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The Design and Implementation of Seeded
Trees: An Efficient Method for Spatial Joins

Ming-Ling Lo and Chinya V. Ravishankar, Member, IEEE

Abstract —Existing methods for spatial joins require pre-existing spatial indices or other precomputation, but such approaches are
inefficient and limited in generality. Operand data sets of spatial joins may not all have precomputed indices, particularly when they
are dynamically generated by other selection or join operations. Also, existing spatial indices are mostly designed for spatial
selections, and are not always efficient for joins. This paper explores the design and implementation of seeded trees [1], which are
effective for spatial joins and efficient to construct at join time. Seeded trees are R-tree-like structures, but divided into seed levels
and grown levels. This structure facilitates using information regarding the join to accelerate the join process, and allows efficient
buffer management. In addition to the basic structure and behavior of seeded trees, we present techniques for efficient seeded tree
construction, a new buffer management strategy to lower I/O costs, and theoretical analysis for choosing algorithmic parameters.
We also present methods for reducing space requirements and improving the stability of seeded tree performance with no additional
I/O costs. Our performance studies show that the seeded tree method outperforms other tree-based methods by far both in terms of
the number disk pages accessed and weighted I/O costs. Further, its performance gain is stable across different input data, and its
incurred CPU penalties are also lower.

Index Terms —Spatial databases, query processing, join processing, database index, spatial index, buffer management.

——————————   ✦   ——————————

1 INTRODUCTION

PATIAL databases and GIS systems have received in-
creasing attention in recent years. Most research on

query processing in such systems has focused on spatial
selection, or the spatial search operation. Examples of spa-
tial selection operations are window queries, which find all
spatial objects contained within or intersecting a predefined
window area, and point queries, which find all objects
overlapping a particular point in space. Many spatial indi-
ces have been designed to facilitate such operations [2].

Relatively little work has been done on the spatial join.
Spatial joins are expensive but indispensable in such appli-
cations as map overlay. Existing join algorithms can gener-
ally be divided into those based on tree-like indices and
those which are not. The latter group includes methods
based on join indices, on z-ordering or on separational rep-
resentations. The spatial join index [3] method builds a
spatial version of a join index [4] for two data sets if these
data sets are frequently joined spatially. This method trades
the overhead of precomputation at index building time for
accelerated processing at join invocation time. It assumes
the grid-file [5] as the underlying spatial access method,
and requires grid-files to exist for relevant data sets before
spatial join indices can be built for them. A similar method
using distance-associated join indices [6] has also been pro-
posed to speed up spatial range queries. Orenstein [7], [8],
[9] proposed z-order-based algorithms to perform both

spatial selection and join. In these algorithms, the space
under study is first decomposed into elements, which can
then be sequenced by their z-order and organized using
one-dimensional indices such as the B+  tree. Joining two
spatial data sets amounts to merging two z-value streams.
Güting and Schilling [10] proposed a divide-and-conquer
algorithm for finding intersecting pairs of rectangles given
a set of rectangles. The method transforms rectangles into
separational representation, which represents rectangles by
their left and right edges. The edges are sorted and a di-
vide-and-conquer algorithm is applied. This method does
not require indices to be built, but it does require external
sorting for large data sets, which may involve a lot of ran-
dom I/O operations. Unfortunately, [10] provides only as-
ymptotic analysis of the costs, and explictly omits the costs
of external sorting.

1.1 Tree-Based Join Algorithms
Several spatial join algorithms have used tree-like indices.
Gunther [11] analyzed the applicability of relational join
techniques to spatial joins, and proposed a general join al-
gorithm using generalization trees, which are abstractions of
tree-like spatial indices. This algorithm can be used to join
any two data sets with precomputed tree-like indices. Since
breadth-first tree traversal is used in this method, the
matching pairs of tree nodes at tree level n must be re-
corded before the algorithm can descend to level n + 1. In
practice, the amount of memory required to hold such in-
formation could be large for indices with high fan-out, such
as R-trees. Analytical models were to used to study the per-
formance of various techniques, but memory constraints
were not considered in depth.

The R-tree and its variations [12], [13], [14], [15] have
been gaining popularity due to their relatively simple
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structure and their efficient handling of spatial objects with
extent, such as region objects. An R-tree is a B+ -tree like
access method that stores multidimensional spatial objects.
An internal R-tree node contains entries of the form (mbr,
cp), where cp is a pointer to a child node and mbr is the
minimum bounding rectangle of all objects described by
entries in the child node. A leaf-node contains entries of the
form (mbr, oid), where oid refers to a spatial object, and
mbr is its minimum bounding rectangle. R-trees reference
their stored spatial objects in whole units, without clipping
or transforming them into higher dimensional points.

Brinkhoff et al. [16] proposed a join algorithm based on
the R-tree or variations. This join method requires each
participating data set to have a precomputed R-tree index.
The join algorithm consists of an R-tree matching algorithm
and a collection of techniques to reduce CPU and disk I/O
costs. The tree matching algorithm is straightforward. It
starts by matching the children of the root nodes of the two
R-trees for overlaps, and then recursively traverses the
matched children, resulting in a depth-first tree traversal.
Results are reported when leaf nodes are reached in both
trees. We will denote this tree matching component of the
join algorithm by TM in subsequent discussions.

Improvement techniques described in the paper in-
cluded those aimed at reducing CPU costs and those aimed
at reducing the amount of disk I/O. When the bounding
boxes representing two R-tree nodes R1 and R2 were found
to overlap, their intersection area was used to eliminate
some children from further consideration. If the bounding
box of a child of R1 did not overlap the intersection area, no
answer would result from matching this child and any
child of R2. Also, when looking for overlapping child pairs,
the children could be sorted on one axis, and a plane-
sweeping technique used to further reduce the number of
comparisons needed. As a result, the number of overlap-
ping tests in the join process was significantly reduced. To
reduce disk I/O, plane-sweeping order was also used to
decide the order in which the children of a node were trav-
ersed. A page pinning technique based on degrees was also
used. The results also showed decreases in I/O costs,
though less substantial than those in CPU costs.

1.2 The Need for Dynamically Constructed Index
Structures

All these methods require index structures to have been con-
structed for the input data sets and/or some precomputation
or external sorting to have been done before the spatial join is
invoked. Such requirements can be inconvenient or even im-
possible to satisfy in many situations. First, it may not be
cost-effective to maintain index structures for all data sets
regardless of their usage patterns and frequencies. Second,
the operand data sets of a spatial join may be fresh output
from other spatial or nonspatial operations, and therefore not
have spatial indices already constructed for them.

For spatial queries that allow multiple execution paths, it
may be beneficial to execute other operations before spatial
joins. For example, suppose we have two data sets covering
the same area, one containing buildings, the other contain-
ing parcels of land. Consider the following query:

Query: Find all buildings built on government-owned land.

If the total number of buildings is large, but only a small
fraction of them are built on government-owned land, it
may be more efficient to perform a nonspatial selection first
to identify government-owned land before performing the
spatial join. This approach introduces an intermediate data
set without a spatial index.

It is also common for a spatial query to involve multiple
spatial joins. If an input to a spatial join is the output of an-
other spatial join, such input might only be remotely related
to the original data set. In such cases, using precomputed
indices from the original data set could be very inefficient
or even infeasible. Other spatial operations, such as re-
classification, aggregation, and buffering [17], may also occur
together with spatial joins, requiring transformation of the
original data sets, and further complicating the situation.
For convenience, we call a data set that is the output of an
earlier spatial or nonspatial operation a derived data set.

Our approach to supporting such queries is to dynami-
cally build access methods for the derived data sets as nec-
essary to support spatial join. However, most spatial access
methods [12], [13], [14], [15] were originally designed for a
different context. In particular, such indices are assumed to
be built up incrementally, and are not optimized for all-at-
once construction. Most such indices are also designed to
minimize the cost of spatial selection, not that of spatial
join. They try to reduce the average number of disk accesses
per spatial selection and the worst-case selection costs, and
to minimize disk space consumption. Such characteristics
are not always the most crucial in the context of spatial
joins. In addition, there is useful information available at
join time that existing spatial index construction algorithms
do not exploit. For example, the sizes of the input data sets
are known at join time. So is the spatial distribution char-
acteristics of these data sets. We need a spatial data struc-
ture that is inexpensive to create at join time, and takes ad-
vantage of information available at join time to support
efficient spatial join processing.

