
Adaptive Broadcasting for Similarity Queries in
Wireless Content Delivery Systems

Wei Wang and Chinya V. Ravishankar, Senior Member, IEEE

Abstract—We present a new adaptive and energy-efficient broadcast model to support flexible responses to client queries. Clients do

not have to request documents by name, since they may know the characteristics of the documents but not the document names or

IDs. In our model, clients specify requirements through attributes, and servers broadcast documents that match client requests at a

prespecified level of similarity. A given document may satisfy several clients, so the server broadcasts a minimal set of documents that

achieves a desired level of satisfaction in the client population. The server obtains randomized feedback from clients and adapts its

broadcast program accordingly. Clients use a selective tune-in scheme based on approximate indexing to conserve energy. Our model

captures client interest patterns efficiently and accurately and scales very well with the number of clients while reducing the overall

client average waiting times. The selective tune-in scheme reduces client energy consumption greatly, with a modest wait time

increase.

Index Terms—Broadcast dissemination, client feedback, power management, approximate indexing, similarity matching.

Ç

1 INTRODUCTION

MOBILE computing has increased the demand for online
information such as stock quotes, weather, news,

traffic information, and schedules at bus stands, railway
stations, and airports. Shopping malls may broadcast
information wirelessly about promotional sales, store hours,
movie schedules, or even images of various products for the
benefit of customers.

A bandwidth and power asymmetry exists in such
systems. There is far more “downlink” bandwidth from
servers to clients than in the “uplink” direction. Mobile
clients have low power reserves, but servers have plenty of
power. The push model outperforms the pull model in such
applications [1], [2], [3], [4], [5], [6], [7], [8]. Pull increases
traffic and resource consumption at both the client and
server [1]. Push is now used in entertainment (for example,
broadcasting), in computing (for example, the Datacycle DB
machine [9], [10]), and on the Web (for example, the
NewsDirect feed from the Los Angeles Times [11] and
Newswatch from CNN [12]). In battlefields, soldiers using
pull to get information from command posts [13] would
reveal their positions. We will show how we can tailor
broadcasts to client interest patterns, allowing push to scale
well in asymmetric bandwidth environments. All clients
with identical interests will be satisfied simultaneously,
eliminating the need for individual responses. We will also
show that push can help clients economize on battery
power.

Unfortunately, current push models [5], [14], [15], [16],
[17], [18], [19] typically make restrictive assumptions such

as that it suffices to have static broadcast schedules [5], [14],
[15], that server databases are small [5], [14], [15], that client
interest patterns are static [5], [14], or that the access
probabilities of data items in database are known [6], [20],
[21], [22]. We need efficient and adaptive schemes for
servers to provide high-quality services that scale with
client numbers and server database sizes.

Current models subject clients to a “take-what-you-get”
attitude on the server’s part. Clients making explicit
requests may get the server to broadcast what they need.
The server, however, is unable to determine whether other
clients are also thereby satisfied. In contrast, our approach
guarantees that clients are very likely to get at least an
approximate answer to their queries. We cannot achieve this
goal by broadcasting exact responses to client requests, as
other approaches do. Instead, we cluster them and broad-
cast documents from the server database that match the
characteristics of the cluster. We determine client interest
patterns explicitly, efficiently, and online. We are able to
reduce the number of documents broadcast for a given level
of satisfaction among the clients, significantly lowering
bandwidth requirements and improving efficiency.

1.1 Flexible Queries and Responses

Existing dissemination systems [5], [16], [17], [18], [19], [23],
[24] typically require clients to specify their requests by
using data item numbers, document names, or explicit
URLs. This model is unreasonable. First, clients may know
what data they need, but not the matching document names
or URLs. A client may also be satisfied with any of several
documents. For example, a client looking for shirts in a mall
may be happy with one of several stores. Another seeking
the temperature in Chicago may be happy with the
temperature in a neighboring city or with a newspaper
page with this information. It is better to specify keywords
such as “temperature” and “Chicago” rather than, say, a
specific URL from a local weather station.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 4, APRIL 2008 1

. The authors are with the Department of Computer Science and
Engineering, University of California at Riverside, Bourns Hall, Riverside,
CA 92521. E-mail: {wangw, ravi}@cs.ucr.edu.

Manuscript received 24 Oct. 2006; revised 17 July 2007; accepted 11 Oct.
2007; published online 25 Oct. 2007.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-0494-1006.
Digital Object Identifier no. 10.1109/TKDE.2007.190717.

1041-4347/08/$25.00 � 2008 IEEE Published by the IEEE Computer Society

A newspaper’s homepage may satisfy queries for weath-
er, news, current events, and, perhaps, even weather in
adjoining cities. Requests frequently follow the Zipf dis-
tribution [25] so that many client requests tend to be for
similar documents.

Some methods in the literature broadcast all documents
in the database [5], [14], [20], [21]. This is impractical and
unnecessary, since one document may satisfy many queries,
even if they are not identical. Our model picks documents
that likely satisfy many client requests, albeit approxi-
mately, using the cosine-similarity measure [26] to estimate
the similarity between queries and documents. Only
documents showing similarity values above some similarity
threshold are assumed to satisfy client requests. This
threshold is tunable, subject to client requirements, system
workloads, and so on.

1.2 Integrating Client Feedback

No data delivery scheme will be robust to changing interest
patterns without client interaction. Some models [15], [16],
[18] allow clients to make explicit requests to the server and
interleave the broadcast program and explicit requests on
the broadcast medium. Other models [17] have clients
sending explicit feedback to servers when they have
unsatisfied requests. Unfortunately, these systems suffer
from a serious flaw: soliciting feedback solely from unsatisfied
clients skews the server’s view in their favor. Even if only a
small fraction of clients are unhappy, the server will try
accommodating them, at the expense of the majority. These
systems do not truly capture the interest patterns across the
client population.

Clearly, the more client feedback the server collects, the
more precisely it knows interest patterns. However, it is
impossible to solicit feedback from all clients in a large
population. We therefore develop a randomized feedback
mechanism (see Section 3.1) that serves as a random sample
from the client population. At any given time, each client
sends a feedback message to the server with a small Poisson
probability p. The feedback is a bit vector, with bit i set if the
client is happy with the ith document in the broadcast. The
server processes these feedback messages online. The
randomized mechanism also balances old and new client
requests by collecting enough feedback for the server to
estimate client interest patterns, without waiting so long
that shifts in client interest patterns occur. The server
aggregates feedback, summarizes statistics, and then
changes broadcast schedules accordingly.

1.3 Our Contributions

We present a new power-aware data dissemination model
for asymmetric communication environments. We study
ways of generating adaptive broadcast schedules that satisfy
as many clients as possible while minimizing the average
client waiting times. We also minimize client tune-in times to
minimize power consumption. We achieve these goals by
several means. First, we determine the client interest
patterns online by using feedback messages from a sample
of the client population. Second (see Sections 1.1 and 1.2), we
increase flexibility by allowing approximate client queries.
The server broadcasts the smallest subset of documents that
matches client requests, in accordance with a similarity

threshold. Third, we introduce a new indexing method that
accommodates the flexible request and response features of
our approach. Clients locate the required documents
through these indices and can switch between active and
sleeping modes, thereby conserving power.

Our approach has two advantages over current models.
The server is more responsive, since a single data item may
satisfy many client requests simultaneously. In addition, the
server broadcasts only a subset of data items in its database,
reducing broadcast size, client waiting times, and schedul-
ing overheads. This is particularly useful for large server
databases.

Our integration of client feedback into our scheduling
model helps servers make intelligent scheduling decisions.
This addresses a significant problem in existing models, in
which servers change their broadcast schedules only when
unsatisfied clients complain. This approach skews the
server behavior to favor unhappy clients, possibly at the
expense of a silent but satisfied majority of the client
population.

Flexible requests and responses enable us to introduce a
new indexing method that uses approximate matching to
locate documents for clients. Clients can switch easily
between the active mode and the sleeping mode, waking up
only when the desired documents are broadcast. Client
power can be conserved.

Finally, we demonstrate the performance of our model
by using real-life data collection by conducting simulations.
We demonstrate that our model can scale well by examin-
ing different client populations. We use the Zipf and the
uniform distributions to shape client interest patterns,
showing that our model can achieve good adaptability for
both of them. We also compare the performance of our
approximate response mechanism with that of existing
models.

This paper is organized as follows: Section 2 reviews
previous work. Section 3 presents our architecture and the
structure of feedback. Section 3.1 describes how we can
estimate sample size for our randomized feedback mechan-
ism. Section 5 shows how we can construct the client
interest patterns and proposes an objective function for
optimizing our model and to generate a near-optimal
broadcast program. In Section 6, we integrate an indexing
scheme based on approximate matching into our model to
significantly reduce client average tune-in times. We
evaluate the performance of our method in Section 7.
Section 8 concludes this work.

