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Many new remote procedure calls (RPC) systems are being built to meet different application
requirements, and much development effort has been spent on redoing significant parts of the RPC
system. This paper describes URPC, a toolkit for prototyping new RPC systems. It allows programmers
to provide high-level implementations of RPC semantics and to customize supporting RPC services, such
as stub generation and name service, to match the requirements of different RPC semantics. This
approach increases flexibility in constructing new RPC systems and greatly reduces coding effort. In
addition, this approach allows application-specific optimization by increasing the semantic content of
individual RPC calls through customization, as well as by allowing programmers to import protocol
machine implementations. Thus, the generated prototype RPC implementations can perform as fast as
native RPCs.

Received January 30, 1996, revised June 26, 1996

1. INTRODUCTION

A variety of remote procedure calls (RPC) semantics has
been designed and implemented in recent years. Some
examples are synchronous RPC, asynchronous RPC,
fault-tolerant RPC, multicast RPC and RPC with atomic
transactions [1, 2]. One reason for the continued need to
design RPCs with new semantics is simply that existing
RPCs cannot possibly address all the requirements of
future applications. However, as we argue in Subsection
1.1, there are other important reasons for customizing
the semantics of communication protocols to exploit
application semantics. Customization can make RPCs
more lightweight and simplify implementation. It can
also make it possible for a single client to use RPCs with
differerent semantics simultaneously. This feature will be
especially important since we expect much functionality
that presently resides at the user level in many applica-
tion classes to be factored out and be moved into lower
levels. Such downward migration is a primary reason for
the increasing diversity of RPC semantics.

Existing distributed applications will also benefit from
new RPC mechanisms if they improve throughput,
response time and failure resilience. As distributed
applications become more sophisticated, new RPCs
will also be useful in reducing applications development
effort by incorporating more features common to a
specific class of applications. For example, it is easier to
implement distributed transaction applications using
RPC with atomic transactions than with traditional
RPCs. It is also likely that more RPC protocols will be
designed and implemented to support emerging areas
like multimedia conferencing and distributed real-time
applications.

Most innovation in a new RPC system resides in its

protocol machine implementation. However, other
components like stub generators and name servers
must also be implemented to interface with new RPC
runtimes. Even within the protocol machine implemen-
tation, a large portion of the development effort is
usually spent in managing internal data structures and
implementing low-level details. We have found [3] that
the entire protocol machine implementation comprises
only 30-40% of the code of an RPC system, and high-
level protocol code accounts for even less. As a result,
much development effort is being spent on the less
critical parts of the RPC system.

This paper describes URPC, an RPC toolkit for
rapidly prototyping RPC runtimes. This toolkit focuses
on providing quick implementations of special-purpose
RPC semantics, and is not intended for generating very
general, DCE-like RPC implementations. It targets RPC
designers, not application programmers, and may also
have particular utility as a research tool.

1.1. Standardization versus customization

Standardization is one approach used to deal with the
issue of diversity. Standardization clearly has its place,
and particularly benefits future applications develop-
ment. However, the approach also has its drawbacks.
First, it does not solve the interoperability problem for
existing applications, since it is unrealistic to recode them
all to new standards. In such cases, generating cross-
RPC implementations [3] remains the only option. Even
worse, standards usually address the general case in a
problem domain to avoid a proliferation of standards.
That often rules out application- or situation-specific
customization.

The advantages of such customization are becoming
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increasingly apparent. A persuasive case has already
been made for such customization in communication
protocols [4,5]. Communication patterns can be quite
specialized, and the penalty for using the general solution
for special cases can be severe. For instance, [6] observes
that over 95% of RPC calls do not cross machine
boundaries, and proposes a customized, light-weight
RPC mechanism, whose performance is better than that
of SUN RPC by a factor of over three. A complementary
example of customized, intra-application, but cross-
machine RPC is Rx, the RPC mechanism used by the
Andrew File System [7]. This RPC mechanism views a
single RPC call as the serial instantiation of two byte
streams, corresponding to the call and the response. It
also permits arguments of arbitrary size, and allows
either the client or server to stream calls actively.

Thus, customization is not restricted to the level of
implementation, and can be carried to the level of
semantics. This argument is made forcefully by Felten
[4], who argues that optimum performance of a message-
passing protocol requires that the protocol be designed
to exploit the semantics of individual applications. He
argues, using examples, that a general-purpose protocol
must be robust in the face of arbitrary program behavior,
but an application-specific protocol can ignore certain
behaviors that the programmer or compiler knows will
not occur.

Thus, the issues of generality and robustness become
more manageable if the environment in which the RPC
protocol will be used is more restricted, as is the case for
customized RPCs. Some other examples of the benefits
of the flexibility of customized RPCs could be the ability
to return specific information pertaining to remote
failure modes, the ability to handle aborts from the
client end, and the ability to place application-specific
recovery mechanisms into the protocol. Users may also
want to change buffering behavior, alter timeout values
or introduce multiple timeouts in designing RPC
protocols with more complex semantics.

A simplified implementation is not the only advantage
of customizing RPC semantics. It can also have
performance benefits. Consider an application that
submits transaction-like operations through RPC to a
server that supports both interactive and batch modes. In
the batch mode, transaction operations may be sent and
processed in a batch, and the application can examine the
results at its convenience. This submission process
involves three steps: setting the transaction mode, issuing
a series of operations, and indicating the end of this
series. These steps can be modelled using the following
RPC calls:

1. handle = START (mode, server);

2. EXEC (handle, trans_id, opcode, len, data);

3. FINISH (handle);

4. RESULT (handle, trans.id, &result_len, &result_data,
&ret);

START is intially called, followed by a series of n calls to

EXEC, followed by a FINISH call. To obtain the results of
such a series of operations, the application issues a
RESULT call. To implement this using conventional RPC
would require # + 2 RPC calls (n EXEC calls, a START and
a FINISH), causing (n-+2)*2 message exchanges
between client and server, including request and
acknowledgement messages for n + 2 RPCs.

However, let us assume that the application semantics
are such that intermediate results are not used by the
application. In this case, there is no advantage in
remotely executing each EXEC call as it is issued. If the
programmer can control the buffer size and buffering
policy in the RPC runtime, all transactions can be
buffered and flushed to the server when FINISH is issued.
The message count drops to 2 if the lower layer does not
fragment this message, a significant performance
improvement over the previous approach.

Another difficulty for conventional RPC in this
example is that EXEC and RESULT may specify different
RPC semantics, but they share a common binding
(represented by the handle). RPC semantics are difficult
to change on the fly. For example, perhaps EXEC uses
may-be RPC, while RESULT uses synchronous RPC.
Heterogeneous RPC semantics are also encountered
when trying to integrate services in a large distributed
system [8]. A single client may need to communicate with
different servers running on different platforms. Such
complications can be tricky to handle using conventional
RPC.

It may sometimes be possible to simulate application-
specific RPC semantics with a general package, say with
DCE RPC. However, such a simulation would use a
more heavy-weight system to simulate lighter-weight
semantics, and is likely to be awkward and expensive.
Our focus is on allowing users to customize RPCs with
finer-grained primitives than provided by such general
RPC packages.

