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Abstract —Disk I/O has long been a performance bottleneck for very large databases. Database compression can be used to
reduce disk I/O bandwidth requirements for large data transfers. In this paper, we explore the compression of large statistical
databases and propose techniques for organizing the compressed data such that standard database operations such as retrievals,
inserts, deletes and modifications are supported. We examine the applicability and performance of three methods. Two of these are
adaptations of existing methods, but the third, called Tuple Differential Coding (TDC) [16], is a new method that allows conventional
access mechanisms to be used with the compressed data to provide efficient access. We demonstrate how the performance of
queries that involve large data transfers can be improved with these database compression techniques.

Index Terms —Database compression, data compression, physical organization, statistical database.
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1 INTRODUCTION

HE storage of very large databases may constitute a
significant portion of the cost of managing them. The

compression of data therefore becomes important as the
amount of data grows. In addition, database management
systems must provide efficient access to the compressed
data. In this paper, we explore the compression of large
statistical databases, and propose several techniques for
organizing the compressed data such that standard data-
base operations are supported.

The term statistical database is used here as a generic term
denoting databases holding information amenable to sta-
tistical analysis. Examples are databases constructed from
social, economic, inventory, environmental, or demo-
graphic surveys or experiments. These statistical databases
have the following characteristics:

1) They are usually large and of indefinite retention. For
instance, the 1990 5-percent Public Use Microdata
Samples (PUMS) from the U.S. Bureau of Census [19]
is about 4 gigabytes. These data are never erased, and
as more censuses are conducted in the future, the total
database size will only grow.

2) By their nature, statistical database queries generate a
lot of I/O. These queries usually access a large por-
tion of several related databases in order to consoli-
date and summarize information for the users. They
are also aggregational in that arithmetic operations
are usually performed to compute statistics such as
means and variance on selected fields.

3) They are similar to conventional relational databases
in that each data set (relation) is a collection of
records (tuples) with a fixed number of fields
(attributes). However, there are two major differ-
ences. First, the data set may not be normalized and
there may be no primary keys. Records in such cases
are instances in a survey, an experiment, or a simu-
lation, and are characterized by parameters or cate-
gories (attributes) without necessarily having any
unique identifications [24]. Second, the attribute
domains are simpler. They are discrete and of finite
size because the database is usually compiled from
surveys or experiments with a set of questions
(attributes). The domain is usually encoded so that
each attribute value corresponds to one of a desig-
nated set of answers to the question.

4) The database is usually available in raw form as one
or more flat files of ASCII characters, with records
stored one per line contiguously. This approach per-
mits easy data distribution and access without relying
on complicated data formats. (See Section 6.1 for a
snapshot of the census database.)

5) There is clustering throughout the database in the
sense that many records will often have identical
values for certain attributes. Such clustering is in-
dicative of information redundancy that may be ex-
ploited during compression.

6) Statistical databases are considerably more stable
than ordinary databases}such as financial or airline re-
servation databases}since record updates are very
rare. However, appending new records is a common
operation.

The first two characteristics confirm that statistical da-
tabases are constrained by disk I/O performance. Based
on the other characteristics, we propose several compres-
sion techniques, which preserve record identity within the
compressed data, so that individual records may be ma-
nipulated as if the database were uncompressed.
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We shall rely on relational database terminology in
our expositions. A statistical database is relational in its
structure, but it may not satisfy the normal forms. We
shall use terms like relation, tuple, attribute, to refer to
data set, record, field respectively. We shall also rely on
relational algebraic operators such as selection (s) and
projection (p).

1.1 Organization of Paper
Section 2 examines the difference between data and database
compression. We argue that database compression is fun-
damentally different from data compression. Thus, conven-
tional data compression techniques are not directly or im-
mediately applicable to database compression. This com-
parison allows us to establish a set of requirements for da-
tabase compression techniques. Based on these require-
ments, we design three database compression techniques in
Section 3.

Section 4 is concerned with issues relating to the practi-
cal implementation of the proposed compression tech-
niques. We describe how standard database operations may
continue to be supported in a compressed database.

One must evaluate the performance of any proposed al-
gorithm with respect to its design objectives. In Section 5,
we compare the compression efficiencies of the proposed
compression techniques and evaluate their impact on the
response time of queries. We show that the techniques re-
duce the response time by I/O reduction. Section 6 dis-
cusses related work in the area of database compression.
Finally, Section 7 concludes the paper.

2 DATABASE COMPRESSION VERSUS DATA
COMPRESSION

The requirements of database compression are very differ-
ent from those of data compression in general. First, be-
cause database compression must be inherently lossless, we
are interested only in lossless techniques, which allow the
original data to be fully recovered from its compressed
form. However, as we argue below, this is not the only, or
even primary difference. Database compression techniques
must not hinder operations on the database, and we argue
that conventional compression methods are quite inade-
quate from this point of view.

Current techniques for lossless data compression may be
categorized into two broad classes:

1) statistical techniques and
2) textual substitution techniques.1

Statistical techniques separate the work of compression at
the source into two parts: statistical data modeling and coding
[20], [28]. Statistical data modeling aims to capture the fre-
quency of occurrence of source words in the data stream.
These frequencies allow different code words to be as-
signed to different source words. The data stream is usually
coded using arithmetic coding [13], using these frequencies.
As arithmetic coding has been shown to be optimal with

1. Textual substitution may be seen as a statistical technique [6], but we
distinguish between the two here primarily because of their different his-
torical roots.

respect to a given set of frequencies [13], most statistical
techniques strive to produce as accurate a statistical model
of the source data stream as possible.

The class of Lempel-Ziv techniques, which we refer to as
the LZ techniques are typical of textual substitution meth-
ods. These techniques achieve compression by replacing
strings of symbols with pointers to previous occurrences of
the same strings. All techniques in this class are variants of
[30], [31].