2 RELATED WORK

Data dissemination in asymmetric bandwidth environ-
ments has been studied [5], [15], [16], [17], [18], [19], [21],
but many issues have not been adequately addressed.
Models such as Broadcast Disks (BD) [5] assume static client
interest patterns. This model repeatedly broadcasts data
items, so clients with the same requests can be served
simultaneously. However, its schedules do not incorporate
feedback from clients effectively, so it does well only in
fairly static environments,

Some schemes [15], [16], [18] include a back channel for
clients to explicitly request data items not in the broadcast

2 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 4, APRIL 2008

cycle for immediate broadcast. Two modes exist in such
schemes: a periodic broadcast (push) mode and an on-
demand broadcast (pull) mode. Servers interleave data
items in the periodic broadcast program with data items
pulled by clients, based on an ad hoc bandwidth partition
parameter. The advantage of such schemes is that they
combine the push and pull models. Servers can schedule
documents of common interest in the periodic broadcast
program, placing others in the pull mode, and reducing the
average wait times. Their main disadvantage, however, is
that the true client interest patterns remain unknown, since
satisfied clients are never heard from.

Clients also send feedback in [17], [27]. A bit vector is

often used for delivering information compactly in asym-

metric environments [28], and it has been argued that each

client maintains a bit vector to collect access statistics [17].

The common problem with current methods is that the

feedback represents a biased client sample, since only

unhappy clients communicate with the server. Conse-

quently, the server could be biased toward a minority of

unhappy clients, at the expense of a satisfied majority. This

majority would then be poorly served, triggering a massive

amount of negative feedback from them.

Other approaches [6], [20], [21], [29], [30], [31] assume

that client interest patterns are known, or that clients

explicitly pull data items from a server. In [6], [20], and [21],

document popularities are assumed to be static and known.

Nonetheless, documents are scheduled one at a time at the

server, forcing clients to remain in the listen mode, wasting

power. In contrast, we evaluate interest patterns dynami-

cally. Our broadcast schedule minimizes the average

waiting time (AWT) at clients and allows them to save

power by switching to sleep mode.

The RxW scheduling algorithm [29], [30] broadcasts data

items with a large number of outstanding requests, or for

which the waiting times are long. RxW is unsuitable in our

context. It assumes fixed-sized data items and requires

clients to know and use document identifiers explicitly. We

make the realistic assumption that clients do not know these

identifiers, and we allow them to request documents based

on a similarity metric. Variable-sized data items are

considered in [31], but since preemption of broadcasts is

allowed, clients cannot predict their wait times and must

waste power in the listen mode. Clients pull data in [29],

[30], [31], in contrast to our push-based model.
Some models [5], [14] assume small-sized server data-

bases so that servers may schedule all data items into
broadcast programs and ignore computation overheads
incurred for making intelligent scheduling decisions. When
access probabilities change significantly or the server
database sizes increase, estimating the access probabilities
of all data items in server databases will result in fairly high
scheduling overhead.

3 A NEW ADAPTIVE DATA DISSEMINATION MODEL

The two major components of our data dissemination
model are the server and the clients, as shown in Fig. 1. The
server has several components. The randomized feedback

manager estimates the number of feedback and explicit

client requests needed to estimate interest patterns with a

desired precision (see Section 3.1). The request processing

manager deals with the sampled client explicit requests

incrementally based on our approximate response mechan-

ism (see Section 5). The broadcast scheduler generates new

broadcast programs.
The clients listen to the broadcast and download needed

documents as they appear. They also generate a feedback

vector, which they send to the server at random times

through a back channel, as described in the following. If a

client is unable to find a document in the broadcast that

matches its needs, it sends an explicit request for the

document as its feedback message.

3.1 Estimating Client Interests via Randomized
Feedback

Clients generate feedback in accordance with a Poisson

process with rate p, determined and broadcast by the server.

A client sends a feedback message through the back channel

whenever a Poisson event occurs. In Section 4, we estimate

how many feedback messages are required for the server to

form reliable estimates of client interests. The server

estimates the Poisson parameter p based on this sample size.
A feedback message is a bit vector, with bit j set if the

jth document in the broadcast is of interest to the client. If

no broadcast document is of interest, it sends an explicit

request for a document. The server considers both kinds of

feedback when constructing a new broadcast schedule.

3.1.1 Structure of Client Feedback

Without loss of generality, we consider text documents and

use the Vector Space Model (VSM) [26], a widely used

information retrieval model, for matching queries with

documents. The VSM represents documents as vectors of

terms, which are content-bearing words extracted from a

document collection, in a high-dimensional vector space.

Each unique term corresponds to one dimension in the

space. A nonnegative weight, commonly determined based

on the TF-IDF weighting scheme [32], is assigned to each

document along each dimension based on the term’s

importance within the document. Length normalization is

also applied to documents for deemphasizing differing

document lengths and is done by dividing each document

by its euclidean length. The weight of the ith term ti is

WANG AND RAVISHANKAR: ADAPTIVE BROADCASTING FOR SIMILARITY QUERIES IN WIRELESS CONTENT DELIVERY SYSTEMS 3

Fig. 1. System architecture.

wi ¼
fT ðtiÞ � log jDj

fDðtiÞffiPn
j¼1

�
fT ðtjÞ � log jDj

fDðtjÞ
�2

q ;

where n is the length of the document vector, jDj is the
number of documents in the collection, fT ðtiÞ is the term
frequency indicating the number of occurrences of a term
ti in a document, and fDðtiÞ is the document frequency
indicating the number of documents in the collection
containing ti. A document vector is represented as
~d ¼ hw1; � � � ; wni. Natural language requests are converted
into weighted term vectors.

The angle between two document vectors can be a better
indication of content similarity than the distance between
them [33]. The Jaccard, Dice, and Cosine coefficients [34]
may be used to measure the angle between request and
document vectors. We use the cosine coefficient measure,
since it is the most popular similarity measure method in
the literature. Given a request vector ~r ¼ hr1; r2; . . . ; rni and
a document vector ~d ¼ hd1; d2; . . . ; dni, their cosine similarity
is measured as

cos sim
�
~r; ~d
�
¼ ~r � ~d
k~rk k~dk

¼~r � ~d ¼
X
t

�
rtdt
�
;

where t is a term present in both~r and ~d, rt is the weight of
term t in~r, and dt is the weight of term t in ~d. Since ~r and ~d
have normalized lengths, their cosine similarity is simply
their inner product. The ideal similarity metric depends
upon the document collection and the client population. Its
determination is beyond the scope of this paper. Work
exists on expanding client request terms, looking the
synonyms, supercategory terms, and so on [35], [36], [37].
These methods may be used in our context but are not part
of our focus. We have used exact term matching to keep the
focus on the essential features of our model.

Let ri be the set of keywords characterizing the client’s
interests. We say that the client is satisfied with document
dj if cos simðri; djÞ is not lower than a threshold �
maintained by the server and broadcast in the control
segments of the broadcast program. Thus, client Ci sends
the feedback bit vector Fi ¼ hfi1; . . . ; fiNi to the server,
where

fij ¼
1; if cos simðri; djÞ � �;
0; otherwise:

�
If Ci is not satisfied with any document in the broadcast, it
sends the explicit request ri to the server.

4 ESTIMATING CLIENT INTEREST PATTERNS

We show how to estimate client interests by using a random
sample based on client feedback. We now estimate M,
which is the number of clients to be sampled to form an
estimate of the interest patterns of the entire client
population.

Let X1; . . . ; XM be the random sample of client feedback
vectors. Element Xij of vector Xi is 1 if client i is satisfied
with document dj. Since the clients are chosen indepen-
dently, Xij, i ¼ 1; . . . ;M, are independent. Let N be the
number of distinct documents in the broadcast. Let pj

denote the expected fraction of the client population

interested in document dj, 1 � j � N , and let bpj be our

estimate of pj, computed as

bpj ¼ 1

M

XM
i¼1

Xij: ð1Þ

For each dj in the broadcast, we want to estimate pj within

some absolute error bound �. We will require

Pr ½ j bpj � pj j � � � � �; ð2Þ

where � is the maximum acceptable probability that bpj
deviates from pj by more than �. In estimating pj, 1 � j � N ,

so that (2) is satisfied, we will require

Pr ½max
1�j�N

fj bpj � pj jg � � � � 1� �: ð3Þ

Chebyshev [38] and Chernoff [39] bounding can be

applied to our sample size estimation problem. We prefer

Chernoff bounding, since Chebyshev bound is rather weak.