1.2. Toolkit features

This toolkit is not intended for generating very general,
DCE-like RPC implementations. Rather, it focuses on
providing quick implementations of special-purpose
RPC semantics, and may have particular utility as a
research tool. Thus, this toolkit is presently intended for
RPC designers, not for application programmers. The
work in [6] described a special-purpose kernel-level RPC.
In [5], the authors show that protocol implementations
can be moved into user space to gain flexibility without
sacrificing performance or security. Our work attempts
to customize user-level RPC and describes a mechanism
to achieve such customization.

URPC simplifies the task of RPC developers since they
need provide only high-level protocol implementations.
Thus, it works in concert with Cicero, a protocol
description language. Other supporting components,
like stub generators and name servers, are designed to
be customizable to meet diversified RPC requirements,
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thus greatly reducing the effort spent on integration. The
ability to prototype RPC systems rapidly reduces
development costs, and also allows RPC developers to
explore a larger design space to produce better RPC
protocol implementations.

In addition to fast prototyping, our toolkit provides
other benefits, which have not been well supported in the
past:

e It allows application developers to customize or
replace RPC semantics to meet special application
requirements. The URPC toolkit allows programmers
to provide high-level protocol implementations to
change RPC semantics.

e It allows application developers to fine tune RPC
protocol performance for different environments.

e It provides a stable basis for evolution of RPC
technology: the toolkit remains unchanged while
new RPC protocols are imported.

e It provides a common paradigm for multiple dissimilar
RPC semantics to coexist, allowing application
developers to use different RPC semantics within an
application. This is possible because the URPC
toolkit can function as a common basis for
implementing dissimilar RPC semantics.

Surprisingly, our toolkit can offer these features
without sacrificing any application or RPC performance.
In fact, an RPC system constructed from our toolkit
often has better performance than the corresponding
native RPC system. This paradox arises because existing
RPC systems are optimized for the general case, and
usually cannot be customized to take advantage of
individual application characteristics and environment.
Also, by allowing developers to specify a protocol
machine implementation of an RPC, we preserve most
of the optimization in handcrafted implementations.
Thus, the resulting RPC can be just as fast as native
RPC.

Our toolkit consists of a compiler for Cicero, our
protocol construction language, a stub generator, a
name server, and an RPC runtime library. An
interesting aspect of our toolkit is the separation of
mechanisms that are not dependent on RPC semantics
from those that are. This separation allows a new
RPC runtime to be created from a protocol descrip-
tion written either in C or in our protocol construc-
tion language Cicero [9]. This approach provides
increased flexibility in constructing new RPC semantics
and reducing coding effort.

Cicero is a language veneer designed to facilitate
complex RPC protocol implementation. A novel feature
of Cicero is the use of event patterns [10] to control
synchrony, asynchrony and concurrency in protocol
execution. To match the flexibility provided by the
toolkit, our stub generator can be instructed to generate
customized stub routines, incorporating various
protocol implementations. Our name server uses a
generic naming scheme, which can also be customized

to meet different naming requirements. The RPC
runtime library implements a generic RPC runtime
architecture, and provides interfaces to communication
primitives, name services, data conversion functions and
customization functions.

In this paper, we will focus on the design of our
toolkit, and illustrate the usage of the toolkit by
constructing different RPC protocols. The rest of this
paper is organized as follows. Section 2 discusses the
design of the toolkit. Section 3 describes examples to
illustrate how to use the toolkit to construct various RPC
protocols. Section 4 introduces our protocol construc-
tion language Cicero. Section 5 compares the perfor-
mance between the SUN RPC and an RPC constructed
using our toolkit. Section 6 describes related work, and
Section 7 concludes this paper.

2. TOOLKIT DESIGN AND ARCHITECTURE

Our toolkit design involved two considerations: (1)
determining which parts of an RPC runtime should be
specified by programmers and which should be provided
by the toolkit libraries, and (2) designing the proper
architecture and supporting facilities.

To maximize flexibility in constructing new RPC
systems and to minimize coding effort, we must be
selective about which RPC features should be specified
by programmers. RPC features can be numerous and can
vary greatly between different RPC systems. Examples of
RPC features are call semantics, failure semantics, RPC
topology, external data representation, naming and
binding mechanism, the security mechanism, and so on.

Our approach is to first classify RPC features into
those that are semantics-dependent and those that are
semantics-independent, depending on their effect and
importance to the application. We see features related to
call semantics and failure semantics as semantics-
dependent, and those relating to RPC message format
as semantics-independent, since they are artifacts of
implementation.

The toolkit supports RPC features differently depend-
ing upon their types. Default implementations are
available for semantics-dependent features, but the
toolkit also lets programmers provide their own
implementations. In this way, the toolkit provides
maximal flexibility in the implementation of RPC
semantics, which comprise call semantics (synchronous
or asynchronous RPC), failure semantics (e.g. at-most-
once) and RPC topology (e.g. 1-to-1, 1-to-N, etc.).

For the semantics-independent parts, where the exact
implementation is less crucial, our toolkit provides
default implementations that programmers may
customize to reduce coding effort. For example,
programmers may care little what external data repre-
sentation is used, as long as the toolkit provides one for
data marshalling/unmarshalling. However, the toolkit
does provide a mechanism for programmers to bypass
the marshalling/unmarshalling mechanism if necessary,
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so that programmers may choose between different
conversion schemes like no conversion, conversion on
one side, or conversion on both sides. Therefore, all
mechanisms pertaining to semantics-independent
features are provided through libraries or as runtime
services. RPC feature classification makes the toolkit
simpler and also greatly reduces the complexity of using
the toolkit, with little or no detriment to the generality of
the solution.

2.1. Toolkit architecture

The toolkit has overall architecture similar to that of
common RPC systems, consisting of a runtime library, a
stub generator and a name server. However, these
components have been designed differently to provide
the flexibility required by the toolkit. They are designed
to be independent of the specific models or semantics
that are associated with traditional RPC components.
Programmers customize them for implementing different
models or semantics.

2.1.1. Runtime library

The runtime library is linked with the application and
stub routines to perform RPC. An interesting aspect of
our runtime library is that it can import implementations
of RPC semantics, and can be customized for different
situations at runtime. To support these features, we
selectively expose, through well-defined interfaces, parts
of the URPC internal runtime architecture traditionally
hidden from programmers. ‘
To import RPC semantics implementations, the
runtime library allows programmers to provide three
routines, which together implement protocol machines in
an RPC system (see shaded boxes in Figure 1). The client
and server protocol machines together implement RPC
semantics (i.e. the RPC topology, call semantics and
failure semantics). The full call path for a typical RPC is
provided in Figure 12. These routines must follow
predefined interfaces, and must be built on top of the
communication services provided by the runtime library.
The implementation of RPC semantics is organized
asymmetrically for the client and server programs. On
the client side, two routines can be imported, one

ClientCode |\

Client Stub "N Server Code

[Somec]
e |

Client Comm.
Services

Server Stub

+——
)| P Server Comm.
Services

FIGURE 1. Architecture of the URPC runtime library.