Database compression is fundamentally different from
data compression. Conventional data compression tech-
niques, such as the above, tacitly adopt a model of com-
pression patterned after Shannon’s model of communi-
cation [23], which consists of an abstract channel through
which a source generates an infinite sequence of data
symbols to a destination (see Fig. 1). The transmitter and
receiver share a statistical data model which provides in-
formation and knowledge to the coder and decoder re-
spectively. A statistical data model contains a set of
word-frequency pair for each word (a sequence of sym-
bols) appearing in the source. Thus the shared model
captures the characteristics of the source, and the effi-
ciency of compression depends upon how completely
and faithfully source characteristics are captured. Source
word frequencies are a primary input to the statistical
data model. When such frequencies are not known stati-
cally, the statistical data model may be updated dynami-
cally as more information becomes available about the
source.

There are two important characteristics of the compres-
sion model shown in Fig. 1:

1) Data access mode: Data is processed serially, as indi-
cated by the FIFO data store between the transmitter
and receiver. The FIFO representation is purely con-
ceptual, and does not require a physical store be-
tween the transmitter and receiver. Source data is
serially encoded, and serially decoded either on-line
or off-line by the receiver. In the on-line mode, the
transmitter and receiver form a FIFO producer-
consumer pair, and data flows from the source to
the destination in a pipelined fashion. In the off-line
mode, data is encoded in its entirety and stored be-
fore being decoded serially in its entirety by the re-
ceiver. In both cases, data is decoded in the order it
was encoded.

2) Statistical data model consistency: The second charac-
teristic is that the statistical data models maintained
within the transmitter/receiver must be consistent
with each other: If the same source data were to be
compressed again with the same statistical data
model, it should yield the same encoded data. Like-
wise, if the same encoded data were to be decoded
with the statistical data model, it should yield the
same original data.

These two properties conflict with the requirements of
database compression. To be useful, a database compres-
sion technique must allow standard database operations
such as tuple access, insertion/deletion and modification
over any part of the database. In other words, a database
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compression technique should support random, localized
(non-FIFO) access to a compressed database. This is im-
possible to achieve in any method based on the model in
Fig. 1 due to the data-model consistency problem. The sta-
tistical data models in the transmitter and receiver must
be consistent with each other at all times, but the random
nature of access and update means that the statistical
characteristics of the data change with time. Thus, differ-
ent parts of the database may have been encoded with
different statistical data models, since it is clearly imprac-
tical to recode the entire database during tuple updates in
order to preserve consistency. This consistency require-
ment restricts the scope of applicability of many compres-
sion techniques that rely heavily on data modeling, be
they statistical or LZ-based.

The conventional and database models of data com-
pression must address different modus operandi. The
standard categories of data compression techniques as-
sume a model of compression that is not directly suitable
for database compression. The design of a database com-
pression technique requires a fundamentally different
approach.

This paper presents TDC, a novel database compression
method based on a fundamentally different approach. Con-
sider the typical model used for coding, as shown in Fig. 1.
The data source is generally taken to be a producer of a
stream of signals or bits, and compression must be per-
formed on bits as they are generated, to preserve signal in-
tegrity. That means that the ordering of source information is
determined by the order of generation. Information ordering
is important because it also determines the statistical data
model for compression.

We argue in this paper that this is a needlessly restrictive
view from the database perspective. Database compression
can exploit record reordering to improve compression over
standard data compressors. With a suitable ordering
scheme, the order in which information in a database is
generated becomes irrelevant; only the statically defined
ordering is significant. This is a fundamental departure
from the traditional approach.

3 TECHNIQUES FOR DATABASE COMPRESSION

In this section, we discuss three database compression
techniques:

1) Bit compression (BIT),
2) Adaptive Text Substitution (ATS), and
3) Tuple Differential Coding (TDC) [16].

The first two are existing methods, but TDC is a new
method we have developed specifically with the re-
quirements of statistical databases in mind. In order to
accommodate the standard operations on a database, a
database compression technique should exhibit the fol-
lowing features:

1) Tuple access should not require massive compres-
sion and decompression. One would not use a
compression technique that decompresses and re-
compresses the entire database every time a tuple is
accessed. Thus, the scope of compression should be
reduced. A natural choice for all disk-based data-
base systems is a disk sector or block, the unit of a
disk I/O operation. When a tuple is desired in a
query, only the block where it resides is brought
into memory, where it is decompressed. Hence, the
scope of decompression is reduced to a block. As
the amount of achievable compression on a volume
of data depends on the amount of redundancy
in the data, the basic trade-off in choosing the
granularity of a scope is that smaller scope permits
faster decompression but offers lower achievable
compression.

2) It should provide localized access to compressed
tuples. One must be able to build access mecha-
nisms on a compressed database. Reducing the
scope of compression helps achieve this goal be-
cause a tuple is now addressed by the block where
it resides. Conventional access mechanisms such as
B-trees can easily be constructed to access tuples in
blocks.

3) Compression and decompression should be fast
enough so as not to offset its advantages, i.e., a data-
base compression technique should not be so complex
as to offset its space and bandwidth reduction ad-
vantages. Although the scope of compression is re-
duced to a block, it is still critical that the decompres-
sion time be less than the time to transfer the uncom-
pressed block from disk to memory. The speed of
compression/decompression and the compression effi-
ciency should be balanced carefully.

Fig. 1. Conventional data compression model. This model is a reflection of the modern paradigm of data compression. An important component of
the model is the FIFO data store between the transmitter and the receiver.



NG AND RAVISHANKAR: BLOCK-ORIENTED COMPRESSION TECHNIQUES FOR LARGE STATISTICAL DATABASES 317

4) The tuple structure of a relation should be preserved.
One would like to be able to access each tuple
individually.

In this paper, we present three block-based database
compression techniques. Two of them, BIT and ATS, are
adaptations of conventional data compression techniques.
The third one, TDC, exploits the redundancy among tuples
differently to achieve compression.