4.1 The N-Chernoff Bound

The Chernoff Bound [39] works as follows: Let X1; . . . ; Xn

be independent random variables, with Pr½Xk ¼ 1� ¼ p and

Pr½Xk ¼ 0� ¼ 1� p for each k. Then, for any t > 0

Pr
Xn
k¼1

Xk � np
�����

����� � t
" #

� 2e�2t2=n:

From (2), using the Chernoff bounding, we have

Pr½ jbpj � pjj � � � ¼ Pr½ jM bpj �Mpjj �M� �
� 2e�2M2�2=M ¼ 2e�2�2M:

This is equivalent to

Pr½ jbpj � pjj � � � � 1� 2e�2�2M:

To satisfy (3), we need

Pr max
1�j�N

j bpj � pj j � �� �
¼ Pr½ j bpj � pj j � �; 8j �
¼
YN
j¼1

Pr
	
jbpj � pjj � �

� ð1� 2e�2�2MÞN:

Putting ð1� 2e�2�2MÞN ¼ 1� � gives the “Chernoff” bound

MC ¼
1

2 �2
ln

2

1� ð1� �Þ1=N
:

We next present a new and novel method to obtain an even

tighter bound for the sample size.

4.2 Our N-Gaussian Bound

Since Xij, i ¼ 1; . . . ;M, are independent, each Xij corre-

sponds to a Bernoulli trial. From (1), M bpj is binomially

distributed and may be approximated by a Gaussian for

largeM. If we then transform bpj into its corresponding value

4 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 4, APRIL 2008

X on a standard normal, X ¼ bpj�pjffiffiffiffiffiffiffiffiffiffi
pjð1�pjÞ

M

p becomes a standard

normal. We begin by defining two events:

E ¼ jbpj � pjjffiffiffiffiffiffiffiffiffiffiffiffiffi
pjð1�pjÞ

M

q < x;8j

8><>:
9>=>;; and

F ¼ jbpj � pjj
max

1�k�N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pkð1�pkÞ

M

q < x; 8j

8>><>>:
9>>=>>;:

Clearly, E) F , so that Pr½F � � Pr½E�. For convenience, let

" ¼ �

max
1�k�N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffibpkð1�pkÞ
M

q : ð4Þ

Now, we proceed as follows:

Pr
	
jbpj � pjj � �; 8j

¼ Pr

jbpj � pjj
max

1�k�N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffibpkð1�pkÞ
M

q � �

max
1�k�N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffibpkð1�pkÞ
M

q ; 8j

2664
3775

� Pr
jbpj � pjjffiffiffiffiffiffiffiffiffiffiffiffiffi
pjð1�pjÞ

M

q � "; 8j

264
375 ðusing ð4ÞÞ

¼ Pr �" � X � "½ �:

We can use the cumulative normal distribution function �
to compute the above probability. We will then have

Pr jbpj � pjj � �; 8j	

¼
YN
j¼1

Pr jbpj � pjj � �	

� �ð"Þ � �ð�"Þf gN

¼ 2�ð"Þ � 1f gN:

Now, since N is large, it is very likely that

max
1�k�N

ffibpkð1� pkÞ
M

r
¼ 1

2
ffiffiffiffiffi
M
p ;

in which bpkð1� pkÞ attains its maximal value when p ¼ 1=2.
Thus,

Pr
	
jbpj � pjj � �; 8j
 � �2�

�
2�

ffiffiffiffiffi
M
p �

� 1
�N
:

To make this equal to 1� �, choose 2�
ffiffiffiffiffi
M
p

¼ ��1
� 1þð1��Þ1=N

2

�
.

We thus obtain the “Gaussian” sample size:

MG ¼
z2
�

4 �2
;

where z� is the z-value associated with probability �, and
� ¼ ð1þ ð1� �Þ1=NÞ=2.

Fig. 2 shows the sample sizes estimated by the N-Chernoff
method and our N-Gaussian method for � ¼ 0:1 and � ¼ 0:1.
The N-Gaussian method always gives a tighter bound for the
sample size. In addition, with this method, the sample size
increases slowly with N so that it works well when the
number of clients is large or when the client interest pattern

changes dramatically. We therefore use the N-Gaussian
method.

The server computes the “arrival” rate p for the Poisson
process that governs the feedback generation mechanism at
each client based on this sample size and places it in the
control segments of the broadcast (see Section 5.2). Clients
obtain p from the broadcast. When a Poisson “send” event
occurs at a client, it evaluates each document in the
broadcast and sends its feedback vector or explicit docu-
ment request. Generally, p is very small, so feedback
generation is not an onerous requirement. For example, in
our simulations, the broadcast had about 600 documents
per cycle, and there were 10,000 clients. The value of p
works out to about 0.035.

5 BROADCAST SCHEDULING USING FEEDBACK

The server estimates the relative popularities of its docu-
ments based on client feedback. It clusters client queries and
schedules documents to satisfy the maximum number of
clients while reducing the mean client waiting times.

5.1 Using Client Feedback

The server determines the new set of documents to broad-
cast by constructing the distribution of client interests from
the feedback vectors and explicit requests from clients. The
feedback messages serve as a fair random sample from the
client population. Using feedback only from unhappy clients
skews the broadcast toward this client subset, at the expense
of the rest (see Section 1.2). The strength of our method is
that we are able to satisfy a large client population without
many explicit requests. The new broadcast program in-
cludes some documents from the previous broadcast and
some new documents selected in response to explicit client
requests.

Algorithm 1 describes the details of the procedure. The
set P holds the documents to be used in the new broadcast
schedule. Each document dj is associated with a “weight”
cj, which is a counter initialized to 0. The document
corresponding to every “1” entry in each feedback vector is
incorporated into P , and its corresponding weight is
incremented by 1. Hence, each document dj of continuing
interest to clients will be a candidate for inclusion in the
new broadcast, but its frequency will be adjusted based on
the new weight cj associated with dj. New documents may
appear in the broadcast in response to the explicit requests
from unhappy clients.

WANG AND RAVISHANKAR: ADAPTIVE BROADCASTING FOR SIMILARITY QUERIES IN WIRELESS CONTENT DELIVERY SYSTEMS 5

Fig. 2. Required sample sizes compared (� ¼ 0:1; � ¼ 0:1).

Algorithm 1: Finding client access patterns
1: P �, cj ¼ 0 for all j, 1 � j � N
2: for each feedback Fi ¼ hfi1; . . . ; fiNi do

3: for all j such that fij ¼ 1, 1 � j � N do

4: if dj =2 P then

5: P P [fdjg
6: set weight cj associated with dj to 1

7: else

8: increment cj by 1
9: for each explicit client request do

10: call explicit request clustering procedure

11: call document selection procedure

12: add the selected documents to P

13: output P

5.1.1 Clustering of Explicit Client Requests

We perform online clustering of client requests by using a

method similar to that in [27]. As discussed in [27], such

online clustering is more time- and cost-efficient than the

traditional cluster-based algorithms, which are typically

expensive and require all data to be available. This is

impractical in our environment.
Explicit client requests are clustered as in Algorithm 2. The

set Sr holds clusters, which are represented by feature

vectors. Sr is initially empty. The clusters are formed

incrementally as the server processes incoming explicit

requests. Each feature vector �k is associated with a

weight ck indicating the number of client requests incorpo-

rated into this cluster. Each explicit client request ri is

compared against the feature vectors in setSr. If the similarity

between ri and a feature vector is above � , the request is

incorporated into the cluster represented by that feature

vector. If no suitable feature vector exists, ri forms a new

cluster by itself. An adaptive parameter � is used to adjust the

feature vector of a cluster after a request is incorporated into

it. To treat all the requests in a cluster equally, we set

� ¼ 1=ðck þ 1Þ. The value of � also influences the number of

clusters. If � is high, more clusters will be formed.

Algorithm 2: Clustering explicit requests

1: Sr �

2: for each explicit request ri do

3: if Sr ¼ � then

4: Sr Sr [frig
5: set weight ci associated with ri to 1

6: else

7: find � ¼ f�k : �k 2 Sr; cos simð�k; riÞ � �g
8: if � 6¼ � then

9: for each �k 2 � do

10: � ð1� �Þ � �k þ � � ri
11: Sr Sr � f�kg [f�g
12: increment weight associated with �

13: else

14: Sr Sr [frig
15: set weight associated with ri to 1

16: output Sr

5.1.2 Document Selection

Algorithm 3 shows how we can select representative

documents for request clusters. After the feedback has

been processed, documents to be carried over into the new

broadcast schedule are in the set P . Explicit requests are

also incorporated into appropriate clusters. A document is

selected to represent each cluster based on the similarity

between this document and the cluster feature vector, as

well as the document size. Simply selecting a document that

is most similar to the cluster feature vector is insufficient,

since choosing a large document will use up space in the

broadcast cycle and may affect it adversely. We know from

(10) that the AWT is minimized when the distance between

two consecutive occurrences of a document di is propor-

tional to
ffiffiffi
li
p

, where li is the length of di, so we use
ffiffiffi
li
p

for

determining the document selection.

Algorithm 3: Selecting documents to represent clusters.

1: Input: Sr
2: for each �i 2 Sr do

3: S ¼ fdk : cos simðdk; �iÞ � �g
4: select document d 2 S with the maximum cos simðd;�iÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lengthðdÞ
p

value

The document selection procedure need not be run

frequently when making a new broadcast schedule, unless

client interest patterns change significantly, and most of the

documents in the previous broadcast program are to be

replaced. It needs to be executed only when there are

explicit client requests, which are not likely to be many. Our

clustering method can further reduce the number of

documents selected.