URPC Runtime

(client_pm) for implementing the client protocol
machine, and the other (client_rpc) for assembling
and disassembling messages to interface with client_pm.
On the server side, only one routine (server_pm) is
needed for importing the implementation of the server
protocol machine. No separate routine for assembling/
disassembling messages is provided for the server
because this functionality is factored out and is
embedded within the implementation of the server
protocol machine, which represents a fan-in point.

An asymmetrical design is preferable since customized
features are best handled at different layers on the client
and server sides, respectively. Consider the transaction
example in Subsection 1.1, in which a batch of requests
are buffered until the FINISH is issued. The FINISH call
must be handled differently from other calls by the RPC
runtime. The architecture must allow this type of
customization information to be presented and isolated
in one place. On the client side, the best place for this is
below the stub and above the protocol machine layer, so
that the programmer has a chance to customize calls
before they get into the protocol machine layer. This
decomposition is possible because the application-
related processing semantics can be separated from the
processing semantics for other messages used in the
protocol machine.

However, such customization is best handled at a
lower layer on the server side, since this sort of
separation and decomposition is generally not possible.
Server customization to deliver the batch of transactions
all together must be handled at the protocol machine
layer to allow message buffering before delivery. Such
customization semantics cannot be isolated easily from
the semantics shared with other messages, so we fold
them into the protocol machine layer. Also, the servers
generally represent fan-in points for communication.
Thus, in a heterogeneous environment, individual clients
will be customized to conform to the server protocol, but
the server need not be customized separately for
interaction with individual clients. Thus, each client
will need a separate protocol machine, but the server uses
the same machine to interact will all its clients.

The URPC architecture can be symmetrical if it is used
for peer-to-peer communication. Each side will have
both the client and the server pieces, resulting in a
symmetrical architecture.

The communication services component comprises
routines to facilitate point-to-point communication
between RPC participants (clients and servers). Com-
munication between two end points is modelled using a
generic send/receive model.

There are several reasons for this choice of model.
First, it is simple and flexible, and any RPC protocol
machine can be modelled by a sequence of message
exchanges. Our send/receive model uses sequences of
four activities to model message exchanges between two
end points: preparing a message, sending a message,
receiving a message, and processing a message. These
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activities are general enough to model any protocol
machine behavior, and the communication services
module provides functions that might be used in these
activities. Second, URPC is designed to deal with hetero-
geneities, and therefore assumes only the most elementary
communication capability for each participant, particu-
larly since complex capabilities like multicast or broadcast
are usually limited to LAN environments (excepting for
the MBONE). Many sites sometimes even disable these
features to reduce unwanted network traffic. Although
assuming multicast or broadcast may result in better
performance in some cases, our sense is that support for
multicast or broadcast should be deferred until there is
stronger justification for a more complex design. More
complex communications schemes are presently simu-
lated using our basic send/receive communication model.
Routines are provided for initializing, managing, and
destroying internal end-point data structures, for bind-
ing end-points, for sending and receiving messages, for
mapping messages to operations, for converting data
to/from the external data representation, and so on.

Communication handles

The most important data structure in the runtime is the
communication handle. Communication handles repre-
sent point-to-point communication, and serve as the
interface for programmers to customize the runtime.
Thus, the handle structure is designed with high
configurability in mind. Internally, the handle has the

structure shown in Figure 2, consisting of the following -

parts:

o Incoming and outgoing message queues. There are two
message queues in each handle for buffering the
incoming and outgoing messages. A set of functions is
provided for managing these queues and for
implementing different message buffering schemes.

o Communication primitive interface. The communica-
tion-primitive interface provides a transport-layer-
independent interface to programmers. It is defined
through the set of functions open( ), send( ), recv( )
and close( ), that must be provided when a new

Communication Handle

Incoming and Outgoing Message Queues
Communication Primitive Interface
Binding Information

RPC Information

Client/Server PM

Client/Server PM Working Area

Basic Marshalling/Unmarshalling Functions

FIGURE 2. Handle structure.

transport protocol is introduced. Open( ) does
initialization and performs end-point association,
send( ) sends out a message from the sending-message
queue, recv( ) receives a message and puts it in the
received-message queue, and close( ) terminates the
end-point association and cleans up the handle.

e Binding information. The binding information relates
to end-point association, including network type,
end-point addresses, transport protocol used, etc.

® RPC information. The RPC information contains
the RPC status of a handle, the type of the handle
(for client or for server), timeout period, error
status, etc.

o Client and server protocol machines (PM ). Programmers
may associate two protocol machine implementations
with each handle, one for client and one for server.!
Although only one of the protocol machines can be
executed at any time, programmers are allowed to
switch between these protocol machines or replace
them at runtime.

e Client and server PM working area. For each handle,
private working areas are designated for protocol
machine implementations, so that state can be saved
and manipulated between calls to the protocol
machines.

® Basic marshalling and unmarshalling functions. These
functions define basic data conversion functions
for marshalling/unmarshalling data. By supplying
different routines, programmers can change the
external data representation for marshalling/
unmarshalling the data, or bypass the data conversion
if necessary.

In addition to providing high configurability, this data
structure also provides a flexible basis for implementing
heterogeneous or multi-protocol RPC communication.
It can support heterogeneous RPC by allowing a handle
to be bound dynamically with different protocols. By
bundling together several handles, the data structure can
support an RPC requiring simultaneous communication
with many others using different protocols. Given a set of
client processes that interact in a certain fashion, URPC
can be used to construct a generic RPC tailored to the
semantics of these interactions. This can serve as a
common or ‘base’ RPC for this heterogenous environ-
ment. This is possible because URPC runtime library
and primitives allow RPC developers finer control in
constructing different RPC semantics. URPC agents can
then be constructed to map URPC into application-
specific RPC protocols, as described in [3]. Possible uses
of URPC for cross RPC are as follows:

Appl. 1 URPC agents Appl. 2
urpc < agent < rpc2
rpel 4 agent < agent & rpc2

1Client,rpc( ) is imported automatically during stub generation.
Therefore, no additional function pointer is allocated for client_rpc ().
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TABLE 1. Control message types

Type Meaning

start Start a session

end End a session

ping Are you there?

ack Acknowledge a message
error An error has occurred

Message types

Programmers describe a protocol machine by defining
their own message types and the state changes upon
receiving a message. A message type can be defined by
providing a message-type ID and a function which will
be invoked upon receiving a message with this type.
There are two classes of messages: the UDef messages and
the UDefCtrl messages. The UDef messages are used to
invoke application-level functions, and their definition
messages are usually automatically generated by the stub
generator. To perform an RPC, the client agent simply
sends a UDef message to the server agent, and the
specified server function will be invoked. When the
function is executed, the results are sent back to the client
using the same message type. The UDefCtrl messages are
used to provide protocol control functions, out-of-band
control messages for example. For the programmer’s
convenience, the communication services also provide
five built-in control message types: start, end, ping, ack
and error. These five message types are summarized in
Table 1. A session here is defined as the duration between
a start and an end message, and is identified by a
session number.

There are both conceptual and performance reasons
for our choice of two different messages types. Con-
ceptually, it is clearer to distinguish control and
application-level messages. Application-level messages
originate from applications, and responses to them also
return to applications. Control messages originate from
the protocol machine layer in URPC, and are usually
transparent to the application (excepting for situations
like errors, when the application must be notified). The
distinction between control and application-level
messages also allows the URPC runtime to perform
some optimization. For example, control message
headers are statically pre-built, and reused each time.