1.2.1 The Seeded-Tree Approach
In this paper, we address this problem with a new spatial join
method using index structures called seeded trees, first intro-
duced in [1]. We assume a system in which the R-tree is the
main type of spatial index. However, our method does not
require R-tree-like indices to pre-exist for both participating
data sets, thus handling situations where using precomputed
indices is impractical. The seeded tree construction algorithm
uses information about the join and the input data sets, and
constructs the seeded tree dynamically. Since the seeded tree
is constructed at join time, low tree construction costs are
crucial to its performance. We present a tree construction
method using intermediate linked lists that performs I/O
mostly in sequential accesses. This method avoids most
buffer thrashing and constructs seeded trees at very low cost.
Upon encountering a join operation, our join algorithm first
constructs a seeded tree for one of the participating data sets,
and then proceeds to use some standard tree matching algo-
rithm to compute join results. Our method works with any
tree matching algorithm, but we will use algorithm TM pro-
posed in [16] as the tree matching component of our method,
given its simplicity and reasonable performance.
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In addition to discussing the basic structure and behav-
ior of seeded trees [1], we present a new buffer manage-
ment strategy for tree construction. This method does not
follow the conventional rationale of delaying writing buffer
pages as long as possible, but reflects buffer contents to
disk in large chunks well before space reclamation is re-
quired. This method lowers I/O costs by an additional 40
percent. We also discuss a space utilization problem intrin-
sic to the seeded tree, namely, that caused by the grown
subtree roots, and provide a simple but efficient solution.
Our solution exploits the fact that the grown subtrees are
constructed in sequence, and packs each subtree root im-
mediately after its grown subtree is built. This packing al-
gorithm contributes to the stability of the seeded tree
method, while incurring no additional I/O overhead and
requiring no separate packing pass. We also examine the
theoretical aspects of the seeded tree method, and provide
guidelines for choosing algorithmic parameters.

We perform experiments on the seeded tree method
with input data of various characteristics, including data
sets designed to stress the seeded tree method, and with
real-life data. Our experiments show that the seeded tree
method uniformly outperforms existing tree-based meth-
ods by many times, both in terms of the number disk pages
accessed and the translated I/O costs. Further, the perform-
ance gains of the seeded tree method over other methods are
very stable across different input data characteristics.

This paper is organized as follows. Section 2 describes
the structure and basic behavior of the seeded trees. Section
3 discusses various issues in seeded tree construction and
presents tree construction techniques. Section 4 analyzes
theoretical aspects of our method. Performance studies on
the seeded tree method with various input data sets are
reported in Section 5. Section 6 discusses related issues, and
Section 7 concludes this paper.

2 SEEDED TREES BASICS

Let us assume that we want to join a derived data set DS,
for which no precomputed spatial index exists, with an or-
dinary data set DR, for which we are given an R-tree index.
Our algorithm constructs a seeded tree for the derived data
set, and matches the seeded tree with the existing R-tree
index. Let TS denote the seeded tree for DS, and let TR de-
note the R-tree for DR.

The central idea behind the seeded tree method is to use
available information to reduce join costs. When a seeded
tree TS is to be constructed for DS, we know that DR and its
R-tree TR will be used in the join process. We can use the
characteristics of DR and TR to expedite the join process. It
has been noted that the performance of an R-tree-like index
depends not only on its constituent data objects but also on
the order in which data objects were inserted into it [12],
[13]. The data inserted earlier will decide the initial organi-
zation of the tree and hence the position in the tree of the
data inserted subsequently. It has also been observed that
deleting and reinserting a fraction of the data objects in an
R-tree improves its performance [13]. Such phenomena
suggest that when constructing a seeded tree for a spatial
join, we can start with a small tree to guide tree growth,

instead of starting from a single root node. Furthermore,
since we know the seeded tree will be matched with TR, the
characteristics of TR can be used to determine this small
initial tree. By choosing the information used in the initial
tree well, we may expect to have a seeded tree that is
shaped more suitably for joining with DR.

The importance of tree organization in spatial joins is il-
lustrated by the example in Fig. 1a. Say we have an R-tree
TR and 14 data objects to be inserted into a seeded tree TS,
and that TR will be joined with TS. Assume tree fan-outs of
four. Fig. 1b shows the bounding boxes of the children of
the root of TS when the bounding boxes are organized to
achieve smallest area. If the data objects are inserted into TS
in such an order that these bounding boxes are actually
achieved, the join process will match each of the seeded tree
bounding boxes BS1, BS2, BS3, and BS4 against two bound-
ing boxes in TR. However, if the bounding boxes in TS are
allowed to be nonminimal but are organized as in Fig. 1c,
each seeded tree bounding box will be matched against
only one bounding box in TR. Thus, the criteria for organ-
izing tree indices are different when the tree is optimized
for spatial selection and when the tree is optimized for spa-
tial join. If we can create an initial tree so that the data ob-
jects will be inserted as in Fig. 1c, both I/O and CPU cost
can be reduced during the join process.

Fig. 1. Beneficial and nonbeneficial formation of bounding boxes in a
seeded tree.

In the seeded tree method, this goal is achieved by
copying the first k levels of the R-tree TR to the seeded tree
(see Figs. 2 and 3).  Structurally, a seeded tree consists of
the seed levels and grown levels (see Fig. 2). The tree nodes at
the seed levels are called seed nodes, and those at the grown
levels are called grown nodes. The seed levels start from the
root and continue consecutively for a small number of levels.



LO AND RAVISHANKAR:  THE DESIGN AND IMPLEMENTATION OF SEEDED TREES: AN EFFICIENT METHOD FOR SPATIAL JOINS 139

The grown levels span from the children of the last seed
level to the leaf level. As with R-tree nodes, a nonleaf node
in the seeded tree contains entries of the form (mbr, cp),
where cp points to a child node, and mbr is the minimum
bounding rectangle of all objects contained in the child
node. A leaf node contains entries of the form (mbr, oid),
where oid refers to a spatial object in the database, and mbr
is the bounding box of that object.

2.1 Seeding Phase
The construction of a seeded tree consists of a seeding phase,
a growing phase, and a simple clean-up phase. The seed levels
are numbered from 0 (the root level) through k - 1, and the
grown levels span from level k to level l (the leaf level).

In the seeding phase, the seed levels of the seeded tree TS
are set up by copying over the top k levels of the R-tree TR
(see Fig. 3). The R-tree TR, from which the copied informa-
tion is derived, is called the seeding tree. The bounding box
fields of the TR nodes may undergo some simple transfor-
mations before being copied into corresponding TS nodes.
The pointer fields of the seed nodes at levels 0 to k - 2 are
set to point to their child nodes. The pointer fields of level
k - 1 seed nodes are set to NULL. We call each (mbr, cp)
pair at level k - 1 a slot, and level k - 1 of the seeded tree,
the slot level. The information copied into the seed nodes
will guide data insertion in the growing phase, thus decid-
ing the shape into which the tree will eventually grow.

The seed levels of the seeded tree have the following
properties:

1) The seed nodes at the slot level have null pointers but
non-null bounding boxes.

2) During tree construction, the bounding boxes in the
seed nodes are used only to guide data insertion.
Thus, in a seed node, the value of mbr in a bounding
box and pointer pair (mbr, cp) need not reflect the
true minimal bounding box of all data reachable
through cp. The bounding box fields must be modi-
fied into the true minimal bounding boxes before tree
matching begins.

3) Although the bounding box fields of seed nodes and
the pointer fields of the slot level nodes may change
as needed during data insertion (the growing phase),
the structure of the seed levels is never allowed to
change. In particular, node splitting at the grown levels
never propagates upwards into the seed levels. The be-
havior of the grown nodes will be described in detail
in Section 2.2.

Since the seed levels guide the growth of the tree, the
values in the bounding box fields of seed nodes are crucial
to the performance of the seeded tree. Simply copying over
the bounding boxes from the seeding tree TR to the seeded
tree TS may not always be the best strategy. Copying badly
formed minimum bounding boxes from the seeding tree
will penalize the performance of the seeded tree. As an ex-
ample, consider Fig. 4, where minimal bounding box B1
contains two long rectangles R1 and R2, and minimal
bounding box B2 contains two squares R3 and R4. As a re-
sult, bounding box B1 has a large dead area and only badly
describes its children, whereas B2 is a more compact and
better description of its children. If the bounding boxes B1
and B2 were to be copied unchanged into the seeded tree,
and we use minimal area increase as the criterion for inser-
tion [12], object S1 would be inserted into B1 instead of B2,
which could result in unnecessary disk accesses during the
join process.

Fig. 4. Efficient and inefficient bounding boxes.

Other information can be copied into the bounding box
field of seed nodes. In the previous example, if we had
copied the center points of bounding boxes from the seed-
ing tree, S1 would have been inserted properly into B2. In
this study, we investigate three different strategies for
copying information from the bounding box fields of seed-
ing tree nodes:

Fig. 2. Example of a seeded tree.

Fig. 3. Seeding phase.



140 IEEE TRANSACTIONS ON KNOWLEDGMENT AND DATA ENGINEERING,  VOL.  10,  NO.  1,  JANUARY/FEBRUARY  1998

C1: copy the minimal bounding boxes.
C2: copy the center points of the minimal bounding boxes.
C3: At the slot level, copy the center points of the minimal

bounding boxes. At other levels, the bounding box field
contains the true minimum bounding box of its children.

