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Abstract—Complex queries on trajectory data are increasingly common in applications involving moving objects. MBR or grid-cell

approximations on trajectories perform suboptimally since they do not capture the smoothness and lack of internal area of trajectories.

We describe a parametric space indexing method for historical trajectory data, approximating a sequence of movement functions with

single continuous polynomial. Our approach works well, yielding much finer approximation quality than MBRs. We present the PA-tree,

a parametric index that uses this method, and show through extensive experiments that PA-trees have excellent performance for

offline and online spatio-temporal range queries. Compared to MVR-trees, PA-trees are an order of magnitude faster to construct and

incur I/O cost for spatio-temporal range queries lower by a factor of 2-4. SETI is faster than our method for index construction and

timestamp queries, but incurs twice the I/O cost for time interval queries, which are much more expensive and are the bottleneck in

online processing. Therefore, the PA-tree is an excellent choice for both offline and online processing of historical trajectories.

Index Terms—Access methods, spatio-temporal databases.

Ç

1 INTRODUCTION

GPS is widely used in support of a variety of new
applications, including tracking of vehicle fleets,

navigation of watercraft and aircraft, and the emergency
E911 service for cellular phones [20]. Such applications
would greatly benefit from an ability to make complex
spatio-temporal queries on trajectory data for objects
moving in two or higher dimensional space.

Current work on indices to support spatio-temporal
queries is typically either in support of predictive queries,
which require the future object locations based on their
current locations and velocities (“find all objects that will be
within Union Square in 10 minutes”), or historical queries,
which query the past locations of moving objects (“find all
objects which were at Union Square an hour ago”). We focus on
historical queries, issued on a large set of trajectories.

Queries on historical trajectories may be offline or online
[12]. In offline processing, it is generally permissible to have
a relatively expensive preprocessing step on the set of
trajectories to optimize query performance [12]. In contrast,
online processing assumes that location updates arrive as a
real-time data stream so that one must process queries in as
the data is being updated. Online processing is thus a more
challenging task since no preprocessing is possible [5], [12].

We can also classify indexing methods into Native Space
Indexing methods (NSI) and Parametric Space Indexing
methods (PSI) [26]. In NSI, motion in a d-dimensional space
is represented as a series of line segments (or curves) in
dþ 1-dimensional space, using time as an additional
dimension. PSI can be regarded as the dual transformation

of NSI, where a parametric space defined by the motion
parameters is used. PSI has been shown to be efficient for
predictive queries (see, for example, TPR-tree [28], TPR*-
tree [32], and STRIPES [24]).

PSI has not been advocated in the literature for historical
queries. Indeed, Porkaew et al. [26] found that NSI
outperformed PSI for historical queries. Predictive trajec-
tory uses only one predicted motion function for each
object, but each historical trajectory may consist of
hundreds or even thousands of motion functions. PSI may
hence incur high storage overhead, significantly degrading
query performance. As a result, much previous work on
historical queries has used native-space indexing, using
approximations such as MBRs [13], [12], Octagons [37], or
regular grid cells [5].

However, such methods fail to capture some basic
properties of trajectories, which typically consist of a series
of line segments or curves, with no internal area. As shown
by Kollios et al. [14], MBRs are rather coarse approxima-
tions for trajectories. Consequently, methods that use MBRs
[13], [12] or grid cell approximations [5] either suffer a
significant loss in pruning power or require very expensive
preprocessing.

1.1 Our Work

We revisit the issue of indexing historical trajectories in
parametric space for both offline and online processing.
Unlike previous work in the area [26], we do not represent
each line segment or curve with a parametric function.
Instead, we try to approximate a series of line segments or
curves with a single continuous polynomial. This approx-
imation may not perfectly match the original trajectory, but
we also keep track of the maximum deviation between the
approximation and the original movement and can still
ensure that the approximation is conservative and generates
no false negatives. As long as this maximum deviation is
small, the approximated polynomial function and the
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maximum deviation together provide a much tighter
approximation than MBRs and query performance is

significantly improved.
We observe first [4] that trajectories tend to be smooth

since objects obey the laws of physics and commonly move
along smooth paths, such as road networks. Indeed, for

similarity-based queries, exploiting the smoothness of

trajectories has improved performance greatly over pre-
vious methods [4].

There are major differences between our work and that
of [4], which also approximates trajectories with polyno-

mials. First, [4] targets similarity-based queries and defines
similarity over entire trajectories of equal length, ignoring

the time component. Hence, the techniques in [4] are

generally not applicable to spatio-temporal queries, to
which time is central [25]. Second, the lower-bound lemma

in [4] is only valid for similarity queries so that other

approaches are needed to deal with spatio-temporal
queries. Further, [4] uses approximations of the same

degree for all of the trajectories, which can cause serious

difficulties when the approximation degree is high. In
contrast, we use polynomials of different degrees for

different trajectories.

1.2 Our Contributions

We make a number of contributions in our work. We show

that parametric indexing using polynomial approximations
can improve query performance significantly over current

schemes using native space indexing. We show how to use

polynomial approximations to index historical trajectories
and how to optimize the degree of the polynomial

approximation.
We then present the PA-tree, a new indexing scheme for

historical trajectory data, based on polynomial approxima-
tions, and show how to apply PA-trees to support both

offline and online processing of historical trajectories.
We also develop an analytical cost model that accurately

predicts query performance using PA-trees. Our model is
prospective, relying only on the properties of the trajectories

and the underlying file system. Hence, it can be used to

optimize query performance by tuning parameters. In
contrast, current approaches such as MVR-tree [13], [12]

or SETI [5] must choose parameter values experimentally

since they lack an appropriate cost model.
Finally, we evaluate the performance of our schemes

using synthetic trajectory data sets. We show through

extensive experiments that PA-trees have excellent perfor-

mance for offline and online spatio-temporal range queries
compared to current trajectory indexing schemes, such as

MVR-trees and SETI. Compared to MVR-trees, PA-trees are

an order of magnitude faster to construct and incur I/O cost
for spatio-temporal range queries lower by a factor of 2-4.

PA-trees underperform SETI for index construction and

timestamp queries, but have half the I/O cost for time
interval queries, which are much more expensive than

index construction and timestamp queries and are the

bottleneck in online processing. Therefore, the PA-tree is a
more appropriate choice for both offline and online

processing of historical trajectories.

2 RELATED WORK

MBRs have been widely used to approximate multi-
dimensional data and, consequently, R-trees [10] are the
most common index structure for multidimensional data.
Earlier work using MBRs for trajectories includes the RT-
tree [36] and 3D R-tree [35]. However, since the RT-tree
does not take temporal attributes into account during the
insertion/deletion, timestamp or time interval queries are
inefficient. 3D R-tree is inefficient for timestamp queries
since the query time depends on the total number of entries
in the history [31].

Kollios et al. [15] present methods for indexing linear
historical trajectories offline. They model a long-lived
trajectory with multiple MBRs by splitting it into segments
to reduce the large dead space resulting from the use of a
single MBR and use partial-persistent R-trees (“PPR-tree”)
to index the multiple MBRs. This work is extended in [13],
[12], where the motion function could be arbitrary ([12] uses
the term “MVR-tree” in place of “PPR-tree”). This method
can be more efficient than 3D R-tree since the total empty
volume after splitting would be reduced. However, since
this method still uses MBRs for approximating each
segment, significant dead space remains. Further, they use
a global optimization technique to find how to split each
trajectory into multiple segments, which, unfortunately, is
shown to be very time-consuming [27] so that this method
is unsuitable for online applications. To support online
processing, some heuristics are proposed in [12] to speed up
the splitting; however, as their experiments show, a
significant price must be paid in terms of query perfor-
mance for this speed-up.

Some previous work has been based on a discrete event
model under which an object is assumed to stay at its
current position until it issues an update to the server.
However, this model cannot be used to represent gradual
changes in object locations, limiting its applicability [5]. The
basic idea is to build a separate R-tree for each timestamp,
as in the HR-tree [21] and the MR-tree [36]. Unchanged
nodes are not duplicated in consecutive R-trees to reduce
the storage cost. However, these index structures are only
efficient for timestamp queries, but not for time interval
queries [5], [31]. The MV3R-tree [31] is a hybrid structure
that uses a multiversion R-tree for timestamp queries and a
small 3D R-tree for time-interval queries. The two indices
share the same leaf pages in order to reduce the storage
cost, resulting in a complex algorithm for maintaining the
indices [5].