Also, the decoding logic for control messages is faster
than for application-level messages since they have only
fixed-length headers and carry no other data.

2.1.2. Stub generator and IDL

The design of the stub generator is focused on extending
OSF’s current DCE/RPC interface definition language
IDL [11] to match the flexibility provided by the runtime
library. IDL is the language used to define the interfaces
of remote procedure calls. A file containing IDL
definitions is called an RPC interface specification
(RIS), from which the RPC communication code
(stubs) can be generated. Although our IDL syntax is
similar to OSF’s DCE/RPC IDL [11], it has several
unique extensions, which will be introduced in the order
they appear in an RIS file. An RIS file consists of three
parts:

1. RPC global definition. The RPC global definition is a
list of attributes and values which are used to name an
application and provide default RPC setup for the
application. The global definition allows the URPC
runtime to construct a unique name for an applica-
tion, which URPC name servers use to register or
look up the application. In addition, the global
definition provides defaults for initializing a com-
munication handle. These defaults can be overwritten
at runtime through URPC library calls. The global
definitions have been extended to include attributes
for programmers to specify the functions implement-
ing the RPC semantics, so that proper stubs can be
generated to interface with these functions. Table 2
lists the attributes allowed in our global definitions
and their meanings.

2. Type definition. The type definition declares the types
that are used in defining RPC signature. It uses the
same syntax as typedef in C to declare types. No
extensions are used for this part of the definition.

3. RPC signature. The RPC signature defines the inter-
face of exported RPC operations. We allow pro-
grammers to indicate the initiator and the RPC ID of
each RPC operation. Explicit indication of the
initiator for each RPC operation allows a program
to be a client for some RPC operations, and a server
for some others. This feature is necessary when
implementing peer-to-peer style RPCs or callback

TABLE 2. Attributes allowed in global definitions

Attribute Type Meaning

aptitle Required Application title

client_pm Required Function implementing the client PM

server_pm Required Function implementing the server PM

transport Required Transport-layer protocol used

client_rpc Optional Function setting up special client RPC/topology
(default = urpc_client_call( ))

version Optional Version number of the application

(default = 1.0)
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RPCs. To indicate the initiator, programmers simply
prefix a tag ([cl] or [sv]) to the interface definition of an
RPC operation. For example, the following RPC
signature indicates that the RPC add( ) can be
initiated by the client program, while the RPC
sub( ) can be initiated by the server program.

[cl]lerror_st add([in] int handle; [in]int x;
[in] int y; [out] int *z);
[sv] error_st sub([in] int handle; [in] int x;

[in] int y; [out] int *z);

The ability to assign the RPC ID allows programmers
to overwrite the default ID assignments. In URPC,
each RPC operation must be assigned an ID, which
has one-to-one correspondence to an UDef message
type. The assignment is usually automatically
generated by the stub generator. However, in some
cases, it may be necessary for programmers to map
several operations onto one ID. This feature is useful
when implementing an RPC that requires multiple
calls to complete, such as asynchronous RPC. In
general, asynchronous RPC is accomplished by
splitting an RPC into a send-request operation and
a receive-result operation, with the application con-
tinuing to execute after sending out a request to the
server. Therefore, to implement asynchronous RPC,
programmers may wish to map two client operations
into one operation (RPC ID) at the server. The
following example illustrates this scenario, where the
assignment of an RPC ID is accomplished by
annotating the interface declaration of an RPC
operation with [@RPC_ID]. Separate RIS files are
created for the client and the server respectively.

/*asynchronous client RPC signature */
[c1,@1] error_st add_snd([in] int handle; [in]int x;
[in]inty);
[c1,@1] error_st add_rcv([in] int handle; [out] int*z);
\" server RPC signature®\
[c1,@1] error_st add([in] int handle; [in]int x;
[in] int y; [out]int *z);

In this example, add_snd( ) and add_rcv( ) are
mapped into the same server operation add( ).
Therefore, when add_rcv( ) is called, the protocol
machine can use the RPC ID of add_rcv( ) to check
whether or not the result has been received. Also, the
tag [c/] in the server RPC signature is to indicate that
add( ) will be initiated by the client.

These IDL extensions are designed to provide the
flexibility required by the toolkit. Extensions in the
global definition introduce the notion of importing
implementations of RPC semantics. Extensions in RPC

signature allow the stub generator to generate code to
support peer-to-peer communication and multi-step
RPC operations. The support for peer-to-peer com-
munication complements the message-passing model in
communication services, while the support for multi-step
RPC operations allows programmers to construct any
RPC interface and call semantics that may be required by
an application.

2.1.3. Name server

Name service is an important component of any RPC
system. The URPC toolkit can function with any name
service, since it only requires a lookup and registration
service. However, name service becomes a trickier issue
in the presence of heterogeneity, since a single name
space may not be available, and naming standards are
still evolving. If an integrated name space is available, we
recommend using it. For the case where one is not
available, URPC provides a simple default naming
mechanism, and an associated lookup and registration
scheme.

The URPC name server maintains the mappings
between names and end-points, and provides two
services to the outside world: a lookup service and a
registration service. Given a server name, the lookup
service returns its end-point address. The registration
service is used to register a name-to-end-point mapping
with the name server. Although all RPC name servers
provide these two services, they use different naming
conventions. For example, HP/Apollo NCA RPC [12]
uses UUIDs to name applications, while SUN RPC [13]
combines a program number and a version number for
the purpose. In contrast to traditional name servers with
fixed name spaces, the URPC name server provides
additional mechanisms for programmers to construct
their own name spaces.

We have considered two possible designs for name-
space construction mechanisms. Both designs are
centered around name processing functions, which
determine how names are interpreted and matched.
One approach is to allow programmers to provide their
own name processing functions to the name server. The
other is to provide a generic boolean-valued name
processing function, which can be customized for
different RPC systems. If two names match, the name
processing function returns true, and false otherwise. We
choose the second approach because it results in a
simpler name server and allows us to provide a uniform
name processing function for all applications. The first
approach complicates the name-service protocol because
it must include support for importing/selecting name
processing functions. In addition, we will be more likely
to introduce naming heterogeneities. Such naming
heterogeneity will reduce the availability of applications
and make integration more difficult.

For flexible name-space construction, we provide a
structure for programmers to describe their naming
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/afs/umich.edu/y/e/yenmin/urpc

: afs : umich.edu : y : e : yenmin : urpc

host= taipei, os = sunos, cpu = 68000, application = urpc

i s urpe : taipei : sunos : 68000 J

FIGURE 3. Mapping hierarchical and attribute-based naming
schemes onto URPC name structure.

conventions. In URPC, a name is a unique entity
representing an instance of application. A name is
represented in a structure called a chain, which is a
sequence of bytes partitioned into segments by delimiters
‘:’. Although this name structure is quite simple,
programmers can map both hierarchical and attribute-
based naming schemes onto it. With such flexibility, this
structure can also be used to support hybrid naming
schemes, and can allow multiple naming schemes to
coexist. Figure 3 illustrates possible mappings for the
hierarchical and attribute naming schemes. To map a
hierarchical naming scheme, programmers flatten the
hierarchical structure so that each leaf node is uniquely
named by its absolute pathname. The absolute pathname
is then copied into our naming structure by replacing the
‘/ with ‘:°. To map attribute-based naming schemes,
programmers simply pre-allocate a segment in the chain
structure for each attribute, and the value of the attribute
is copied into the segment.