Our results show that copy strategies C2 and C3 almost al-
ways outperform strategy C1.

2.2 Growing Phase
During the growing phase, data objects in DS are inserted
into the seeded tree. To insert a data object, we traverse the
tree from the root to the slot level, at each level choosing a
suitable node to traverse from the next level. Eventually the
slot level is reached and a slot chosen for inserting the data.
If this is the first insertion through this slot, the child
pointer of the slot will be NULL. In this case, a new grown
node is allocated, the child pointer is set to point to the new
node, and the data object inserted into it. Otherwise the
data are inserted into the grown node found through the
slot pointer. This grown node behaves like the root of an
ordinary R-tree. When it overflows due to insertions, it will
be split into two grown nodes, and a third grown node al-
located to become the parent of the two nodes. The slot
pointer is modified to point to the new root. Subsequent
insertions through this slot behave like ordinary R-tree in-
sertions, the root of the R-tree being the node pointed to by
the slot pointer.

Recall that node splitting does not propagate up to the
seed levels, and that the structure of the seed levels remains
unchanged during the whole growing phase. Thus, a
seeded tree can be visualized as consisting of a small tree of
seed nodes, with an R-tree forest of grown nodes attached
to the slots. The R-tree pointed to by the each slot pointer is
called a grown subtree (see Fig. 2).

At each seed level we must choose a child from the next
level to traverse, until a slot is found. We make this choice
based on the information stored in the bounding box fields of
each node. The exact criterion for child selection depends on
whether the value stored is a central point or an area. If cen-
tral points are stored, we choose a child whose central point
is close to the central point of the data being inserted. If areas
are stored, we choose a child that yields the smallest bound-
ing box area after insertion, subtracting from it the sum of the
areas of the old bounding box and the input rectangle. This
criterion is the same as that used in R-tree construction.

The bounding box fields of the traversed seed nodes are
not always updated after each data insertion. We can
choose whether to update these bounding boxes, and how
to update them. If we choose not to update these bounding
boxes, subsequent insertions will continue using the origi-
nal bounding boxes in trying to find a slot, and will be
guided only by the characteristics of the seeding tree. Up-
dating bounding boxes right after each insertion causes the
bounding boxes to reflect the data inserted through their
associated pointer at all times, so that subsequent insertions
will be guided not only by the information derived from
the seeding tree but also by the part of data set DS inserted
so far. In this study, we investigate the following bounding
box update policies:

U1: No updates after insertions.
U2: Update traversed bounding boxes after each insertion to

enclose the inserted data objects and the original seed
bounding box.

U3: Same as U2, but the updated bounding box encloses
only inserted data, but not the seed bounding box.

U4: Update bounding box at the slot level as in U2. Bound-
ing boxes at other seed levels are not updated.

U5: Update bounding box at the slot level as in U3. Bound-
ing boxes at other seed levels are not updated.

The bounding boxes at the grown level are updated as in
ordinary R-trees.

The clean-up phase begins after all data object in DS are
inserted into the seeded tree. The bounding box fields of
seed node are adjusted to be the true minimum bounding
boxes of their children. Slots containing no data objects are
deleted and relevant data structures made consistent.

The tree matching process begins after the seeded tree is
built. Note that with the above insert algorithm, more data
objects may have been inserted into some slots than into
others. As a result, grown subtrees may have different
heights. However, since the tree matching procedure TM
[16] does not require the participating trees to be balanced,
it can be applied directly without any difficulty. Further-
more, any optimization technique developed for matching
R-trees can be applied to matching seeded trees as long as
tree balance is not a prerequisite.

3 TREE CONSTRUCTION ISSUES

A seeded tree is constructed dynamically at join time, so low
tree-construction costs are crucial to its performance. In this
section, we discuss the construction of seeded tree in detail.
First we present a tree construction technique that lowers the
tree construction costs by using linked lists in an intermedi-
ate step. Then we discuss a space underutilization problem
caused by grown subtree roots, and show how to overcome it
by packing the roots immediately after a grown subtree is
built. We also present a new buffer management strategy for
tree construction that does not follow the convention ration-
ale of delaying disk writes as long as possible, but reflects
dirty buffer pages to disk in large chunks well before space
reclamation. This new strategy results I/O costs lower by as
much as 40 percent over that implemented in [1]

3.1 Tree Construction Using Linked Lists
Traditional tree-like indices have been optimized for incre-
mental updates rather than for all-at-once construction. As
a result, their total construction costs can be high.

We have found that the costs of constructing tree-like
indices all at once arise mainly from buffer misses as the
trees grow and overflow the memory buffer space. The ac-
tual construction costs depend on the relative sizes of the
tree and the buffer. For both R-trees and seeded trees using
straightforward construction algorithms, such costs can be
very high. In the particularly bad cases, buffer misses have
resulted in disk I/O costs several times higher than that of
the actual join process. For example, we have observed that
constructing an R-tree with an 800 Kbyte data set (40,000
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data objects), using a 512 Kbyte buffer with 1 Kbyte page
size, can result in 7,206 disk accesses during construction
(see Table 5, second row in Section 5.1). This number is nine
times the number of disk pages read to access the input
data set, disregarding the difference between random and
sequential disk accesses, and three times the number of disk
access needed for a match with an R-tree having 100K en-
tries. Another factor affecting the construction cost is the
degree of clustering in the input data stream. If data objects
close to each other in space are also close in their input or-
der, the chances of buffer misses will be lower. However,
such clustering is hard to guarantee in general.

For seeded trees, we have been able to avoid most ran-
dom disk accesses due to buffer misses by forming inter-
mediate linked lists under the slots. During the growing
phase, if we estimate that the tree size will be larger than
the buffer size, the data inserted through a slot will not be
built into a grown subtree immediately, but first organized
into a linked list of data pages (see Fig. 5). A data page in
the linked lists contains an array of entries, each with a
bounding box and a data pointer field. The linked lists
grow as data objects are inserted. Eventually all data pages
in the buffer will be allocated. If we now want to insert an
additional data object into a linked list in which all data
pages are full, we write all linked lists longer than a small
predefined constant to disk, freeing up most of the buffer
space. The corresponding slot pointers are reset to NULL.
The set of linked lists so written is called a batch. The inser-
tion process then proceeds as before. When all data objects
in DS are inserted, we can start constructing grown subtrees
from the linked lists. An R-tree is built for each group of
linked lists that have been grown under the same slot, us-
ing the data objects recorded in the lists. The slot pointer is
then modified to point to the root the R-tree (see Fig. 6).

By using such intermediate linked lists, we can construct
the grown subtrees one by one instead of all together. Since
there are many slots in the seeded tree, and hence many
grown subtrees, the average size of a grown subtree is
much smaller than the size an R-tree built with the same
input data. The chances of a grown subtree overflowing the
buffer are therefore much smaller, and the number of ran-
dom disk accesses is significantly reduced. The price this
method must pay is an increase in the number of sequential
accesses for writing and reading the linked lists. However,
since sequential access is much faster than random access in
disk I/O, this results in much faster construction times.

The number of slots in a seeded tree is determined by the
number of seed levels. For as few as two seed levels, the
number of slots varies from a few tens to hundreds, assum-
ing a fan-out of at least 50. This means that the algorithm
could work for seeded trees of size at least 10 times larger
than the buffer size. Note that even if some grown subtrees
do overflow the buffer, they are likely to be much smaller
than R-trees built using the same input, and the penalty in-
curred likely to be much smaller. In practice, however, buff-
ers are unlikely to overflow even with some data skew since
the average subtree size can be made much smaller than the
buffer size. In our experiments, we have constructed seeded
trees with more than 2,500 nodes using a 512-page buffer
size. The worst buffer overflow we have experienced during
seeded tree construction is two buffer misses.

Fig. 5. Organizing inserted objects into linked lists.

Fig. 6. Converting linked lists into grown subtrees.

3.2 Packing Grown Subtree Roots
Let f denote the fanout of a tree node, and fmin and fmax de-
note the lower and upper bounds on f. All R tree nodes
have between fmin and fmax children, except for the root,
which has between two and fmax children. A root node thus
has a smaller number of children than a nonroot node on
average, and utilizes space less efficiently. A seeded tree
may be larger than an R tree constructed using the same
data set, since every grown subtree is a small R-tree and
introduces a root node. The size difference can become sig-
nificant when the number of slots, and hence the number of
grown subtrees, in the seeded tree is large. The larger size
of the seeded tree not only consumes more disk space, but
more seriously, also incurs more random disk I/O to page
in the tree during the matching phase. If no measures are
taken, this phenomenon will either limit the range for the
feasible number of slots, and/or compromise the perform-
ance of the seeded tree method.