Throughout this section, we shall be using the relation in
the following example to illustrate the concepts involved.

EXAMPLE 1. Table (a) in Fig. 2 shows a relation R with five
attribute domains A1, A2, A3, A4, A5 denoting the de-

partment, job title, insurance grade, income in
thousands, and hours worked per week attributes,
respectively. The size of each domain, i.e., the num-
ber of different attribute values, is 4, 4, 4, 64, 64, re-
spectively. Table (b) in this figure shows the same
relation with all attribute values mapped to num-
bers. This is usually the raw form in which a statisti-
cal data set is available; i.e., a file of numerals corre-
sponding to contiguous records. We preserve tuple
identity by displaying them as individual tuples.
The relation in the figure has been partitioned into
blocks. Each compression technique compresses a
block individually.

Fig. 2. A relation R and its transformation after domain mapping. Table (a) shows the raw form in which a statistical data set is usually available.
Every attribute value is mapped onto an integer.
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3.1 Bit Compression (BIT)
Bit compression (BIT) or compaction is a well-known
technique. If a (numerical) attribute domain has size k
containing values 0 to k - 1, the number of ASCII charac-
ters required to represent each attribute value is Èlog10k˘.
This requires 8Èlog10k˘ bits, assuming each character is a
byte of 8 bits. However, we may represent each attribute
value in Èlog2k˘ bits, yielding a savings of 8Èlog10k˘ -
Èlog2k˘ bits. For example, let A = {0, 1, º, 899} be an at-
tribute domain where each attribute value requires
Èlog10900˘ = 3 ASCII characters or equivalently, 24 bits.
Since there are 900 different attribute values, we may rep-
resent each value in Èlog2900˘ = 10 bits, thus yielding a
savings of 14 bits. Therefore, the idea of BIT is to compact
every attribute value so that the entire tuple is bit-
compressed. This technique is simple and fast; however it
does not yield high compression.

EXAMPLE 2. Let us see how BIT is applied to the relation in
Example 1. Consider the first tuple ·1, 1, 2, 24, 40Ò,
which requires 7 ASCII characters or 56 bits to store. Its
binary representation is ·012, 012, 102, 0110002, 1010002Ò.
After compaction, the tuple becomes 0001 0110 0110
0010 1000 or 16,628 in hexadecimal, and requires only
18 bits or under 3 bytes to store. Bit compression is ap-
plied systematically to all tuples of a block.

3.2 Adaptive Text Substitution (ATS)
ATS is an adaptive text substitution technique by Welch
[26], and an improvement over the Ziv and Lempel tech-
nique described in [31]. The technique works as follows:
If a sequence of symbols has occurred previously, re-
place it by a pointer to that previous occurrence. This is
basic text substitution. Variants of this basic technique alter
the scope of backward reference, i.e., how far back the tech-
nique may go to look for matching string of symbols. The
collection of pointers form the dictionary, which is built up
dynamically at the same time that text substitution is being
performed. Hence, the term adaptive. This technique is also
employed in the widely used Unix FRPSUHVV utility. Here,
we apply ATS to compress and decompress a block of tu-
ples. Thus, the scope of backward reference of the tech-
nique is reduced.

EXAMPLE 3. Consider the first block consisting of tuples ·1, 1,
2, 24, 40Ò, ·2, 0, 1, 35, 41Ò, ·2, 1, 3, 30, 38Ò, and ·2, 3, 1, 25,
39Ò in Fig. 2. The block is presented to ATS as the stream
of symbols 1122440201354121330382312539 after con-
catenating all the tuples. The result of compression is
a stream of bytes requiring less storage space than the
input stream of symbols. We have omitted the details
of how the output stream is derived, as the technique
is well documented in [26]. In order to minimize the
amount of unused space in the block, the original set
of tuples can be appropriately increased so that the
compressed stream of bytes leave minimal unused
space in the block.

3.3 Tuple Differential Coding (TDC)
As we shall illustrate in Section 5, BIT and ATS do not
compress well. In this section, we discuss a new technique

called Tuple Differential Coding (TDC) which we have
recently introduced in [15], [16], [17], [18]. As it is one of
the main contributions of this paper, we shall present a
more formal and detailed description of the technique.

3.3.1 Motivation
A relation R may be perceived geometrically as a set points
in an n-dimensional space (as made precise in Section 3.3.2).
As a consequence of characteristic 5 (see Section 1) of sta-
tistical databases, tuples that share certain attribute values
in R form clusters in this space. For instance, in an em-
ployee relation, one will typically find many employee tu-
ples sharing the same values for the department and job-
title attributes. Such clusters are indicative of a form of re-
dundancy that we can exploit to reduce the storage re-
quirements of the tuples. For example, many image com-
pression techniques exploit redundancy that is present
when adjacent elements are correlated.

Instead of storing tuples explicitly in tabular form as
conventional databases do, one may capture and store the
differences among them. If these differences require less
space for storage on average than the original tuples, com-
pression is achieved. The idea is elaborated below.

3.3.2 Definitions
A relation scheme R = ·A1, A2, º, AnÒ is a sequence of at-
tribute domains where Ai = {0, 1, º, |Ai| - 1} for 1 £ i £ n.
(Note that Ai is taken to be a set of integers because of char-
acteristic 3 (see Section 1) of a statistical database.) R may
also be viewed as an n-dimensional space composed of tu-
ples from the cartesian product of the sequence of attrib-
utes, A1 ¥ A2 ¥ L ¥ An, i.e., a tuple a1 ¥ a2 ¥ L ¥ an in R,
where ai Œ Ai for 1 £ i £ n, is a point in the space.

