the aisle cache cannot
maintain a high hit ratio unless the global cache can fetch
in almost all the aisle data.

3) Randomly Updated Environment: Finally, we stud-
ied navigation in an unstructured environment where ob-
stacles randomly appear and disappear on a floor. In this
experiment, we used a random number generator to gen-
erate 250 square obstacles and then used a global path
planner to plan a path, as shown in Fig. IO, where the
robot has just begun to traverse its preplanned path in the
low left comer. During the journey, obstacles were ran-
domly generated and removed at the same rate (one every
3 s). Which obstacle to remove next was determined by a
second random-number generator. The total number of
obstacles in the environment at any time remained at 250.
The final trajectory of the robot and the locations of all
the obstacles on the floor at the time the robot reached its
target are shown in Fig. 1 1 .

The experimental results are listed in Table V. The re-
sults for the fixed cache (G,) and the path cache (G2) are
a slight improvement over the results of the two previous
experiments. However, the results for the aisle cache (G3)
are worse. This paradox arises because in this experiment

Fig. 8 . Navigation with randomly updated obstacles.

I I I I I I

50
40

20 30 i
5000 10000 15000 20000 25000 30000

Cache Size (elements)

Fig. 9 . Effect of cache size with aisle cache (G3): randomly updated ware-
house.

TABLE IV
GLOBAL CACHE POLICIES WITH RANDOM OBSTACLES

Policies Hit Ratio Hit Count Memory Reference Count

Fixed Cache 50.98% 33 089 64 907
Path Cache 58.89% 38 226 64 907
Aisle Cache 100.00% 64 907 64 907

the global path planner was invoked only twice, as com-
pared with three and four times in the previous experi-
ments, so the chance of getting higher miss ratios was
lowered. Conversely, the number of cache misses in-
crease for the aisle cache since there are more newly de-
tected obstacles in the aisles which require changes to ele-
ments in the cache. Furthermore, this time the global
cache memory could not hold all the aisle data in the
cache. In this experiment the additional elements fetched
were 40 056, 35 820, and 17 381, respectively.

ZHAO et 01.: LIMITED ON-BOARD MEMORY AND COMMUNICATION BANDWIDTH

~

69

Fig. 10. Navigation with randomly added and removed obstacles: inter-
mediate stage.

Fig. 1 1 . Navigation with randomly added and removed obstacles: final
stage.

TABLE V
GLOBAL CACHE POLICIES WITH RANDOM OBSTACLES ON A FLOOR

Policies Hit Ratio Hit Count Memory Reference Count

Fixed Cache 57.38% 93 144 162 330
Path Cache 74.69% 121 239 162 330
Aisle Cache 83.43% 135 427 162 330

If we fix the local and global policies, the number of
additional elements fetched indicates how dynamic the
environment is. For instance, we know from the above
three experiments that when a two-level cache is used for
the predicted-window cache (L) and the aisle cache (G3),
the numbers of additional elements fetched are 66, 2743,
and 17 381, respectively. We confirm from these num-
bers that the last environment (Figs. 10 and 11) is more
dynamic than the other two (Figs. 6 and 8).

The performance of the robot system is affected by the
cache latency for all three policies investigated. For the
fixed cache (G ,) , the total cache latency is 43.82 min. For
the path cache (G2) , the total cache latency is 26.02 min.
For the aisle cache (G3), the total cache latency is 17.04
min. None of these is very promising for a robot working
in this unstructured environment. These disappointing re-
sults turned our attention to the via-point cache (G4) in-
troduced in Section II-C.

While we did not test the via-point cache in the ware-
house environment, we did test it in the randomly updated
open-floor environment. In the via-point cache policy
(GJ, the global path planner does not examine the full
environment, but bases its planning decisions on the in-
formation contained in the planning region (Section II-C).
In a warehouse environment, looking at a selected area
will not guarantee that the global path planner can guide
the vehicle out of trap situations. Therefore, we did not
include this policy in that set of experimental studies.