We avoid this problem by packing multiple grown sub-
tree roots into one physical node. Our objective here is not
to optimize space utilization, but to find a simple yet effec-
tive solution to the problem. Because subtrees are built in
sequence, we can readily pack subtree root as each is con-
structed. No separate packing phase is necessary.

For convenience, we assume that children of a tree node
are numbered from 1 to f, and are always accessed in as-
cending order. Conceptually, each grown subtree has its
own root node. Physically, we pack several grown subtree
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roots into one physical node, and place markers between
fragments of the node that belong to different subtree roots.
A marker is simply an ordinary pointer in a physical node
set to some reserved value.

When a grown subtree is first built, its root occupies a
full grown node. We invoke the algorithm in Fig. 7 to pack
the root immediately after each subtree is built.

With this packing method, slots in the same leaf seed
node may have the same pointer values, but slots in differ-
ent leaf seed nodes will always have different pointer val-
ues. Assume a packed grown subtree root is attached to a
leaf seed node L through a slot S. To access the contents of
the subtree root, we scan L to find out the number of slots
before S that have the same pointer value as s does. If there
are j such slots, the subtree root is packed in the j + 1 frag-
ment of L. Since the nodes packed by this algorithm often
have higher space utilization than average nodes, our ex-
periments show that the seeded trees built with the packing
algorithm almost never exceed the size of an R-tree built
using the same data set, and provide stable performance
regardless of the number of slots used.

3.3 Buffer Management During Seeded Tree
Construction

The seeded tree construction algorithm using intermediate
linked lists is outlined in Fig. 8. For clarity of discussion, we
use the term write-purge to mean the action of writing the
contents of a buffer page to disk, and freeing the buffer
page by marking it unused. We use the term write-reflect to
mean the action of writing the contents of a buffer page to
disk and marking it clean. A buffer page after write-reflect
remains a used page.

The tree-construction time buffer management strategy
implemented in [1] is outlined in Fig. 9. Steps A3 and A4
follow the conventional rationale of delaying disk writes as
much as possible. However, a closer examination reveals
that this method reduces the total number of disk pages
accessed, but not necessarily the total I/O costs. In step A3,
when a page is required to accommodate tree growth but
the buffer is full, the oldest page in the buffer is written to
disk, incurring a random disk write. Similarly in step A4,
buffer cache misses may cause dirty grown subtree nodes
to be written to disk. Since tree nodes are visited one at a
time during tree matching, buffer reclamation is done one
page at a time, incurring random accesses.

3.3.1 Early Bulk I/O
If, instead of delaying writing dirty pages to disk until the
pages are to be reclaimed, we write-reflect all dirty pages in
linked lists and grown subtrees at an early time, no random
writes will be incurred during space reclamation. Further, if
the write-reflects are done in large chunks, most pages will
be written to disk in sequential I/O. This approach may
increase the total number of pages written to disk, but the
benefits of performing I/O sequentially well outweigh the
penalties.

PR1. Locate a grown node: If the subtree root is the first child of its par-
ent seed node, allocate a new grown node for use in the next step.

Otherwise, the subtree is attached to the ith slot in its parent seed node
for some i > 1. Locate the grown node G pointed to by the i - 1th slot. If
the number of unused (pointer, bounding box) pairs in G is greater
than the number of children in the subtree root, use G in the next step.
Otherwise, allocate a new grown node.

PR2. Copy: Denote the located physical grown node as G, the number of
children of the subtree root as k. Locate the position of the last marker in
G. Let it be the jth pointer. If there is no marker in G, set j = -1.

Copy the contents of the subtree root to pointers j + 1, j + 2, º, j + k of G.
Change the slot pointer that points to the original subtree root to point to
G. The original subtree root is not used anymore and can be freed.

PR3. Mark: If j + k + 1 £ fmax, put a marker at pointer j + k + 1 of G

Fig. 7. Algorithm for packing grown subtree roots.

A1. Copy seed levels: Copy seed levels from the seeding tree.

A2. Insert data and build linked lists: Insert data and build linked lists
under the slots.

    A2.1. Build linked list batches: When buffer cache overflows, write
linked lists longer than q nodes to disk. If there are no linked lists
with more than q nodes, reduce q by one and repeat until some
linked lists are written. Continue until all data items are inserted.

    A2.2. Build last batch: Write the remaining linked lists with more than
q nodes to disk. If there are no linked lists with more than q nodes,
reduce q by one and repeat until some linked lists are written.

A3. Build grown subtrees: For each slot, read in the linked lists built
under it one by one, and build an R-tree from the data entries in the
lists. Attach the R-tree to the corresponding slot.

A4. Enter tree matching phase: After all grown subtree are built, enter the
tree matching phase.

Fig. 8. Outline of seeded tree construction algorithm.

A1. Copy seed levels: Cost: sequential or random read of seeding tree nodes.

A2. Insert data and build linked lists:

    A2.1. Build linked list batches: Use write-purge method for batch
writes. Cost: one random write and a number of sequential writes for
each batch write.

    A2.2 Build last batch:    Same as A2.1.

A3. Build grown subtrees: Read each linked list in one sequential access.
Use ordinary LRU buffer replacement policy during tree construction.
Cost: one random read and a number of sequential reads for initial
reading of each linked list. Each buffer cache overflow incurred by
subtree growth causes one random write if the replaced page is
marked dirty. Each buffer cache miss upon accessing a subtree node or
a linked list node causes one random read and possibly one random
write if the replaced page is marked dirty.

A4. Enter tree matching phase: Enter the tree matching phase with a
warm buffer cache. There are dirty grown subtree nodes at this point.
Cost: A dirty subtree node will cause one random write when its space
is reclaimed in the tree matching phase.

Fig. 9. Old tree construction buffer management strategy.
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We use individual linked lists and grown subtrees as
units for such early write-reflects. This improved buffer
management strategy and other fine-tuning are shown in
Fig. 10. Step A3 in this algorithm requires the buffer space
to be large enough to hold one whole linked list, but this is
guaranteed to be the case. Since we reclaim linked lists
pages as we finish processing them, no linked list pages
remain in the buffer at the end of this step.

A1. Copy seed levels: Same as old algorithm.

A2. Insert data and build linked lists.

    A2.1. Build linked list batches: Same as old algorithm.

    A2.2 Build last batch: Write-reflect all remaining linked lists, instead
of write-purging linked lists longer than k nodes to disk. Cost: similar
to old algorithm, but with more sequential writes.

A3. Build grown subtrees:

• Build each grown subtree using its linked lists in the last batch first,
since they may still be in the buffer.

• When accessing the first page of a linked list, pin all linked list
pages in the buffer to avoid being paged out.

• When a linked list page is fully processed, unpin and free the page.
• When a grown subtree is built, write-reflect it to disk. Its pages

remain in memory and subject to ordinary LRU replacement.
• All other aspects are the same as ordinary LRU buffer replacement

policy.

Cost:

• Reading each linked list incurs one random read and a number of
sequential reads. If a linked list accessed is left in memory by A2.2,
the cost of reading it is saved.

• Writing a grown subtree to disk immediately after its construction
incurs one random write and a number of sequential writes.

A4. Enter tree matching phase: Enter the matching phase with a warm
buffer cache. Cost: Since all subtree pages are reflected to disks in A3,
no writes occur in the matching phase.

Fig. 10. New tree construction buffer manager strategy.

Table 1 compares the performance of the seeded tree
method using the old and the new buffer management
strategies, using a pre-existing R tree constructed from an
input file of 100,000 data items, and a seeded tree dynami-
cally constructed from an input file of 40,000 data items.
Columns “Matching” and “Construction” in Table 1 indi-
cate tree matching costs and tree construction costs, respec-
tively. Various “read” and “write” subcolumns show the
numbers of disk pages accessed at different stages through
different types of disk accesses.

Table 1 shows that the new buffer manager strategy
eliminates all random writes from the tree matching phase.
It also reduces the number of random writes substantially
for the tree construction phase. The price paid is an in-
creased number of sequential writes during tree construc-
tion, caused by write-reflects of newly constructed grown
subtrees. Due to other fine tuning techniques, the total
number of pages accessed is actually smaller for the new
strategy, as shown in the column “total access.” Since the
new strategy incurs mostly sequentially accesses, its im-
provement over the old strategy is even greater when we
compare the I/O costs. The columns labeled “Total cost”
show the costs calculated under different assumptions for
the ratio of sequential and random page access costs. De-
pending on the ratio assumed, the new buffer management
strategy represents as much as 40 percent improvement in
I/O costs over the old strategy.

The trends and the performance gain of the new over the
old buffer management strategy presented in Table 1 are
typical of all our experiments. In the following discussions,
we will present only the results using the new buffer man-
agement strategy.