5.2 The Broadcast Scheduler

The broadcast scheduler determines the documents to be

broadcast and their order in the broadcast program. If

N distinct documents must be scheduled, each must appear

at least once in a broadcast cycle. The more popular

documents will appear more frequently, but even the least

popular document must be broadcast once in the broadcast

cycle. The number of times that a document di is broadcast

in one broadcast cycle is called its frequency and is denoted

by fi. If li is the length of document di, the size of a

broadcast cycle is therefore given by
PN

i¼1 fili. Finally, the

spacing between two consecutive instances of a document di
is the time from the beginning of one instance of di to the

beginning of its next instance. Fig. 3 shows an example of a

part of a broadcast program in our model. We allocate a

small fraction of the bandwidth for broadcasting control

segments so that system performance can be tuned to the

workload.

6 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 4, APRIL 2008

Fig. 3. Part of a broadcast cycle.

5.2.1 Overall Mean Waiting Time

Our performance metric is the overall AWT across all

clients. We derive the optimal AWT based on the idea of

satisfying all client requests within one broadcast cycle. As

before, N is the number of distinct documents in the

broadcast cycle, and fi is the broadcast frequency of

document di. Let ni be the number of requests that can be

satisfied by document di in the broadcast and ti be the mean

waiting time for di. We assume that clients generate

requests at random times. As in [5], all instances of

document di in the broadcast cycle are equally spaced,

since this yields the best performance [40]. Let si be the

spacing between two consecutive instances of di so that the

AWT ti for document di is si=2. Our objective function is the

AWT, defined as

T ðf1; f2; . . . ; fNÞ ¼
PN

i¼1 nitiPN
j¼1 nj

¼ 1

2

XN
i¼1

nisi

��
XN
j¼1

nj

�
:

In practice, clients may time out or give up if they have to

wait too long. Therefore, we require that a boundary L,

defined by client patience, constrain the length of the

broadcast cycle. If document di is broadcast fi times within

a broadcast cycle, we have sifi ¼ L. Substituting for si,

T ðf1; f2; . . . ; fNÞ ¼

XN

i¼1

niL

2fi

�.
XN
j¼1

nj

�
: ð5Þ

As li is the length of document di, the AWT is then subject

to the following constraint:

XN
i¼1

fili � L: ð6Þ

We now have a nonlinear optimization problem cast in

terms of the objective function (5), which computes the

overall AWT across all clients. We apply Lagrange’s method

of undetermined multipliers [41] to minimize this function,

subject to constraint (6). Multiplying (6) with an undeter-

mined parameter �, we have

�

 XN
i¼1

lifi � L
!
¼ 0:

We can then rewrite our objective function as

T ðf1; f2; . . . ; fNÞ ¼
 XN

i¼1

niL

2fi

.XN
j¼1

nj

!
þ �

 XN
i¼1

lifi � L
!
:

ð7Þ

We find the minimum in (7) by differentiating the function

with respect to each fi ði ¼ 1; 2; . . . ; NÞ and setting all the

derivatives to zero. This yields

@T

@fi
¼ niL

2S
ð�1Þ 1

f2
i

þ �li ¼ 0;

which implies that

fi ¼
ffiffiffiffiffiffiffiffiffi
niL

2liS

r
1ffiffiffi
�
p ; where S ¼

XN
j¼1

nj: ð8Þ

Substituting fi in (6) with (8), we have

XN
i¼1

li

ffiffiffiffiffiffiffiffiffi
niL

2liS

r
1ffiffiffi
�
p ¼ L; yielding

ffiffiffi
�
p
¼
XN
i¼1

ffiffiffiffiffiffiffiffiffi
nili
2LS

r
:

We then calculate the stationary points of the objective
function T ðf1; f2; . . . ; fNÞ by substituting

ffiffiffi
�
p

into (8):

fi ¼
ffiffiffiffiffiffiffiffiffiffi
ni=li

pPN
j¼1

ffiffiffiffiffiffiffiffi
njlj

p L: ð9Þ

Substituting fi into (5) and simplifying yields the optimal
AWT as

Toptimal ¼
1

2S

XN
i¼1

niL

PN
j¼1

ffiffiffiffiffiffiffiffi
njlj

p
L

ffiffiffiffiffiffiffiffiffiffi
ni=li

p ¼
PN

i¼1

ffiffiffiffiffiffiffiffi
nili
p� �2

2
PN

j¼1 nj
:

5.2.2 Our Scheduling Algorithm

We have noted that optimal performance results when the
instances of any document are equally spaced, but such
equal spacing may sometimes be difficult in practice. In
addition, since we bound the maximum broadcast cycle
length, we may end up with computed broadcast frequen-
cies fi below 1 for some low-popularity documents so that
the server may not be able to schedule every selected
document in each broadcast cycle. However, we observe that
our derived optimal AWT Toptimal follows the square root
property presented in [6] and [42]. An algorithm for
achieving near-optimal performance was presented in [6],
which we use as the basis for our broadcast scheduling
program to address the issues of unequal spacing and fi < 1.

When the instances of a document di are equally spaced,
the product of the document frequency fi and the spacing si
between its consecutive occurrences equals the broadcast
cycle length L. From (9), we obtain

si ¼
L

fi
¼

ffiffiffiffiffi
li
ni

s XN
j¼1

ffiffiffiffiffiffiffiffi
njlj

p !
:

It is clear that
PN

j¼1

ffiffiffiffiffiffiffiffi
njlj

p
is a constant, since the set of

documents to be scheduled in the new broadcast has been

determined at this point, which means that si
ffiffiffiffiffiffiffiffiffiffi
ni=li

p
have

the same value for all i. We try preserving this characteristic

in the scheduling algorithm. Thus, for documents with a

broadcast frequency of at least 1, the document with the

maximum si
ffiffiffiffiffiffiffiffiffiffi
ni=li

p
value will always be scheduled in the

broadcast. However, it may take several broadcast cycles to

broadcast an instance of a document with a broadcast

frequency below 1.

6 SELECTIVE TUNE-IN FOR ENERGY

CONSERVATION

So far, we have required clients to monitor the broadcast
constantly for the documents that they require. However,
listening to wireless broadcasts requires significant power

WANG AND RAVISHANKAR: ADAPTIVE BROADCASTING FOR SIMILARITY QUERIES IN WIRELESS CONTENT DELIVERY SYSTEMS 7

[43], and clients may have low energy reserves. We now
show how we can integrate an indexing scheme into our
model. Clients can use the index to be selective about when
to listen to the broadcast.

Devices can be in the active mode or in the doze mode,
so the total energy consumption is

ETotal ¼ ED þ EA ¼ ED þ ðEL þ ECÞ;

where clients consume energy ED in the doze mode and
energy EA in the active mode. EA has two components: EL,
which is the energy consumed in the “listen” mode while
accessing the broadcast, listening to the index segments,
and downloading the documents, and EC , which is the
energy consumed while computing. ED is negligible
compared to EA, since the energy consumed in the active
mode is significantly higher than in the doze mode [44]. For
example, an IEEE 802.11 WLAN card with a rate of
1 megabit per second (Mbps) consumes 1.4 W in the listen
mode and only 0.045 W in the doze mode. Therefore, ETotal
can be approximated as EA. Significant energy savings can
be achieved by clients selectively tuning into the broadcast
using index segments and reducing the time in the active
mode. The energy consumed by switching between the
active mode and the doze mode is usually negligible [45].

Clients listen to the full broadcast only when sending
feedback, which they do rarely, since the associated Poisson
probability is small (see Section 4). At all other times, they
use the index to locate the position in the broadcast of the
document of interest, move into doze mode, and wake up
only when the desired document is being broadcast. We
have already optimized our scheme to minimize the waiting
times, so adding indices will increase waiting times. An
application must hence balance power savings from using
the index against the increase in waiting times.

6.1 Broadcast Organization

We partition our broadcast cycle into 	 data segments Di,
i ¼ 1; . . . ; 	, and place an index segment Ii ahead of each
data segment Di (see Fig. 4). Each index segment indexes
only documents appearing in the following data segment.
The broadcast cycle now includes both data segments and
index segments. Since the documents in the broadcast vary
in size, the index segments cannot always be exactly equally
spaced. For simplicity, we assume that the distances
between any two consecutive index segments are nearly
the same.

In addition to index and data segments, very small
indicators are interleaved into the broadcast, giving the
position of the next index segment. These indicators appear
frequently in the broadcast, so clients can quickly locate the
position of the next index segment by listening to the
broadcast for a very short time. For simplicity, we have
omitted indicators in Fig. 4.

6.2 Using Index Segments

Index segments are generally much shorter than broadcast
length, so clients can greatly reduce the time spent in the

active mode by locating required documents using index
segments. We consider two methods for clients to use index
segments.