Our actual implementation of the via-point cache is
slightly different from our earlier description in Section
II-C. The robot’s position corresponds to the third via
point in the cache. Thus, when the on-line global planner
is invoked, it has the choice of viewing some points in
the area it has just passed. This can be useful for the cases
where the robot must backtrack in order to avoid a trap.
Our experiments indicate that positioning the robot at the
third via point is good enough. For different environ-
ments, the choice of which via point to position the robot
at might vary. In our implementation, 20 via points and
their surrounding elements are in the cache.

We show the results for the aisle cache (G3) and the
via-point cache (G4) in Fig. 12 as the cache size changes.
In this example, the via-point cache is much better be-
cause the aisle cache cannot guarantee locality properties
for the cache. On the other hand, the via-point cache can
hold enough data to ensure a very high hit ratio. Another
advantage of this policy is that it does not require a large
global cache. However, the success of this policy depends
heavily on whether the temporary target selected during
replanning generates a planning region where the planner
can find a solution. This was the case in our experimental
study.

C. Discussion
Several conclusions can be drawn from these experi-

mental results. For local policies, the predicted-window
cache (L2) is better if the active-window prediction is rea-

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 24, NO. I . JANUARY 1994 70

I I I I I I

“aisle cache” -
“via-point cache” c

40t 1
2 0 1 1
o 1 I I I I

10000 20000 30000 40000 50000 60000

Cache Size (elements)

Fig. 12. Comparison between aisle cache (G,) and via-point cache (G4).

sonably good. For global policies, either the aisle cache
(G3) or the via-point cache (G4) works well, depending
upon the particular environment where the robots are trav-
eling. If all the aisle data fit into the cache, the aisle-cache
policy is best. If the temporary target selected for replan-
ning generates a region where planning succeeds, the via-
point cache is best. All the other policies, i.e., the one-
element cache (&), the fixed cache (GI), and the path
cache (G2) adversely affect robot performance. In each of
these policies, the robot must pause to compensate for the
long cache latency. In such circumstances, it will be bet-
ter to plan global paths off-line instead. Finally, the local
strategy saves more on-board memory than the global
strategy, at the possible cost of losing maneuvering au-
tonomy.

For different local and global path planners, the amount
of data that can be stored in the main memory may vary.
In our case, since we use a two-dimensional grid to rep-
resent local environments, only one byte is used for each
element of the local data. Other implementations might
be different, e.g., if three-dimensional information is
needed, one byte is not enough to represent this infor-
mation. Other applications may select an active window
larger than the one we used if a better sensory system is
available. Since the local path planner is used more fre-
quently than the global path planner, we recommend
keeping the current active window in the cache at the ex-
pense of the reducing the global cache size, if there is a
cache-memory size restriction.

For single mobile-robot navigation, it may be possible
to place a global path planner off-board to achieve a sim-
ilar result. However, this is not the soundest strategy for
multiple robot navigation in a very large environment. A
centralized solution would scale very poorly in this case.
Placing the global path planner in each individual vehicle
will also make the system more flexible. Individual robot
systems will not need to fight over the resources of a cen-
tralized planning system. A distributed approach also im-
proves reliability. The crash of the central computer sys-
tem would force all the individual robots to stop
functioning.

In our implementation, the mobile robot is controlled
by the local navigation routines. Therefore, the local
cache policy directly affects the low-level, time-critical

control routines. Let d be the deadline for a time-critical
task and let t be the time the robot takes to accomplish the
task assuming that all the required navigational data is in
main memory. Now, s = d - t is the amount of slack
time available. If ti is the time for which the ith block of
data in the cache is processed before the next block of data
is required, we have t = Z i t i . Let us assume that a pre-
fetching strategy is used, and that prefetching on the (i +
1)th block starts as soon the ith block has been fetched.
IfJ is the time for prefetching the (i + 1)th block of data,
we must have total waiting time 1 = Ck (fk - tk) , over all
k such thatfk - t k > 0. If deadlines are not to be missed,
we must have s z 1.