To match two names, the name processing function
simply compares them segment by segment. When a
wildcard (*) is used in a segment, it will match anything
in the corresponding segment of the target name.
Wildcards are useful because they allow partial matching
on names and reduce the burden of constructing names
exactly. For flexibility, the URPC name server allows
programmers to specify different comparison operators
for each segment, so that numerical relationships (like <,
>, <, #, etc.) can be checked between two segments.
This feature can be useful, for example, when checking
compatibility between version numbers.

To support different RPC topologies, the name server
supports both single and multiple end-point lookup. For
single lookup, the name server returns an end-point
matching the given name template (a name plus
comparison operators). For multiple lookup, the name
server returns all the end-points matched by the name
template. Multiple lookup is convenient because it gives
application an opportunity to perform its own selection
of the end-points, making the binding for broadcast/
multicast RPC easier. Programmers can also associate a
list of name servers with both types of lookup, so that the
lookup will be performed on a group of name servers
rather than a single one.

Although programmers can construct a completely
new name space, it is often easier to just customize the

TABLE 3. Checklist of URPC extensions

RPC Runtime Name
parameter library IDL server
RPC topology V4 - Vi
Call semantics Vv i _
Failure semantics Vv - _

default name space provided by the URPC runtime. The
default name of an application is automatically
constructed by the URPC stub generator using the
global definition in the RIS file. Each name segment in
the default name corresponds to an attribute in the
global definition, and programmers can customize a
name by appending more segments to the name. The
URPC default naming segments are:

aptitle : client_pm : server_pm : transport :
client_rpc : version : user defined segments

2.2. Summary of URPC extensions

Table 3 provides a high-level view of URPC extensions
designed to provide flexibility in constructing RPC
semantics. Extensions in the runtime library must cover
all three areas of RPC semantics. For the stub generator/
IDL, the extensions need only support call semantics. No
extensions are needed for RPC topology because they are
embedded in RPC interfaces. Also, no IDL extensions
for failure semantics are necessary since they are implicit
in RPC call interfaces and independent of the function-
alities provided by the stub generator. For the name
server, the only extension needed is to support different
RPC topologies. No extensions are needed for call or
failure semantics, because they are independent of the
name service.

Table 4 summarizes the specific features used by the
URPC toolkit. The features provided in the runtime
library facilitate implementation of RPC semantics
(i.e., the protocol machines). The implementation of
RPC semantics is based on a generic send/receive
model, and so it can express any protocol machine
behavior. Since messages may need to carry user-
defined information, the runtime library supports
interfaces to allow programmers to extend the default
message format.

The extensions provided in the stub generator/IDL are
designed to support different call semantics. These
extensions help in specifying the direction of an RPC
and in realizing multi-step RPCs. The direction of an
RPC is specified by indicating the initiator of an RPC,
thus allowing URPC to support both client/server and
peer-to-peer style of RPC communication. Multi-step
RPCs can be engineered by mapping RPC IDs between
client and server operations.

The extensions to the name server are designed to
facilitate lookup service in different RPC topologies. They
allow programmers to express how many end-points will
be looked up, how end-points should be named, and how
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TABLE 4. Summary of URPC features

Runtime library

Stub generator/IDL

Name server

Import PM implementation
for RPC semantics

The indication of initiator
to support both client/server

Single and multiple end-point lookup

and peer-to-peer communication

Generic send/recv model
for constructing PM

UDef message types and
message format extension

Customizable marshalling
and unmarshalling functions

The RPC ID assignment
supports different call semantics

Generic naming structure
to accommodate different naming
models

Customizing name processing
function with comparison operators

names should be processed. These extensions provide
semantics-independent mechanisms for customizing the
name services. They correspond to the features of single/
multiple end-point lookup, generic naming structure and
name processing function customization respectively.

3. EXAMPLES

To illustrate the usage of the URPC toolkit, we construct
three RPCs: a multicast RPC, a callback RPC and an
asynchronous RPC. These were chosen because they are
non-traditional RPCs. Each example is presented with its
RIS file and client PM implementation. To make the
examples easier to understand, client PM implementa-
tions are simplified by omitting most error handling
code, and the servers export only one or two operations.
For the reader’s convenience, URPC library calls used in
examples are listed in Table 5.

3.1. Example 1: Multicast RPC

The multicast RPC in this example is built on top of TCP
to multicast messages to servers for display. The messages
are delivered to servers with no-return RPC semantics.?
The RIS file of this example is shown in Figure 4.

The handles representing the end-points of servers are
organized into an array, which will be looked up in the
client code before a multicast RPC is performed. The
array is terminated with a special value INVALID, so
that the client PM can check this value to know how
many servers to contact. The implementation of the
client PM is listed in Figure 5.

2 The no-return semantics here mean that the server need not reply
after receiving client’s messages.

TABLE 5. URPC library interface used in examples

Name

Function

urpc_call_serv_op
urpc_error
urpc_examine_recv_msg
urpc_get_msg_given_udef
urpc_get_next_recvmsg
urpc_get_replyflag
urpc_get_rpc_cl_state
urpc_get_udef_type
urpc_ioctl

urpc_send
urpc_set_replyflag
urpc_set_rpc_cl_state
urpc_set_send_msg
urpc_wait

urpc_wait_and_recv

Executes a function associated with the given RPC ID
Sets error status

Examines the message at the head of the recv. queue
Matches RPC ID with the messages in a queue
Extracts a message from the head of the recv. queue
Gets the reply flag in a message

Gets the client state associated with an RPC ID
Gets the UDEF message type (RPC ID)

Sets input/output control options

Sends a message to the other end-point

Sets message reply flag

Sets the client state associated with an RPC ID

Puts a message in the send queue

Waits for a period of time before continuing

Waits to receive a message
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[
aptitle = mdisp;

server_pm = mdisp_sv_pm
client_pm = mdisp_cl_pm
transport = INET_TCP
typedef int error_st;

typedef char string_t[1024];

[cl] error_st mdisp([in] int *handleP,
[in] string_t ss )

FIGURE 4. RIS file for the multicast-RPC example.

3.2. Example 2: Callback RPC

Callback RPC allows a server to call the client back
during servicing an RPC. In this example, the server
implements (x —y)«x2 wusing the function sub( )
(sub(x,y)=(x — y)) provided by the client. The RIS file
for this example is listed in Figure 6, where different
initiator tags are used to indicate that the function
sub_X_2( ) can be initiated by a client, and the function
sub( ) can be initiated by a server. Note that initiator
tags in IDL do not imply the end-point for the callback.
It is up to the server PM to determine which end-point to
use to do the sub( ) operation. For example, when more
than one client may initiate the RPC, the server may
choose to direct the callback to a client different from the
client initiating the RPC, perhaps because it runs on a
faster CPU.

