Mobile Netw Appl (2009) 14:625-637
DOI 10.1007/s11036-008-0144-3

Hash-Based Virtual Hierarchies for Scalable Location
Service in Mobile Ad-hoc Networks

Wei Wang - Chinya V. Ravishankar

Published online: 17 January 2009
© Springer Science + Business Media, LLC 2009

Abstract A location service is an essential prerequisite
for geographic routing protocols for MANETs. We
present VHLS, a new distributed location service pro-
tocol, that features a dynamic location server selection
mechanism and adapts to network traffic workload,
minimizing the overall location service overhead. We
demonstrate that the ratio of location queries to up-
dates is an important performance parameter in such
protocols. Our analysis and simulations show that
VHLS provides better query success rates, location
service quality, and geographic routing performance
than the GLS and GHLS protocols. VHLS also scales
well as the network size and traffic workload increases.

Keywords mobile ad-hoc networks - location service -
hashing - hierarchies

1 Introduction

Mobile ad-hoc networks (MANETS) have great poten-
tial in numerous applications, such as location tracking
and retrieval [1], military operations [2], and civilian
outdoor applications [3]. Nodes in MANETS are typi-
cally battery-powered devices with limited computation
and communication capabilities. Messages between

W. Wang - C. V. Ravishankar (<)

Computer Science & Engineering Department,

The University of California, Riverside, Riverside, USA
e-mail: ravi@cs.ucr.edu

W. Wang
e-mail: wangw@cs.ucr.edu

nodes beyond each other’s radio range are routed via
relaying nodes.

Routing algorithms that work well for static net-
works fail for MANETS, since network topology
changes frequently and unpredictably. Routing in
MANETS can not rely on fixed servers, but can be
accomplished using either topology-based protocols
[4-8], which rely on discovering and maintaining global
state, or location-based (geographic) protocols, which
route packets to the destination’s geographic location.
Geographic routing is more scalable to large MANETS,
since it uses only knowledge of the destination location
and local geography, and is independent of network
topology and size. For a good survey of geographic
routing, see [9]. Examples of geographic routing pro-
tocols include DREAM [10], LAR [11], GPSR [12],
SLURP [13], and GRID [1].

Geographic routing, however, requires a sender to
know the recipient’s location. While nodes can obtain
their own locations easily using GPS [14] or other local-
ization hardware, locating other nodes is more difficult.
Location servers must themselves be located, and mes-
sages routed to them. Besides, sending and receiving of
messages consumes significant energy [15, 16]. Four de-
sirable characteristics for location services in MANETS
are listed in [1]: Service load should be well-distributed
to avoid bottlenecks, node failures should have limited
effect, queries for local nodes should only involve local
communication, and the overhead should grow slowly
with network size.

Work exists on the location service problem [1, 10,
11, 17-22]. Some methods use flooding, and are expen-
sive, but hash-based approaches [1, 17, 21, 22] simplify
the identification and use of location servers, and are
far cheaper.

@ Springer

626

Mobile Netw Appl (2009) 14:625-637

1.1 Motivation and summary of our work

Most earlier work has tended to focus on improving
the efficiency of updates, since the update rate is the
obvious parameter that rises with mobility. In contrast,
our work is motivated by the observation that while it
is important to handle high update rates, a high query
rate can actually affect performance more. Updates
represent one-way traffic, but queries require two-way
traffic, so higher query-update ratios can have a higher
impact on servers loads, as well as on traffic in the
system. We show that the ratio of location queries to
location updates is an important performance parame-
ter that has been ignored by current location services
for MANETS.

We also present VHLS, a new location service pro-
tocol that is able to explicitly adapt to query-to-update
ratios. VHLS manages locations using Hash-based Vir-
tual Hierarchies [23], which have been shown to be
useful in other contexts. Nodes are first organized into
a hierarchy of regions, which serves as a foundation
for each sending node to construct a virtual hierar-
chy for any destination node, using purely local infor-
mation. Location updates and queries use geographic
forwarding.

We compare VHLS with the Geographic Hashing
Location Service (GHLS) [21] and the Grid Location
Service (GLS) [1], two current hash-based location ser-
vice protocols. These protocols forward all location
updates and queries for a given node to a fixed number
of location servers in the network, which can cause
congestion under high workload. In contrast, VHLS
can select a number of location servers for each node,
based on the workload and the query/update ratio. A
hash-based virtual hierarchy for each node defines a
set of location server candidates. For a light-workload
scenario, VHLS selects fewer location servers, so that
location update overhead can be reduced without
compromising the quality of location service. For heav-
ier workloads, VHLS may select more location servers
so that queries can be answered closer to the initia-
tors, reducing query overhead. Our aim is to select
an optimal set of location servers for each mobile
node, such that the total location service overhead
introduced is minimized, reducing network conges-
tion, improving location service quality, and saving
power.

In Section 2, we discuss related work. We present
VHLS in Section 3, and an analytical estimate of
the location service overhead of VHLS in Section 4.
Simulations and performance comparisons appear in
Section 5, and Section 6 concludes our paper.

@ Springer

2 Related work

Location service protocols in MANETs have been
well-studied in recent years. The work in [21] catego-
rizes the existing location service protocols into two
taxonomies: flooding-based [10, 11] and rendezvous-
based approaches. Flooding approaches are equivalent
to a broad search in the network, so rendezvous-based
location services are inherently more scalable [21].
Rendezvous-based methods can be subdivided into
quorum-based [18, 20] and hash-based [1, 17, 21, 22]
approaches. Quorum-based services associate each
node n with a set of nodes, called its update quorum,
to which n’s location updates are sent. A location query
for that node will be forwarded to a different quorum,
which overlaps with the update quorum at some node,
and is answered there. The work in [21] compares hash-
based location services with a representative quorum-
based service [20] and shows that hash-based location
services are more scalable.

Many hash-based LS protocols [17, 22] are designed
with particular goals. [17] proposes a hierarchical ad-
dressing model, and identifies location servers assuming
that they are distributed evenly at a certain level of
the hierarchy. The work in [22] presents a hierarchical
approach designed specially to support communication
between nodes close to each other. Hash-based meth-
ods are the most efficient reported in the literature, but
differ in the way they use hashing. VHLS is most similar
to GLS [1] and GHLS [21].