4 THEORETICAL ANALYSIS

A parameter crucial to the performance of the seeded tree
algorithm is the number of seed levels copied from the seed-
ing tree. If only one seed level is copied, very little informa-
tion is carried from the seeding tree to the seeded tree, and
because the number of slots is small, the seeded tree will con-
sist of a small number of big grown subtrees. In this case, the
seeded tree may behave much like ordinary R-trees, and
cannot take advantages of its features. On the other hand, if
the number of seed levels is too large, the seed levels will
occupy too much buffer space, and because the number of
slots is very large, there can be too many grown subtrees,
with each subtree degenerating into a very small tree, possi-
bly a single node. A balance in the choice of the seed levels is
important for good performance of the algorithm.

If the data set to be constructed into a seeded tree is too
large, individual grown subtrees can still overflow the
buffer and cause performance degradation, even with a
choice of a large number of slots.

This section relates these issues and discusses the rela-
tionships between buffer size, data set size, and the number
of seed levels. We start with a simple consideration of the
requirements for the seeded tree algorithm to achieve good
performance, then identify the feasible ranges for the input
data set size and the number of slots. Based on these re-
sults, we give a simple algorithm to provide guidelines for
choosing the number of seed levels.

TABLE 1
COMPARISON OF NEW AND OLD BUFFER MANAGER POLICIES

Matching Construction
Total cost

(r = sequential/random)

Algorithm
ran.
read

ran.
write

ran.
write

ran.
write

seq.
read

seq.
write

Total
access r = 1/5 r = 1/10 r = 1/30

STJ-OLD 1598 510 159 831 697 854 4649 3408 3253 3150

STJ-NEW 1599 0 87 116 415 2119 4336 2309 2055 1886

r is the cost ratio of accessing a disk page sequentially to that of accessing one randomly.
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Table 2 lists the parameters used in the following discus-
sion. Without loss of generality, we assume that tree nodes,
buffer pages, and disk pages are all of the same size. Since
there can be numerous ways of organizing spatial data, we
assume that a data set contains, for each spatial object, a 16-
byte minimum bounding box and a 4-byte pointer to the
detailed description of the object. We also assume that the
seeding tree and the seeded tree both have large node
fanout, so that the size of a tree is approximately the size of
its leaf level.

TABLE 2
SEEDED TREE CONSTRUCTION PARAMETERS

parameter definition

D input data set size (# blocks)

B buffer size (# blocks)

l number of seed levels

Ns number of nodes in seed levels

nl number of nodes at slot level

fmin minimum fanout

fi average fanout at level i

d number of data item

S number of slots

h tree height

ni number of nodes at level i

fmax maximum fanout

fave average fanout of whole tree

4.1 Seeded Tree Algorithm Requirements
For feasibility and efficiency, the seeded tree algorithm re-
quires the following:

R1  The size of the seed levels should

      R1.1  be smaller than the buffer size.

      R1.2  occupy a small fraction of the buffer so as to obtain good tree
construction performance.

R2  The average grown subtree size should

       R2.1  be smaller than the available buffer space to avoidrandom
disk access during grown subtree construction.

      R2.2  occupy a small fraction of the available buffer for good per-
formance during actual join.

4.1.1 Requirement R1
Requirement R1.1 may be expressed as Ns < B. Since the
nodes have large fanout, the number of nodes in seed levels
is approximately the number of node in the slot levels, i.e.,
Ns ª nl. Therefore, we require nl < B.

To obtain better performance, we apply R1.2 and require
seed level nodes to occupy only a fraction of the buffer,
which translates into the formula

nl < B/E,                                       (1)

where E > 1 is a tunable constant.

4.1.2 Requirement R2
Requirement R2.2 states the average grown subtree size
should be smaller than a fraction of the available buffer

space. Since the input data set has D blocks, each grown
subtree must hold D/S blocks of input data on average. A
leaf node of a grown subtree is fave/fmax full on average, hence

a grown subtree needs D
S

f
f

ave

max
d i e j/  leaf nodes to hold D/S

blocks of input data. With large fanout, the number of leaf
nodes is approximately the number of nodes of the tree, and

the average size of a grown subtree is thus D
S

f
f

ave

max
d i e j/  nodes.

Let B¢ be the buffer space available after holding the seed
levels in the buffer. Since the size of the seed levels is ap-
proximately nl, B¢ = B - nl. Requirement R2.2 may be ex-
pressed as

D f
S f

B
C

max

ave

◊
◊ <

¢

for some tunable constant C > 1.
Recalling S = nl ◊ fl, we can rearrange this formula into

n
CD f

B n f fl
max

l ave l
> -( )( ) .                                (2)

Defining K = CDfmax/(fave fl) and solving for nl, we get a
lower bound for nl :

B B K
nl

- -
<

2 4
2 .

4.2 Choosing the Number of Seed Levels and
Number of Slots

Combining (1) and (2), we derive bounds for the numbers
of seed nodes and slots as follows:

B B K
n

B
El

- -
< <

2 4
2 ,                           (4)

( )B B K
S

Bf
E

l- -
< <

2 4
2 .                          (5)

Thus, the seeded tree algorithm will perform well if the
number of seed nodes/slots falls within the range prescribed
by (4) and (5). However, our algorithm is designed not to
break down even if these numbers fall outside the prescribed
ranges (see Section 5.2). It simply runs less efficiently.

Determining the number of seed levels is straightforward.
We descend from the root level of the seeding tree, and find
the first level whose nl and fl satisfy (4). The number of levels
descended in the seeding tree is the number of seed levels in
the seeded tree. If no level satisfies both conditions in (4), we
repeat the process but check only the upper bound of (4) the
second time, since Requirement R1, which induces the upper
bound, is more fundamental. The bounds on the number of
slots prescribed by (4), and thus the number of seed levels
chosen by this algorithm, are advisory, and may be consid-
ered as default values. When more information is available,
such as data clustering and correlations between the input
data sets, other choices may emerge as more reasonable.

In practice, the range between the upper and lower
bounds on the number of seed nodes/slots given by (4)/(5)
is usually very wide, so that the seeding tree almost always
contains a level with a number of seed nodes that satisfies
both bounds (see Section 5.1).
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The following theorem sheds light on the implication of
the parameter C and on the stability of seeded trees.

THEOREM 1. Let the average grown subtree size be smaller than
1/C of the available buffer space. The number of subtrees
with size greater than the available buffer space is at most
1/C of the total number of grown subtrees. In other words,
if D

S
B
C< ¢ , then the number of grown subtrees with size

greater than B¢ is at most S/C.

PROOF. Assume there are a grown subtrees with size greater
than B¢. Denote the average size of these subtrees Ba,
and the average size of the rest of the subtrees Bb.
Then, we have,

a ◊ Ba + (S - a) ◊ Bb = D.

This can be transformed into

a
D S a B

B
D
B

b

a a
=

- - ◊
<

( )
.

Because Ba > B¢, we have a < D
B¢ . From D

S
B
C< ¢ , a < S

C .�

4.3 Feasible Input Data Set Sizes
Inequality (4) can also be used to determine what input
data sizes can be handled by our algorithm.

If the number of seed levels is 1, then l = 0, and n0 must
satisfy (4). The upper bound in (4) is easily satisfied since
the seed levels now occupy only one page, and any reason-
able system will have a much larger buffer. In this case, we
can apply the lower bound from (4) on n0, and obtain the
requirement

D
Bf f
Cf

ave

max
< 0 .                                        (6)

If the number of seed levels is more than 1, i.e., l ≥ 1, let i
be the lowest level satisfying the lower bound in (4). Now, if

f
B
E

B B K
i- <

F
HG

I
KJ

- -F
H
GG

I
K
JJ1

2 4
2/                           (7)

then ni = ni-1 ◊ fi-1 < B B K
i

B
Ef- -

-◊ <
2 4

2 1 . Thus, ni will also
satisfy the upper bound in (4).

Simplifying (7) and solving for D, we have
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Thus, for an input data set of size D, if there exists a fl in
the seeding tree satisfying Inequality (6) or (8), we are guar-
anteed to find a number of seed levels for the seeded
tree that satisfies requirements R1 and R2 (or equivalently,
Inequality (4).

The above upper bound on the feasible data set size D
depends on fl, and therefore on the structure of the par-
ticular seeding tree in the join. To obtain a sense of the fea-
sible data set sizes D, we prefer a bound independent of fl.
Appendix A proves that the following condition implies (8):
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                  (9)

Condition (9) provides a good first-cut estimate for the up-
per bound on the feasible size of the input data set. Note
that the upper bound is proportional to the square of the
buffer size, and therefore is quite large even for moderate
buffer sizes.