The implementation of the client PM is listed in
Figure 7. After sending out messages, the client PM falls
into a loop looking for either callback messages or replies
from the server (lines 12 to 24). The PM distinguishes
messages by checking their udef message types (line 15).
If a callback message is detected, the PM calls
urpc_call_serv_op( ) to execute the requested callback
function and sends back the result. If the server replies,
the PM returns to the caller and the server’s reply will be
marshalled.

3.3. Example 3: Asynchronous RPC

Asynchronous RPC here is identical to the message-
passing style of communication. An asynchronous RPC
consists of two operations, one for sending out an RPC
request and one for collecting the RPC results. This

1 urpc_msg_t *mdisp_cl_pm(handleP,msg, spare)

2 int *handleP; /* handle array */

3 urpc_msg_t *msg; /* outgoing message */
4 char *spare; /* not used */

5 {

6 int err = RPC_OK;
7 while ((*handleP != INVALID)
&& (err==RPC_OK)) {
8 urpc_set_send_msg(*handleP,msg) ;
9 err=urpc_send (*handleP) ;

10

11 if (err !'= RPC_OK)

12 return(NULL); /* error occurred *
13 else

14 return(msg) ;

15 }

FIGURE 5. Protocol machine for the multicast-RPC example.

I 1
aptitle = cb;

server_pm = urpc_sV_sr_pm

client_pm = cb_cl_pm

transport = INET_UDP

1

typedef int error_st;

[cl] error_st sub_X_2([in] int handle, [in] int x,

[in] int y, [out] int *z);
[sv] error_st sub([in] int handle, [in] int x,
[in] int y, [out] *z);

FIGURE 6. RIS file for the callback-RPC example.

separation allows an application to continue to execute
after sending out an RPC request.

To express these call semantics, we must map each
exported server operation into a pair of client operations.
Although the server stub remains the same for asyn-
chronous RPC, the client stub is different because two
operations are needed to complete an RPC instead of
one. Therefore, two RIS files are provided to express this
situation (see Figure 8).

In Figure 8, a pair of client operations are mapped into
one server operation by assigning them the same RPC
ID. For example, both add_snd( ) and add_rcv( ) share
the same RPC ID, which maps to the operation add( ) in
the server.

The client PM must act differently for the send-request
and return-result calls (see Figure 9). To distinguish
different operations for an RPC, two states (SEND_REQ
and WAIT_REPLY) are associated with the send-request
and collect-result calls respectively. The state of PM
changes when each call is completed (lines 18 and 34).

To handle outstanding asynchronous RPCs, the client
PM must match the current RPC ID with the RPC ID in
returned messages.’ When an application requests results
for a specific RPC, the client PM first searches the
receiving queue to see whether or not the reply message
has been received (lines 21 to 22). If the PM has not yet
received the reply for the call, the client PM is blocked
until the reply message arrives. In the meantime, any
other reply messages will be queued in the receiving
queue (lines 24 to 32).

The features described in the above examples can also
be mixed and matched to provide endless possibilities for
supporting multiple RPC semantics in an application.
For example, programmers may mix synchronous RPC
and asynchronous RPC, so that some of the calls will be
asynchronous while other RPCs remain synchronous.
Or, programmers may stack these features together to
provide more sophisticated RPC semantics, like a
multicast asynchronous RPC with callback.

4. CICERO: A PROTOCOL CONSTRUCTION
LANGUAGE

Cicero is a set of language constructs designed to
facilitate the implementation of protocol machines.

3 To simplify the PM implementation, only one outstanding call for
the same RPC ID is allowed.
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int *handleP;
urpc_msg_t *msg;
char *spare;

{

int ret, rpc_id;

=R
NFPFOWVOIAULI A WN R

wait_msg:

urpc_msg_t *cb_cl_pm(handleP,msg, spare)

urpc_msg_t *reply_msg;
int handle = *handleP;

urpc_set_send_msg (handle, msg) ;
ret = urpc_send(handle);

13 if (urpc_wait_and_recv(handle)
return (NULL) ;
14 reply_msg = urpc_get_next_recvmsg (handle) ;
15 if (urpc_get_udef_type(msg) !=
urpc_get_udef_type(reply_msg)) {

16 rpc_id = urpc_get_udef_type (reply_msg) ;

17 /* execute the callback function */

18 urpc_call_serv_op(handle, rpc_id, reply_msgqg);
19 if (urpc_get_replyflag(reply msg) == REPLY) ({
20 urpc_set_replyflag(reply_msg,NO_REPLY) ;
21 urpc_set_send_msg(handle, reply_msg) ;

22 urpc_send (handle) ;

23 }

24 goto wait_msg;

25 } /* otherwise, it is the result */

26 return(reply_msg) ;

27 }

!= RPC_OK)

FIGURE 7. Protocol machine for the callback-RPC example.

Our approach to protocol generation is intermediate
between full synthesis from very high-level specifications
and hand-coding. We start with a constructive specifica-
tion of the protocol (the protocol construction) and
translate it to executable code. Cicero is the language in
which protocol constructions are written, and provides
many features that facilitate this task:
e It provides multi-thread support for protocol
execution. Instead of directly providing multi-
thread support in the toolkit, we provide multi-

thread support through Cicero. This strategy is
advantageous because better language support can
be provided to facilitate multi-thread protocol
implementation.

It uses event patterns [10] to control synchrony,
asynchrony and concurrency in protocol execution.
Event patterns provide a structured way for
programmers to specify relationships between events
controlling the protocol execution, so that complex
interactions in protocol execution can be organized.

[ /* client RIS for asynchornous RPC */
aptitle = asyn_math;
server_pm = urpc_svV_sr_pm
client_pm = asyn_cl_pm
transport = INET_UDP
typedef int error_st;
[cl,@1] error_st add_snd([in] int handle,
[in] int x, [in] int y);
[cl,@l] error_st add_rcv([in] int handle, [out] *z);
[cl,@2] error_st sub_snd([in] int handle,
[in]) int x, [in] int y);
[cl,@2] error_st sub_rcv([in] int handle, [out] *z);
[ /* server RIS */
aptitle = asyn_math;
server_pm = urpc_sV_sr_pm
client_pm = asyn_cl_pm
transport = INET_UDP
typedef int error_st;
[cl,@l] error_st add([in] int handle, [in] int x,
[in] int y, [out] int *z);
[cl,@2] error_st sub([in] int handle, [in] int x,
[in] int y, [out] int *z);

FIGURE 8. RIS files for the asymchronous-RPC example.
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1 urpc_msg_t *asyn_cl_fsm(handleP,msg, spare)

2 int *handleP;

3 urpc_msg_t *msg;

4 char *spare;

5 {

6 urpc_msg_t *reply_msg = NULL;
7 int handle = *handleP;

8 int ret, rpc_id, state, tmp;
9

10 rpc_id = urpc_get_udef_type (msg);

11 state = urpc_get_rpc_cl_state(handle, rpc_id);

12

13 switch (state) {

14 case SEND_REQ:

15 urpc_set_send_msg (handle,msg) ;

16 ret = urpc_send(handle) ;

17 reply_msg = msg;

18 urpc_set_rpc_cl_state thandle, rpc_id, RECV_MSG) ;

19 break;

20 case WAIT_REPLY:

21 reply_msg = urpc_get_msg_given_udef (handle,

22 urpc_get_udef_type (msg) , RECV_QUEUE) ;
23 if (reply_msg == NULL) { /* result not recv’d yet */
24 start_recv:

25 if (urpc_wait_and_recv(handle) < 0) break:;

26 reply_msg = urpc_examine_recv_msg (handle) ;

27 if (urpc_get_udef_type(msg) !=

28 urpc_get_udef_type (reply_msg)) (
29 goto start_recv;

30 } else {

31 reply _msg = urpc_get_next_recvmsg (handle);
32 }

33 }

34 urpc_set_rpc_cl_state(handle, rpc_id, SEND_MSG) ;
35 break;

36 default:

37 urpc_error (handle, UNKNOWN_CL_STATE) ;

38 break;

39 }

40 return(reply_msg);

41 )

FIGURE 9. Protocol machine for the asynchronous-RPC example.

e It helps programmers exploit parallelism in protocol
execution. Cicero uses events to provide a dataflow
style of execution, which can take advantage of
today’s multiprocessor architectures by exploiting
parallelism in protocol execution. This feature may
become increasingly important as more functionalities
are pushed into RPC protocols, and as multi-
processor workstations become more common.

o It can hook to existing protocol verification tools. The
dataflow style of execution can be translated into other
formal models (e.g. Petri nets [14]), making it possible
to use existing protocol verification methods/tools.

Our prototype implementation of Cicero includes a
compiler for translating Cicero constructs into C code
and a Cicero runtime library providing implementation
of these constructs. The Cicero runtime library can be
linked together with the URPC library to add multi-
thread support to the URPC runtime. In this section we
will only highlight some features in Cicero, as a complete
description of Cicero can be found elsewhere [15].
Cicero has five constructs: emit, when, cond, bundle
and escape. The emit construct is used to generate
event instances. Each when construct represents one
thread of control, and can trigger actions each time
specified events are observed. The when construct

represents the execution control mechanism as well as
the unit of parallelism in Cicero. To perform concurrent
execution, programmers simply emit an event instance
that can trigger actions in multiple when constructs.
Table 6 describes semantics of some common event
patterns associated with a when construct. The cond
construct implements conditional branches. Our cond
construct is similar to the LISP cond construct (or the
switch statement in C), except that when several
conditionals evaluate to true, the statements associated
with all the true conditions will be executed in order.
The bundle is a modularization construct similar to the
procedure, and is invoked synchronously. The bundle
construct defines the extent of visibility for event
instances, and provides an environment for sharing
variables among a group of when constructs. The escape
construct is used to include C statements in Cicero by
enclosing them between ‘{’ and ‘}’. Therefore, it is the
escape construct that will encapsulate the calls to the
URPC library.

4.1. An example

To illustrate the use of Cicero, we will construct an RPC
using Cicero and the URPC library. The RPC has
at-least-once failure semantics, which means that a

THE COMPUTER JOURNAL,

VoL. 39, No. 6, 1996




URPC: A TooLkIT FOR PROTOTYPING RPCs 537

TABLE 6. Semantics of various when constructs

Syntax

Description

when (x): 4 end;
when (x?%): A end;
when(x , y): 4 end,
when (x A y): 4 end,;
when (x ~ y): A4 end;
and in that order
when (x)*N: 4, end: 4,
when (INIT): 4 end;

Executes action 4 when x occurs

Same as the above, with variable i = |x|

Executes action 4 when either x or y occurs

Executes action 4 when both x and y occur

Executes action A4 separately by the sequence of x and y occurrences

If |x| < N executes A4 else executes 4,
A is the first executed action when enclosing bundle is invoked

|x] = number of occurrences of event x to date

service may be executed more than once at the server
when failure occurs. The at-least-once failure semantics
are specified by the extended FSM (finite state machine)
shown in Figure 10, where input events can be associated
with conditions.

Although the Cicero specification for the at-least-once
semantics can be made more compact, we present a
slightly longer version to make the implementation easier
to understand. There is a one-to-one mapping of events
between the FSM specification in Figure 10 and the
Cicero code segment, except that the send_msg event is
replaced by a library call. The correspondence between
the Cicero code segment and the original specification is
shown in the comments within the code segment. All the
library functions used in the code segment are also
already described in Table 5 in Section 3.

The Cicero code segment is shown in Figure 11. After
sending out the message (line 12), two when constructs
(lines 17 and 21) will run concurrently waiting for a reply
or a timeout respectively. If a reply is received, the
bundle returns. If a timeout occurs, the original message
is sent again. Such retry continues until either a reply is
received, or the number of retries exceeds the limit
MAX_RETRY. In the later case, the bundle returns
with an error.

5. PERFORMANCE

There are two aspects to the performance gains from
URPC. First, customization can increase the semantic
content of individual messages, and thus reduce the
number of messages required. The benefit gained from
customization obviously depends on the application and
the manner in which the customization is performed, but

timeout

[ wait_time > 60 sec]
wait =

send_msg
[ # of retry <= max_retry]

send_msg

recv_msg

error
[ # of rety > max_retry]

FIGURE 10. An extended FSM diagram for at-least-once semantics.

can be significant, as the example in Section 1.1
illustrates.

A second benefit can be a reduction in time for
individual calls since customization can eliminate
overheads. To facilitate such performance comparison,
we constructed an RPC (URPC-ATM1) with at-most-
once failure semantics using a protocol machine imple-
mentation similar to that of SUN RPC. Comparisons of
elapsed time were made between URPC-ATM1 and
SUN RPC on different transport-layer protocols (UDP
and TCP), and the results are listed in Tables 7 and 8.

We measured the RPC elapsed times for different
request sizes and different locations of the server. The
size of a request represented the total size of RPC input
arguments, and varied from 0 (for null RPC) to 2 kbytes.
Two different server locations were used in the measure-
ment: placing the server on the local machine (Local) and
placing the server on the remote machine (LAN). All the
measurements were carried out on two lightly-loaded
SUN Sparc workstations connected through an Ethernet.

The null-RPC elapsed times in the LAN case are
smaller numbers than those measured for the local case.
This paradox occurs because in the LAN case, some of
the work in the client PM is done between the sending
and receiving of messages, and in parallel with the server.
In contrast, all work in the local case must be interleaved
on a single-CPU machine, resulting in longer elapsed time.
The speedup in LAN cases disappears as the network
delay becomes the dominating factor in RPC elapsed time.

The results show that URPC-ATMI1 is about 10%
faster than SUN RPC on average, which indicates that
an RPC constructed using the URPC toolkit can be just
as fast as handcrafted ones. The similarity in perfor-
mance to SUN RPC is not surprising; it simply reflects
the fact that we use a protocol machine implementation
similar to SUN RPC.