2.1 The grid location service (GLS)

GLS [1] uses hashing to map a node name into an inte-
ger called the node ID. The region is partitioned into a
grid (see Fig. 1) and a hierarchy defined over squares of
increasing size. The smallest square is referred to as an

)
@
@ B:174 |
2]\\®
@ A:76

Fig. 1 GLS location servers for node B

Mobile Netw Appl (2009) 14:625-637

627

order-1 square. Four order-i squares (sibling squares)
form an order-(i + 1) square. GLS uses 2-hop beacons,
which include each node’s location and those of its
neighbors.

At each level of the grid hierarchy, a node B des-
ignates as its location server the node in each of its
sibling squares whose ID is closest to its own. Given N
cells, the grid hierarchy has log, N levels, so each node
designates 3 log, N location servers. Figure 1 shows B’s
location servers as circles.

When A must send data to B (via geographic for-
warding), it issues a location query for B. In GLS, each
node stores the IDs and locations of all nodes for which
it functions as a location server. At each query step, the
location query is forwarded to the node with ID closest
to B, until it reaches one of B’s location servers. In
Fig. 1, alocation query from A is sent to node 21, whose
IDis closest to B (17) among A’s stored IDs. The query
finally arrives at node 20, one of B’s location servers.

B updates its location servers whenever it moves
more than a threshold distance d. Servers closer to B
are updated more frequently than those farther away.
A node updates its order-i servers after each movement
of 2i=2(distance units [1]. B sends an update packet
using geographic forwarding to the square in which the
location server is located.

In GLS, B’s location servers are densely distributed
near B, achieving good locality. Moreover, all nodes
in GLS serve as the location servers for the same
number of nodes in the network, so loads are balanced.
However, GLS is best for relatively static networks,
since the overhead of handling node movement is very
high. Once a node S moves from a region g; to an-
other region g, it leaves a forwarding pointer at g;.
Other nodes arriving in g, with out-of-date location
information for S can follow these pointers. This node-
to-node chain may become long, greatly increasing
overhead. Also, if the chain is broken, all further
queries fail.

2.2 The geographic hashing location service (GHLS)

While GLS hashes node names to IDs, GHLS [21]
uses geographic hashing [24] to map a node name B
to a geographic location H(B). It uses a single location
server for each node; the node closest to location H(B)
is always the server for B.

When a location update or query arises for node B,
the hash value H(B) is computed, and the update or
the query is forwarded using geographic routing to
the node S that is closest to H(B). Handoffs can be

common, since S must hand off B’s location informa-
tion to a node .5, if S moves closer to H(B) than S.

Since GHLS mandates a single location server for
each node, location updates are cheaper than in GLS.
Location servers are selected based on location, so
GHLS handles node movement better than GLS. How-
ever, locality can be poor, since node A may be close to
B, yet be very far from H(B). GHLS therefore places
all location servers in a region at the network’s center,
but this leads to uneven loads.

Figure 2 shows how GHLS selects location servers
and handles location update and query. Point H rep-
resents location H(B). Node D serves as B’s location
server since it is closer to H than any other node in the
server («) region (the inner square). Node A’s query
is sent to H, and therefore routed to D. B’s location
updates will also be routed to node D.

2.3 Other related work

Although GHLS and GLS are most directly related to
our work, there is a significant amount of other, albeit
less related work. Work related to routing and mobility
appears in [25-28]. Various tradeoffs between complex-
ity, robustness, and overhead appear in [1, 9,29-31]. In
[32], a performance comparison is made between GLS,
GHLS, and XYLS, which is a quorum-based protocol
based on the work in [20].

DREAM [10] requires nodes to maintain a database
of the best known locations for all other nodes. This
information is disseminated to neighboring nodes using
flooding. The scope of the flooding depends on the
distance traveled by the node since the last flooding
operation. Routing is based on restricted directional
flooding, using the direction in which the destination
is expected to be located. The work in [33] is sim-
ilar in spirit. Each node maintains a database of its

Fig. 2 Location update and query in GHLS

@ Springer

628

Mobile Netw Appl (2009) 14:625-637

encounters with other nodes. Packets are routed to a
destination using a Last Encounter Routing algorithm,
which consults these databases to improve the estimate
of destination’s current location.

3 The VHLS protocol

We have seen how GLS hashes names into node IDs,
and GHLS hashes them to locations. In contrast, VHLS
hashes names first into grid cells, and then into servers
therein. It uses a GLS-like grid hierarchy, but selects
location servers very differently, using Virtual Hierar-
chies [23] and the Highest Random Weight (HRW)
[34] hashing method. The grid hierarchy is static, but
location servers are computed at query or update time.
Nodes know their own locations. As GLS and GHLS
do, we route all messages using geographic forwarding.

GLS and GHLS use a fixed number of location
servers for each node, but VHLS selects location
servers dynamically, based on load parameters such
as location update rate and location query rate. We
want to maximize query success rates, locality, load
balancing, and minimize transmissions.

3.1 Hash-based virtual hierarchies

Hash-based virtual hierarchies are based on the HRW
hashing protocol [34], and were introduced in [23],
where they were applied to web caching. We apply
the virtual hierarchy concept for an entirely different
design goal. VHLS starts with a static hierarchy of
cells as GLS [1] does, but builds dynamic and query-
specific virtual hierarchies on it using the HRW hashing
method.

Given an object with name N and a set of bucket
names b, b,,...,b,, HRW allows clients to deter-
mine, without a directory, which bucket should hold
object N. It uses a hash function H to compute bucket
weights {w{, wl, ..., w)}, where w = H(b;, N). It
then assigns the object to bucket by yielding the highest
weight, that is, such that w) = max {w], wy, ..., wl'}.
Since H and the bucket names b; are well-known,
each client will independently compute identical object-

bucket assignments.

3.1.1 Object-specific virtual hierarchies

Hierarchies often have poor performance since their
upper levels aggregate requests from lower levels, caus-
ing bottlenecks [23]. We avoid this problem by creating
object-specific virtual hierarchies on top of a given

@ Springer

physical hierarchy using HRW. We use the grid hier-
archy as a skeleton to which we apply HRW.

This skeleton is obtained by partitioning the entire
network region recursively into four cells at each step,
as in Fig. 3, until we reach the smallest cell (a unit
cell), whose edge length is the minimum usable radio
transmission range. Nodes in a unit cell use the two-
hop distance vector protocol of GLS, so they know each
other’s locations.