SETI [5] was the first method to consider online
processing of historical trajectories and uses two-tier index
structures to decouple the spatial and the temporal
dimensions. Space is divided into cells and the temporal
attributes of all line segments intersecting a cell are indexed
with a one-dimensional index structure. Their results
suggest that SETI outperforms 3D R-trees and TB-trees
[25] for spatio-temporal range queries.

However, several factors diminish query performance in
SETI. First, since multiple line segments of the same
trajectory may overlap the query range, SETI must elim-
inate duplicates, which may be expensive. Second, grid cells
are rather coarse approximations for trajectories and, hence,
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a significant I/O cost is incurred in eliminating the false

hits. Third, the work in [5] does not provide a systematic

way to estimate the number of grid cells used in SETI,

which is a key parameter for optimizing the query

performance.
Song and Roussopoulos proposed SEB-trees, based on a

zone-based update policy [29]. Their method, like SETI,

divides space into nonoverlapping zones. Within a zone,

objects are indexed in an SEB-tree by their start and end

timestamps. However, as pointed out in [5], this zone-based

update policy does not maintain accurate position informa-

tion within each zone and is unsuitable for supporting

spatio-temporal range queries, which are the focus of our

work.

2.1 Parametric Space Indexing

Another approach is to apply a duality transformation of

movement and index the parameters in parametric space.

Indeed, parametric indexing methods have been shown to

be efficient for predicted trajectories [28], [32], [24].

However, for historical trajectories, [26] shows that para-

metric space index methods were outperformed by native

space index methods. This is due to the fact that, for

predicated trajectories, only one motion function is required

per object, while each historical trajectory may consist of

thousands of motion functions, leading to huge storage

costs if we index all of the motion functions in the index

structure. Unlike [26], we approximate a series of con-

secutive motion functions by a single polynomial function.

Since trajectories are smooth, a low-degree polynomial

suffices to approximate many consecutive motion functions,

with small error. This approach yields a much smaller dead

space than the approximation using MBRs, eventually

leading to improved query performance.
Tao et al. [30] use order-k homogeneous recurrence

relations, which they call recursive functions, to represent

predictive trajectories. They approximate each such recursive

function with a polynomial stored at a server and use STP-

trees to index these polynomial coefficients.
Several major differences exist between their work and

ours. First, they are concerned with predictive trajectories,

while we focus on historical trajectories. Second, the STP-

tree requires that all trajectories be approximated with

polynomials of the same degree. As acknowledged in [30],

the polynomial degree must trade off the quality of

approximation against the overhead for storage and

manipulation. This trade-off might be different for each

individual trajectory.
In contrast, we approximate each individual trajectory

with a polynomial whose degree is tailored to minimize the

expected I/O cost for spatio-temporal range queries and

provide an analytical method for this choice. Further, the

use of a k degree polynomial in [30] for each axis in a

d-dimensional space causes the STP-tree to become an index

structure in a parametric space of ðkþ 1Þd dimensions,

raising the curse of dimensionality for large k. Unlike [30],

we adopt a two-tier structure (see Section 5) to address this

problem.

2.2 Prospective Cost Models

Cost models allow us to understand index structure
behavior and to tune optimization parameters. A number
of analytical cost models [8], [7], [34] have been proposed
for the R-tree [10] and its variants. However, these models
are applicable only for static spatial objects, but not to
spatio-temporal databases with moving objects.

Tao et al. [32] have proposed an approach for modeling
the cost of queries for a given TPR*-tree index. We call such
models retrospective since they characterize the behavior of a
given index, using index-specific details such as MBR sizes,
available only after a TPR*-tree index is built for any given
data set. In contrast, we seek cost models that are not index-
specific and are actually useful in selecting index para-
meters. We call such models prospective.

Recently, Tao et al. [33] proposed analytical models for
overlapping and multiversion structures. An overlap
structure, such as OVB-tree [3], or multiversion structures,
such as the BTR-tree [16], models attribute changes over
time. However, these analytical models are unlikely to work
well for continuously moving objects. First, the work in [33]
assumes a discrete event model under which object
attributes are assumed to be fixed until an update is issued.
However, historical trajectory data typically model con-
tinuously moving objects. Second, the work in [33] assumes
that all objects remain valid during the lifetime of data set.
This assumption is inappropriate for a moving object
database, where a new object will be inserted when it starts
to move or an existing object deleted when it stops moving.
Consequently, as suggested in [12], current analytical
models are unlikely to work well for historical trajectories
of continuously moving objects when MVR-trees are used.
Instead, [12] chooses to tune performance parameters such
as the number of MBRs using nonanalytical approaches
such as volume reduction curves, obtained by running
experiments with different numbers of MBRs.

Rasetic et al. [27] propose an analytical model for
optimizing the number of MBRs for methods such as [13],
[12] when the query size is fixed. Unfortunately, all MBR-
based methods must deal with the problems arising from the
coarseness of MBR approximations, and we find that our
method far outperforms them. We have found that PA-trees
outperform MVR-trees [13] by a factor of 2-4, even when
they are given an experimentally optimized number of MBRs.

3 DATA MODEL AND OVERVIEW OF OUR

APPROACH

In many location-based services, location data are obtained
by periodic sampling. Specifically, the trajectory for an
object Oi has the form

TrjðOiÞ ¼ fIDi; t0; t1; � � � ; tn; f0ðtÞ; f1ðtÞ; � � � ; fn�1ðtÞg:

Function fjðtÞ is a movement function representing move-
ment during time interval ½tj : tjþ1�, 0 � j � n� 1. The
interval ½t0 : tn� is the lifetime of the trajectory.

Our approach is applicable to any movement function
fðtÞ as long as we can determine the location of the object at
any time instant during its lifetime from fðtÞ. For simplicity
of exposition, we adopt a linear mobility model, which is
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widely used in the literature [5], [25]. Each fjðtÞ is now a
linear function of time so that a trajectory consists of a series
of connected line segments, generally called a polyline.

As in previous work [13], [12], we assume time is discrete
and that each time instant is an integer in the range ½0; T �,
which contains the lifetimes of all the trajectories. We
assume an object moves in a two-dimensional XY-space.
The extension to higher dimensions is straightforward.

We focus mainly on spatio-temporal range queries,
which are essential building blocks for all other types of
queries. A spatio-temporal range query may be a timestamp
query or a time interval query [13]. A timestamp query
q ¼ ðqs; tÞ asks for all objects within spatial range qs at
timestamp t. A time interval query q ¼ ðqs; t1; t2Þ asks for all
objects which were within spatial range qs at any timestamp
t 2 ½t1 : t2�.

3.1 Overview of Approach

We proceed in two steps. First, we calculate the parametric
representation for each trajectory by approximating it in
XY-space with two polynomial functions: f̂xðtÞ and f̂yðtÞ
modeling movement in the X direction and in the
Y direction, respectively. We also determine the maximum
deviation of the polynomial approximation from the exact
movement in the X and Y dimensions. The polynomial
coefficients and the maximum deviation suffice for us to
make the approximation conservative, guaranteeing no
false negatives.

Fig. 1a and Fig. 1b show how we construct linear and
order-k polynomial approximations to the X-component of
a trajectory. Such approximations are not exact, so we create
conservative upper and lower bounds for the object’s
position by offsetting the approximating polynomial up-
ward and downward by an amount equal to the maximum
deviation between the trajectory and the polynomial. We
can now guarantee that the object will be located within
these bounds.

In the second step, we build an index structure over the
coefficients obtained in the first step. However, not all
trajectories are likely to be equally complex so that we may
need polynomials of different degree for different trajec-
tories. This causes problems when building an index
structure using the coefficients since the dimensionality of
the indexed items may be different. Current index structures
assume that the dimensionality of all data is the same.
Adopting the same polynomial degree for all trajectories is
not advisable since the curse of dimensionality will quickly

degrade the performance of any index structure in high-
dimensional space.

3.1.1 Two-Tier Indexing

We address this problem by using a two-tier index
structure. The first-tier index structure uses only the first
two coefficients of each polynomial so that each data entry
is a 6-tuple (two coefficients for each dimension and the
corresponding maximum deviations). This strategy ensures
that we are not operating in a high-dimensional space so
that an R-tree or its variants can still be efficient for
indexing. As we will illustrate in Section 4, by appropriately
splitting the temporal domain ½0; T � into intervals, we can
adopt a piecewise linear approximation in the first tier
index structure, each linear approximation corresponding
to multiple line segments in the trajectory. However, even
with this piecewise-linear approximation, we achieve much
smaller dead space than MBRs can for the same size of
representation.