As an example, suppose fmin, fave, and fmax are 16, 33, and 50,
respectively. Let parameters C and E both be 3, so that the
average grown subtree size and the maximum size of the
seed levels are both smaller than 1/3 of buffer size. If buffer
size is 500 pages, by (9) we have D < 11,769 pages. That is, for
data set up to approximately 11.8 Mbytes in size, we are
guaranteed to find a number of seed levels satisfying both
bounds in (4). Note that (9) is pessimistic. In practice, data set
sizes larger than its upper bound may still satisfy (4).

5 PERFORMANCE STUDIES

We conducted experiments to examine the behavior of
seeded trees with both simulated and real-life data. Assume
that a spatial join is to be performed on a derived data set
DS and a data set DR, for which an R-tree TR exists. We con-
ducted experiments with seeded-tree joins using three spa-
tial join algorithms: STJ, RTJ, and BFJ. Algorithm STJ
(Seeded Tree Join) is our algorithm, as described so far. It
constructs a seeded tree TS for the data set DS, and then
matches the tree indices TS and TR. Algorithm RTJ (R-Tree
Join) is a simple variation of the algorithm proposed by
Brinkhoff et al. [16]. It first constructs an R-tree TS for DS,
and then matches TS with TR. Algorithm BFJ (Brute Force
Join) simply performs a series of window queries on the R-
tree TR, using the data rectangles in DS as query windows.
The aggregation of answers to these window queries is
equivalent to a spatial join between DR and DS. RTJ and
STJ both use the CPU and disk I/O tuning techniques de-
scribed in [16]. For generality, the original R-tree structure
was used, and not any of its variations.

For simplicity, we assume that the disk page size and the
memory page size are both 1 Kbyte, as are the sizes of both
the seeded tree nodes and the R-tree nodes. The data files
are assumed to contain entries consisting of a 16-byte
bounding box and a 4-byte object identifier. We also as-
sume a dedicated buffer of 512 pages. For algorithms STJ
and RTJ, the buffer is used during both tree construction
and tree matching. During construction of TS, the buffer
pages containing newly created tree nodes are marked as
dirty and must be written to disks if the pages are to be re-
used. Both methods enter the tree matching phase with a
warm buffer. That is, the pages of the newly constructed
trees are left in the buffer for use in the tree matching
phase. For STJ, the new buffer management strategy de-
scribed in Section 3.3 write-reflects grown subtrees page to
disk right after they are constructed. Therefore, no disk
writes are involved when these pages are replaced. For
RTJ, we do not write-reflect the pages of the newly con-
structed R-tree, and so there are disk writes at tree match-
ing time when these pages are replaced by LRU policy. The
reasons are as follows. First, due to the way R-trees are
constructed, the dirty pages left in the buffer will be as-
signed to nonconsecutive locations in disk, and cannot be
written to disk in a few large sequential writes. The costs are
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approximately the same whether we write-reflect or not.
Second, most of the new R tree pages would have been
written to disk during tree construction anyway, and the
disk writes during tree matching constitute a very small
fraction of RTJ costs.

We studied data of different degrees of spatial cluster-
ing, which was controlled by a simple scheme in our ex-
periments. When generating a data set of x ¥ y objects, we
first generated x cluster rectangles, whose centers were ran-
domly distributed in the map area. We then randomly dis-
tributed the centers of y data rectangles within each clus-
tering rectangle. By controlling the total area of the cluster-
ing rectangles, we could control the degree of clustering of
the data set. The cover quotient of the clustering rectangles
(total area of the clustering rectangles divided by the map
area) is denoted as CCQ. The smaller the value of CCQ, the
more clustered the data set.

The length and width of each clustering rectangle was
chosen randomly and independently to lie between 0 and a
predefined upper bound. This upper bound controlled the
total area of the clustering rectangles. The size and shape of
data rectangles were similarly chosen using a smaller upper
bound. When clustering rectangles or data rectangles ex-
tended over the boundary of the map area, they were
clipped to fit into the map area. When a data rectangle ex-
tended over the boundary of its clustering rectangle, it was
not clipped. In the experiments, the number of data objects
per cluster was set to be 200, and the number of clustering
rectangles was set according to the total number of data
objects. Without loss of generality, the map area under
study was assumed to range from 0 to 1 along both X and Y
axes.

5.1 Effects of Size and Data Clustering
We conducted two series of basic experiments. In the first
series, we fixed the cardinality of DR at 100,000 and varied
the cardinality of DS from 20,000 to 80,000. We will use iDi
to mean the cardinality of a set D. The upper bound on the
side length of clustering rectangles was set to 0.04. The re-
sulting CCQ quotient of the clustering rectangles in DR was
0.2, meaning that the centers of all the data objects in DR
were restricted to 20 percent of the map area. For each data
configuration, we tested RTJ and BFJ, and conducted an
extensive study of STJ variations by applying combinations
of different seed node copy and update policies, as de-
scribed in Section 2. For each combination of policies, we
studied the effect of the number of seed levels, and the ef-
fect of seed level filtering on performance.

In the second series of experiments, we fixed the cardinal-
ity of DR and DS at 100,000 and 40,000, respectively, and var-
ied the degree of clustering of the data sets. We adjusted the
upper bound on side length of the clustering rectangles so
that CCQ of DR equaled 0.2, 0.4, 0.6, 0.8, and 1.0, respectively.
The upper bound on side length of the clustering rectangles
of DS was set to be same as that of DR in each experiment. We
tested the same set of seeded tree variants as the in first series
of experiments for each data configuration.

Among the various combinations of seed node copy and
update policies, we found that copy strategies C2 and
C3 (see Section 2.1) and update policies U3, U4, and U5

(see Section 2.2) always gave better performance. The dif-
ferences between the three best update policies were mar-
ginal. Due to space limitations, we list only the results from
seeded trees built using the combination (C3, U3).

Our experiments showed that the STJ versions substan-
tially outperformed BFJ and RTJ in all cases in terms of
disk I/O costs. The STJ versions also incurred the lowest
CPU costs among all algorithms.

Table 3 shows the number of slots suggested by our
guidelines (5) for various sizes of DS. Parameters B and E in
the equation are both chosen to be 3. The upper bound is
the same for all data set sizes, since it depends only on the
buffer size. The ranges between the upper and lower
bounds are actually very wide with our test cases (more
than two orders of magnitude). Therefore, we have great
flexibility in choosing a suitable number of seed levels.
With a DR of 100,000 objects, the seeding R-tree we con-
structed has four levels, with 1, 3, 94, and 3,099 nodes, re-
spectively, at each of its four levels. Using the algorithm in
Section 4.2, we choose the number of slots for our seeded
trees to be 2. This means there will be 94 slots in each
seeded tree.

TABLE 3
LOWER AND UPPER BOUNDS ON NUMBER OF SLOTS
FOR VARIOUS DATA SET SIZES PRESCRIBED BY (5)

bound iDRi = 20K iDRi = 40K iDRi = 60K iDRi = 80K

  lower   3.60   7.20   10.80   14.41

  upper   5555.56   5555.56   5555.56   5555.56

Table 4 shows the CPU costs for one experiment in the
first series, where iDRi = 100,000, iDSi = 40,000, and CCQ of
DR was fixed at 0.2. Column “mbr-overlap” lists the numbers
of bounding box overlap tests performed during tree con-
struction. Column “X-overlap” and “Y-overlap” are the
numbers of operations that test whether two bounding
boxes overlap along the X and Y axis, respectively. These
two operations are used during tree matching [16], [1]. The
CPU costs of both the RTJ and STJ methods are an order of
magnitude better than that of BFJ, with STJ somewhat bet-
ter but comparable with RTJ. This was the case throughout
all our experiments. We will focus on the disk I/O costs in
the following discussions.

TABLE 4
JOIN CPU COSTS

iDRi = 100K, iDSi= 40K , CCQ of DR= 0.2

Algorithm mbr-overlap X-overlap Y-overlap

BFJ 4648868 0 0

RTJ 295433 203776 168293

STJ 169112 189851 159554

Tables 5 and 6 show the I/O costs from the experiments
in detail. The column “Parameter” indicates the parameter
that was varied across the experiments. The numbers of
random and sequential disk block accesses for tree con-
struction and matching stages are under columns
“Matching” and “Construction,” respectively. For some of
the algorithms, we may need to flush memory pages con-
taining TS nodes to disk during tree matching time if they
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have not been reflected to disk and space is required for
loading other tree nodes. The write costs under “Matching”
should thus be charged to the tree construction part of each
algorithm. In addition, we list the total number of disk
pages accessed and the I/O costs calculated for different
ratios of sequential and random access costs. We define the
sequential/random ratio, denoted r, to be the ratio of the av-
erage cost of accessing one disk block sequentially to that of
accessing it through a random access. For each experiment,
we show the weighted I/O costs for r = 1/5, 1/10, and
1/30, respectively. The column “total accesses” shows the
count of all disk blocks accessed sequentially or randomly.
This number equals the total cost for r = 1. The total costs
and cost break-down of the first series of experiments are
shown in Figs. 11, 12, and 13, where “STJ-1/5,” “STJ-1/10,”
and “STJ-1/30” are the costs for the seeded tree join calcu-

lated with r = 1/5, 1/10, and 1/30, respectively. The total
costs of the second series of experiments are shown in Fig. 14.