We define levels for the skeleton in a bottom up
fashion. The unit cell are level-1 cells, four of which
form a level-2 cell, and so on. Let G. denote a cell r at
level [of the skeleton. Figure 3 shows a 3-level skeleton.
Gl-Gi, are level-1 cells, G3-G? are level-2 cells, and
the network G is a level-3 cell.

Figure 4a represents the skeleton as a tree. We
construct a virtual hierarchy for a name Oy as follows.
We first apply a hashing function H at the root of the
skeleton, and choose one of G’s children, which we
call the prime cell for G at the highest level of the
skeleton. We then descend into each subregion in the
second highest level of the skeleton, and apply H to
each child of the subregion, selecting one child, which
becomes the prime for the name Oy in that subregion.
This procedure continues down the skeleton, until we
reach the level-1 cells. The set of primes forms the
virtual hierarchy.

Figure 4a shows the construction of the virtual hier-
archy. The root prime is obtained by descending the hi-
erarchy, choosing between siblings using HRW. At the
top level, we have only one choice. At level 2, we apply
HRW to Gi, ..., G, getting G3 as prime. We now ap-
ply HRW across G3’s children G|, ..., G},, and obtain
G|, which becomes the root prime. The primes within
the level-2 cells are, respectively, H(G}, Ox) = G},
H(G2. Op) = GL H(G2. Ox) = Gly. and H(G2, Oy) =
G|s. Within level-1 cells, we will apply HRW over the

Fig. 3 Skeleton

Mobile Netw Appl (2009) 14:625-637

629

Fig. 4 Construction of
the virtual hierarchy for
object O G: 0,

Hash function: H(G!, 0;) = G/7!

GleGl,1>1

|
| |
Gy G3

Gi G} G} Gly Gls

[T T
GI(G)G1G) GLGIGYGY Gl

nodes. Figure 4b shows the resulting virtual hierarchy.
G|, is the root, and G}, G2, and G5 are G|,’s children.

3.1.2 Advantages of virtual hierarchies

The upper levels of typical hierarchies aggregate re-
quests from lower levels and suffer serious congestion
[23]. Such congestion is completely absent in virtual
hierarchies, which are object- and request-specific.
Overhead is also minimal. The skeleton and the hash
function are well-known, so each node constructs the
virtual hierarchy locally. Good hash functions map with
equal probability to all cells, balancing workloads.

Figure 5 shows a different view of the virtual hier-
archy for Oy. The root of the virtual hierarchy is G},
where the black point resides. It points to its children
G}, G, and G5, in level 2 of the virtual hierarchy, all
represented by the gray points. Note that G|, is its own
child.

3.2 VHLS operation

VHLS treats grid cells as “buckets”, and node names
as the “object names” in Section 3.1’s terminology.
B builds the virtual hierarchy for its own name, and

Fig. 5 Virtual hierarchy

GGG GGG

(a) Hashing on the skeleton

GGGy G} G5GG) Gy Go GG, G1,G1:G14Gls Gl

(b) The virtual hierarchy for object Oy

selects a set of “prime” grid cells in this virtual hier-
archy as host B’s location servers.

If B uses only one location server, it is located in the
region defined by the virtual hierarchy’s root. In other
cases, B designates location servers only in the top m
levels of its virtual hierarchy, choosing m to trade off
update and query overheads. Update overhead grows
with the number of servers, but query overhead drops,
since more queries are answered locally. For higher
query/update ratios, we expect greater benefit from
pushing to primes farther away from the root, to cover a
larger fraction of the region. We analyze how to choose
m in Section 4.

3.2.1 Picking location servers within prime regions

We select nodes within prime regions to serve as lo-
cation servers as follows. We apply HRW over the
nodes n¥, nk, ... nk present within each prime cell ¢,
selecting the node n’é] that ranks highest under HRW
as B’s location server in ci. If np, is unavailable due to
movement or failure, we select np,, the next highest-

ranking node.

3.3 Handling updates and queries

B sends updates and m’s value to its prime cells in the
top m levels using geographic forwarding. A server in a
prime cell at level [stores this update, forwarding it iff
| < m. All location services must manage server caches
using a suitable policy. TTLs based on a node’s update
interval are a reasonable choice.

A querying node first computes B’s virtual hierarchy,
and queries B’s prime node pp in the local level-1 cell,
the local “authority” for B’s location. If pp does not
have B’s location, it computes B’s virtual hierarchy and
forwards the query to the prime of the enclosing level-
2 cell. In Fig. 5, a query in cell G|, would go first to
the node in G|, with the maximum HRW value. If this
server did not have the value, it would recursively query
the prime for the enclosing level-2 cell (cell Gls, the
gray node), etc.

@ Springer

630

Mobile Netw Appl (2009) 14:625-637

3.4 Handling location server mobility

Queries and updates are forwarded to prime cells.
Hence, when a node moves out of a cell, the loca-
tion information in it must be kept in the cell. VHLS
solves this problem elegantly. Let a prime cell contain
nodes ni, na, ..., n,, and let HRW induce the order
nii, Np, ..., ny for B’s location. That is, H(n;, B) >
H(np, B) > --- > H(ny, B). VHLS will select node n;;
to hold B’s location information.

3.4.1 Join/leave protocol

Before n;; leaves the cell, it simply transfers the data it
holds for B to n;>, which is second in the HRW ordering
for B in the cell. If a query for B’s location now arrives,
HRW automatically selects 7;,.

Joins raise a different issue. When a new node n;
enters a cell, it may turn out that H(n;, B) > H(n;1, B),
so that HRW would now select n}, instead of n;;. Upon
join, n; broadcasts a beacon containing its ID and its
location to all nodes in this cell. Each node in the cell
uses HRW to check if any of the location data it holds
should be re-mapped to n;, and passes such information
to n;.

Our method has low overhead, since beacons are
standard in MANETs, and broadcast only within the
cell. Data transfer occurs only when n; ranks at the
top of the HRW list for data present in the cell. Our
experiments show that handoff overhead is much lower
in VHLS than in GHLS.

3.5 Handling node failure

Location server failures can have serious consequences
for location-based routing, but VHLS handles failures
very cleanly. Within a cell, updates and queries for a
node B are sent to np,, the node that ranks highest
under HRW. When such a message times out, due to
node failure or mobility, the next-ranking node np, is
selected as B’s new location server (see Section 3.2.1).
All further updates and queries for node B will be sent
to np,. When np, becomes available again, it simply
executes the join protocol described in Section 3.4.1.