The second-tier index structure is elaborated within the
leaf nodes of the first-tier structure. Complex trajectories
may require higher-degree polynomial approximations
whose coefficients are stored in the second-tier structure.
If we descend to the leaf nodes in the first-tier structure and
still are unable to determine whether the trajectory satisfies
the query predicates, the additional coefficients can be
retrieved and used in the filtering step. As our experiments
will show, most trajectories can be approximated very well
with quadratic or cubic polynomials so that the second-tier
structure does not introduce significant space overhead.

3.1.2 An Illustrative Example

Fig. 2a plots the trajectory of a moving vehicle for 10 minutes,
collected in the Intellishare project [1] at the University of
California–Riverside. Fig. 2b plots the X-movement against
time and the eight MBRs obtained with the LAGreedy
algorithm proposed in [13], [12]. We note that the eight
MBRs together require 8� 6 ¼ 48 values. Fig. 2c plots the
result of our method in which the trajectory is split into six
segments, each approximated with a linear function. Each
segment requires two coefficients and one maximum
deviation each for X-movement or Y-movement, plus the
temporal intervals. In all, 48 values are required for the
approximations. Our polynomial approximations clearly
produce much smaller dead space than the MBR approx-
imations. Fig. 2d plots the approximation with more
coefficients, with significantly reduced dead space.

4 APPROXIMATING TRAJECTORIES WITH

POLYNOMIALS

In this paper, we propose an approximation in parametric
space by using Chebyshev polynomials. Chebyshev poly-
nomials have been shown to have the near-optimal
L1 deviation among all approximations with the same
degree [19] and perfectly match our requirements. Further,
the Chebyshev coefficients are easy to compute [19], [4].

We have chosen to split each trajectory into multiple
segments by dividing the temporal domain ½0; T � into
m disjoint time intervals, each of which is approximated
with a lower-degree polynomial. There are two reasons for
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such splitting. First, approximating the entire trajectory

with a single polynomial may require a polynomial of high

degree, leading to a high-dimensional indexing problem.

Second, the marginal benefit for the first few coefficients

will be much larger than that of high-order coefficients.

4.1 Splitting the Time Domain

We split the temporal domain ½0; T � into m equal time

intervals:

I0 ¼ ½0; lÞ; I1 ¼ ½l; 2lÞ; � � � ;
Ii ¼ ½il; ðiþ 1Þl�; � � � ;

Im�1 ¼ ½ðm� 1Þl;mlÞ;

where l ¼ T
m is the length of each time interval and

timestamps l; 2l; � � � ; ðm� 1Þl are called splitting time-

stamps. In Section 8, we will discuss how to optimize m

based on an analytical cost model.
Each trajectory is split into multiple segments using the

same m� 1 splitting timestamps. This strategy is different

from that in [13], [12], [27], where each trajectory selects

different splitting timestamps. First, in parametric space, a

set of segments cannot be clustered unless they have the

same temporal domain since it would be meaningless to

cluster coefficients corresponding to different temporal

domains. Second, even with an equal-sized splitting

strategy, we can still use different numbers of coefficients

for different trajectories. Indeed, basing the number of

coefficients for approximation on the trajectory complexity

is equivalent to using different splitting timestamps.

Finally, using equal-length splitting intervals obviates the

need to maintain time intervals in index nodes. This could

significantly reduce the storage cost of the index structure

and eventually lead to a reduction of I/O cost during the

filtering step.

4.2 Approximating a Trajectory Segment with a
Polynomial

We now consider how to obtain polynomial approxima-

tion (PA) with Chebyshev polynomials. We illustrate the

approximation for the X-movement only, so we will

omit the subscript x when no confusion can arise.

Consider a trajectory segment in the temporal interval

Ii ¼ ½il; ðiþ 1ÞlÞ. Let fðtÞ be the piecewise linear move-

ment functions during Ii.

We first normalize the temporal domain ½il; ðiþ 1Þl� to
the interval [�1,1]. Given t 2 ½il; ðiþ 1Þl�, let its normalized
value be t0 2 ½�1; 1�. Normalization requires

t� il
l
¼ t

0 � ð�1Þ
2

;

which yields

t0 ¼ 2t� ð2iþ 1Þl
l

and t ¼ ð2iþ 1Þlþ t0l
2

:

The function f : ½il; ðiþ 1ÞlÞ ! ð�1;1Þ is now normalized
to ef : ½�1; 1Þ ! ð�1;1Þ.

Now, for t 2 ½il; ðiþ 1Þl�, we can approximate fðtÞ as

bfðtÞ ¼ cð0ÞT0ðt0Þ þ cð1ÞT1ðt0Þ þ � � � þ cðkÞTkðt0Þ; ð1Þ

where t0 2 ½�1; 1� is the normalized value of t, Tiðt0Þ ¼
cosði arccosðt0ÞÞ is the Chebyshev polynomial of degree i,
and the coefficients cð0Þ; cð1Þ; � � � ; cðkÞ are to be determined.

Theorem 1. Let fðtÞ be the function over interval ½il; ðiþ 1Þl� to
be approximated. Now,

cð0Þ ¼ 1

�

Z 1

�1

efðtÞffiffiffiffiffiffiffiffiffiffiffiffi
1� t2
p dt; cðiÞ ¼ 2

�

Z 1

�1

efðtÞTiðtÞffiffiffiffiffiffiffiffiffiffiffiffi
1� t2
p dt:

Proof. See [19]. tu

We use Gauss-Chebyshev quadrature to compute these
integrals. The abscissas for quadrature are given by the
roots of TnðtÞ, which has n roots �j ¼ cos ðj�0:5Þ�

n for
1 � j � n. We have the following explicit way to compute
the coefficients:

cð0Þ � 1

n

Xn
j¼1

f
ð2iþ 1Þlþ �jl

2

� �
;

cðiÞ � 2

n

Xn
j¼1

f
ð2iþ 1Þlþ �jl

2

� �
Tið�jÞ:

To ensure that this approximation leads to no false
negatives, we determine a conservative approximation
guaranteed to contain the object’s location at all times.
After obtaining the kþ 1 coefficients, we compute the
maximum deviation

�ðkÞ ¼ max fðtÞ � bfðtÞ��� ���n o
; t 2 ½il; ðiþ 1Þl�:
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Now, the range ½bfðtÞ � �ðkÞ; bfðtÞ þ �ðkÞ� is guaranteed to
contain fðtÞ for t 2 ½il; ðiþ 1Þl�.

The kþ 1 Chebyshev coefficients can be computed in
time OðnkÞ, where n is the highest degree of approximating
Chebyshev polynomial. Computing the maximum devia-
tion error takes time OðlkÞ, where l is the number of instants
between t0; ts. In our implementation, we choose n ¼ OðlÞ,
so the total cost is OðlkÞ. The following lemma is useful:

Lemma. Suppose fðtÞ is approximated by a linear functionbfðtÞ ¼ cð0Þ þ cð1ÞT1ðt0Þ. For il � t1 < t2 � ðiþ 1Þl, we have
jbfðt2Þ � bfðt1Þj ¼ 2ðcð1Þjt2 � t1jÞ=l.

Proof.

jbfðt2Þ � bfðt1Þj ¼ jðcð0Þ þ cð1Þt02Þ � ðcð0Þ þ cð1Þt01Þj
¼ 2cð1Þjt2 � t1j

l
:

tu

4.3 Choosing the Degree of Approximating
Polynomials

In general, the polynomial degree k should be determined
based on the characteristics of trajectories. Clearly, there is a
trade-off between the approximation quality and the
degree k used for approximation. A smaller k value requires
less space in the index, as well as less I/O during the filter
step. On the other hand, fewer coefficients may result in
poorer filtering, causing more trajectories to be examined
during the refinement step, increasing its I/O cost.

Another consideration is the complexity of the trajectory
segment. Obviously, if the trajectory segment has a
relatively simple form, a few coefficients will suffice to get
a small deviation error. However, since we are not aware of
any well-defined notion of complexity for this context, it is
not easy to estimate the optimal degree.

We present a heuristic to estimate the degree k, aimed at
minimizing the expected size of representations to be
retrieved during query evaluation. Let �ðkÞx and �ðkÞy be the
maximum errors for a k-order polynomial approximation
on the X- and Y-dimensions, respectively. We make the
following reasonable assumptions: First, given query
q ¼ ðqs; t1; t2Þ, we assume that the query range qs is a qx �
qy rectangle, where qx � 2�ðkÞx and qy � 2�ðkÞy . (The other cases
are similar and, hence, omitted). Second, we assume that
the range qs is uniformly distributed in the region normal-
ized to a unit square.

Let S and Sk be the data sizes of the exact representations
for the trajectory segment and of its k-degree polynomial
approximation, respectively. We will derive the expected
size of representational data to be retrieved for a random
query.