As discussed in Section 11-B, the recommended cache
policy in the worst case takes 76 ms (fk) to update the
active window for maneuvering activity. During one sam-
pling period the active window needs to be updated at
most once (k = i = 1) so that at most 30 ms (t i) is required
to process the window data. Therefore, for our experi-
mental robot I = Zk (fk - tk) = 76 - 30 = 46 ms. The
waiting time 1 of 46 ms is far below the slack time s of
470 ms where s = d - t = 500 - 30 = 470 ms and the
deadline d for our critical task is 500 ms. Therefore, there
is enough time to guarantee the execution of time-critical
control routines. Furthermore, we show in that section
that with our recommended cache policies, the system can
even afford to miss some elements for a short period. This
means that our approach has some degree of flexibility.
For instance, if the deadline for a particular system is
shorter than our experimental system, we can cache fewer
elements than requested without missing the deadline.
That is, we can afford to reduce some of cache activity.
In other words, since the performance of the system is not
affected much by ignoring the missed elements, this par-
ticular system can afford to do less caching (or ignore
some of cache requests) in order to guarantee a deadline.

Although we only investigated one-level and two-level
caches, our proposed strategies can be easily generalized
to a multilevel cache. In some applications, multilevel hi-
erarchical planning is required. The ideas presented in this
paper can help to solve similar problems that arise when
a multilevel planner is used with a multilayer map.

IV. CONCLUSIONS
Our interest is in the use of cache memories to deal with

memory- and communication-limitation problems inher-
ent in mobile-robot navigation in large dynamic environ-
ments, rather than in designing cache memories for high-
speed computers. Therefore, we did not study cache de-
sign issues such as choice of cache size, choice of block
(line) size, degree of associativity, and updating memory
by write-through or copy-back approaches [5], [121-[141.

We proposed and simulated two algorithm-implemen-
tation strategies to solve the on-board memory-limitation
problem. We used a one-level local data cache for static
environments and a two-level local and global cache for
dynamic environments. We tested both strategies with dif-
ferent cache policies. To solve the bandwidth limitation

ZHAO et al.: LIMITED ON-BOARD MEMORY AND COMMUNICATION BANDWIDTH 71

problem, we presented the predicted-window cache (L2)
and the corresponding data structures [17]. For a local
cache, the predicted-window cache is the best choice. For
a global cache, depending on the particular environment,
either the aisle cache (G3) or the via-point cache (G4) could
be better choice. Unlike other policies tested in simula-
tion, none of the recommended cache policies in the sug-
gested implementations impair the robot performance, as
shown in the experiments. Our global path planner [20]
searches a list of candidate nodes using a best-first strat-
egy. One possible optimizaiton may be to cache the top k
nodes on this list and their children for some suitable k.
Another would be to cache the unexplored leaves of the
search tree, provided the cache is large enough. We do
not discuss such optimizations since we assume in this
work that the low-level details of global planning are not
available to the caching algorithm.

We believe that our studies and simulation provide a
useful initial phase and platform for further study of sin-
gle- or multiple-robot navigation. We have demonstrated
that navigation in large dynamic environments can be im-
plemented in mobile robots with the help of proper im-
plementation strategies. We have shown how to deal with
memory and bandwidth limitations, without compromis-
ing robot performance unduly, through proper choice of
caching policy. Our work is likely to prove very useful to
robot designers and users interested in implementing sin-
gle- or multi-robot navigation algorithms in large and dy-
namic environments.

APPENDIX I
THE NAVIGATION ALGORITHM

The navigation algorithm used in this study is an inte-
gration of the heuristic-search and potential-field meth-
ods. The heuristic-search algorithm is used for both global
path planning and trap recovery. The potential-field
method is used for local path planning and path maneu-
ver.

As shown in Fig. 13, the potential-field method [6] uses
the vector sum of the virtual repulsive forces from obsta-
cles and a virtual attractive force from a target position to
provide a resultant force to guide the vehicle.

If preplanning is required, our algorithm uses heuristic
search to generate a list of intermediate goals (via points)
at the very beginning of the journey. If no preplanning is
used, heuristic search will not be invoked at the begin-
ning, and will be invoked only when the robot is trapped.
The via points generated by the heuristic-search algorithm
are used by the potential-field method to reach the final
destination. For instance, whenever the robot is trapped,
the heuristic-search algorithm is invoked to generate a list
of via points as new temporary goals. This process con-
tinues until the robot moves to the final target specified
before the journey.