In the first method (see Fig. 5a), a client uses the indicator
segments to obtain the location of the next index segment,
and sleeps until that index segment arrives. It then reads the
index to determine if the following data segment contains
the desired document and switches to the doze mode. If the
document appears in the following data segment, the client
uses the information in the index to wake up at the
appropriate time. Otherwise, the client wakes up when the
next index segment arrives.

This method has the drawback that clients may miss
some relevant documents during the first doze period, that
is, between the arrivals of the request and the first available
index segment. This can needlessly increase waiting times.

In the second method, the client simply listens to the
broadcast until the first index segment arrives. If the
required document is found before the next index segment,
the client is satisfied. Otherwise, it locates the required
documents by listening to the index segments only, as in the
first method. Fig. 5b shows the data access flow for this
case. If the client obtains a satisfactory document when it
listens to the broadcast, the client waiting time will be the
minimum. The second method requires that clients stay in
the active mode longer, but this may be more suitable for
clients sensitive to waiting times.

6.3 Indices for Similarity Matching

Some indexing techniques for data broadcasting in wireless
environments have appeared in the literature [46], [47], [48],
[49], [50], [51], but none of these is particularly useful with
similarity-based querying. In [46] and [47], a tree-structured
index is created for data frames in the broadcast cycle.
However, all queries are based on a single primary key, and
the data frames are sorted by the primary key. The indexing
approach proposed in [50] also indexes data items accord-
ing to a simple identifier and does not adapt to the dynamic
system workloads. Huang and Peng [51] propose an
indexing method that accounts for power consumption,
but this approach requires statistical information on served
requests to tune the index to system workloads. Indices in
all of these methods assume that the data is specified using
a unique key, which is indexed. Such methods cannot

8 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 4, APRIL 2008

Fig. 4. Index and data segments.

Fig. 5. The data access flow. (a) Clients listen to the index only to locate

a document. (b) Clients listen to the broadcast and index to find the

document.

support the class of queries of interest to us, in which clients
do not request documents by name but rather specify them
imprecisely by using multiple keywords.

Signature schemes are proposed in [48]. A signature is
formed for a record by first hashing each value in the record
into a bit string and combining these bit strings to obtain a
record signature. A query is constructed similarly and is
compared to the record signatures by performing a bitwise
AND operation. This scheme introduces false drops, in which
the signature comparison indicates a match, but in fact, the
record does not match the query and must therefore be
dropped. To handle false drops, each signature match must
be confirmed by comparing the record with the query,
which consumes more energy. A hybrid index technique
that combines the strengths of the signature and the index
tree techniques is proposed in [49]. In this scheme, all
records must be checked when a match occurs, resulting in
extra energy consumption. Again, such signature schemes
are based on an exact-match paradigm, where the user
specifies the required record exactly. In contrast, we allow
queries to be satisfied approximately under some similarity
threshold.

Our flexible request-response features require us to
allow approximate matching within our indexing scheme.
Our clients do not specify documents with a single key but
by using attributes. Our index allows matching on
attributes.

We organize the index segment Ii as an inverted term-
document list (see Fig. 6). The list of terms is constructed by
selecting the 10 top-ranked terms based on their weights
from each document in the data segment. Terms are sorted
alphabetically. Each term Tk in the list functions as a key,
after which follows a list Lk of pairs of the form
ðDiðTkÞ; wiðTkÞÞ, where DiðTkÞ is the identifier of a docu-
ment containing Tk, and wiðTkÞ is the weight of term Tk in
that document.

A query has form Q ¼ fðT1; u1Þ; ðT2; u2Þ; . . . ; ðTp; upÞg,
where Tj represents a term of interest, and uj is the desired
weight of the term. For each query term Tj, the client can use
the index to find Lj set of documents that contain Tj. The
client finds L1; L2; . . . ; Lp in succession, accumulating the
sumWi ¼

Pp
j¼1 wiðTjÞ � uj for each documentDiðTjÞ in these

lists. Finally, the client locates a document matching its
query by choosing the nearest document in the broadcast
whoseWi value exceeds the predefined similarity threshold.

The term selection is a truncated version of the
document, so the result of a simple comparison between a
query and the term selection may be different from that of a
match between the query and the full document. However,

our experiments suggest that this happens rarely. The

10 top-ranked terms of a document are dominant in the

whole document. We picked document pairs randomly

from the database and computed the similarity sa between

them by using all their terms. We also computed the

similarity sp between them by only using the top-ranked

terms. The error is, on average, 0.023, which is very small. In

addition, documents in the broadcast are selected based on

client interest patterns, so most clients are likely satisfied

with some document in the broadcast. Therefore, we can

use a lower similarity threshold when finding matches

between the query and the term selections. Moreover, if a

client finds no matching document, it can listen to the full

broadcast.

6.4 Performance Analysis

We evaluate the data access efficiency of broadcasting

with indices under the following performance metrics,

which are also widely used in the literature [46], [47],

[48], [49], [50], [51]:

. Waiting time. This is the time between query issue
and document receipt at the client.

. Tuning time. This is the time that a client is in the
active mode during the waiting time. This metric
[46] evaluates the effects of indexing on energy
savings.

6.4.1 Average Waiting Time

The AWT is measured as the average time to get to the next

index segment plus the average time from the index

segment to the point when the required document is

downloaded.
We use the following notations: The combined size of all

the data segments is L, which is the length of the broadcast

cycle without index segments. jIj denotes the size of a single

index segment: All index segments are of the same size. The

length of a broadcast cycle with 	 index segments is

Lþ 	jIj.
Since we assume near-equal placing of the index

segments, the data segments sizes will all be nearly equal

to L=	. The average time to get to the next index segment is

half the time between two consecutive index segments, that

is, 1
2

�
jIj þ L=	

�
. The average duration from the index

segment to document di is half the spacing between two

consecutive occurrences of di, which is now ðLþ 	jIjÞ=fi.
Hence,

AWT ¼ 1

2

jIj þ L

	

�
þ 1

2N

XN
i¼1

Lþ 	 jIj
fi

:

We find the minimum AWT by differentiating with respect

to 	 and setting the derivative to zero. That is,

@ðAWT Þ
@	

¼ � L

2	2
þ jIj

2N

XN
i¼1

1

fi
¼ 0; so that

	 ¼
ffi

LN

jIj
�PN

i¼1
1
fi

�s
:

WANG AND RAVISHANKAR: ADAPTIVE BROADCASTING FOR SIMILARITY QUERIES IN WIRELESS CONTENT DELIVERY SYSTEMS 9

Fig. 6. The indexing structure.

6.4.2 Average Tuning Time

The average tuning time (ATT) without indexing equals the
AWT. The ATT with indexing is the sum of the time to get
the next index segment, the time to get to the document,
and the time to download the document.

The client obtains lists L1; L2; . . . ; Lp from the index
structure by using terms in its query and computesPp

j¼1 wiðTjÞ � uj for each DiðTjÞ in these lists. This
computation can be sped up using a hash table, using
document identifiers as the hash key. As the client
examines each ðDiðTjÞ; wiðTjÞÞ tuple in Lj, it simply
updates the corresponding total, incrementing it by
wiðTjÞ � uj. The computation overhead is linear to the
number of ðDiðTjÞ; wiðTjÞÞ tuples across the Lj.

We see in Fig. 11 that about 12 percent of the documents
in the server database will be scheduled in the broadcast
program on the average. Given a server with 5,000 docu-
ments, about 600 documents will appear in the broadcast.
As we partition the broadcast cycle into 	 ð	 10Þ data
segments, there will be around 60 distinct documents in
each data segment. If we assume five terms in each query,
the number of ðDiðTjÞ; wiðTjÞÞ tuples examined is around
300 in the worst case. Our simulations suggest that the
number of ðDiðTjÞ; wiðTjÞÞ tuples in each Lj is indeed very
small and is only about 2 on the average. The variance in
this number is also small, being around 6.23. We therefore
need to search only a few tuples, on the average, and our
indexing approach is efficient.

7 PERFORMANCE EVALUATION

We evaluated our model through extensive simulations on
real-life data such as Reuters newswire text documents.

7.1 Simulation Environment

We implemented a simulator using CSIM [52] and modeled
a single server and multiple clients. The server broadcasts
documents, collects feedback messages, detects client
interest patterns, and makes broadcast decisions. The
clients generate document requests and provide feedback
messages. The document set in our simulations is the
Reuters-21578 Text Categorization Test Collection [53],
which is among the most widely used resources for
research in information retrieval.

7.1.1 The Document Model

The documents in the Reuters collection are newswire
stories belonging to five different content-related categories:
TOPICS, PLACES, PEOPLE, ORGS, and EXCHANGES. We
used 57 categories in the TOPICS set, obtaining 5,000 docu-
ments, all in SGML format and distributed across 22 data
files. We preprocessed the collection, removing SGML tags,
extracting texts for each individual document, and omitting
empty documents.