3.6 Some enhancements

3.6.1 Server overloads

VHLS handles hot-spots, transient overloads, and
query bursts exactly as it handles node failures. Con-

gested nodes can simply refuse to respond for some
time, during which location updates and queries are

@ Springer

redirected to the next node in the ordering defined
by HRW. Congested servers may reactivate themselves
whenever they wish.

3.6.2 Location query forwarding

Instead of forwarding queries up the hierarchy of
primes, a relaying node can compute its Euclidean dis-
tances to the next prime as well as to the root prime, and
send the query directly to the root prime if it is closer.
A query response is guaranteed at the root prime, so
this optimization reduces prime-to-prime forwarding
overhead.

3.6.3 Location update snooping

Location update messages can be overheard by other
nodes. A node that overhears a location update for
node B can determine if it is the prime in its own cell
for B, and store the update. It can respond to future
location queries for B without forwarding.

3.6.4 Spanning trees over primes

All nodes get the skeleton at start-up, so they can
compute the level-/ prime cells for any value of /. A
node can construct a spanning tree that covers exactly
these prime cells, and disseminate updates over this
spanning tree, using geographic routing.

4 Analytical estimates of VHLS costs

Let us label the hierarchy in bottom-up fashion. The
leaf-level nodes are at level 1, and the root is at level
L, if the depth of the skeleton is L. All nodes, except
leaves, have fan-out 4, since each grid cell has four
children.

We estimate the location service overhead based on
the following assumptions. A location update is dissem-
inated to its servers along the edges of the spanning tree
constructed to cover the regions in which the servers
reside. If node A wants to communicate with node B,
it will initiate a query for B’s location, which is sent up
the virtual hierarchy towards the root. When the query
reaches one of B’s location servers, a reply is sent back
to A directly. All location updates, queries and query
replies are forwarded using geographic forwarding.

As in [21], we will estimate the number of hops to
send a message over a distance d to be d/r, if the radio
communication range is r. It is known [35] that the

Mobile Netw Appl (2009) 14:625-637

631

expected distance between two random points in the
interior of a unit square is

_ %[ﬁ+ 2+5In (1 + ﬁ)] —0.521405433 --- (1)

For a s x s square, this expectation is hence s§. This
value serves a lower bound on the length of a route be-
tween these points, improving as an approximation to
it with increasing node density. Level-1 VHLS regions
are “unit” squares, having a side length equal to the
lower bound on the radio communication range. Hence
the expected number of hops per message in a level-i
square, which is of size 2/~! x 2/~!, will be

h; =2715. ()

We want to send location updates for node B to its
servers in the prime cells in the top m levels of B’s
virtual hierarchy, and let location queries for B proceed
up the virtual hierarchy. We choose m to minimize the
number of data transmissions.

Let an update interval be the time a node takes to
move a threshold distance, so that a location update
is sent each update interval. At level m, let Cy(m)
be the number of data transmissions required for one
update, Cp(m) be the number of data transmissions for
all queries initiated in this interval, and Cg(m) be the
number of data transmissions for query responses in
this interval. Hence the total transmission cost per up-
date interval is C(m) = Cy(m) + Co(m) + Cr(m). To
keep the analysis tractable, we assume as [21] does, that
the nodes are static and uniformly distributed, without
network interference, data retransmissions, or caching.
Instead, we demonstrate through experiments that our
methods are robust in the face of these effects.

4.1 Estimating traffic and costs

Let the root be at level L, and assume updates for B’s
location have been pushed down to level-m regions,
so that there are 4~ location servers holding B’s
location. Let A queries for B’s location arise uniformly
among the nodes in the network in one update interval.
Each query first goes to the prime node in its level-1
region (see Section 3.3), and is answered at unit cost if
this region has one of B’s 4°~ servers. The number of
queries answered locally is therefore
4Lom 1
Ri= k= ks

and the number of queries forwarded to level-2 primes
is

0= (1-)5

There are 472 level-2 regions, and a lower bound on
the expected cost per message at this level is 28 (see
Eq. 2). As before, the expected number of queries
answered at level 2 is

4L-—m 1 1
RZ = 4L-2 Ql = 4m=2 (1 - 4m—l>)\’

and the number of queries forwarded to level-3 primes
is

Q> = (1 - 4;2) (1 - 4ml1> A.

Propagating the query at level 3 has cost bounded
below by 2258. Proceeding thus, we obtain a lower bound
on the query cost per update interval as

Co(m) =A+28- Q1 +2%6- 0+ -

k
_,\+/\32[2 H(l—m)]
Similarly, the query reply costs per update interval are

Cr(m) =Ry +26- Ry +---

x+x5: [M -]‘[(e)}

To estimate update cost, we note that B sends one
location update per update interval to each of 44—
location servers, which are uniformly distributed over
the network. Updates can be sent over a minimum
spanning tree built over the cells holding these servers.
It is known [36] that the minimum spanning tree over
n random points in a unit square has an expected size
of 0.6564/n. Node B has 4L~ level-m primes, in a
2E=1 % 25=1 region. Hence the cost of sending updates
over the spanning tree is bounded below by 0.656 x

2LL/4Lom = 0,656 x 22L-0m+D),

m :
§ 50f |—=—GLS
3 —+—GHLS
£ —%—VHLS-3
2 40T | . vhis—2
o
% 30t 1
©
©
5 201
o]
§
c 10f
=
°
0 L L L L
0 04 081 2 3

query—to-update ratio (1)

Fig. 6 Costs per update interval compared

@ Springer

632

Mobile Netw Appl (2009) 14:625-637

Table 1 Corrected analysis for GLS and GHLS

Metrics GLS GHLS

Update cost 3.2+V2)-(L-1) 0.5214 - 2L-1
Query cost 0.5214 . 2L 0.5214 - 2L-1
Reply cost 0.5214 . 251 0.5214 - 251

Node B reaches this spanning tree by sending this
update to the closest location server. For n random
points in unit area, the distance to the closest point
[37] has the density f(x) = 2wnxe ™. The expected
distance to the closest point is

o > 1
/ 2rnxte ™ dx = [—.
0 4n

The spanning tree has 4~ location serversin a 2/~ x

251 square, so this expectation is 217!/ L =272,

Hence,
Cy(m) = 0.656 x 22L=(m+D 4 pm=2

We push updates to the optimal level m* which min-
imizes the cost C(m*) = Cy(m*) + Co(m*) + Cr(m*).
A grid with N level-1 cells has no more than [log, N
levels, so m* is efficiently found by searching over all
values 0 < m* < L. Experimentally, we found m* =3
for query/update ratios below 4, and m* = 2 above 4
(Figs. 12, 13, 14, and 15).