3.3.3 Step 1: Tuple Reordering
All points (or tuples) in R may be totally ordered via an

ordering rule. An example is the lexicographical order with
respect to the attribute sequence in R defined by function

w: R Æ NR, where NR  = {0, 1, º, iR i -1} and iR i =
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Given a tuple t Œ R, w converts it to a unique integer w(t)
that represents its ordinal position within the R space.
Given two tuples ti, tj Œ R, we may define a total order
based on w, denoted by ti a tj, such that ti precedes tj if
and only if w(ti) < w(tj).

3.3.4 Step 2: Attribute Domain Ranking
The lexicographical order as defined by function w is de-
pendent on the ordering of the attribute domains. Different
domain orderings give rise to different lexicographical or-
ders. In addition, different lexicographical orderings of the
tuples also give rise to different amount of differences
among ordinals of the tuples, thus affecting the amount of
compression.

Given a relation R Œ R, choosing the optimal domain
ordering that yields the best achievable compression is
NP-complete. It can be shown that the Optimal Linear
Arrangement problem, which is known to be NP-
complete [10], can be reduced to the optimal domain or-
dering problem. Due to limitations in the length of the
paper, we shall omit the proof. Nonetheless, there are a
few heuristics for choosing a good but suboptimal do-
main ordering. One heuristic is to rank them by the fre-
quency of use, i.e., the more frequently used (in queries)
attribute domains are ranked lower (positioned to the
left) than the less frequently used domains. Another heu-
ristic is to award a higher rank to domains whose total
unique attribute values in the relation is large. For ex-
ample, a domain that is a candidate key of the relation
has attribute values that appear exactly once for each
tuple in the relation. This domain should be given a
higher rank because there is no duplication of attribute
values in the relation.

Table (a) in Fig. 3 shows the tuples from Fig. 2 ordered
lexicographically by w with respect to the attribute se-
quence A1, A2, A3, A5, A4. (The first row in Fig. 2 is now the
11th row in Fig. 3, Table (a).) The attributes have been reor-
dered under the permutation t  defined as:

τ = 12 3 4 5
12 35 4
FH IK .

Column NR shows the ordinal numbers of the corre-
sponding tuples.

3.3.5 Step 3: Block Partitioning
We next partition the reordered relation into disjoint
blocks (subsets) of tuples. We have chosen the size of a
memory page or disk sector as the partition size as it is
the unit of I/O transfer. That is, the number of bytes
occupied by the set of tuples in a partition is no more
than the size of a disk block. When a tuple is required,
the block where it resides is transferred from disk to
main memory. If tuples in the block are compressed,
then decompression need only be performed on the
block. The block partitions in Fig. 3 are shown by the
line demarcations.

3.3.6 Step 4: Block Encoding
A block now consists of a set of tuples ordered lexicographi-
cally. Using the first tuple as a reference, each succeeding

tuple is replaced by its difference (in ordinals) with respect to
its preceding tuple. Consider block 1 of Table (b) in Fig. 3 The
first difference after the first tuple is

4,168 = w (0, 0, 1, 01, 08)

        = w (0, 0, 3, 39, 32) − w (0, 1, 1, 40, 40)

          = 18,984 − 14,816

In general, if ti and tj are consecutive tuples in block k of
Table (a), then the entry in Table (b) corresponding to tj
is w−1(w(tj) - w(ti)).

Since the differences are numerically smaller than the
tuples, they require fewer bytes of storage. We encode the
variable-size differences by using run-length coding [11], [25]
to encode the number of leading zero components in each
difference, thus achieving compression. For instance, the
difference above ·0, 0, 1, 01, 08Ò, is encoded into ·2, 1, 01, 08Ò
since its first two components are zero. Fig. 4 shows the
encoded blocks corresponding to Table (b).

3.3.7 Compression Efficiency
Let us define the efficiency m of a compression method
operating on a relation R by m = 1 - C/D, where D and C
are the size of the relation before and after the differen-
tial coding step, respectively. Two factors affect the effi-
ciency of TDC: compression overhead per tuple, and tu-
ple spacings.

The compression overhead per tuple is the size of the
count field used to indicate the number of leading zero
components of a tuple difference. To avoid making the en-
coding scheme overly complex, we use a fixed-size field of
size a bits to encode this count. Let R have n attribute do-
mains. Since two distinct tuples cannot have a zero differ-
ence, the number of leading zero components in any differ-
ence tuple must be larger than zero but less than n. Thus,
the number of bits required for the field is a = Èlog2n˘. If
relation R has k tuples, the total compression overhead is
a(k − 1), since k tuples yield k − 1 differences.

The spacing between two tuples with respect to w is
measured by a function d : Z  ¥ Z Æ Z defined as:

d(ti, tj) = Èlog2(w(tj) - w(ti))˘       (3.5)

for any two tuples ti a tj. The quantity d(ti, tj) measures the
number of bits required to represent the numerical differ-
ence between ti and tj. The further apart the tuples are, the
larger is the difference, and thus the larger d(ti, tj) is. Given
a relation R, the mean spacing between tuples in R is:

$ ( , )δ δ= − −

−

∑1
1 1 1k t ti

i

k

=1

1

  (3.6)

for tuples t0, t1, º, tk-1. The mean spacing measures the av-
erage number of bits needed to encode a tuple difference.

Given a relation R, the total space requirements for the

k - 1 tuple differences is δ αt tii

k

−=

−
+∑ 1 11

1
,c hd i  bits. Since the

size of R before compression is kÈlog2w(t)˘ bits where t Œ R,

the compression efficiency m of TDC on R is given by
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where a is the fixed compression overhead per tuple.
An implication of the above is that positive efficiency is

not guaranteed. Assuming that k is large, k - 1 < k, and

µ δ α ϕ= − +1 2
$ ) / ( log ( )te j. If log ( ) $ )2ϕ δ αt < +  then m <

0. As the mean spacing, $δ  is always less than Èlog2w(t)˘, a is

the dominant factor that could make m negative. A relation
R is incompressible if the average difference between any
two tuples is so large that the difference requires the same
number of bits to store as the tuples. This happens when
spacings between pairs of ordered tuples are very wide.
However, this is pathological, and one is very likely to find
clusters, for tuples tend to share attributes values, as in Ta-
ble (a) in Fig. 2. In Section 5, we evaluate the efficiency of
the technique both with simulated data as well as with real-
world data in the form of the 1990 U.S. Census Public-Use
Microdata Sample dataset [19]. All the results indicate high
positive compression ratios.