We removed all words in the stop list, reduced the rest to
their stems using PorterStemmer [54], and converted the
documents into a word-by-document matrix, as in [55]. The
VSM for the 5,000 documents contained 21,485 unique
terms. There were 251,475 nonzero entries in the matrix,
which were term weights calculated by the TF-IDF weight-

ing scheme (see Section 3.1.1). Each document contained
about 51 terms on average. Thus, the matrix is extremely
sparse, with a density of only 0.0025. The sparse matrix was
stored in the Compressed Column Storage format [56] for
efficiency.

7.1.2 The Client Model

Each client was a CSIM process, and ran a continuous loop,
with each iteration simulating one broadcast cycle. It
chooses a document of interest in each broadcast cycle
and waits for a sufficiently similar document to appear in
the broadcast. Each client generates (but does not send)
feedback messages, starting from the time that it picks a
document request until one broadcast cycle time elapses. If
the broadcast program is changed within this time period,
the client starts over on the creation of the feedback
message. If no document in the broadcast cycle is
sufficiently close to its document of interest, the client
includes an explicit document request in the feedback
message. Clients send feedback messages to the server at
random times, following the same Poisson distribution for
all clients. The number of feedback messages arriving at the
server is carefully controlled.

Explicit requests for documents are generated as follows:
A document d is selected from the database according to a
specified distribution, and all terms in the selected docu-
ment are sorted in nonincreasing weight order. The client
forms an explicit request vector ~rd for d by using the five
top-ranked terms in d so that~rd is a truncated version of the
original document vector ~d. Hence, the similarity between
the two may be less than the threshold � . Fig. 7 shows the
likelihood that the database has a document matching~rd for
different � values.

In practice, client interests are very likely to change over
time. For instance, traffic information may be more
requested during commute hours, but movie schedules or
shopping information may be more accessed during the
day. Client request patterns have been studied in various
contexts, and the Zipf distribution [57] has been found to be
a good characterization of these patterns [25]. Zipf is a
power-law distribution and is frequently seen, because all
objects are not equally interesting to clients in any context.
Zipf is widely used in many dissemination and access
models [5], [15], [16], [17] and is even seen in the
distribution of outdegrees in Internet routers [58]. For a
Zipf distribution, the probability of accessing a document
with frequency rank r is proportional to ð1=rÞ
, 0 �
 � 1,
where
 is the access skew coefficient. If
 ¼ 0, the Zipf
distribution reduces to the uniform distribution but

10 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 4, APRIL 2008

Fig. 7. Client request characteristics.

becomes increasingly skewed as
 increases. We ran
simulations for both
 ¼ 0 and
 ¼ 1, corresponding to the
uniform and pure Zipf distributions. The details are in
Section 7.2.

We modeled changes in client access patterns, as shown
in Fig. 8. A similar method was used in [5] and [14]. Fig. 8
assumes a database of 30 documents and shows the effects
of client access patterns shifting by an offset of 20 docu-
ments. Initially, document 1 has the highest probability of
being accessed, and document 30 has the lowest. After a
shift in interest patterns, document 21 is the most popular
document, and document 20 is the least popular. Table 1
summarizes the parameters describing client operation.
ShiftFreq specifies how frequently the client interest patterns
shift. Offset defines the shift amount.

The client waiting time is the time elapsed between
request generation and its fulfillment. We simulate the
arrival of client requests as a Poisson process. The client
searches the current broadcast program for a document that
satisfies a generated request. If no such document is found
within one broadcast cycle, the request is flagged as
pending and is processed again in the next broadcast cycle.
If it cannot be satisfied in two consecutive cycles, it is
considered as an unsatisfied request.

We count the waiting time in logical time units called
broadcast units, so our simulation results are valid across
many possible broadcast media. We used a broadcast rate of
1 Kbyte per broadcast unit, but we can apply our model
over 2G wireless networks that have broadcast speed of
9.6 kilobits per second (Kbps) by changing the broadcast
unit to a second. For 2G+ wireless networks such as GPRS,
the broadcast speed is about 100 Kbps so that the broadcast
unit would be about a tenth of a second.

7.1.3 The Server Model

The server parameters are shown in Table 1. The server is a
CSIM process running in a continuous loop. The server
collects the required number M of feedback messages and
creates a new broadcast program as follows: First, it
processes client feedback messages (see Section 5) to create
feature vectors. It then selects documents matching these
feature vectors and assigns a broadcast frequency for each
document based on (9). Finally, it constructs the broadcast
program as in Section 5.2.2. We use the CSIM event
mechanism to synchronize clients with the server.

7.2 Simulations and Results

Current models [15], [16], [17], [18], [19] typically require
unhappy clients to send explicit document requests to the

server. Consequently, the server likely performs poorly as
the number of clients increases or when client interest
patterns shift significantly. Servers in our model deal only
with a sample of the entire client population, so our model
scales much better. We conducted extensive simulations to
demonstrate the responsiveness, scalability, adaptability,
and energy efficiency of our model.

7.2.1 Performance of Randomized Feedback Scheme

We measured system performance under our random
feedback method, and when all clients send feedback,
varying the similarity threshold � between 0.2 to 0.6 for both
the Zipf and the uniform client interest patterns. No indices
were included in the broadcast in these experiments, and
the server minimized the number of documents broadcast
based on similarity matching. Fig. 9 shows the AWTs for
different client populations. The results for the Zipf interest
patterns are shown in Figs. 9a, 9b, and 9c. As client
population increases, the AWT improves considerably
under our model, as shown in Fig. 9c. For 10,000 clients
and a similarity threshold of 0.2, the AWT is improved
about 30 percent compared to the case when all clients send
explicit requests to the server. For a higher similarity
threshold, say 0.6, the AWT improves even more, that is, to
about 50 percent. The results for uniform interest patterns,
as shown in Figs. 9d, 9e, and 9f, show similar improve-
ments. AWTs are longer when all clients respond, because
the server must schedule more documents in the broadcast
to satisfy all arriving client requests. One might expect that
scheduling more documents would satisfy more client
requests, reducing waiting times. However, given a fixed-
length broadcast cycle, scheduling more documents de-
creases the broadcast frequencies of the documents, actually
increasing waiting times. In this case, however, the server
broadcasts some documents that only a small fraction of
clients want, further increasing AWT.

In Fig. 9, a higher � leads to a longer AWT for two
reasons. First, for higher � , fewer client requests are likely
incorporated into a given cluster so that more documents
must be included in the broadcast program, leading to
longer AWTs. Second, the number of explicit requests
increases with � , since clients become more demanding and
are less likely satisfied by documents in the current
broadcast program. We observe that the AWT under the

WANG AND RAVISHANKAR: ADAPTIVE BROADCASTING FOR SIMILARITY QUERIES IN WIRELESS CONTENT DELIVERY SYSTEMS 11

Fig. 8. Shifting client access patterns.

TABLE 1
Description of Parameters

uniform interest pattern is longer than under the Zipf
interest pattern. Client requests are more clumped under
Zipf so that the number of documents in the broadcast
program becomes smaller.

Figs. 9a, 9b, and 9c show that the AWT initially decreases
and increases after that. Under Zipf, a handful of documents
account for most requests. Initially, with few clients, the set
of requested documents, hence the broadcast size, remains
relatively constant. In this phase, increasing the number of
clients decreases the AWT. However, as the number of
clients increases beyond a threshold, less popular docu-
ments will also tend to be requested, increasing the broad-
cast size. In this phase, we would not expect the AWT to
continue dropping. As may be expected, these phases are
less distinct for the uniform distribution than for Zipf.

Fig. 10 shows the average percentage of unsatisfied
requests in a broadcast cycle. Unsatisfied requests may arise
for several reasons. First, no document in the database may
match a client request when � is relatively high (see Fig. 7).
Second, the random sampling method in our model
estimates the client interest pattern with some margin of
error so that the estimate may deviate from the real pattern.
Finally, the number of documents broadcast in a cycle is
limited, since we limit the length of the broadcast cycle, as
explained in Section 5.2. Fig. 10c shows an increase in the
percentage of unsatisfied requests in our model. For � ¼ 0:6
and 10,000 clients, about 13.8 percent of client requests may
be unsatisfied with the broadcast.

Fig. 11 shows the superiority of our method in terms of
the fraction of documents scheduled in the broadcast,
which levels off beyond a client population of 2,000 for our
approach. The results for uniform interest patterns show
very similar trends. Our model includes fewer documents
in the broadcast, so the broadcast frequency for each
document can be high, reducing client waiting times. Our
method is clearly more scalable.

Fig. 12 shows how adaptable our model is under shifting
client interest patterns. In this experiment, the ShiftFreq is set
to 10, and the shift Offset is set to 20. We observe relatively
higher AWTs after the shifts in client interest pattern, but

12 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 4, APRIL 2008

Fig. 9. Feedback methods compared: random sampling versus all clients responding. (a) All clients respond (Zipf). (b) Random sampling (Zipf).