Figure 6 shows analytical results for VHLS, GLS,
and GHLS for a 4-tier hierarchy. Experimental com-
parisons are in Section 5. The value § = */75 is incor-
rectly used in [21] for the average distance between
two random points in a unit square. Table 1 shows a
revised analysis using the correct value (Eq. 1). The
metrics for GLS and GHLS in the table correspond
to our Cy(m), Co(m), and Cg(m) respectively. GHLS
has low costs for low query/update ratios. However, as
this ratio increases, VHLS performs best. Updates are
pushed to level 3 in VHLS-3 and to level 2 in VHLS-
2, which works better for higher query/update ratios, as
expected.

5 Experimental evaluation

Our extensive simulations under ns2 [38] show that
VHLS has far lower protocol overhead than GLS and
GHLS, yet performs significantly better under stan-
dard location services metrics. We obtained a GLS
implementation from its authors, but re-implemented
GHLS and VHLS. All used the GPSR [12] geographic
forwarding protocol. For a fair comparison of VHLS
with GLS and GHLS, we used simulation scenarios
similar to those in [1] and [21]. As in [1] and [21], we
used the random waypoint model [39], although other
mobility models [40-42] may be more realistic. A node
chooses a random destination and moves towards it
with a constant speed picked randomly between zero
and some maximum. It may pause briefly at the desti-
nation before moving again.

Nodes use the IEEE 802.11 radio and MAC model
(CMU extension). As in [1], radios used a 1 Mbps rate
when no data traffic was present, and a 2 Mbps rate
otherwise. For each run, we put the ns2 simulator in
“cold start” mode for 50 simulated seconds to eliminate
transient effects, and then ran each simulation for 300
simulated seconds. We computed results as the average
over 5 simulation runs. The duration and number of
simulations are identical to those used in [1, 21] for
evaluating the performance of GLS and GHLS. The
cold start interval was effective in smoothing out tran-
sients and reducing variance across runs; the standard
deviation/mean ratio was well below 1% in our ex-
periments. We therefore report means only, to avoid
cluttering the graphs.

Table 2 summarizes our experimental parameters.
The region was a 2 km x 2 km square area partitioned
into 64 unit regions, forming a 4-level skeleton with
250 m x 250 m unit regions. There were 100 nodes
per square kilometer on average, the node density
chosen in [1] for a system to be used over relatively
large areas such as a campus or a city. The maximum
node speed was 10 m/s. Each node in the network
initiates 20 queries for the locations of randomly chosen
nodes between 10 and 300 s in each simulation run.

Table 2 Simulation
parameter settings

@ Springer

Parameters Default Parameters Default

MAC protocol 802.11 Region size 2km x 2km
Radio model TwoRayGround Unit region size 250 m x 250 m
Radio range 250 m Hierarchy height 4

Routing protocol GPSR Node density 100 km?
Mobility model Random waypoint # nodes in network 400

Mobility pause time 0 Max. node speed 10 m/s

Cold start time 50s Update threshold 200 m
Simulation time 300 s Queries per node 20

Mobile Netw Appl (2009) 14:625-637

The update distance threshold is fixed at 200 m. The
pause time between two random waypoint movements
is 0.

5.1 Scalability and location service protocol overhead

We first evaluated the inherent overheads of GLS,
GHLS, and VHLS by having each node initiate queries
for randomly chosen locations. Traffic comprised only
MAC beacons and location service (LS) protocol pack-
ets, which included location update packets, location
query and reply packets, as well as handoff packets
in GHLS and VHLS. Figure 7 shows the absolute
LS protocol overheads (left Y-axis, dashed lines) and
the relative ratios of the protocol overheads to that
of VHLS (right Y-axis, solid lines), for varying re-
gion sizes having 100 nodes/km?. Each node issued 20
queries for randomly chosen nodes. As region size grew
from 4 km? to 16 km?, VHLS had the most modest
overhead growth. The GLS/VHLS overhead ratio grew
from 3 to as much as 7. The corresponding ratio for
GHLS grew from 2 to 3. VHLS clearly has better
scalability.

Figure 8 shows how absolute (left Y-axis, dashed
lines) and relative (right Y-axis, solid lines) LS proto-
col overheads grow for query-to-update ratios up to
4, under conditions described in Section 5.3. VHLS
overhead growth is clearly modest. GHLS overhead
grows significantly faster, becoming as high as 2.4 times
that of VHLS. GLS overhead grows most dramatically,
reaching nearly 6 times that of VHLS.

Further evidence of the scalability of VHLS is in
Fig. 14, which compares the overhead of geographic
routing under the three methods. As query/update ratio
rises, overhead barely grows under VHLS, but grows
robustly under GLS and GHLS.

14X10 8
—+ GLS |[-=—GLS/VHLS
12} -0~ GHLS || ——GHLS/VHLS 7
— VHLS . o
10¢ L 16 =
o P ©
© s o
2 8 ¥ 5%
g S £
o 6l P 148
@ e]
4 7 -84
2 — 8- 12
S
-t -- % ‘ ip
00 400 800 1200 1600

number of nodes in the network

Fig. 7 Scalability as a function of network size

633
5
612 6
—+ GLS —&— GLS/VHLS

5l| -0 GHLS || =$—GHLS/VHLS 15
3 2
£ S
[0}
3 3
3 £
g -
S o
a (7]
%) .
—

query—to—update ratio

Fig. 8 Effects of network workload on LS protocol overhead

5.2 Query success performance

We now show that VHLS outperforms GLS and GHLS
under standard location service performance metrics,
starting with the Query Success Ratio. A query is suc-
cessful if its initiator receives a reply. Asin [1] and [21],
we do not retransmit failed queries, and measure the
fraction of successful queries.