TABLE 7. Comparison of URPC-ATM1/UDP with SUN RPC/UDP

URPC ATM1/UDP SUN RPC/UDP
Data
size Local LAN Local LAN
Null 2.68 ms 2.54ms 2.68 ms 2.68 ms
1K 3.59ms 4.37ms 3.74ms 4.51 ms
2K 5.08 ms 6.37ms 5.86ms 7.21 ms
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1 bundle ATL1_pm(handle_t handle, urpc_msg_t *msg)
2 {

3 int err;

4 long wait_time;

5 urpc_msg_t *reply_msg;

6 event recv_msg, wait, retry;

7

8 when (INIT): /* FSM: start -> wait */

9 {

10 wait_time = 60; /* wait for 60 sec. */
11 reply_msg = NULL;

12 urpc_set_send_msg(handle, msg);

13 urpc_ioctl (handle, RECVBLOCK, TRUE); /* block */
14 urpc_send (handle); (* send_msg */

15 }

16 emit recv_msg;

17 emit wait;

18 end;

19 when (recv_msg): /* FSM: wait -> done */

20 { err = (urpc_recv(handle);}

21 cond (err == RPC_OK

22 { reply_msg = urpc_get_next_recvmsg (handle) ;|
23 end;

24 emit Return: (val=reply_msg);

25 end;

26 when (wait): /* FSM: wait -> retry */

27 { urpc_wait (wait_time); }

28 emit retry;

29 end;

30 when (retry)*MAX RETRY: /* FSM: retry->wait/done */
31 { urpc_send(handle); }/* send_msg */

32 emit wait;

33 end: emit Return:(val=NULL) /* RPC failed */
34 )

FIGURE 11. Cicero code segment for at-least-once semantics.

6. RELATED WORK

Much RPC work focuses on designing and implementing
new RPC systems to provide new semantics and better
performance, as for example in [13, 16-23]. Although
our toolkit also provides some popular RPC
semantics, it is aimed at providing mechanisms for
RPC developers to prototype new RPC systems rapidly.
The URPC toolkit achieves its flexibility by letting
programmers match the requirements of different RPC
semantics by providing their own implementations of
RPC semantics and customizing supporting RPC
services such as stub generation and name service.
None of the existing RPC systems provides such
flexibility across its RPC runtime and supporting
facilities.

HCS/HRPC [24] is a well-known heterogeneous RPC
system. It can support multiple RPC protocols through
mixing and matching different implementation of several
principle components. However, non-traditional RPC
protocols may be hard to emulate with HRPC com-
ponents cleanly, because its components are designed to
model the common functionalities of most RPC
facilities. An example given in [24] is an RPC protocol
with callback. By giving programmers more control to

The URPC toolkit is not only independent of
transport-layer protocols, but also independent of RPC
semantics. This independence from RPC semantics is
achieved by using a generic send/receive model to
describe behavior of protocol machines and by allowing
customization in its supporting facilities. This indepen-
dence makes the URPC runtime library highly reusable
for constructing new RPC semantics.

The x-kernel [26, 27] is known for configuring protocol
stacks with object-oriented sub-protocol components to
achieve good protocol implementation. The goal of
URPC is different from that of the x-kernel. The URPC
toolkit is not for configuring existing protocols, but for
constructing new RPC semantics/systems. Therefore, it
must give programmers a finer level of control in
implementing and customizing RPC systems. Unlike
the x-kernel, which deals with the entire protocol stack,
the URPC toolkit usually deals with protocol construc-
tion above the transport layer. When customized
transport-layer protocols are needed, the toolkit allows
programmers to import customized transport-layer

TABLE 8. Comparison of URPC-ATM1/TCP with SUN RPC/TCP

. ) o URPC ATM1/TCP SUN RPC/TCP
the runtime, the URPC toolkit not only can facilitate Data
construction of both traditional and non-traditional Size Local LAN Local LAN
RPCs, but also can result in a more general solution to
the RPC heterogeneity problem [25, 3]. Null 3.24ms 3.19ms 3.96ms 3.64ms
. . . 1K 3.98 ms 5.02ms 5.33ms 5.55ms
TI-RPC is a transport independent RPC, which can 2K 5.55ms 6.61 ms 7.14ms 736ms
operate on top of any available transport-layer protocols.
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Client Code

..
Lfoo (handle, ...);

<
< ! \ Client Stub

foo (handle, ...)
{

marshaling request into buffer

Sclient_call (handle, fuo_call_id>buf, Y
</ unmarshaling results from buffer

)

——

Sclient_rpc(handle, call_id, buf, ...)

(

set up message
i urpc_client_fsm(handle,message, ...) -->"call Sclient_pm
extract results from reply message

)

Runtime

client_pm(handle,message, ...

send request message
recv reply message

Server Code

" while (1) g

P urpc_do_server_select () ;
y 4

message path

Runtime

; ’\
<~ urpe_do_server_select ()
{
check incoming message for each handle
if (there is a message for handle-i)
L— urpc_server_fsm(handle-i, message, /..) --> call $server_pm
)

$server_pm(handle, message, ...
{

examine message type

execute the associated functio

send reply
}

-> call server stub

server stub for foo() Server Stub
{

unmarshaling request

foo(...s)

marshaling results __|
)

FIGURE 12. A typical URPC call path.

protocol implementations through the communication
primitive interface in the communication handle.

7. CONCLUSIONS

The approach of letting programmers provide the
implementation of new RPC semantics appears quite
useful in increasing flexibility in constructing new RPC
protocols and in reducing coding effort. We enhance
flexibility by making it simple for programmers to
provide their own protocol machine implementations.
New implementations are always required for new
RPCs, but the coding effort is reduced with our approach
because specifying the protocol machine behavior above
the transport layer is the highest level of abstraction
possible without restricting innovations in implementa-
tion that an RPC might allow. Also, the coding effort for
supporting facilities such as stub generators and name
servers has been reduced through a customization
approach. Therefore, our approach does balance
flexibility and coding effort for constructing new RPC
systems.

Flexibility in constructing RPC systems can result in
efficient RPC implementation. There are two aspects to
this efficiency. At a more abstract level, customizing the
semantics and behavior of RPC calls can increase the
information content of each call, and reduce the number
of calls flowing between clients and servers. This is an
important performance enhancement. In contrast,

systems that do not allow such customization must
target the general case, and may require many message
exchanges to convey the same information.

In addition, most of the optimization in handcrafted
implementations can be preserved by allowing developers
to provide protocol machine implementations. Thus,
resulting RPCs can be as fast as handcrafted versions.
The efficiency of an RPC implementation often depends
on several factors: good buffer management, efficient
marshalling/unmarshalling, reducing context switches,
efficient transport protocols, etc. Although efficient
default implementations are provided, the URPC toolkit
allows programmers to provide their own implementa-
tions for setting up messages, buffering messages,
sending/receiving messages, converting data representa-
tions, and even new transport-layer protocols. With such
flexibility, programmers are able to to apply a variety of
optimization techniques to produce efficient RPC
implementations. This conclusion is also supported by
our experiments and performance measurements in
Section 5.

A good protocol construction language is essential to
achieve good protocol implementation. Providing correct
protocol implementations can be difficult, especially for
complex protocols. Cicero is designed to alleviate this
problem. Cicero facilitates protocol implementation by
providing a better abstraction (event patterns) to control
synchrony, asynchrony and concurrency in protocol
execution. Also, the dataflow execution model used by
Cicero exploits parallelism in protocol execution, and
also allows the protocol construction be translated to
other formal models to take advantage of existing
protocol verification tools. A fuller discussion of these
issues in the context of Cicero can be found in [9, 15].
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