(c) Comparison (Zipf). (d) All clients respond (Uniform). (e) Random sampling (Uniform). (f) Comparison (Uniform).

Fig. 10. Percentage of unsatisfied requests. (a) All clients respond (Zipf).

(b) Random sampling (Zipf). (c) Comparison (Zipf). (d) Comparison

(Uniform).

Fig. 11. Percentage of documents in server database scheduled in

broadcast. (a) All clients respond. (b) Random sampling.

they drop back to normal very quickly. The shifts at cycles
421, 431, and 461 illustrate the point very well.

7.2.2 Comparison with Adaptive Broadcast Disk

Fig. 13 compares our model with the Adaptive Broadcast
Disk (Adaptive BD) scheme in [17], which also uses bit-
vector feedback. In Adaptive BD, only clients with explicit
requests send feedback to the server. We use the same
parameter settings as in the Adaptive BD model (see
Table 2): these are entirely different from those in our
previous experiments. Since all documents in the Adaptive
BD model have a fixed size of 8,192 bytes, we ignore the
actual document sizes in our database.

Clearly, our model is much more scalable than the
Adaptive BD model. The AWTs in our model are also
generally shorter than those for Adaptive BD. Adaptive BD
allocates a fixed ratio of broadcast bandwidth for broad-
casting on-demand requests so that the broadcast program
can deviate from the client interest patterns. Our approach
helps the server in detecting and exploiting client interest
patterns much more precisely.

7.2.3 Selective Tune-In Performance

We evaluated our model with and without selective tune-
in, broadcasting the same sequence of documents in both
cases. That is, the index segments were interspersed within
the sequence of documents broadcast in the model without
indices. We evaluated both approaches described in
Section 6.2. In the first method, all clients locate the
requested documents by listening only to the index
segments, switching to the doze mode if their query
arrives in between two consecutive index segments. In the
other method, a client listens to the broadcast until the first
index segment arrives. If the document is not found by
that time, it begins listening only to the index segments.
We tested both the Zipf and Uniform client interest
patterns for both models.

Fig. 14 compares the performance of the two models
under the Zipf distribution. Figs. 14a and 14c show that the
AWTs with the indexing scheme are moderately longer
than those in the nonindex model. For example, the AWTs
with indices in the first access method is at most 32.5 percent
longer than the AWT without indices, with a 0.2 similarity
threshold. The reason for the increased AWT is that the
broadcast program is designed to minimize the AWT in the
scheme without indices. However, as shown in Figs. 14b
and 14d, the ATTs under the index scheme are improved
significantly, since the clients must listen to the broadcast
all the time when no indices are used. We see in Fig. 14b
that the average tune-in times are improved by a factor of at
least 2.5, a significant energy savings.

Fig. 15 shows that trends when the client interest pattern
is uniform are similar to those under Zipf. Furthermore, the
percentage of unsatisfied requests and the fraction database
documents scheduled in the broadcast remained almost the
same as they were without indices. Our indexing scheme
increases waiting time modestly but reduces client tune-in
times greatly, leading to considerable client energy savings.

8 CONCLUSIONS

We described an energy-efficient adaptive broadcasting
model for asymmetric bandwidth environments and an

WANG AND RAVISHANKAR: ADAPTIVE BROADCASTING FOR SIMILARITY QUERIES IN WIRELESS CONTENT DELIVERY SYSTEMS 13

Fig. 12. Adaptability to shifts in client access pattern ðShift ¼ 10Þ.

Fig. 13. Performance comparison with Adaptive BD.

TABLE 2
Parameter Settings

Fig. 14. Comparison under the Zipf client interest pattern. (a) Listen to

the index only. (b) Listen to the index only. (c) Listen to the broadcast

and index. (d) Listen to the broadcast and index.

approximate response mechanism for queries. We also

developed a randomized client feedback mechanism and a

theory for bounding the client feedback sample size. Servers

can estimate client interest patterns quickly, effectively, and

efficiently. We also proposed an objective function for

optimizing our model and showed how we can create a

near-optimal broadcast program conforming to this objec-

tive function. Finally, we integrated an indexing scheme

based on approximate matching, in which clients selectively

tune in to the broadcast, resulting in considerable energy

savings. Most importantly, these mechanisms are seam-

lessly integrated into our system.
We have evaluated the performance of our model with

real-world data sets by using an extensive and accurate

simulation testbed. Even without indices, our model per-

forms very well in terms of responsiveness, scalability, and

adaptability. We also compared the performance of our

model with that of the Adaptive BD model, in which the

broadcast bandwidth allocated for explicit client request is

fixed. Our model clearly outperforms Adaptive BD. Our

results also show that with indexing, our model can achieve

much higher energy savings, with some moderate waiting

time overhead.

ACKNOWLEDGMENTS

This work was supported by a grant from Tata Consultancy

Services, Inc. A preliminary version of the paper appeared

in the Proceedings of the Eighth International Database

Engineering and Applications Symposium.

REFERENCES

[1] W. Wang and C.V. Ravishankar, “Adaptive Data Broadcasting in
Asymmetric Communication Environments,” Proc. Eighth IEEE
Int’l Database Eng. and Applications Symp. (IDEAS ’04), pp. 27-36,
2004.

[2] B. Xu, O. Wolfson, and S. Chamberlain, “Cost Based Data
Dissemination in Broadcast Networks with Disconnection,” Proc.
Eighth Int’l Conf. Database Theory (ICDT ’01), pp. 114-128, 2001.

[3] B. Xu, O. Wolfson, S. Chamberlain, and N. Rishe, “Cost-Based
Data Dissemination in Satellite Networks,” Mobile Networks and
Applications, vol. 7, no. 1, pp. 49-66, 2002.

[4] W.G. Yee, S.B. Navathe, E. Omiecinski, and C. Jermaine, “Efficient
Data Allocation over Multiple Channels at Broadcast Servers,”
IEEE Trans. Computers, Oct. 2002.

[5] S. Acharya, R. Alonso, M. Franklin, and S. Zdonik, “Broadcast
Disks: Data Management for Asymmetric Communications
Environments,” Proc. ACM SIGMOD, 1995.

[6] S. Hameed and N.H. Vaidya, “Efficient Algorithms for Scheduling
Data Broadcast,” ACM/Baltzer J. Wireless Networking., vol. 5, no. 3,
pp. 183-193, 1999.

[7] C.-J. Su and L. Tassiulas, “Joint Broadcast Scheduling and User’s
Cache Management for Efficient Information Delivery,” Proc.
ACM MobiCom ’98, pp. 33-42, 1998.

[8] T. Hara, “Cooperative Caching by Mobile Clients in Push-Based
Information Systems,” Proc. 11th ACM Int’l Conf. Information and
Knowledge Management (CIKM ’02), pp. 186-193, 2002.

[9] G. Herman, G. Gopal, K.C. Lee, and A. Weinrib, “The Datacycle
Architecture for Very High Throughput Database Systems,” Proc.
ACM SIGMOD ’87, pp. 97-103, June 1987.

[10] T.F. Bowen, G. Gopal, G. Herman, T. Hickey, K.C. Lee, W.H.
Mansfield, J. Raitz, and A. Weinrib, “The Datacycle Architecture,”
Comm. ACM, vol. 35, no. 12, Dec. 1992.

[11] Los Angeles Times, http://www.latimes.com/services/newspa-
per/mediacenter/la-mediacenter-20% 02-06.htmlstory, 2007.

[12] CNN’s Newswatch, http://www.cnn.com/services/newswatch,
2007.

[13] Battlefield of the Future, http://www.airpower.maxwell.af.mil/
airchronicles/battle/bftoc.html, 2007.

[14] S. Acharya, M. Franklin, and S. Zdonik, “Dissemination-Based
Data Delivery Using Broadcast Disks,” IEEE Personal Comm.,
vol. 2, no. 6, 1995.

[15] S. Acharya, M. Franklin, and S. Zdonik, “Balancing Push and Pull
for Data Broadcast,” Proc. ACM SIGMOD, 1997.

[16] K. Stathatos, N. Roussopoulos, and J.S. Baras, “Adaptive Data
Broadcast in Hybrid Networks,” Proc. 23rd Int’l Conf. Very Large
Data Bases (VLDB), 1997.

[17] Q. Hu, D.-L. Lee, and W.-C. Lee, “Dynamic Data Delivery in
Wireless Communication Environments,” Proc. W3C Workshop
Mobile Data Access ’98, pp. 213-224, Nov. 1998.

[18] J.-H. Hu, K. Yeung, G. Feng, and K. Leung, “A Novel Push-and-
Pull Hybrid Data Broadcast Scheme for Wireless Information
Networks,” Proc. IEEE Int’l Conf. Comm. (ICC ’00), vol. 3, pp. 1778-
1782, 2000.