If the approximation does not intersect the query range,
we can safely prune it out during the filter step. If a
segment’s approximation lies completely inside qs, we can
safely declare it a true hit. We call this type of true hit a
filtering true hit. Otherwise, the segment becomes a candidate
for the refinement step in which its exact representation
must be retrieved. If the refinement step finds that the
segment lies outside qs, we have a false hit. Otherwise, we
will record a refinement true hit.

4.3.1 Estimating Relevant Probabilities

To estimate the expected I/O cost, we must estimate the
probability that the trajectory segment is a candidate for the
refinement step in which it will be determined to be either a
false hit or a refinement true hit. We will consider the hits
and misses on the X and Y dimensions separately, omitting
the x and y subscripts and the subscript k when no
confusion is likely.

We first define a class of events to help our development
(see Table 1). Consider a segment s, an approximation bs for
s, and a query range qs ¼ qx � qy. Let the projections of bs
along the X- and Y- axes be bsx and bsy, respectively.

We have an X-raw hit (or just X-hit) if bsx intersects qx
during the filtering step. We will denote this event as HXðsÞ.
Further processing is required for us to determine whether
this hit is a true hit or a false hit. If bsx lies entirely within the
query range qx, we can flag this as a filtering true hit and
dispense with the refinement step. We denote this event by
fTHXðsÞ. If we have HXðsÞ but not fTHXðsÞ, we pass s to the
refinement step for further processing. In this case, we will
designate s as an X-candidate and write CXðsÞ.

Let the query range qs’s X-projection be ½u� qx; u�. Let
! be the overlap between the lifetime of s and the query
temporal interval ½t1; t2�, with j!j being the length of this
overlap. Let bfmin and bfmax be the minimum and
maximum value of the approximated polynomial bfxðtÞ
within !. As seen in Fig. 3, if u 2 ½bfmin � �ðkÞx ; bfmin þ �ðkÞx � or
u� qx 2 ½bfmax � �ðkÞx ; bfmax þ �ðkÞx �, the trajectory segment is a
candidate for the refinement step. In this case, although
the projection bsx of bs overlaps ½u� qx; u�, it is still unclear
whether s itself intersects with qs along the X-dimension.
Hence, the probability that the trajectory segment is an
X-candidate is

Pr½CX� ¼ 2�ðkÞx þ 2�ðkÞx ¼ 4�ðkÞx : ð2Þ

To estimate the probability that the trajectory segment is an

X-hit, we observe that, during !, the projected approximated
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Summary of Notation for Events

Fig. 3. X-candidate example.



movement along the X-dimension is bfmax � bfmin, associated

with approximation error 2�ðkÞx . We know from Lemma 1

that, when a linear function bfxðtÞ is used to approximate the

X-movement, bfmax � bfmin ¼ 2 c
ð1Þ
x j!j
l , where l is the length of

the temporal interval. Now, the probability that the

trajectory segment is an X-hit is

Pr½HX� ¼ 2�ðkÞx þ 2
cð1Þx j!j
l
þ qx:

If the approximation bsy does not result in a Y-hit, we can

safely prune out the segment. However, when a trajectory
segment is an X-candidate and a Y-Hit, it remains unclear
during the filter step whether the trajectory segment

satisfies the query predicate, so the segment becomes a
refinement candidate. A symmetric situation holds when

the segment is a Y-candidate and an X-intersect. Therefore,
the probability of becoming a refinement candidate is

Pr½C� ¼ Pr½ðCX \HYÞ [ ðCY \HXÞ�
¼ Pr½CX� � Pr½HY� þ Pr½CY� � Pr½HX� � Pr½CX� � Pr½CY�

since CX 	 HX and CY 	 HY. Equation (2) and symmetry

between CX and CY yields

Pr½C� ¼ 4 �ðkÞx � qy þ �ðkÞy � qx
� �

þ 8
j!j
l

�ðkÞx � cð1Þy þ �ðkÞy � cð1Þx
� �

:

Now, the expected I/O cost for the trajectory segment s
with a degree-k approximation is

IOk ¼ Sk þ Pr½C�S;

where S and Sk are the data sizes of the exact representa-
tions for s and of its degree-k polynomial approximation,
respectively. We will choose k to minimize IOk.

5 PA-TREES

We now present the PA-tree, a new method for indexing
polynomial approximations of 2D trajectories. PA-trees

resemble R*-trees, but each entry consists of polynomial
coefficients, rather than MBRs. We recall that the temporal

domain ½0; T � is split into m intervals. In a gross sense, the
root node has m PA-trees as its children, each responsible

for indexing trajectory segments within one of these
intervals.

Fig. 4a shows two PA-trees, over intervals I1 and I2,
respectively. Indexing occurs at two tiers. The first tier of
indexing is an R*-tree like structure, and indexes the two
leading coefficients of the polynomial describing move-
ment along each dimension. It is reasonable to see this as
a four-dimensional indexing problem, with each dimen-
sion corresponding to one coefficient. Each entry in the
index structure also holds the maximum deviation errors
�ð1Þx and �ð1Þy .

As in R*-trees, a leaf node entry has the form ðptr; paÞ,
where ptr points to the exact representation of the trajectory

segment and pa is a 6-tuple: hcð0Þx ; cð1Þx ; cð0Þy ; cð1Þy ; �ð1Þx ; �ð1Þy i.
Entries in nonleaf nodes are of the form ðptr; paÞ, where

ptr is the pointer to a child node and pa has the form

hcð0Þ?;x; c
ð0Þ
?;y; c

ð1Þ
?;x; c

ð1Þ
?;y; c

ð0Þ
>;x; c

ð0Þ
>;y; c

ð1Þ
>;x; c

ð1Þ
>;y; �

ð1Þ
x ; �ð1Þy i, representing

the lower (upper) bounds of the coefficients for the entries

stored in the child pointed to by ptr. Also, pa maintains the

maximum �ð1Þx and �ð1Þy for all entries in the subtree.
The second tier holds more coefficients and the max-

imum deviation for each trajectory segment, if the estimated
degree is larger than 1 (See Section 4). This information
allows better pruning than the linear approximations in the
first tier.

Insertions and deletions are similar to the corresponding

operations for R*-tree. The primary difference is that we

need to ensure that the �ð1Þx , �ð1Þy values in the nonleaf nodes

are the maximum �ð1Þx , �ð1Þy for all the segments in its subtree.
Fig. 4b depicts a set of PA-trees, showing only the

coefficients and deviations for X-dimension for simplicity.
The root entries specify the time interval for each individual
PA-tree. Each first-tier entry contains the lower and upper
bounds for the coefficient cð0Þ and cð1Þ, as well as the
maximum deviation error �ð1Þ. Each entry in the second tier
has the form of k; cð2Þ; � � � ; cðkÞ; �ðkÞ; ts; te.

6 OFFLINE QUERY PROCESSING

Given a query q ¼ ðqs; t1; t2Þ, we start with the root node,
which contains m temporal intervals and the pointers to the
corresponding PA-tree. Each PA-tree is searched if and only
if the temporal interval intersects ½t1; t2�.
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Fig. 4. (a) PA-tree and (b) an example.



Let Ii ¼ ½il; ðiþ 1Þl� be the temporal interval correspond-

ing to an entry in a nonleaf node in the PA-tree. Given

q ¼ ðqs; t1; t2Þ, let ts ¼ maxft1; ilg and te ¼ minft2; ðiþ 1Þlg.
We must check whether there is a trajectory segment

inside qs at any time t 2 ½ts; te�. Let the index entry be

hcð0Þ?;x; c
ð0Þ
?;y; c

ð1Þ
?;x; c

ð1Þ
?;y; c

ð0Þ
>;x; c

ð0Þ
>;y; c

ð1Þ
>;x; c

ð1Þ
>;y; �

ð1Þ
x ; �ð1Þy i. In the fol-

lowing discussion, we will omit the subscripts x and y

for the sake of clarity.