In the first series of experiments, we found as expected
that I/O costs go up as the size of DS increases. STJ outper-
forms RTJ in all experiments. The number of disk reads
during tree construction is particularly interesting. For RTJ,
this cost arises from buffer misses during tree construction.
For STJ, the cost arises mainly from reading back the linked
lists when constructing the grown subtrees. The number of
pages read at creation time remains very small for STJ even
for large DS sizes, while for RTJ this number is at least an
order of magnitude greater. Our earlier experiments
showed that STJ incurred similar numbers of creation time
reads as RTJ when intermediate linked lists were not used.
Using intermediate linked lists in tree construction success-
fully eliminated the I/O cost caused by the LRU buffer

TABLE 5
JOIN PERFORMANCE FOR EXPERIMENT SERIES 1, VARYING DS SIZES

Parameter = Matching Construction
Total cost

(r = sequential/random)

DS sizes Alg.
ran.
read

ran.
write

ran
read

ran.
write

seq.
read

seq.
write

total
access r = 1/5 r = 1/10 r = 1/30

||DS|| = 20K BFJ 438 0 0 0 0 0 438 438.0 438.0 438.0

RTJ 1141 386 130 243 0 0 1900 1900.0 1900.0 1900.0

STJ 688 1 0 121 0 1014 1824 1012.8 911.4 843.8

||DS|| = 40K BFJ 8864 0 0 0 0 0 8864 8864.0 8864.0 8864.0

RTJ 2438 58 5987 1219 0 0 9702 9702.0 9702.0 9702.0

STJ 1599 0 87 116 415 2119 4336 2308.8 2055.4 1886.5

||DS|| = 60K BFJ 13650 0 0 0 0 0 13650 13650.0 13650.0 13650.0

RTJ 2563 46 12232 1887 0 0 16728 16728.0 16728.0 16728.0

STJ 2374 0 185 109 828 3193 6689 3472.2 3070.1 2802.0

||DS|| = 80K BFJ 17151 0 0 0 0 0 17151 17151.0 17151.0 17151.0

RTJ 3274 48 16499 2525 0 0 22346 22346.0 22346.0 22346.0

STJ 3004 0 276 111 1242 4264 8897 4492.2 3941.6 3574.5

TABLE 6
JOIN PERFORMANCE OF EXPERIMENT SERIES 2, VARYING CCQ OF DR

Parameter =
Matching Construction

Total cost
(r = sequential/random)

CCQ of DR
Alg.

ran.
read

ran.
write

ran
read

ran.
write

seq.
read

seq.
write

total
access r = 1/5 r = 1/10 r = 1/30

CCQ = 0.2 BFJ 8864 0 0 0 0 0 8864 8864.0 8864.0 8864.0

RTJ 2438 58 5987 1219 0 0 9702 9702.0 9702.0 9702.0

STJ 1599 0 87 116 415 2119 4336 2308.8 2055.4 1886.5

CCQ = 0.4 BFJ 14803 0 0 0 0 0 14803 14803.0 14803.0 14803.0

RTJ 2874 57 6881 1217 0 0 11029 11029.0 11029.0 11029.0

STJ 2261 0 92 124 414 2102 4993 2980.2 2728.6 2560.9

CCQ = 0.6 BFJ 23177 0 0 0 0 0 23177 23177.0 23177.0 23177.0

RTJ 3448 62 6342 1202 0 0 11054 11054.0 11054.0 11054.0

STJ 3163 0 96 135 408 2121 5923 3899.8 3646.9 3478.3

CCQ = 0.8 BFJ 25167 0 0 0 0 0 25167 25167.0 25167.0 25167.0

RTJ 3303 66 6259 1195 0 0 10823 10823.0 10823.0 10823.0

STJ 3100 0 93 136 410 2124 5863 3835.8 3582.4 3413.5

CCQ = 1.0 BFJ 31831 0 0 0 0 0 31831 31831.0 31831.0 31831.0

RTJ 3704 71 5948 1207 0 0 10930 10930.0 10930.0 10930.0

STJ 3366 1 90 132 410 2108 6107 4092.6 3840.8 3672.9
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misses. It is worth noting that STJ did not incur any disk
read at all for iDSi = 20K in Table 5.

STJ outperforms BFJ in all cases expect when DS size is
the smallest (see experiment for iDSi = 20K in Table 5). We
found that BFJ accessed only 483 different TR nodes in this case.
Since this number was smaller than the buffer size, no
buffer overflow occurred. Overflow occurred with input
data set of the same sizes for STJ and RTJ. This is because
the buffer must hold nodes from both TS and TS during tree
matching, and the number of nodes from both trees was
greater than the number of buffer pages. This suggests that
if the number of pages accessed in the index tree is smaller
than the buffer size, BFJ should be used as the join method.
However, with larger data sets, BFJ accessed at least twice
the number of disk pages than did STJ. The differences in
terms of translated I/O cost is about four to five times, for
r = 1/5 and r = 1/30, respectively. To our surprise, RTJ
performed worse than BFJ in all cases. A closer look
showed that though tree matching costs are lower for
RTJ, the high tree creation I/O cost due to buffer misses
outweighed any savings.

It is worth noting that in general STJ outperformed
other methods even in terms of total number of disk ac-
cesses. When the disk accesses numbers were translated
into weighted I/O costs, the differences were even more
pronounced.

Also, as the degree of clustering decreases, the number
of disk accesses by STJ at tree matching time becomes close
to that of RTJ. This is because for low degrees of spatial
clustering, most leaf tree nodes must be accessed, leaving
little room for optimization. In this case, tree creation costs

become the deciding factor for performance. For STJ, the
tree creation costs remain consistently low, and the total
costs are always less than 40 percent of those of RTJ. For
BFJ, the number of disk accesses grows rapidly and become
the worst of all methods as the degree of clustering de-
creases, because the number of touched TR nodes becomes
much larger than the buffer size.

Again, STJ outperforms other methods significantly
even in terms of the number of disk I/O accesses.

5.2 Effects of Buffer Size
We now compare the stability of the seeded-tree algorithm
with other join methods across a range of buffer sizes. We
are also interested in exploring the behavior of our method
when there does not exist a choice for the number of seed
levels that satisfies both bounds in Inequality (5). We ran
experiments with iDRi = 100,000, iDSi = 40,000, and buffer
sizes varying from 16 to 512 pages. Figs. 15 and 16 show the
tree construction costs and the total costs of RTJ and STJ
under different buffer sizes.

As these figures show, STJ outperforms RTJ substantially
throughout the whole buffer size range, both in terms of tree
construction costs and total costs. Further, the performance of
STJ degrades more slowly than that of RTJ as buffer size
decreases for most of the buffer size range. This shows that
STJ is much less sensitive to buffer sizes than RTJ.

We would like to validate the assertion in Section 4 that
the seeded tree algorithm runs with good performance if the
number of slots is within the range prescribed by Inequality
(5), and will not break down when the number of slots falls
outside this range. The bounds in the Inequality depend on the

Fig. 11. Total disk I/O costs. Experiment Series 1. Fig. 12. I/O costs for tree construction, Experiment Series 1.

Fig. 13. I/O costs for tree matching, Experiment Series 1. Fig. 14. Total disk I/O costs, Experiment Series 2.
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buffer size. In these experiments, the input data set of cardi-
nality was 40,000, parameters C and E were both 3, and the
seeding tree had 1, 9, 94, and 3,009 nodes, respectively, at
each of its levels. In this case, Inequality (5) is satisfied for
buffer sizes between 42 and 512 pages if we pick the number
of seed levels to be 2 (i.e., 94 slots). For buffer sizes smaller
than 42 pages, no choice of the number of seed levels will
satisfy both bounds in (5) simultaneously.

Fig. 15 and Fig. 16 show that the performance STJ re-
mains low throughout the recommended operational range.
Even for buffer sizes smaller than 42 pages, the perform-
ance degraded gracefully. These experiments validate our
claims in Section 4. We emphasize that even for buffer sizes
below the theoretical threshold, STJ still incurs only ap-
proximately half the amount of I/O incurred by RTJ.

5.3 Stress Tests and Test with Real-Life Data
To test the stability of the STJ method, we ran a series of of
experiments with data designed to induce degraded per-
formance in STJ. We also conducted tests with real-life
data. Except for the experiment with real-life data, all these
experiments were performed on methods STJ and RTJ,
with iDRi = 100,000 and iDSi = 40,000. Table 7 shows the
results of these experiments.