[19] J. Oh, K.A. Hua, and K. Prabhakara, “A New Broadcasting
Technique for an Adaptive Hybrid Data Delivery in Wireless
Mobile Network Environment,” Proc. Ninth IEEE Int’l Performance,
Computing, and Comm. Conf. (IPCCC ’00), pp. 361-367, 2000.

[20] N.H. Vaidya and S. Hameed, “Data Broadcast in Asymmetric
Environments,” Proc. First Int’l Workshop Satellite-Based Information
Services (WOSBIS ’96), pp. 38-52, 1996.

[21] N.H. Vaidya and S. Hameed, “Scheduling Data Broadcast in
Asymmetric Communication Environments,” Wireless Networks,
vol. 5, pp. 171-182, 1999.

[22] C.-J. Su, L. Tassiulas, and V. Tsotras, “Broadcast Scheduling for
Information Distribution,” Wireless Networks, vol. 5, no. 2, pp. 137-
147, 1999.

[23] P. Deolasee, A. Katkar, A. Panchbudhe, K. Ramamritham, and P.
Shenoy, “Adaptive Push-Pull: Disseminating Dynamic Web
Data,” Proc. 10th Int’l World Wide Web Conf. (WWW ’01), May 2001.

[24] C.-L. Hu and M.-S. Chen, “Dynamic Data Broadcasting with
Traffic Awareness,” Proc. 22nd Intl’ Conf. Distributed Computing
Systems (ICDCS ’02), 2002.

[25] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web
Caching and Zipf-Like Distributions: Evidence and Implications,”
Proc. IEEE INFOCOM ’99, pp. 126-134, 1999.

[26] G. Salton, A. Wong, and C.S. Yang, “A Vector Space Model for
Automatic Indexing,” Comm. ACM, pp. 613-620, 1975.

[27] U. Cetintemel, M.J. Franklin, and C.L. Giles, “Self-Adaptive User
Profiles for Large-Scale Data Delivery,” Proc. 16th IEEE Int’l Conf.
Data Eng. (ICDE ’00), pp. 622-633, Feb. 2000.

14 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 4, APRIL 2008

Fig. 15. Comparison under the uniform client interest pattern. (a) Listen

to the index only. (b) Listen to the index only. (c) Listen to the broadcast

and index. (d) Listen to the broadcast and index.

[28] K.-L. Wu, P.S. Yu, and M.-S. Chen, “Energy-Efficient Caching for
Wireless Mobile Computing,” Proc. 12th IEEE Int’l Conf. Data Eng.
(ICDE ’96), 1996.

[29] D. Aksoy and M. Franklin, “Scheduling for Large-Scale On-
Demand Data Broadcasting,” Proc. IEEE INFOCOM ’98, vol. 2,
pp. 651-659, 1998.

[30] D. Aksoy and M. Franklin, “RXW: A Scheduling Approach for
Large-Scale On-Demand Data Broadcast,” IEEE/ACM Trans.
Networking, vol. 7, no. 6, pp. 846-860, 1999.

[31] S. Acharya and S. Muthukrishnan, “Scheduling On-Demand
Broadcasts: New Metrics and Algorithms,” Proc. ACM MobiCom
’98, pp. 43-54, 1998.

[32] G. Salton and M.J. McGill, Introduction to Modern Information
Retrieval. McGraw-Hill, 1983.

[33] Information Retrieval: Data Structures and Algorithms, W.B. Frakes
and R. Baeza-Yates, eds. Prentice Hall, 1992.

[34] G. Salton, Automatic Text Processing: The Transformation, Analysis,
and Retrieval of Information by Computer. Addison-Wesley, 1988.

[35] C. Buckley, G. Salton, J. Allan, and A. Singhal, “Automatic Query
Expansion Using SMART,” Proc. Third Text Retrieval Conf. (TREC
’94), pp. 69-80, 1994.

[36] B. Vélez, R. Weiss, M.A. Sheldon, and D.K. Gifford, “Fast and
Effective Query Refinement,” Proc. 20th ACM SIGIR, pp. 6-15,
1997.

[37] M. Mitra, A. Singhal, and C. Buckley, “Improving Automatic
Query Expansion,” Proc. 21st ACM SIGIR, pp. 206-214, 1998.

[38] R. Motwani and P. Raghavan, Randomized Algorithms. Cambridge
Univ. Press, 1995.

[39] H. Chernoff, “A Measure of Asymptotic Efficiency for Tests of a
Hypothesis Based on the Sum of Observations,” Annals of Math.
Statistics, vol. 23, no. 4, pp. 493-507, 1952.

[40] M.H. Ammar and J.W. Wong, “The Design of Teletext Broadcast
Cycles,” Performance Evaluation, vol. 5, no. 4, pp. 235-242, 1985.

[41] D.P. Bertsekas, Constrained Optimization and Lagrange Multiplier
Methods. Athena Scientific, 1996.

[42] S. Hameed and N.H. Vaidya, “Log-Time Algorithms for Schedul-
ing Single- and Multiple-Channel Data Broadcast,” Proc. ACM
MobiCom ’97, pp. 90-99, Sept. 1997.

[43] T. Imielinski and B.R. Badrinath, “Mobile Wireless Computing:
Challenges in Data Management,” Comm. ACM, vol. 37, no. 10,
pp. 18-28, 1994.

[44] Lucent, IEEE 802.11 waveLAN PC Card User’s Guide, 2007.
[45] T. Simunic, H. Vikalo, P. Glynn, and G.D. Micheli, “Energy

Efficient Design of Portable Wireless Systems,” Proc. Int’l Symp.
Low-Power Electronics and Design (ISPLED ’00), 2000.

[46] T. Imielinski, S. Viswanathan, and B.R. Badrinath, “Energy
Efficient Indexing on Air,” Proc. ACM SIGMOD ’94, pp. 25-36,
May 1994.

[47] T. Imielinski, S. Viswanathan, and B.R. Badrinath, “Data on Air:
Organization and Access,” IEEE Trans. Knowledge and Data Eng.,
vol. 9, no. 3, May/June 1997.

[48] W.-C. Lee and D.L. Lee, “Using Signature Techniques for
Information Filtering in Wireless and Mobile Environments,”
Distributed and Parallel Databases, vol. 4, no. 3, pp. 205-227, 1996.

[49] Q. Hu, W.-C. Lee, and D.L. Lee, “A Hybrid Index Technique for
Power Efficient Data Broadcast,” Distributed and Parallel Databases,
vol. 9, pp. 151-177, 2001.

[50] S. Lee, D.P. Carney, and S. Zdonik, “Index Hint for On-Demand
Broadcasting,” Proc. 19th IEEE Int’l Conf. Data Eng. (ICDE ’03),
pp. 726-728, Mar. 2003.

[51] J.-L. Huang and W.-C. Peng, “An Energy-Conserved On-Demand
Data Broadcasting System,” Proc. ACM SIGMOD ’05, pp. 234-238,
2005.

[52] CSIM 19 Simulation Engine, http://www.mesquite.com/
documentation/, 2007.

[53] D.D. Lewis, “Reuters-21578, Distribution 1.0,” http://www.
daviddlewis.com/resources/, 2007.

[54] M. Portor, “The Portor Stemming Algorithm,” http://www.
tartarus.org/~martin/PorterStemmer/, 2007.

[55] I.S. Dhillon, J. Fan, and Y. Guan, “Efficient Clustering of Very
Large Document Collections,” Data Mining for Scientific and Eng.
Applications, Kluwer Academic Publishers, 2001.

[56] I.S. Duff, R.G. Grimes, and J.G. Lewis, “Sparse Matrix Test
Problems,” ACM Trans. Math. Software, vol. 15, no. 1, pp. 1-14,
1989.

[57] D. Knuth, The Art of Computer Programming, Volume II: Eminume-
rical Algorithms. Addison Wesley, 1981.

[58] M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On Power-Law
Relationships of the Internet Topology,” Proc. ACM SIGCOMM
’99, pp. 251-262, 1999.

Wei Wang received the bachelor’s and
master’s degrees in computer science and
engineering from Northeastern University,
Shenyang, China. She is currently working
toward the PhD degree in the Department of
Computer Science and Engineering, University
of California, Riverside. Her research interests
include distributed systems and networks. Her
PhD studies are focused on wireless and
mobile communication environments.

Chinya V. Ravishankar received the bachelor’s
degree in chemical engineering from the Indian
Institute of Technology, Bombay, and the MS
and PhD degrees in computer science from the
University of Wisconsin, Madison. From 1986 to
1999, he was with the faculty of the Department
of Electrical Engineering and Computer Science,
University of Michigan, Ann Arbor. Since the Fall
of 1999, he has been with the University of
California, Riverside, where he is currently a

professor of computer science and engineering and the associate dean
in the Bourns College of Engineering. His research interests include
software systems, databases, networking, and security. He is a senior
member of the IEEE and a member of the ACM.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

WANG AND RAVISHANKAR: ADAPTIVE BROADCASTING FOR SIMILARITY QUERIES IN WIRELESS CONTENT DELIVERY SYSTEMS 15