Figure 9 shows the effects of speed on Query Success
Ratio (QSR) for the three schemes in a network of 400
nodes. The maximum node speeds were set at 10, 30,
and 50 m/s, and each node randomly picked a speed
from the given range. Other parameters were as in
Table 2. QSR decreases with speed for all three
schemes because more location servers will contain out-
of-date location information. Faster nodes also gen-
erate more updates, increasing traffic. VHLS is least
sensitive to node speed because it minimizes the to-
tal location service overhead for each update (see
Section 4), causing the least network congestion and
packet loss.

100
Cws
g 90r 1
2
©
2
o 80r
o
3
(%]
§ 7o [VHLS
>
o —6—GHLS
——GLS
60 ;
10 30 50

Fig. 9 QSR as a function of node max speed (m/s)

max speed (m/s)

@ Springer

634

Mobile Netw Appl (2009) 14:625-637

100

90

801

707

607

—o—GHLS
——VHLS | |
——GLS

query success ratio (%)

50¢

40

25 50 75 100
node density (nodes/kmz)

Fig. 10 Effects of node density on QSR

Figure 10 shows the effect of node density on QSR
for the three schemes. VHLS has lower QSR than
GHLS at low node densities, which result in sparser
unit regions. A node density of 25 nodes/km? results in
about 1.56 nodes on average in each unit region, so that
prime cells may sometimes be empty, causing location
update or query failure. However, as the node density
increases, the QSR of VHLS rises quickly. Beyond a
node density of 75 nodes/km?, VHLS and GHLS have
similar QSR. When node densities are low, we can
change the algorithm of Section 3.2.1 to include nodes
from cells neighboring the chosen prime cell, when
picking servers.

Figure 11 shows the effects on QSR of the query
rate. As expected, QSR drops with query load for
all three schemes, but VHLS outperforms GLS and
GHLS. Moreover, as Fig. 6 shows, GHLS has greater
message overhead than VHLS when the query load
increases. VHLS is clearly the best method for high
query loads.

100

95} i
90
85/

80

75 | ——GHLS

query success ratio (%)

—+—VHLS
701 | —a@Ls
65 : : : :
5 10 15 20 25 30

number of queries per node

Fig. 11 Effects of number of queries per node on QSR

@ Springer

5.3 Ability to support message delivery

Let node B be at location (xp, yp), and let a query
for B’s location return (x5, y%). The query reply is
sufficiently accurate for packet delivery if (x5, y’%) and
(xp, yp) are within radio range of each other. We
evaluated the quality of location service protocols in
terms of the fraction of queries returning sufficiently
accurate responses, using packet delivery ratio as a
metric. Each node issued a location query for a random
node, sending it packets after receiving a response.

We use the query-to-update ratio to characterize the
workload. Each node in the network moved at a speed
between 0 and 10 m/s, giving an average speed of 5 m/s.
For an update distance threshold of 200 m, the time
between updates is 40 s on average, corresponding to
7.5 updates per node in each simulation run. Each node
generates 15 data packets per run, choosing a random
destination for each, resulting in about 15 location
queries per node, giving a query-to-update ratio of 2.

Figure 12 shows effects of the query/update ratio
on QSR. We do not retransmit failed queries. Clearly,
VHLS degrades least in performance, and GLS de-
grades most as the query/update ratio grows, an effect
easily understood from Fig. 8. The number of location
service protocol packets for GLS increases rapidly with
network workload. The presence of data packets in-
creases network traffic, further diminishing QSR. The
advantage of VHLS over GHLS becomes greater as the
query/update ratio increases.

Figure 13 shows that the packet delivery ratio is close
to the query success ratio for all three schemes for low
network workloads, so that a successful query indicates
a high probability of data packet delivery. However,
as network traffic increases, GLS and GHLS incur
significant protocol overhead, causing greater network

100

& oot

ge)

E 80,

a

[0}

8

2 701

g —*—VHLS

=]

T 60f |—o-GHLS

—+—GLS
50 : : :
1 2 3 4

query—to—update ratio

Fig. 12 Effects of network workload on QSR

Mobile Netw Appl (2009) 14:625-637

635

1
00g
§ 90 i
kel
T 80r
)
3 7of
3
©
s 60r
S —+—VHLS
& ol | o GHLS
—+—GLS
40 : : :
1 2 3 4

query-to-update ratio

Fig. 13 Effects of workload on packet delivery ratio

congestion and packet loss. VHLS outperforms GLS
and GHLS for heavy network workloads.

5.4 Support for geographic routing

We studied how well these each of these schemes
supports geographic routing, and included data traffic
to each source-to-destination connection. In each run,
every node in the network originated 3, 5, 10, 15, and
20 queries, respectively, to a random location. Upon
receiving a response, the source sent 4 data packets per
second to the same destination for a duration of 10 s.
Unlike the simulations in previous sections, location
queries were re-transmitted in case of query failures.
Mobility parameters are as in Table 2. As in [21],
we examined geographic routing performance in terms
of routing overhead and packet delivery ratio (PDR)
over various network workloads. Routing overhead in-
cludes LS protocol overhead and geographic beaconing
overhead.

x 10
—+—GLS

6r| —6—GHLS
—+—VHLS

routing overhead
N

query-to-update ratio

Fig. 14 Effects of network workload on routing overhead

packet delivery ratio (%)

—*—VHLS
601 | —=—GHLS
——GLS
>0 1 2 3 4

query—-to—update ratio

Fig. 15 Packet delivery ratio for geographic routing

Figure 14 shows the effects of network workload on
routing overhead. For light workloads, each node ini-
tiated 3 or 5 queries per simulation run, corresponding
to query-to-update ratios of 0.4 and 0.67 respectively.
VHLS and GHLS have significantly lower routing over-
head than GLS. The gap between VHLS and GHLS
widens as the query-to-update ratio increases. VHLS
clearly performs very well in heavy traffic.

Figure 15 shows the effect of network workload
on data packet delivery ratio. Packet delivery failures
may occur for two reasons. First, there may be query
failures due to empty prime regions or location server
handoff failures. Second, a query response may not
be sufficiently accurate to ensure packet delivery (see
Section 5.3). All protocols show high PDR for low net-
work workloads, and VHLS and GHLS scale well as the
query load increases. GLS performance worsens with
traffic workload due to the quick increase in protocol
overhead. This is quite consistent with the results in
Fig. 14.