The basis of our heuristic-search algorithm is a modi-
fied version of the A* algorithm invented by Hart et al.
[4]. Our application uses a node array to represent the
two-dimensional (2-D) real world as an internal mau

Target

@

v
%p”lSiW

Fig. 13. Potential-field control.

stored in the memory of a mobile robot. The difference
between the general A* algorithm [111 and our heuristic-
search algorithm is that we include forbidden states (or
nodes) in the knowledge base for each node. Forbidden
states are set initially for boundary nodes, obstacle nodes,
and their surrounding nodes. The forbidden states could
also be determined according to safety considerations,
e.g., clearance requirements. Our algorithm does not ex-
amine forbidden nodes and therefore avoids known obsta-
cles and forbidden paths automatically. For good per-
formance, we allow eight surrounding nodes to be
generated from a current “best” node.

We have proved our navigation algorithm to be glob-
ally convergent. Convergence was also demonstrated ex-
perimentally with practical robots in both known and un-
known environments. A detailed presentation and
evaluation of this algorithm is described in [20].

APPENDIX I1
ACTIVE-WINDOW PREDICTION

As shown in Fig. 14, the system kinematic equations
of our experimental robot are [181, [191

where 0 I v I V,,,, (w (I Q,,,. V,,, and Qm,, are the
maximum linear and angular velocities of a particular mo-
bile robot. Integration of (3) yields the vehicle positions

v cos 19 dr [!] = + [u s i n d d T]

1 w d 7
O +

(4)

where Xn, yo, and do are the initial positions of the vehicle.

12 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 24, NO. I , JANUARY 1994

S‘

Fig. 14. Mobile-robot motion

Considering that during very small periods v, w , and 0
are essentially constant, we obtain

where a small hat indicates ap estimated value, c denotes
the current parameters, and y can be estimated from (2).
Equation (5) is used in our simulation for active-window
prediction. This prediction is equivalent to the estimation
of the next location of the vehicle.

REFERENCES
[I] J. Borenstein and Y. Koren, “Real-time obstacle avoidance for fast

mobile robots,” IEEE Trans. Syst., Man, Cybern., vol. 19, pp. 1179-
1187, SeptJOct. 1989.

[21 I. J. COX, “Blanche-An experiment in guidance and navigation of
an autonomous robot vehicle,” IEEE Trans. Robotics Automation,
vol. 7 , pp. 193-204, Apr. 1991.

131 E. H. Durfee and T. A. Montgomery, “Coordination as distributed
search in a hierarchical behavior space,” IEEE Trans. Syst., Man,
Cybern., vol. 21, pp. 1363-1378, Nov./Dec. 1991.

141 P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the
heuristic determination of minimum cost paths,” IEEE Trans. Syst.,
Sci., Cybern., vol. SSC-4, pp. 100-107, July 1968.

[5] M. D. Hill and A. J. Smith, “Evaluating associativity in CPU
caches,” IEEE Trans. Cornput., vol. 38, pp. 1612-1630, Dec. 1989.

161 0. Khatib, “Real-time obstacle avoidance for manipulator and mo-
bile robots,’’ in Proc. IEEE Int. Conf: Robotics Automat., Mar: 1985,

[7] R. H. Katz, G. A. Gibson, and D. A. Patterson, “Disk system ar-
chitectures for high performance computing,” Proc. IEEE, vol. 77,
pp. 1842-1858, Dec. 1989.

[8] J. C. Latombe, Robot Motion Planning. Boston/Dordrecht/London:
Kluwer Academic, 1991.

[9] J. J. Leonard and H. F. Durrant-Whyte, “Mobile robot localization
by tracking geometric beacons,” IEEE Trans. Robotics Automat.. vol.
7, pp. 376-382, June 1991.

[lo] C. V. Ravishankar and J. R. Goodman, “Cache implementation for
multiple microprocessors,” in Proc. IEEE COMPCON, Feb. 1983,

[l l] E . Rich, Artijicial Intelligence. New York: McCraw-Hill, 1983, ch.

[I21 A. J. Smith, “Cache memories,” Computing Surveys, vol. 14, pp.
472-530, Sept. 1982.

[13] -, “Bibliography and readings on CPU cache memories and re-
lated topics,” Comput. Architecture News, vol. 14, pp. 22-42, Jan.
1986.