Fig. 3. Tuple differential coding. Table (a) shows the tuples lexicographically reordered. Table (b) shows the tuples as differences. Column NR
shows the result of mapping each tuple into a number by w. Column Rd shows the result of taking the numerical difference between a number in
NR and its preceding number.
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3.4 Summary
In brief, we have discussed three database compression
techniques. BIT and ATS are simple and intuitive applica-
tions of known techniques. TDC is specifically designed to
compress tuples. How well they perform with respect to
one another is studied in Section 5. The next section looks at
issues related to the practical implementation of these tech-
niques, in particular, at how they support standard data-
base operations.

4 TUPLE ACCESS AND MODIFICATION

Since our compression method is designed for use at the
lowest levels of a database system, it is important to un-
derstand how it might interact with other system compo-
nents, and particularly, whether its use might require
changes to their structure. In this section, we demonstrate
that no rethinking or redesign of other database system
components is required, and that our method may be in-
tegrated cleanly with standard approaches to structuring
them. In particular, we now consider how access mecha-
nisms may be constructed on the coded tuples, and how
the tuples may be retrieved and modified. Our focus is
not on precise algorithms for these operations as but to
give an idea of how our method may be integrated with
standard access and retrieval mechanisms.

We have restricted our attention to these basic opera-
tions rather than to queries for several reasons:

1) All queries, simple or complex, reduce to a set of basic
tuple operations.

2) The variety of queries is too large to derive a set of
representative, typical queries.

The feasibility of these operations on a compressed data-
base carries over to more complex queries which are built
upon them. We have also used TDC as the compression
technique in this section because it is a more complicated
technique than BIT and ATS. The illustration extends to BIT
and ATS compressed database.

4.1 Access Method
Fig. 4 shows an order-3 primary B+ tree index constructed
using the data blocks of Table (b) in Fig. 3. Notice that the
search key in the index is an entire tuple. In conventional
primary indices, the search key is usually a subset of
attributes.

Operations on the tree-index are performed as usual.
Suppose a query wishes to locate the tuple ·2, 1, 3, 38, 30Ò
(which from Table (a) in Fig. 3 is located in block 6). Starting
with the key in the root index node, index node 2 is
searched next since it is lexicographically smaller than the
root key. There are two search keys in node 2. Following the
link corresponding to the smaller of the differences be-
tween the tuple and each of the keys, index node 6 is
searched. We find again that the second search key is closer
to the tuple than the first. This leads us to data block 6, where
the tuple resides. This block is now transferred to main
memory and decompressed. Thus, traversing the index is
the same except that key comparison requires measuring
the difference between the key and the target tuple.

When tuples are to be retrieved given certain attribute
values only, secondary indices based on the primary index
above may be constructed. For ATS and BIT, the same
mechanism can be used. Thus, we see that conventional
access mechanisms are still applicable. Problems associated
with these mechanisms such as the amount of tuples allo-
cated per block and block overflows are similarly handled.
An advantage of a compressed database is that the storage
requirements for the indices will be reduced because the
number of data blocks for storing the database has been
reduced by compression. Although we have illustrated the
use of tree indices, we do not preclude the use of other
methods such as hashing.

4.2 Tuple Insertion and Deletion
How are tuple insertion and deletion supported in a com-
pressed database? Suppose we wish to insert in our previ-
ous database the tuple t = ·1, 1, 0, 50, 21Ò. Using the primary
index, we identify data block 3 as the block for insertion.
The tuple is found to lie lexicographically between the sec-
ond and third tuple in the block. Fig. 5 shows the result of
tuple insertion. Notice that only tuple succeeding t is re-
coded, and that the changes are confined to the affected
block. If the inserted tuple is lexicographically smaller than
all the other tuples in the block, then it becomes the new
reference tuple in the block. The process of tuple deletion is
similar. Tuple modification is just a combination of tuple
insertion and deletion.

4.3 Summary
In brief, we see that the integration of the three compression
techniques with conventional access mechanisms satisfies
the requirements for database compression described in
Section 3. For TDC, all four requirements are met, although
accessing a tuple within a block still requires the decom-
pression of preceding tuples. Although ATS meets the first
three requirements, it does not preserve tuple identity. BIT
also meets all four requirements completely. Since bit-
compressed tuples are fixed-size, a tuple can be accessed
directly within a block by computing the correct offset from
the beginning of the block. In Section 5, we undertake a
more elaborate evaluation of these techniques.

5 PERFORMANCE EVALUATION

The goals of database compression are both to reduce space
requirements as well as to improve the response time of
I/O intensive queries. We divide the evaluation into several
parts. In Section 5.1, we look at compression ratios. In Sec-
tion 5.2, we examine the time overhead of each of the com-
pression techniques by measuring the average time to com-
press and decompress a disk block. In Section 5.3, we look
at the effects of database compression on query response
time. We shall see how both the reduction of I/O and the
improvement in I/O bandwidth contribute to the im-
provement in query response time.

In addition to the performance evaluation on simulated
data, we have also applied our compression technique to
the compression of large real-world data sets in the form
of the 1990 Public Use Microdata Samples (PUMS) from
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the U.S. Bureau of Census [19]. The results are reported in
Section 5.4.

5.1 Compression Efficiency
In order to compare the compression performance of each
of the variants, we only have to compare the size of a rela-

tion before and after compression. However, what consti-
tutes a typical relation?