As in Section 4, for t 2 ½ts; te�, we use t0 to denote its

normalized value in [�1; 1]. Now, the nonleaf entry

represents all movement in the approximated linear form

f 0ðtÞ ¼ cð0Þ þ cð1ÞT1ðt0Þ ¼ cð0Þ þ cð1Þt0, where cð0Þ 2 ½cð0Þ? ; c
ð0Þ
> �

and cð1Þ 2 ½cð1Þ? ; c
ð1Þ
> �. In principle, we can apply the dual

transformation technique of [14] to check whether there

are linear trajectories intersecting qs during ½t0s; t0e�. How-

ever, the slope cð1Þ and the temporal attribute t0 could be

either positive or negative, making it hard to apply duality

transformations. Instead, we determine the upper and

lower bounding polynomials for the motion segment in

the form cð0Þ þ cð1Þt, where cð0Þ 2 ½cð0Þ? ; c
ð0Þ
> �, cð1Þ 2 ½c

ð1Þ
? ; c

ð1Þ
> �,

and t0 2 ½t0s; t0e�. If eð1Þ is the maximum deviation error, we

use the monotonicity of cð0Þ þ cð1Þt0 to compute the lower

bound as:

x? ¼ cð0Þ? þminfcð1Þ? t0s; c
ð1Þ
? t
0
e; c

ð1Þ
> t
0
s; c

ð1Þ
> t
0
eg � �ð1Þ ð3Þ

and the upper bound as:

x> ¼ cð0Þ> þmaxfcð1Þ? t0s; c
ð1Þ
? t
0
e; c

ð1Þ
> t
0
s; c

ð1Þ
> t
0
eg þ �ð1Þ: ð4Þ

If the computed range intersects with the query range qs,

we know there may be candidates satisfying the query

predicates. We now descend the tree and repeat the process

for the subtree rooted at this entry, down to the leaf nodes.

At the leaf node, we first retrieve the k� 1 coefficients

in the second-tier structure, stored sequentially in the leaf

nodes. The approximate location bfðtÞ at time t 2 ½ts; te�
can be computed using (1) and the spatial range

½bfðtÞ � �ðkÞ; bfðtÞ þ �ðkÞ�. If there is a time t 2 ½ts; te� such

that the spatial range is completely inside qs, the

trajectory segment is a filtering true hit, its ID will be

reported. If this range does not intersect query qs for any

t 2 ½ts; te�, the trajectory segment is pruned out. Other-

wise, refinement is required for determining whether this

trajectory segment is a true hit or false hit.

6.1 An Example

Consider the PA-trees shown in Fig. 4b. Let the query have

spatial range qx ¼ ½0; 0:1� in the X-dimension and temporal

interval [10, 20]. Clearly, the PA-trees corresponding to the

interval [0, 20] and the one for [20, 40] must both be

searched. Normalizing the query interval to [0, 1], we can

use (3) and (4) and obtain [0, 0.4] as the range for entry 1.

Since qx overlaps this range, we need to check entries 2 and

3, which are entry 1’s children. For entry 2, we use (3) and

(4) and get the range as [0.15, 0.35], which does not intersect

with qx ¼ ½0; 0:1�. We can safely prune out this entry. For

entry 3, we get the range as [0, 0.4], which overlaps qx.

We now retrieve entry 5 in the second-tier structure.

For this trajectory segment, we have k ¼ 2, cð0Þ ¼ 0:3,

cð1Þ ¼ �0:2, cð2Þ ¼ 0:25, and �ð2Þ ¼ 0:03. For each timestamp

t 2 ½10; 20�, we calculate bfðtÞ using (1). For t ¼ 10, we

calculate the value of bfðtÞ to be 0.05. We now compute

the range to be ½bfðtÞ � �ð2Þ; bfðtÞ þ �ð2Þ� ¼ ½0:02; 0:08�, which

is completely inside qx ¼ ½0; 0:1�. Therefore, we identify

this trajectory segment as a true hit.

7 ONLINE PROCESSING

We now extend PA-trees to support online processing when

location updates arrive as real-time data streams. We

support both efficient index structure maintenance and

query.

7.1 Handling Inserts

Fig. 5 shows the insert procedure in our online scheme. As

in the offline case, we split the lifetime into intervals of

length l. Let Inow ¼ ½il; ðiþ 1ÞlÞ be the current interval and

let tnow be the current time, il � tnow � ðiþ 1Þl. As in [5],

updates arriving during ½il; iþ 1ÞlÞ will be stored in an in-

memory buffer, called the frontline buffer. At the end of the

current interval, that is, at tnow ¼ ðiþ 1Þl, we obtain

polynomial coefficients and deviation errors, as in Section 4.

These values are then inserted into a PA-tree and the

trajectory data placed in a data file.

7.1.1 Buffer Management

One major concern is that the frontline buffer may overflow

before the end of the interval, especially for relatively long

intervals or when updates arrive rapidly. We use the

technique of batch writes, as in [17]. When the buffer is full,

its contents are written to an intermediate list as a single

batch. Similarly, at the end of an interval, an intermediated

list is retrieved as a batch and the polynomial approxima-

tion applied over the entire trajectory segment correspond-

ing to this interval. Since reading and writing each

intermediate list requires one random access followed by

a long sequential read [17], the I/O overhead is greatly

reduced.
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7.2 Handling Queries

Consider a time interval query q ¼ ðqs; t1; t2Þ. Let Inow be the
current interval and tnow be the current time. To process q,
we must first determine the temporal intervals up to Inow
that overlap ½t1; t2�. If Inow itself overlaps ½t1; t2�, we first
check whether the trajectory segment in the frontline buffer
overlaps qs during ½t1; t2�. The trajectory segments in the
intermediate lists will next be retrieved and tested against q.
All trajectory segments from temporal intervals I that
precede Inow and overlap ½t1; t2� will have already been
indexed in a PA-tree. Therefore, the query processing
technique presented in Section 5 suffices to find all of the
trajectory segments that intersect qs during interval I.

8 A PROSPECTIVE PERFORMANCE MODEL

We now develop an analytical cost model for PA-trees. In
the terminology of Section 2, we seek cost models that are
prospective, rather than retrospective. That is, we seek models
useful in designing PA-tree structures for a given data set
and in tuning important index parameters, such as the
number of temporal intervals, to minimize the number of
disk accesses.

We are given N trajectories during the lifetime ½0; T �
in a two-dimensional unit square and a time interval
query q ¼ ðqs; t1; t2Þ. We want a formula to estimate the
average number of disk access for processing q during
the filtering and refinement steps. As in Section 4, we
divide the lifetime ½0; T � into m equal-sized intervals
½0; lÞ; ½l; 2lÞ; � � � ; ½ðm� 1Þl;ml�, where l ¼ T=m is the time
interval length. Let the PA-tree corresponding to the
ith interval be denoted by PAi.

We make the following reasonable assumptions: First,

the query spatial range qs ¼ qx � qy is uniformly distributed

in the unit square and the query temporal interval ½t1; t2� is

uniformly distributed within ½0; T �. Second, for trajectory

segment s, we assume that we know the coefficients cð1Þs;x and

cð1Þs;y , the linear deviation errors �ð1Þs;x and �ð1Þs;y , and the k-order

approximation errors �ðkÞs;x and �ðkÞs;y . These values can be

obtained using the polynomial approximation technique

discussed in Section 4. Finally, we assume that there is no

buffering since our purpose is to model the PA-tree without

the confounding effects of a buffer management algorithm.

Let Ni be the number of trajectory segments indexed by
PAi and hi be the height of PAi. Let f be the fanout of node
in PAi, that is, the average number of entries in a node. Let
Mi;j be the number of nodes at level j. Leaf nodes are at
level 1, root node is at level h, and the data entries are at
level 0. Now, as in the R-tree cost model of [34], we have:

hi ¼ logf Ni and Mi;j ¼
Ni

fj
: ð5Þ

Let DAf
i ðqÞ be the the number of disk access for PAi

during the filtering step for query q. Let DAr
i ðqÞ be the

number of disk accesses to the trajectory segments for the
ith interval during the refinement step. The total number of
disk access would be

DAðqÞ ¼
Xm
i¼1

�
DAf

i ðqÞ þDAr
i ðqÞ

	
: ð6Þ

8.1 Cost Model for Filtering Step

Consider a node n on PAi with lifetime �n ¼ ½il; ðiþ 1ÞlÞ.
Let �n ¼ �n;x � �n;y be its spatial extent in the native space
and let !n;q ¼ �n \ ½t1; t2� be the overlap between �n and
½t1; t2�, with j!n;qj being the length of the overlap. Further, let
�n;q ¼ �n;q;x � �n;q;y be n’s spatial extent during !n;q.

Since all of our ensuing discussion refers to the query q,
we will simplify notation by omitting specific mention of
the query q in our symbol subscripts (see Table 2). Thus, we
will write !n, �n, and �n;x instead of !n;q, �n;q, and �n;q;x. The
reference query q will be present implicitly.