[:4] -, “Line (block) size choice for CPU cache memories,’’ IEEE
Trans. Comput., vol. C-36, pp. 1063-1075, Sept. 1987.

[15] W. C. Yen, D. W. L. Yen, and K. S. Fu, “Data coherence problem
in a multicache system,” IEEE Trans. Cornput., vol. 34, pp. 56-65,
Jan. 1985.

[I61 Y. Zhao and T. E. Weymouth, “An adaptive route-guidance algo-
rithm for intelligent vehicle highway systems,’’ in Proc. Amer. Contr.
Conf., June 1991, pp. 2568-2573.

pp. 500-505.

pp. 346-350.

3, pp. 78-84.

[I71 Y. Zhao, “Theoretical and experimental studies of mobile-robot nav-
igation,” Ph.D. dissertation, Univ. Michigan, Ann Arbor, 1991.

[IS] Y. Zhao and S. L. BeMent, “Kinematics, dynamics and control of
wheeled mobile robots,” in Proc. IEEE Inr. Conf. Robotics Auto-
mation, May 1992, pp. 91-96.

1191 Y. Zhao and M. Reyhanoglu, “Nonlinear control of wheeled mobile
robots,” in Proc. IEEEIRSJ Int. Con$ Intelligent Robots Syst., July
1992, pp. 1967-1973.

[20] Y. Zhao, “Theoretical and experimental evaluation of a local-mini-
mum-recovery navigation algorithm,” Recent Trends in Mobile Ro-
bots, Yuan F. Zheng, Ed., Singapore: World Scientific, 1993, pp.
75-1 17.

Yilin Zhao (S’89-M’92) received the B.E. degree
in electrical engineering in 1982 from Dalian Uni-
versity of Technology, Dalian, the People’s Re-
public of China, and the M.S.E. degree in elec-
trical engineering in 1986 and the Ph.D. degree in
Electrical Engineering Systems in 1992, both from
the University of Michigan, Ann Arbor.

Before joining Motorola Inc., Northbrook, IL,
as a Senior Project Engineer in 1992, he was an
Instructor at Dalian University of Technology
from 1982 to 1984 and a Teaching Assistant and

Research Assistant at the University of Michigan from 1987 to 1991. His
research interests include mobile-robot control and navigation, real-time
computer systems, and Intelligent Vehicle Highway Systems.

Dr. Zhao is a member of the Mobile Robots Technical Committee of the
IEEE Robotics and Automation Society.

Chinya V. Ravishankar received the B.Tech.
degree in chemical engineering from the Indian
Institute of Technology, Bombay, in 1975, and the
M.S. and Ph.D. degrees in computer sciences
from the University of Wisconsin-Madison in
1986 and 1987, respectively.

He has been with the Electrical Engineering and
Computer Science Department at the University
of Michigan, Ann Arbor, since 1986. His teach-
ing and research at the University of Michigan has
been in the area of programming languages and

distributed systems. He is a member of the Software Systems Research
Laboratory and the Real-Time Computing Laboratory at the University of
Michigan. His present research interests include large-scale distribution,
heterogeneity, protocol synthesis, real-time systems, and database sys-
tems.

Dr. Ravishankar is a member of the IEEE Computer Society and the
Association for Computing Machinery.

Spencer L. BeMent (S’61-M’67-SM’79) re-
ceived the B.S.E. and M.S.E. degrees in electri-
cal engineering and the Ph.D. degree in bioengi-
neering from the University of Michigan, Ann
Arbor.

He participated in psychophysical research in
the Sensory Intelligence Laboratory from 1960 to
1967. Since then he has been a faculty member in
Electrical Engineering and Computer Science at
the University of Michigan, where he is a member
of the Bioelectrical Science Laboratory. His re-

search interests are in rehabilitation robotics, digital control systems, sig-
nal processing and recognition, analysis and application of solid-state elec-
trodes, and electrical stimulation of the nervous system. He is now a
Professor of Electrical Engineering and Computer Science and associated
with the university’s Bioengineering Program.

Dr. BeMent is a member of Sigma Xi, Tau Beta Pi, Eta Kappa Nu, and
several IEEE professional groups and societies.