In order to ensure a fair evaluation, we generated relations
of various sizes and characteristics. They differed in

1) relation size (i.e., the number of tuples),

Fig. 4. Primary index. The data blocks contain difference tuples in w order. Hence, the search key is an entire tuple. Each block begins with a
head tuple. All tuples following the head tuple are difference tuples, in which the first integer is the count of leading zero components.
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2) variance in attribute domain size, and
3) attribute value skew.

The following variations are adopted throughout:
1) The domain size variance is low when the differences

in domain sizes were no more than 10 percent of the
average domain size. It is high when the differences
were more than 100 percent.

2) The distribution of values within a domain is skewed
when 60 percent of the values were drawn form 40
percent of the domain. When no skew existed, values
were drawn uniformly from the domain.

The number of attribute domains of all relations was fixed
at 8. We measured the number of disk blocks required by a
relation under these variants.

Four sets of simulations were performed with these pa-
rameter variations. The domain variance and attribute value
skew parameters give a total of four combinations of relation
characteristics: small variance and no data skew, large vari-
ance and no data skew, small variance and data skew, large
variance and data skew. The relation sizes are varied in each
of these combinations. These combinations are tabulated in
Table (a) of Fig. 6. The results of the simulations are shown in
Fig. 6. The following observations may be made:

1) The storage requirements are greatly reduced in a
compressed relation. This is clear from the high posi-
tive compression efficiencies shown in Tables (b)
through (d).

2) The compression figures in the TDC row are consis-
tently higher than those in the BIT row, which are
consistently higher than those in the ATS row. ATS,
which uses the same technique as Unix’s FRPSUHVV
utility, displays its typical 50- to 60-percent range of
compression ratios. BIT consistently reduces the data-
base size to about a third of its original size. TDC out-
performs the other two in all cases.

3) The efficiencies of both ATS and TDC improve with
larger relations, as evidenced by the increasing ratios
from Table (b) to (d). For TDC, larger relations have
more number tuples and hence the mean spacing $δ
(Equation 3.6) decreases. Therefore, the compression ef-
ficiency increases (Equation 3.7). TDC improves at a
faster rate than ATS. BIT shows little or no improve-
ment at all; thus, it is insensitive to the size of a relation.

4) For the same data skew, homogeneity in domain sizes
affects the compression efficiency. More homogeneity
increases efficiency, as the figures in Tests 1 and 3 are
relatively higher than the figures in Tests 2 and 4.
Therefore, a relation whose range of actual attribute
values in each domain does not differ much yields
better compressibility.

5) Data skew also affects compression efficiency. More
data skew increases efficiency, as the figures in Tests
1 and 2 are relatively higher than the figures in Tests
3 and 4. A relation with a higher average data skew
for each of its domain means that there is less ran-
domness in the vslue distribution of each domain.
This decreases $δ , which increases m, thus yielding
better compressibility.

5.2 Compression and Decompression Time Overhead
We now measure the average time taken to compress a set
of tuples whose compressed version can be allocated to a
disk block with minimal unused space left in the block. We
also measure the time to decompress the block.

The relation characteristics are as follows: We use a rela-
tion with 16 attributes of varying domain sizes. Each tuple
is 35 bytes and there are 105 tuples in the relation. The block
size is taken to be 8,192 bytes.

The measurements are made for each of the three tech-
niques. For each of them, we perform the compression 100
times, and then the decompression 100 times. The average
time for each operation is then computed. Before compres-
sion, the required number of tuples is first loaded into main
memory so as to offset any I/O time. The measurements
are taken when the compression routine is the only user-
level process executing in the system. They are taken from
three different machines. The results are tabulated in Fig. 7
with the following observations:

1) The average time taken to compress and decompress
a block is in the order BIT, TDC, and ATS.

2) Since compression/decompression are processor-
bound, a faster processor yields lower time overhead.
Thus, the time overheads improve with advances in
processor technology.

3) ATS has the highest time overhead. BIT performs
slightly better than TDC. However, it is to be noted

Fig. 5. Tuple insertion in block 3. Blocks (a) and (c) show the tuples before and after insertion; blocks (b) and (d) show their corresponding tuple
differences.
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that although TDC does not perform a separate bit-
compression step, it encodes the differences with as
few bits as possible via run-length coding of leading
zero components, so bit-compaction becomes an inte-
gral part of TDC. Thus, the actual computational
overhead of tuple differencing is very little. For de-
compression on the HP 9000/735, the overhead is
only 13.1 - 9.9 = 3.2 ms.

4) Combining the findings with that of the previous sec-
tion, we may conclude that ATS is the worst in terms
of compression efficiency and time. It is clearly infe-
rior to TDC. Although BIT is slightly faster than TDC,
its compression efficiency is worse than TDC and
does not scale with relation size. Thus, TDC is the best
overall algorithm so far.

5.3 Response Time
The previous two sections evaluated two inherent charac-
teristics of compression techniques. What sets database
compression techniques apart from data compression tech-
niques in general is their influence on the processing of
queries. We shall examine the effects of compression on the
performance of queries in this section.

To calibrate our measurements, we need the notion of a
typical query. This is difficult because there are many pos-
sibilities. Each query is specified by

1) the number of attributes involved,
2) the logical operators on these attributes, and
3) the arithmetic operations to be performed, etc.

To simplify things, we make the following assumptions:

1) Queries are I/O-intensive, so that they are directly af-
fected by the I/O bottleneck problem.

2) All queries reduce to a set of tuple access operations.
3) The time for these operations form the bulk of the

overall query response time. Thus, it directly affects
query performance.

We consider queries of the form sa £ Ak £ b(R), where Ak is
any nonprimary key attribute and a, b Œ Ak. This query fits the
above assumptions. By varying a and b suitably, the number of
tuples accessed can be made large, and thus more I/O-
intensive. The tuple access operation is the only one in the
query and hence directly determines the cost of the query.