Let AðnÞ denote the event that node n is accessed during
query processing. Node n will be visited if and only neither
!n and �n is null. Let �ðnÞ denote the event that !n is not
null and �ðnÞ denote the event that �n is not null. Now, the
probability that node n will be visited is

Pr½AðnÞ� ¼ Pr½�ðnÞ� � Pr½�ðnÞ�:

Since ½t1; t2� is uniformly distributed in ½0; T �,

Pr½�ðnÞ� ¼ ðlþ jt2 � t1jÞ
T

:

Pr½�ðnÞ� can be estimated as [34], [7]:

Pr½�ðnÞ� ¼
�
�n;x þ qx

	�
�n;y þ qy

	
:
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As in our discussion of query processing in Section 6, we

compute each node’s spatial extent as the sum of a

component derived from the approximated object move-

ment and a component corresponding to the maximum

deviation error of the linear approximation. Given

Mi;j nodes at level j in PA-tree PAi, let the mean spatial

extents along the X-dimension and Y-dimension for the

nodes at level j during !n be ��½j�;x ¼ 1
Mi;j

PMi;j

m¼1 �m;x and

��½j�;y ¼ 1
Mi;j

PMi;j

m¼1 �m;y, respectively. Let ��½j�;x and ��½j�;y be the

average movement of objects at level j along the X- and Y-

dimensions during !n, derived from the trajectory approx-

imations. Let ��½j�;x and ��½j�;y be the average of the maximum

deviation errors of the nodes at level j. The average spatial

extent of a level-j node is

�½j�;x ¼ �½j�;x þ 2�½j�x; and �½j�;y ¼ �½j�;y þ 2�½j�y: ð7Þ

We will now discuss how to estimate ��½j�;x (or ��½j�;y) and
��½j�;x (or ��½j�;y).

8.1.1 Estimating Object Movements

Each node in the PA-tree maintains the coefficients for the
linear approximation to the trajectories. We estimate ��½j�;x
and ��½j�;y as follows: We use the linear approximation for
each segment s to compute a time-parameterized MBR during
!s, the overlap between s’s lifetime and query temporal
interval ½t1; t2�. A time-parameterized MBR for a trajectory
segment is the MBR, which covers the approximated linear
movement during !s, and can easily be obtained from the
parametric representations of PA-tree. During the temporal
interval !s, the PA-tree may be regarded as a time-
parameterized R-tree over those MBRs in the native space.
Under this formulation, we can apply the cost model for
general R-tree [34] to estimate the spatial extent ��½j�;x � ��½j�;y
in the PA-tree.

From Lemma 1, the approximated linear X- and Y-
movements for trajectory segment s during !s are

�̂s;x ¼
2cð1Þs;x � j!sj

l
and �̂s;y ¼

2cð1Þs;y � j!sj
l

;

where cð1Þs;x and cð1Þs;y are the linear coefficients for s and j!sj is
the length of overlap !s.

Therefore, in the native space, the trajectory segment will
be approximated by a time-parameterized MBR with area

as ¼ �̂s;x � �̂s;y ¼ 4
cð1Þs;x � cð1Þs;y � j!sj

2

l2
:

To use the R-tree [34] cost model in our analysis, we must

estimate the density Dj for the set of time-parameterized

MBRs of nodes at level j during !n. As in [34], the density of a

set of MBRs is simply the total size of MBRs when the entire

space is an unit square. In our case, the density D0 at level 0

would be the total size of all time-parameterized MBRs

during !s for all trajectory segment s ð1 � s � NiÞ. That is,

D0 ¼
XNi

s¼1

as ¼
XNi

s¼1

4
cð1Þs;x � cð1Þs;y � j!sj

2

l2
¼ 4

l2

XNi

s¼1

j!sj2cð1Þs;xcð1Þs;y : ð8Þ

As in [34], the density Dj ð1 � j � hiÞ at level j becomes:

Dj ¼ 1þ
ffiffiffiffiffiffiffiffiffiffi
Dj�1

p
� 1ffiffiffi

f
p

 !2

:

Now, ��½j�;x and ��½j�;y can be computed as follows:

�½j�;x ¼ �½j�;y ¼
ffiffiffiffiffiffiffiffiffi
Dj

Mi;j

s
¼

ffiffiffiffiffiffiffiffiffiffi
Djfj

Ni

s
:

8.1.2 Estimation of Deviation Errors

To estimate the average of maximum deviation error ��½j�;x or

��½j�;y for the nodes at level j, we observe that the deviation

error is an augmented attribute in PA-trees and does not

affect the node insert/split procedure when constructing

PA-trees. The deviation errors are hence independent of the

polynomial coefficients and we proceed to estimate devia-

tion error as follows:
The deviation errors �ð1Þs;x or �ð1Þs;y for trajectory segments

s ð1 � s � NiÞ are randomly assigned into Mi;j buckets.

Then, we use the average of the maximum deviation error

of the Mi;j buckets as the estimation of ��½j�;x and ��½j�;y.

8.1.3 Total Cost for Filtering Step

Using our estimates of ��½j�;x or ��½j�;y and ��½j�;x or ��½j�;y, we can

now compute the average spatial extent ��½j�;x and ��½j�;y of the

node at level j using (7). The total number of disk accesses

DAf
i ðqÞ over the PAi is:

DAf
i ðqÞ ¼

ðlþ jt2 � t1jÞ
T

Xhi
j¼1

Mi;jð�½j�;x þ qxÞð�½j�;y þ qyÞ
� 	

¼ ðlþ jt2 � t1jÞ
T

Xhi
j¼1

Ni

fj
ð�½j�;x þ qxÞð�½j�;y þ qyÞ

� �
:

8.2 Cost Model for Refinement Step

Given a trajectory segment s, let �s denote its temporal

interval. Let �ðsÞ be the event that �s overlaps with the

query temporal interval ½t1; t2�. As in the analysis of the

filtering step, we have

Pr½�ðsÞ� ¼ j�sj þ jt2 � t1j
T

:

Let CðsÞ be the event that trajectory segment s is a

candidate segment for refinement step. As discussed in

Section 4,

Pr½CðsÞ� ¼ 4ð�ðkÞs;x � qy þ �ðkÞs;y � qxÞ þ 8
j!sj
l

ð�ðkÞs;y � cð1Þs;x þ �ðkÞs;x � cð1Þs;yÞ:

Therefore, the total number of disk access over PAi

during the refinement step is

DAr
i ðqÞ ¼

XNi

s¼1

Pr½�ðsÞ�Pr½CðsÞ� ¼ 4

T

XNi

s¼1

ðj�sj þ jt2 � t1jÞ

�
�ðkÞs;x � qy þ �ðkÞs;y � qx þ 2

j!sj
l
ð�ðkÞs;x � cð1Þs;y þ �ðkÞs;y � cð1Þs;xÞ

	
:
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8.3 Analytical Method for Parameter Tuning

One application of the cost model is for tuning the
parameter m for a PA-tree. Let DAmðqÞ be the expectation
of the total I/O cost when we use m intervals. To estimate
the optimal or near-optimal value for m, we estimate
DAmðqÞ using the cost model, varying parameter m, and
then choose the optimal value m̂opt as the value of m when
DAmðqÞ is minimal.

Another approach to parameter tuning, which we have
called the experimental method, was used in [12], [5]. This
approach first constructs a set of index structure instances,
one for each value of the parameter. It then evaluates a set of
queries over each of these index instances and picks as the
optimum the instance that yields the lowest cost. In Section 9,
we will show that the analytical method for parameter
tuning is far cheaper than the experimental method while
yielding a near-optimal value for parameter m.

9 EXPERIMENTAL EVALUATION

Since no large-scale real trajectory data sets are currently
available publicly, we generated synthetic data sets using the
network-based generator of [2] and the road network in San
Joaquin County, California. Our data sets were obtained by
running the simulation for a total of 1,000 timestamps. We
focus on the results on the data sets generated by this
generator, which has been used extensively in previous work
[5], [12], [37]. Further, as suggested by recent work [23], [9],
modeling movement along roads is practically significant.

Data set SJ30k was generated by repeating the following
procedure six times, each with different random seeds. Five
thousand trajectories were generated each time, using six
object classes, three external object classes, 3,000 initial
objects, and two new objects per timestamp. This data set
has 6,390,000 location updates and a size of 180 MB. Each
object reports its position and movement function each time
instant during its lifetime, so the number of movement
functions for each object equals the number of instants in its
lifetime.

We compared the PA-tree with the MVR-tree [13], [12]
and SETI [5] for offline processing and with SETI for online
processing. The MVR-tree is shown to be an efficient
approach for offline processing, outperforming the 3D
R-tree approach or piecewise R-tree (pw-Rtree) [12], while
SETI is the first approach to support efficient online
processing.