VHLS superficially resembles GLS more than
GHLS, since it uses a grid structure. However, GHLS
shows performance closer to that of VHLS than does
GLS. GLS maps the node name to a node ID rather
than to a grid cell, and there is no connection between
the location of a node and its ID. In contrast, GHLS
maps the node name to a physical location, which
is closer to the VHLS strategy of hashing to a grid
cell. This strategy clearly works better with geographic
routing.

6 Conclusion
VHLS is a new distributed location service protocol
for supporting geographic routing in wireless mobile

ad-hoc networks. VHLS uses a hash-based virtual hi-
erarchy scheme for both location updates and queries.

@ Springer

636

Mobile Netw Appl (2009) 14:625-637

Unlike physical hierarchies, whose upper levels aggre-
gate requests from lower levels, and cause bottlenecks
and congestion, virtual hierarchies are node-specific,
and do not suffer from this drawback. VHLS partitions
the region into a regular hierarchy of subregions of
increasing size, using which, a node A can compute the
virtual hierarchy corresponding to any other node B. A
can thus determine the locations of B’s location servers
using purely local information.

We have shown how VHLS has the potential to be
tunable, selecting a number of location servers based on
the network traffic and workload. We also presented a
quantitative analysis of the location service overhead.
Theoretically, we can find an optimal set of location
servers for each node such that the overall location ser-
vice overhead can be minimized. Our use of an optimal
set of servers reduces network congestion, improves
location service quality, and saves significant power.

We also experimentally compared VHLS with GLS
and GHLS, using the network simulator ns2, taking
into account realistic network issues, such as inter-
ference between wireless devices, transmission delay,
and packet loss. VHLS has the lowest overhead and
is the most scalable of the three. VHLS generally also
outperformed the other protocols in terms of location
query success ratio under various node speeds and
query loads. It has better location service quality in
terms of the fraction of successful queries. Finally, since
location service protocols are intended to support geo-
graphic routing, we showed that VHLS is superior in
this regard as well. VHLS outperforms other current
methods, particularly under higher traffic conditions
and query/update ratios.

VHLS is a new approach to managing location
servers for MANETS, which can be tuned to work well
in a range of mobility scenarios. Future work will in-
clude considering improvements to the current VHLS
protocol, some of which we have already described,
and exploring its performance in the context of specific
applications.

Acknowledgement This work was supported in part by a grant
from Tata Consultancy Services, Inc.

References

1. Li J, Jannotti J, Couto DSJD, Karger DR, Morris R (2000)
A scalable location service for geographic ad hoc routing.
In: MobiCom’00: proceedings of the 6th annual international
conference on mobile computing and networking, pp 120-130

2. Tate A, Levine J, Jarvis P, Dalton J (2000) Using AI plan-
ning technology for army small unit operations. In: Artificial
intelligence planning systems, pp 379-386

@ Springer

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

. Morris R, Jannotti J, Kaashoek F, Li J, De Couto D (2000)

Carnet: a scalable ad hoc wireless network system. In: Pro-
ceedings of the 9th ACM SIGOPS European workshop:
beyond the PC: new challenges for the operating system,
September

. Perkins C, Bhagwat P (1994) Highly dynamic destination-

sequenced distance-vector routing (DSDV) for mobile
computers. In: Proceedings of the ACM SIGCOMM’%4
conference on communications architectures, protocols and
applications, pp 234-244

. Johnson DB, Maltz DA (1996) Dynamic source routing in ad

hoc wireless networks. In: Mobile computing, vol 353. Kluwer
Academic, New York

. Perkins CE, Royer EM (1999) Ad-hoc on-demand distance

vector routing. In: Proceedings of the 2nd IEEE workshop
on mobile computing systems and applications, New Orleans,
LA, pp 90-100, February

. Park VD, Corson MS (1997) A highly adaptive distributed

routing algorithm for mobile wireless networks. In: Proceed-
ings of INFOCOM, pp 1405-1413

. Haas ZJ, Pearlman MR, Samar P (2002) The zone routing

protocol (ZRP) for ad hoc networks. IETF MANET Work-
ing Group. INTERNET-DRAFT, July. [Online]. Available
http://www.ietf.org/proceedings/02nov/I-D/draft-ietf-manet-
zone-zrp-04.txt

. Mauve M, Widmer J, Hartenstein H (2001) A survey on

position-based routing in mobile ad-hoc networks. IEEE
Netw Magazine 15:30-39, November—-December

Basagni S, Chlamtac I, Syrotiuk VR, Woodwar BA (1998)
A distance routing effect algorithm for mobility (DREAM).
In: Proceedings of the 4th annual ACM/IEEE international
conference on mobile computing and networking (MobiCom’
98), pp 76-84.

Ko Y-B, Vaidya NH (2000) Location-aided routing (LAR) in
mobile ad hoc networks. Wirel Netw 6(4):307-321, July
Karp B, Kung HT (2000) GPSR: greedy perimeter stateless
routing for wireless networks. In: Proceedings of the sixth
annual international conference on mobile computing and
networking (MobiCom 2000), pp 243-254

Woo S-CM, Singh S (2001) Scalable routing protocol for
ad hoc networks. Wirel Netw 7(5):513-529, September
Bulusu N, Heidemann J, Estrin D (2000) Gps-less low
cost outdoor localization for very small devices. IEEE Pers
Commun Magazine 7(5):28-34, October

Stemm M, Katz RH (1997) Measuring and reducing en-
ergy consumption of network interfaces in hand-held devices.
IEICE Trans Commun E80-B(8):1125-1131

Feeney LM, Nilsson M (2001) Investigating the energy con-
sumption of a wireless network interface in an ad hoc
networking environment. In: INFOCOM, pp 1548-1557

Xue Y, Li B, Nahrstedt K (2001) A scalable location man-
agement scheme in mobile ad-hoc networks. In: Proceed-
ing of the IEEE conference on local computer networks—
LCN’2001

Hass ZJ, Liang B (1999) Ad hoc mobility management with
uniform quorum systems. IEEE/ACM Trans Netw 7(2):228—
240, April

Cheng CT, Lemberg HL, Philip SJ, van den Berg E, Zhang T
(2002) SLALoM: a scalable location management scheme for
large mobile ad-hoc networks. In: Proceedings of IEEE wire-
less communications and networking conference (WCNC
2002), pp 574-578, March