The total time taken (C1) to bring in the relevant disk
blocks into main memory for further processing for the
above query is given by the following expression:

C1 = I + N(t1 + t2) (5.1)

where I is the index search time, N is the number of disk
blocks accessed, t1 is the I/O time to read/write a block,
and t2 is the decompression time per block.

When the database is not compressed, the corresponding
cost C2, is

C2 = I + N(t1 + t3)   (5.2)

where t3 is the time to read and extract a block into a set of
tuples. This time is included in t2 where the result of de-
compression is a set of tuples. We shall now see how to
estimate the various components.

5.3.1 Estimating t1, t2, t3
The average I/O time per disk block, t1, is estimated as fol-
lows: The components of an average disk I/O read/ write
are: seek time, rotational delay, data transfer time, and controller
overhead. Seek time, rotational delay and controller over-

Fig. 6. Compression efficiency. The figures in the tables are the percentage reductions in relation size obtained via the formula: (1 - a/b) ¥ 100%
where b and a are the size of the database before and after compression, respectively.

Fig. 7. Average compression/decompression time per 8 Kbytes block.
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head are usually in the range of 10–20 ms, 8 ms, and 2
ms, respectively [12]. Assuming a data transfer rate of 3
Mb/sec, the average I/O time for a block size of 8,192 bytes
is t1 = 20 ms + 8 ms + (8,192 b/3 Mb) ms + 2 ms < 30 ms. As
the relation characteristics are the same as that of Section
5.2, the average time for single block decompression, t2, is
already measured in that sec-tion. The estimates for t3 are:
1.34 ms for HP 9000/735, 2.92 ms for Sun 4/50, and 9.77 ms
for DEC 5000/120.

5.3.2 Estimating N
We measure N via simulations. The selection query,
as described above, has three parameters: k, a, b. Table (a)
in Fig. 8 gives the number of blocks accessed when exe-
cuting the query σ A ak

R= ( ) for each of the attributes of a

tuple, i.e., k = 1, 2, º, 16, and where a = 0.5 ¥ |Ak|. Ob-
serve that only one block is accessed for all techniques
when k = 16 because A16 is the primary key. Table (b)
shows the number of block accesses saved when the data-
base is compressed.

5.3.3 Estimating I
The time (I) required to search the access mechanisms
(indices) to locate the block where the desired tuples re-
side, is likely to be a relatively small component in com-
parison with t1. For the reasons outlined below, we take
it to be a constant component of both costs, independent
of N. We have assumed Ak to be a nonprimary key at-
tribute, so the index being searched is secondary. Secon-
dary indices are generally smaller because the number of
different attribute values of Ak is not as large as the
number of primary key values. The actual number of
values that appear in a relation is smaller still. Thus, the
search time component of I is small and is dominated by
the I/O needed to bring in the small number of index
blocks. Here, we assume that the number of secondary

index blocks is 5 percent of the total number of data
blocks as shown in Fig. 9.

5.3.4 Results
Given the relation and query as described earlier, Fig. 10
shows the results of combining all the components of the
total time taken to bring in the relevant disk blocks into
main memory for the cases when the relation is compressed
(C1) by each of the three compression techniques, and when
the relation is uncompressed (C2). The following observa-
tions may be made:

1) Only BIT and TDC show positive improvements. ATS
did not fare well because its decompression time
overhead (t2) is high. The other two techniques illus-
trate that query I/O time is reduced.

2) TDC outperforms BIT, mainly because it is more effi-
cient than BIT in terms of compression. This helps to
reduce TDC’s N value.

3) The improvements are likely to improve in step with
processor technology as the faster machines do better
in Fig. 10. It is well known that processor technology
progresses at a faster rate than disk technology. Thus,
the t2 component is likely to decrease, while t1 stays
about the same. TDC and BIT exhibit promise of im-
provement with processor technology.

A point to note about the performance figures is that the
variable N in C1, C2 is a dominant factor in the amount of
improvement. This value is shown in column 3 of Table (b)
in Fig. 8, and is the average number of blocks accessed. The
actual value of N depends on the attribute involved (k) and
the values of the attributes (a, b). This may show variance,
as evidenced by the TDC row in Table (a) of the same fig-
ure. The actual performance improvement depends on the
set of frequently used attributes in the query selection crite-
ria and their value distributions in the relation.

Fig. 8. Average number of blocks accessed. Column 2 in Table (b) gives the original number of blocks occupied by the relation. Column 3 is the
average number of blocks accessed. Column 4 gives the proportion of block accessed saved. For instance, TDC reduces the number of blocks
accessed by 70.1 percent.

Fig. 9. Index search time I.
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5.4 Experiments with Real-World Data

The previous sections examined the performance of the
three compression techniques for simulated data. Although
the size of the relation in terms of the number of tuples is
large, the number of attributes of each relation is still com-
paratively small. In this section, we show how the perform-
ance comparison scales up to relations with large number
of attributes using some very large real-world data.

The 1990 Public Use Microdata Samples (PUMS) from
the U.S. Bureau of Census contain records representing 5-
percent or 1-percent samples of the housing units surveyed
in the U.S. and of persons residing in them. The 1-percent
samples contain 2.3 million records and occupy 800 Mbytes,
while the 5-percent samples contain 13 million records and
occupy 4 gigabytes. Each record has approximately 150
attributes and occupies 232 bytes.

Census data is a particularly acute instance of the I/O
bottleneck problem. The data, as seen here, is very large,
and of indefinite retention. As new census data are
collected, the amount of data in a collection will only in-
crease. Adding to the problem is the fact that almost all
queries to census data are aggregational. One usually must
access the entire dataset in order to retrieve the relevant
records for statistics computation. Thus, the queries are
always I/O-intensive. There is also a need among demog-
raphers to browse through the census data on-line, in order
to get a sense of the information contained in the data.
Hence, real-time response is desired. Clearly, these are
stringent requirements.