We implemented the PA-tree and SETI1 with the Spatial
Index Library of [11]. We used the MVR-tree implementa-
tion in [12], which uses the LAGreedy algorithm to model
each trajectory with multiple MBRs. In the following
figures, the legend PA represents our method, MVR

represents the method of [13], [12], while SETI represents
the method of [5].

9.1 Setup

Our experiments were run on an Intel Pentium IV 1.7 Ghz
processor, with 512 Mbytes of main memory. We choose
page size of 4 Kbyte in all experiments. Unlike [5], which

used a fixed size buffer even larger than the data size in
some cases, we use a buffer with size being about 10 percent
of the original data set, as suggested by Mamoulis and
Papadias [18]. Unlike [12], we do not reset the buffer before
executing every query since resetting the buffer will render
the buffer useless when evaluating a workload of multiple
queries. Further, as in [6], we assume the ratio of cost of
sequential I/O to that of random I/O is 1:20 and charge
10ms for each random I/O.

We evaluated performance with respect to index struc-
ture size, varying the number of MBRs for the MVR-tree, the
number of intervals for the PA-tree, and the number of grid
cells for SETI. Let there be N trajectories and let the MVR-
tree use ð1þ SÞN MBRs. We varied S from 10 to 3,000. For
the PA-tree, we varied m, the number of intervals that the
temporal domain is split into, from 5 to 200. For SETI, we
varied the number C of cells from 25 to 3,600.

We used various types of query workloads, each
containing 1,000 queries, and varied qt ¼ jt2 � t1j, the length
of the temporal interval, and the size of query spatial range.
We chose qt ¼ 1 for timestamp queries, and qt ¼ 50 and qt ¼
100 for medium and large time interval queries, respec-
tively. As in [33], [5], each query’s spatial range was a
square uniformly distributed in the unit square, with the
edge length ql ¼ qx ¼ qy being 5 percent, 7 percent, or 10
percent. The following figures report the average perfor-
mance for each query. Table 3 shows the setup for our
experiments.

9.2 Comparing Approximation Quality

To gauge the potential for improvement with our scheme,
we compare the dead space using our method with that
using the MBR approximation obtained from the LAGreedy
algorithm [13]. This metric captures the pruning power of
index structures based on the respective approximations.
Larger amounts of dead space would suggest smaller
pruning power since it will result in more refinement
candidates.

The volume of each MBR is simply the product of the
edge lengths along the X-dimension, Y-dimension, and the
temporal dimension. Each entry is a 6-tuple, as discussed in
Section 3. If we use kþ 1 coefficients each to approximate
the X-movements and Y-movements, the volume of dead
space can be computed as 4�ðkÞx �ðkÞy ðts � t0Þ, where ½t0; ts� is
the temporal domain. The representation size is 2ðkþ 1Þ þ 5
since we represent 2ðkþ 1Þ coefficients in all, the value of k,
as well as the maximum deviation and the temporal
domain.
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1. We reimplemented SETI since the original source code was not
available.

TABLE 3
Experimental Parameters



Figs. 6a and 6b compare the quality of our method with
that of MBR approximations for 5,000 trajectories when
each coefficient, deviation error, coordinate, or k takes up
4 bytes. For a given representation size, our method has
dead space up to 2-5 times smaller than that for MBR
approximations, showing clear potential for improving
query performance.

9.3 Accuracy of Cost Model

To demonstrate the accuracy of our analytical model, we
compared the I/O cost estimated from the cost model
against the I/O obtained from experiments. As explained in
Section 8, we do not use buffers in this set of experiments.
Figs. 7a, 7b, and 7c plot the average I/O cost against the
number m of intervals, when ql is 5 percent, 7 percent, and
10 percent, respectively. Clearly, our estimated I/O cost
matches the experimental I/O cost very closely, with
relative error no more than 25 percent. Furthermore, the
estimated query cost captures quite closely the trade-off
between m and the query performance, as we will discuss
in Section 9.4.1.

Our ability to capture this trade-off enables us to obtain a
near-optimal value for the number of intervals. Table 4
shows the excellent match between the value m̂opt obtained
from our cost model and the optimal value mopt obtained
from experiments. Figs. 7d, 7e, and 7f compare the I/O cost
when m ¼ mopt with the I/O cost when m ¼ m̂opt. To see
how much worse the I/O cost could be if m is not
appropriately chosen, these figures also show the worst
I/O cost. The close match suggests that our analytical cost
model can yield a near-optimal value for the number of
intervals.

9.3.1 Cost of Parameter Tuning

Fig. 7g compares the cost of prospectively tuning the PA-tree
parameter m using our cost model against the cost of tuning
it retrospectively, building indices and running queries for
different m. Our prospective approach is cheaper by a factor
of 4, even though, for the retrospective method, we only
count index construction costs, completely ignoring the
costs of tuning queries, which could be very high. Our
approach is vastly superior.

9.4 Offline Processing

We tested the query performance for nonclustered indices,
with the index file and data file being stored separately.2 All
data pages will be stored sequentially, according to the
order of the start-time of the line segments, while each entry
of leaf nodes will have a pointer to its data page. Since both

index pages and data pages could be random I/O, we
assign a 50 percent buffer to the index structure, while a
50 percent buffer is assigned to the data file.

9.4.1 Query Performance

In this set of experiments, we chose ql ¼ 10% and varied

qt ¼ 1, 50, 100. Figs. 8, 9, and 10 compare the MVR-tree,

SETI, and the PA-tree in terms of candidate size, CPU cost,

I/O cost, and total query execution time, respectively. We

varied S for the MVR-tree, number C of cells for SETI, and

the number m of intervals for the PA-tree. For the MVR-tree

and PA-tree, the candidate size is the number of trajectory

segments that are examined during the refinement step. For

SETI, the candidate size is the number of data pages that are

examined during the refinement step. Each candidate

trajectory segment and candidate data page requires at

least one random disk I/O, except for a buffer hit.

As expected, the MVR-tree and the PA-tree reduce the

size of candidate set for the refinement step with larger S or

m. Increasing S and m reduces dead space and improves

approximation quality, resulting in fewer candidates. In

SETI, increasing the number of cells also increases the

spatial discrimination. However, as the number of cells

increases, trajectory segments are more likely to cross cell

boundaries, increasing replication in both index and data

file. With more cells, trajectory segments are also more

likely to be scattered into more data pages since segments

within different cells will be stored in different data pages.

Therefore, increasing the number of cells may not reduce

the number of candidates, especially when qt ¼ 1, as shown

in Fig. 9a. Overall, we can clearly see that the PA-tree has

significantly fewer candidate sets than the MVR-tree and

SETI. Further, the comparison with the MVR-tree is

consistent with the comparison in terms of approximation

quality shown in Fig. 6a.
The filtering step with PA-trees computes polynomials,

incurring CPU costs higher than that of the MVR-tree and
SETI. However, the PA-tree has higher pruning power and
yields a much smaller candidate set for the refinement step,
greatly lowering CPU costs during refinement. Fig. 12b
shows that the overall CPU cost for the PA-tree is actually
better than that of the MVR-tree and comparable to SETI for
higher qt values, such as 50 or 100. SETI has the lowest CPU
cost, especially for qt ¼ 1, since it uses regular cells in the
spatial domain and a one-dimensional R-tree for the
temporal domain, leading to a much simpler filtering step.
This R-tree provides adequate discrimination for small qt.

We have found our CPU costs to be typically about 3-
5 percent of our I/O costs, if we charge 10ms for each
random I/O. However, the work in [5] found CPU costs to
constitute a big portion of the total query execution time.
This difference arises for two reasons. First, SETI use a
buffer as large as 64 MB for data sizes of 32 MB, 64 MB, and
128 MB, enabling SETI to store between 50-100 percent of
the data in memory and to perform most operations in
memory. In contrast, our buffer size is conservative and is
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Fig. 6. Approximation quality. (a) Dead space. (b) Ratio.

2. We do not discuss clustered indices for lack of space. For all
experiments, we report the candidate set size, which is independent of
index structure.



10 percent of data size, as suggested by Mamoulis and
Papadias [18]. We focus instead on optimization of disk-
based query execution. Also, SETI used a slow Pentium III
600 MHz machine, while we used a faster Pentium IV 1.7
Ghz machine. CPU speeds tend to improve much faster
than I/O speeds and the bottleneck is typically I/O. We will
therefore continue to focus on I/O costs.