Stojmenovic I, Vukojevic B (1999) A routing strategy and
quorum based location update scheme for ad hoc wireless
networks. Computer Science, SITE, University of Ottawa,
Tech. Rep. TR99-09, September

http://www.ietf.org/proceedings/02nov/I-D/draft-ietf-manet-zone-zrp-04.txt
http://www.ietf.org/proceedings/02nov/I-D/draft-ietf-manet-zone-zrp-04.txt

Mobile Netw Appl (2009) 14:625-637

637

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Das SM, Pucha H, Hu YC (2005) Performance comparison
of scalable location services for geographic ad hoc routing.
In: Proceedings of IEEE INFOCOM, vol 2, pp 1228-1239,
March

Kiess W, Fuessler H, Widmer J, Mauve M (2004) Hierarchical
location service for mobile ad-hoc networks. SIGMOBILE
Mob Comput Commun Rev 8(4):47-58

Yao Z, Ravishankar CV, Tripathi S (2001) Hash-based vir-
tual hierarchies for caching in hybrid content-delivery net-
works. UCR, Tech. Rep. 62, May

Ratnasamy S, Karp B, Yin L, Yu F, Estrin D, Govindan R,
Shenker S (2002) GHT: a geographic hash table for data-
centric storage. In: Proceedings of the first ACM interna-
tional workshop on wireless sensor networks and applications
(WSNA’02), pp 78-87, September

Kuhn F, Wattenhofer R, Zollinger A (2003) Worst-case op-
timal and average case efficient geomentric ad hoc routing.
In: 4th ACM MOBIHOC, June

Jain R, Puri A, Sengupta R (2001) Geographic routing using
partial information for wireless ad-hoc networks. IEEE Pers
Commun 8(1):48-57

Karp B, Kung HT (2000) Greedy perimeter stateless routing
for wireless networks. In: ACM MOBICOM, August

Bose P, Morin P, Stojmenovic I, Urrutia J (1999) Routing
with guaranteed delivery in ad-hoc wireless networks. In:
3rd intnl. workshop on discrete algorithms and methods for
mobile computing and communications, August

Giordano S, Hamdi M (1999) Mobility management: the vir-
tual home region. EPFL, Lausanne, Switzerland, Tech. Rep.
SSC/1999/037, October

Hsiao PH (2002) Geographical region summary service for
geographical routing. Mob Comput Commun Rev 5:25-39
Wong VWS, Leong VCM (2001) An adaptive distance-based
location update algorithm for next-generation pcs networks.
IEEE J Sel Areas Commun 19(10):1942-1952

Das SM, Pucha H, Hu YC (2007) On the scalability of
rendezvous-based location services for geographic routing.
Comput Netw 51:3593-3714

Grossglauser M, Vetterli M (2006) Locating mobile nodes
with ease: learning efficient routes from encounter histories
alone. IEEE/ACM Trans Netw 14(3):457-469, June

Thaler DG, Ravishankar CV (1998) Using name-based map-
pings to increase hit rates. [IEEE/ACM Trans Netw 6(1):1-14,
February

Ghosh B (1951) Random distances within a rectangle, and
between two rectangles. Bull. Calcutta Math Soc 43:17-24
Steele JM (1988) Growth rates of ecuclidean minimal
spanning trees with power weighted edges. Ann Probab
16(4):1767-1787

37. Dacey MF (1972) Distance between reflexive nearest neigh-
bors in a poisson point process. Econ Geogr 48(2):212-213,
April

38. McCanne S, Floyd S (1995) ns network simulator. http:/
www.isi.edu/nsname/ns/. Accessed Dec 2008

39. Broch J, Maltz DA, Johnson DB, Hu Y-C, Jetcheva J (1998)
A performance comparison of multi-hop wireless ad hoc net-
work routing protocols. In: ACM/IEEE MobiCom, pp 85-97,
October

40. Bettstetter C (2001) Mobility modeling in wireless networks:
categorization, smooth movement, and border effects. ACM
Mob Comput Commun Rev 5(3):55-66

41. Camp T, Boleng J, Davies V (2002) A survey of mobility
models for ad hoc network research. Wirel Commun Mob
Comput (WCMC): special issue on mobile ad hoc network-
ing: research, trends and applications 2(5):483-502

42. Jardosh A, Belding-Royer E, Almeroth K, Suri S (2003) To-
wards realistic mobility models for mobile ad hoc networks.
In: ACM MobiCom, pp 217-229

Wei Wang received the bachelor’s and master’s degrees in
Computer Science and Engineering from Northeastern Univer-
sity, Shenyang, China, and her Ph.D. degree in the depart-
ment of Computer Science and Engineering at the University of
California, Riverside. Her research interests are in the areas of
distributed systems and networks, and particularly in wireless and
mobile communication environments.

Chinya V. Ravishankar hasbeen with the University of California
at Riverside since Fall 1999, where he is currently Professor
of Computer Science and Engineering, and Associate Dean in
the Bourns College of Engineering. Between 1986 and 1999, he
was on the Faculty of the Electrical Engineering and Computer
Science Department at the University of Michigan—Ann Arbor.
Prof. Ravishankar’s recent research has been in the areas of
Databases, Networking, and Security. He holds an undergrad-
uate degree in Chemical Engineering from the Indian Institute
of Technology, Bombay, and the M.S. and Ph.D. degrees in
Computer Sciences from the University of Wisconsin—Madison.
He is a Senior Member of the Institute of Electrical and Electron-
ics Engineers, and a member of the Association for Computing
Machinery.

@ Springer

http://www.isi.edu/nsname/ns/
http://www.isi.edu/nsname/ns/

	Hash-Based Virtual Hierarchies for Scalable Location Service in Mobile Ad-hoc Networks
	Abstract
	Introduction
	Motivation and summary of our work

	Related work
	The grid location service (GLS)
	The geographic hashing location service (GHLS)
	Other related work

	The VHLS protocol
	Hash-based virtual hierarchies
	Object-specific virtual hierarchies
	Advantages of virtual hierarchies

	VHLS operation
	Picking location servers within prime regions

	Handling updates and queries
	Handling location server mobility
	Join/leave protocol

	Handling node failure
	Some enhancements
	Server overloads
	Location query forwarding
	Location update snooping
	Spanning trees over primes

	Analytical estimates of VHLS costs
	Estimating traffic and costs

	Experimental evaluation
	Scalability and location service protocol overhead
	Query success performance
	Ability to support message delivery
	Support for geographic routing

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