There are two relation schemas in the census dataset:
personal and household. There are 124 attributes in the per-
sonal scheme. We projected 75 of these attributes into a
subrelation which contains 472,980 records giving a total
size of 83,244,480 bytes or approximately 80 megabytes.

Thus, the subrelation is 10 percent the size of the 1-percent
PUMS. We performed the same measurements as in the
above sections. The results are tabulated in Fig. 11. We ob-
tained the same results consistently on other subsets of the
census data. We also obtained the same compression ratio
when we compressed the entire census data set, although
we performed no I/O time experiments on it. The meas-
urements are performed on the HP 9000/735 machine only.
The following observations may be made:

1) All techniques show positive compression and query time
improvements, thus justifying the use of compression.

2) Due to higher number of attributes per tuple, the
block decoding times of all techniques increase. In
particular, the block decoding time for TDC shows
the most significant increase. This forces the perform-
ance improvement ratios to drop.

3) TDC continues to outperform the other two tech-
niques, although the differences are not as pro-
nounced as with the simulated data.

4) ATS shows higher compression ratios than before be-
cause census data contains a lot of zeroes for many of
the attribute values. This results in higher repetitions
of zeroes, thus yielding higher compression ratios.

6 RELATED WORK

Several techniques have been proposed for compressing
statistical databases [1], [5], [7], [8], [9], [14], [21]. We will
only discuss some of the more relevant work, particularly
work on statistical databases with flat file structures, attrib-
ute transpositions and Huffman coding. The reader is re-
ferred to two survey papers on database compression by
Bassiouni [2] and Severance [22] for more complete and
detailed exposition.

Fig. 10. Query I/O time and its improvements. The figures in Table (a) are computed using C1 for ATS, BIT, and TDC, and C2 for the uncom-
pressed relation. The ratios in Table (b) are computed with the formula: (1 - C1/C2) ¥ 100 percent.

Fig. 11. Performance improvements on census data.
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6.1 Constants Removal
In [8], [9], [14], the authors are concerned with statistical
databases that assume a flat file structure, i.e., those con-
sisting of one or more sequential file(s) of bytes. Such data-
bases usually contain numeric data, say from the results of
laboratory experiments, monitoring of seismic activities, or
business trends (see characteristics 3 and 4 in Section 1).
Such databases exhibit little or no record structure. Conse-
quently, the preservation of structure in a compressed da-
tabase is not important. In contrast, the structure of many
important classes of statistical databases (the U.S. Census
data, for example) is very record-oriented.

A subset of the 1990 U.S. census records is shown in
Fig. 12. There are nine records shown (two begin with +,
and the others with 3), all concatenated together without
any structure. Notice that the attribute values are discrete
and there are many runs of zeroes.

Indeed, the primary concern of such techniques is the
removal of constants from the databases. Constants are runs
of identical data values, such as zeroes, that are usually
removed or coded using run-length coding or its variants.
As the database is a contiguous sequence of bytes, much of
the work is concerned with the determination of efficient
mappings between the uncompressed database (a flat file)
and the compressed database (a file containing uncoded
bytes and run-length codings).

Some of the issues addressed by these methods are:

1) the maintenance of mappings when new records are
inserted as more data are gathered,

2) the provision of run-length codings of different con-
stant types, and

3) the provision of efficient and random access to the en-
coded file.

BIT and TDC are different from these techniques in that
the record structures are preserved. This allows the database
to be treated like a relational database, thus harnessing
known and standard access methods and operations for rec-
ord manipulation. We are now working on extending the
compression techniques to relational databases in general.

6.2 Attribute Transposition
Attribute transposition [4], [27] stores a relation as a
collection of contiguous attribute columns, where all
values for an attribute domain are stored together. Work
in this area has concentrated on different schemes for
encoding attributes columns. Since attribute values are
repeated, the standard coding methods may be used to
replace them with smaller sized codewords to achieve
compression [5].

Bit-level compression is identical in concept to attribute-
level compression except that it is carried to the extreme
[29]. Each column of attribute values is further vertically
partitioned into single-bit columns, each corresponding to
the binary pattern of each attribute value.

Both forms of transposition have their strengths and
weaknesses with respect to tuple-wise encoding (BIT and
TDC) or block-wise encoding (ATS). They permit the selec-
tive retrieval of columns required for query processing. They
are comparatively faster if the desired set of columns in the
query is very much smaller than the entire set of attributes.
However, since numerous smaller column files may be gen-
erated by transposition, there is a higher level of disk block
fragmentation. This may result in higher seek times when
locating attributes. In addition, it may no longer be economi-
cal to construct indices for each of the columns for random
access. Thus, decoding may have to be performed serially.

6.3 Huffman Coding
Huffman coding is popular technique for database com-
pression at the character level [3], [7]. Each character is re-
placed by a codeword whose size is inversely proportional
to the frequency of occurrence of that character. As we have
discussed in Section 2, Huffman coding is a coding method
based on statistical modeling, and faces complications
when new data are inserted or deleted. In these cases, the
old data have to be recoded. In addition, performing com-
pression at the character-level is usually time-consuming,
as the ATS technique has illustrated.

7 CONCLUSIONS

We have shown in this paper how database compression is
different from data compression in general. On the basis of
this difference and the characteristics of statistical data-
bases, we have designed and tested three database com-
pression techniques. These techniques are suitable for data-
bases because they are able to support standard database
processing while the database is in a compressed state.

Of the three techniques, Tuple Differential Coding (TDC)
has been shown to have the best performance. TDC is ef-
fectively a combination of three basic compression tech-
niques: textual substitution, bit-compaction and differential
coding. While the first two are generally applicable to most
other data, the form of differential coding incorporated by
TDC is adapted to a table of tuples. The result is a compres-
sion technique customized for relational database compres-
sion. Because the tuple structures are still intact, TDC is
able to support on-line normal database and querying op-
erations while the database is still compressed.

Fig. 12. Census records.
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