For timestamp queries ðqt ¼ 1Þ, SETI has the smallest I/O

cost, requiring 30 percent less I/O than the PA-tree and

only as 1/8 times as the MVR-tree. When qt is small, the

temporal index in SETI, which is a sparse 1D R-tree,

provides adequate temporal discrimination. Hence, a coarse

grid cell approximation will not lead to a large number of

candidates. However, as qt increases to 50 and 100, more

tqrajectory segments within each grid cell will overlap the

query temporal interval, even when they do not intersect

the query spatial range qs. As a result, the I/O cost for SETI

grows to 190-200 percent of that of the PA-tree. Surpris-

ingly, although MVR-tree takes longer to build the index

structure, SETI has a much better I/O performance than the

MVR-tree for timestamp queries and slightly better I/O

performance for time-interval queries.

Fig. 8c, 9c, and 10c capture some interesting trade-offs.

As we increase the number of MBRs for the MVR-tree, the

number m of intervals for the PA-tree or the number of cells

for SETI, we have better pruning, smaller candidate sets,

and lower refinement I/O costs. On the other hand,

increasing these numbers also increases index size and

filtering-step I/O costs and the number of segments that

trajectories will be split into for the MVR-tree and the PA-

tree or the amount of duplication for SETI. Consequently,

increasing these numbers yields no benefit beyond a certain

point. This results in an upward trend in I/O, which is quite

noticeable for qt ¼ 50 or qt ¼ 100. This trade-off also has be

observed in [5].

9.4.2 Performance of Index Construction

Fig. 11 compares the CPU costs of building the MVR-tree,
SETI, and the PA-tree. We set S ¼ 600 for the MVR-tree,
C ¼ 625 for SETI, and m ¼ 40 for the PA-tree, which are
experimentally optimal or near-optimal for these methods.3

For the MVR-tree, building the index structures involved

assigning MBRs to each trajectory, creating MBRs for each

trajectory, and loading the MBRs into MVR-trees. As

pointed in [12], the first two steps are extremely expensive

since it requires one full database scan in order to compute

the best approximation per trajectory. In contrast, building

PA-trees is much more efficient since each trajectory can be

processed individually. We split each trajectory into

segments according to the temporal domain splits, estimate

the degree of polynomial approximation, and insert the

polynomial approximations into the PA-tree.
As Fig. 11 shows, MVR-tree build costs are about 25 times

higher than that for PA-trees for the S30k data set. SETI
builds indexes twice as fast as PA-trees since SETI
constructs indices using regular grid cells. Within each grid
cell, a dense one-dimensional R-tree is used to index
temporal attributes, speeding up insertions. However, PA-
trees have much better I/O performance than SETI for time
interval queries, due to better approximation quality.
Clearly, the PA-tree and SETI are better choices for very
large data sets or when the trajectory data is collected at
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3. We show only the CPU cost for building indices since the the MVR-
tree [12] assigns MBRs with all trajectory segments in memory. I/O cost of
online index construction for PA-trees and SETI appear in Section 9.5.

TABLE 4
mopt and m̂opt

Fig. 7. Accuracy of cost model and cost of parameter tuning. (a) ql ¼ 5%. (b) ql ¼ 7%. (c) ql ¼ 10%. (d) I/O ðql ¼ 5%Þ. (e) I/O ðql ¼ 7%Þ. (f) I/O

ðql ¼ 10%Þ. (g) Cost of parameter tuning.



high rate, requiring online processing. Therefore, we only
compare PA-tree and SETI for online processing.

9.5 Performance of Online Processing

We compare the PA-tree scheme with SETI [5] under the

following settings: First, both SETI and PA-tree use front-

line buffers. For SETI, we assign one buffer page for each

cell, while, for PA-tree, we assign 10 percent of the available

buffer space as the front-line buffer with the rest of the

space assigned as for offline processing. Queries are issued

in succession and each query may specify a time up to the

instant it is issued. Finally, we set m ¼ 40 for the PA-tree

and the number of cells for SETI to 625, both of which are
near-optimal according to the cost model, and experiment,

respectively.

As in [5], we test insertion and query performance

separately for online processing. We first insert 10k segments

into the indices. Subsequently, for every 5k insertions, we

execute a random spatio-temporal range query, with qt ¼ 1,

or 50 or 100, and ql ¼ 10%. We execute 1,275 random queries

in all. We dynamically keep track of the query and insertion

performance, measuring the performance of each set of 5k

insertions and each query execution.

Figs. 13a, 13b, and 13c show the query I/O performance

between the 500th and the 520th query, for qt ¼ 1, qt ¼ 50

and qt ¼ 100, respectively. To save space, we show the CPU

cost for qt ¼ 100 in Fig. 13d since CPU cost is not a major

bottleneck.
As with offline query processing, SETI incurs, on

average, 30 percent lower I/O costs than the PA-tree when
qt ¼ 1, as Fig. 13f shows. However, for qt ¼ 50 and qt ¼ 100,
SETI requires as much as 200-250 percent the I/O of the
PA-tree. Further, we see that, for qt ¼ 50 and qt ¼ 100, the
PA-tree consistently outperforms SETI in terms of I/O, even
for queries whose time interval overlaps the current time
interval, requiring a scan of the front-line buffer and the
intermediate list file. This is because scanning the inter-
mediate list file requires only one random access plus
several sequential accesses.4 The PA-tree does incur more
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Fig. 10. PA-tree performance. (a) Number of candidates. (b) CPU cost. (c) I/O. (d) Total cost.

Fig. 11. Build time.

Fig. 9. SETI performance. (a) Number of candidates. (b) CPU cost. (c) I/O. (d) Total cost.

Fig. 8. MVR-tree performance.(a) Number of candidates. (b) CPU cost. (c) I/O. (d) Total cost.



CPU costs for such queries, as Fig. 13d shows. However, the
CPU cost is only about 3-5 percent of total execution time
and is not a bottleneck for query execution.

The front-line and intermediate lists require that, at the

end of each time interval, the trajectory segments in the

intermediate list file must be entered in the PA-tree, leading

to a delay in query execution. This can be clearly seen from

the jump of 3,000ms in Fig. 13e, which shows the I/O

performance for the 5k insertions between two consecutive

queries. However, we observe that the delay for SETI could

be as high as 12,000ms for some queries, about two times

higher than for the PA-tree. Even accounting for the delay

to build a PA-tree at the end of each time interval, the delay

for query execution with the PA-tree is still far smaller than

with SETI.
Fig. 13g shows the average performance of insertions for

SETI and the PA-tree. As with offline index construction,
SETI costs roughly half as much as the PA-tree for
insertions.

In summary, for both offline and online processing, SETI

incurs I/O cost for index construction lower than the PA-

tree by a factor of 2 and requires slightly less I/O cost for

timestamp queries. However, the PA-tree outperforms SETI

for time interval queries by a factor of 2. As our experiments

show, time interval queries are the bottleneck, requiring

much more I/O cost than that for timestamp queries or for

index construction. Further, as pointed by Tao et al. [33],

time interval queries are more general than timestamp

queries in real applications. Therefore, we believe PA-tree

will be a more appropriate choice for both offline and online

processing historical trajectories.

10 CONCLUSIONS AND FUTURE WORK

We have presented a new parametric indexing method

suitable for large trajectory data sets and for answering

historical spatio-temporal queries efficiently. Our polyno-

mial approximation method achieves much better perfor-

mance than the MBR or grid-cell approximation. We show

how to obtain conservative bounds for polynomial approx-

imations and optimize its degree for a trajectory. We

present the PA-tree, a two-tier structure for indexing

trajectories using polynomial approximations. Our experi-

ments demonstrate that PA-trees have excellent perfor-

mance for offline and online spatio-temporal range queries

compared to current trajectory indexing schemes, such as

MVR-trees and SETI. In future work, we will investigate the
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Fig. 12. Best performance. (a) Number of candidates. (b) CPU cost. (c) I/O. (d) Total cost.

Fig. 13. Cost for online processing with PA-tree and SETI. (a) Query I/O ðqt ¼ 1Þ. (b) Query I/O ðqt ¼ 50Þ. (c) Query I/O ðqt ¼ 100Þ. (d) CPU

ðqt ¼ 100Þ. (e) Update I/O. (f) Average query I/O. (g) Average update cost.

4. For m ¼ 40, the intermediate list, in the worst case, could have size up
t o 1 , 1 2 5 p a g e s . T h e w o r s t - c a s e I / O t i m e w i l l b e
10msþ ð1; 125=20Þ
10ms ¼ 573ms. This is inexpensive considering that SETI
takes up to 12,000 ms in I/O for some queries.



applicability of our methods to domains other than

trajectory data, such as complex spatial objects.
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