As a control reference, we obtained the performance of
STJ and RTJ on independently generated clustered DR and
DS, both with CCQ = 0.2. This data set configuration ap-
peared in both experiments series on data set size and de-
gree of clustering, and shows the typical performance gain
of STJ over RTJ. This experiment is labeled “CONTROL.”

In experiment “CLU/UNI,” DR is a clustered data set
with CCQ = 0.2, while DS is a uniform data set for which
CCQ = 1. This results in the seeded tree inserting evenly
distributed data into unevenly distributed slots. Experi-
ment “UNI/CLU” works the other way around, and results
in the seeded tree inserting unevenly distributed data into
evenly distributed slots. Both experiments are designed to
induce uneven grown subtree sizes and oversized subtrees
in the seeded tree, thus stressing STJ.

Experiment “EXCLU” tested two spatially clustered but
negatively correlated spatial data sets, both having CCQ =
0.2. In this experiment, DR was a independently generated
clustered data set, while DS was generated by randomly
placing the centers of its cluster rectangles in the area outside
the cluster rectangles of DR. For such data sets, the number of
matched pairs is much smaller than those in other experi-
ments. For the same input data sets sizes, this experiment has
an output of 40K matched pairs of objects, while other ex-
periments all have 70K matched pair of objects.

We also tested STJ on real-life data. Experiment “REAL”
is a join between two data sets extracted from the TIGER/
line files of the U.S. Bureau of Census [18]. In this experi-
ment DR is a map of the streets and has 131,461 objects,
while DS is a map of rivers and railway tracks, and has
128,971 objects. This experiment shows a performance gain
of STJ over RTJ similar to that of “CONTROL.”1

Table 7 shows the various cost components of join in
these experiments, and Table 8 lists the performance gain of
STJ over RTJ with r = 10. In all cases, the performance of
STJ is many times better than RTJ. As expected, the per-
formance gains of STJ over RTJ for both “CLU/UNI” and
“UNI/CLU” were lower than that of “CONTROL,” due to
the over-sized grown subtrees we introduced. In experi-
ment “EXCLU,” the gain of STJ over RTJ is higher than
even in “CONTROL.” This shows that the seeded tree was
more successful in taking advantage of the mutually exclu-
sive nature of the data sets, and in avoiding accessing un-
necessary tree nodes during the tree matching phase.

Over all, these experiments shows that STJ steadily out-
performs RTJ by a large margin even under various
boundary cases and real-life data sets.

6 DISCUSSION

Our experiments demonstrate that the seeded tree method
is not just efficient, but also stable. It outperforms other
methods by large margins across different input data sizes,
degrees of clustering, and other data characteristics. For
experiments designed to induce degraded performance in
the seeded tree method, it still runs three times faster than

1. In [16] a tree matching experiment was performed on two R*-trees built
from the same data sets and resulted in 9,385 random accesses. Despite its
better tree matching performance, we do not use the R*-tree in our studies
because its construction cost is much higher than that of the R-tree.

Fig. 15. I/O costs for tree construction, Experiment Series 2.

Fig. 16. I/O costs for tree matching, Experiment Series 2.
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RTJ. An experiment with real-life data mirrors the results
from experiments with generated data.

The seeded tree join method presented in this paper uses
a seeded tree and a precomputed R-tree. However, there
can still be situations where there is no precomputed index
for either input data set. For instance, both input data sets
can be outputs from other database operations. In the one-
seeded-tree scenario, the seed levels of the seeded tree are
derived from the seeding tree, which is the precomputed R-
tree. In the two-seeded-tree scenario, there is no the seeding
tree, and no obvious source to derive the seed levels for
either seeded tree. To solve this problem, we extract infor-
mation from the input data sets using sampling techniques
[19], and use such information as a basis for building the
seed levels. This approach is elaborated in [20].

A closely related problem is to find quantitative meas-
ures to predict the characteristics, such as the sizes, of the
outcomes of spatial operations based on the characteristics
of their input data sets. Such techniques are valuable in
choosing the best way to realize a spatial query. Relatively
little work has been done for spatial databases in this area.
Addressing these issues will be within the scope of our fu-
ture work.

It is worth noting that, if necessary, a seeded tree can be
retained after join and used as an ordinary spatial access
method for spatial selections. The height of a seeded tree is
no greater than the height of the R-tree constructed with the
same input data plus the number of seed levels. However,
most paths from the root to leaf nodes will be shorter than
this upper bound.

7 CONCLUSIONS

This paper presents a spatial join method that dynamically
constructs a new kind of index tree, called the seeded tree,
at join time. This method addresses the situations where
existing R-trees cannot help with join processing, or where
no R-trees exist for the input data sets.

A seeded tree is divided into the seed levels and the
grown levels. The characteristics of the input data sets are
utilized to build the seed levels. Tree nodes in the seed lev-
els are used to guide tree growth during tree construction,
resulting in a tree better shaped for the join. Since tree con-
struction cost is essential to the performance of the seeded
tree method, we presented a tree construction technique
that drastically reduces construction time I/O costs by us-
ing intermediate linked lists at an intermediate step. We
also presented a new buffer management strategy for tree
construction that reflects dirty buffer pages in large chunks
to disk long before buffer space reclamation. The new
buffer management strategy eliminates all random writes at
the join phase and provides up to 40 percent improvement
over that implemented in [1] in disk I/O costs, depending
on the assumed ratio of sequential to random disk access
costs. We also provided theoretical analysis of the seeded
tree method and choice of algorithmic parameters.

We have tested the seeded tree technique against other
methods with input data sets of various characteristics, as
well as with real-life data. Our results show that the total
I/O costs of the seeded tree method are always lower than
the faster of the other two methods, except in one boundary
case. In general, the seeded tree method accessed less than
50 percent of the number of disk pages accessed by the
faster of the other two methods. The total weighted I/O
costs of the seeded tree method are always lower than the
faster of the other two methods by a factor of three to five,
depending on the assumed ratio of sequential to random
disk access costs. Tree construction using intermediate
linked lists is shown to be very effective in eliminating tree
construction time buffer misses. The new buffer manage-
ment strategy has successfully eliminated all tree matching
phase random writes. CPU costs for the seeded tree method
are always the lowest among all methods.

TABLE 7
STRESS TESTS

Matching Construction
Total cost

(r  = sequential/random)

Data sets Alg.
ran.
read

ran.
write

ran
read

ran.
write

seq.
read

seq.
write

total
access r = 1/5 r = 1/10 r = 1/30

CONTROL RTJ 2304 59 6028 1223 0 0 9614 9614.0 9614.0 9614.0

STJ 1601 1 37 120 324 2084 4167 2240.6 1999.8 1839.3

CLU/UNI RTJ 3103 65 5895 1204 0 0 10267 10267.0 10267.0 10267.0

STJ 2736 1 41 128 368 2087 5361 3397.0 3151.5 2987.8

UNI/CLU RTJ 3056 59 6028 1223 0 0 10366 10366.0 10366.0 10366.0

STJ 2751 0 54 142 432 2080 5459 3449.4 3198.2 3030.7

EXCLU. RTJ 2056 61 5813 1215 0 0 9145 9145.0 9145.0 9145.0

STJ 1368 0 34 123 322 2082 3929 2005.8 1765.4 1606.1

REAL RTJ 15835 64 30243 4000 0 0 50142 50142.0 50142.0 50142.0

STJ 10309 1 313 212 2028 6753 19616 12591.2 11713.1 11127.7

TABLE 8
PERFORMANCE GAINS OF STJ OVER RTJ IN STRESS TESTS

WITH r SET TO 10

Experiments NORMAL CLU/UNI UNI/CLU EXCLU. REAL

gain 4.80 3.25 3.24 5.18 4.28
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APPENDIX A
Assume level l of an index tree has m nodes in all, and let
the fanout of each node be denoted by f f fl l l

m1 2, , , andK .

The average fanout of level l is f f f
m

l l l
m1 2+ + +K . When m is

large, the Central Limit Theorem [21] can be applied, and
we have fl ª fave.

Assuming the Central Limit Theorem holds when the
number of nodes at a level is greater than fmin, then we have
the following theorem.

THEOREM 2. If the input data set size satisfies
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PROOF. To prove the theorem, it suffices to prove
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We will call the left-hand side of this inequality
LHS, and the right-hand side RHS.

For fl–1 > fmin, since nl = nl–1 ◊ fl–1 ≥ fl–1 > fmin, the
Central Limit Theorem applies to level l and fl ª fave.
By using (10) with fmax substituted for x, we have

LHS
f
f E f

f
f E f E f

ave

max max

ave

max max min

≥ - ◊
F
HG

I
KJ

> - ◊
F
HG

I
KJ ◊ - ◊

F
HG

I
KJ

=

1
1

1
1

1
1

RHS.

For fl–1 £ fmin, by noting fl < fmin by definition, and
substituting fmin for x in (10), we have
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