
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 6, NO. 1, FEBRUARY 1998 1

Using Name-Based Mappings to Increase Hit Rates
David G. Thaler,Student Member, IEEE, and Chinya V. Ravishankar,Member, IEEE

Abstract—Clusters of identical intermediate servers are often
created to improve availability and robustness in many domains.
The use of proxy servers for the World Wide Web (WWW) and
of rendezvous points in multicast routing are two such situations.
However, this approach can be inefficient if identical requests
are received and processed by multiple servers. We present an
analysis of this problem, and develop a method called the highest
random weight (HRW) mapping that eliminates these difficulties.
Given an object name and a set of servers, HRW maps a request
to a server using the object name, rather than anya priori
knowledge of server states. Since HRW always maps a given
object name to the same server within a given cluster, it may be
used locally at client sites to achieve consensus on object–server
mappings.

We present an analysis of HRW and validate it with simulation
results showing that it gives faster service times than traditional
request allocation schemes such as round-robin or least-loaded,
and adapts well to changes in the set of servers. HRW is partic-
ularly applicable to domains in which there are a large number
of requestable objects, there is a significant probability that a
requested object will be requested again, and the CPU load due
to any single object can be handled by a single server. HRW
has now been adopted by the multicast routing protocols PIMv2
and CBTv2 as its mechanism for routers to identify rendezvous
points/cores.

Index Terms—Caching, client–server systems, computer net-
works, distributed agreement, multicast routing, proxies, World
Wide Web.

I. INTRODUCTION

I N THE USUAL client–server model, clients access object
data or services that are made available by servers. A

single-server system is not robust, however, and often provides
insufficient resources to handle a large number of requests.
Thus, clustersof equivalent servers can be used to increase
service availability and to lower the workload on individual
servers.

In this paper, we investigate how a client may map a request
for a particular object to a server, so as to minimize response
time. In particular, we will limit our scope to domains with
the following characteristics.

• All requests for the same class of objects are handled
by a cluster of servers with equivalent functionality and
capacity.

• The set of servers in the cluster is known to clients
prior to issuing requests, and all clients see the same
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set of servers. For example, this information may be
statically configured, looked up at client startup time, or
periodically distributed to clients.

• There is some notion of a “hit rate” at a server, so that a
server responds more quickly to a duplicate request than
to a first-time request. This is clearly true when the server
functions as a cache. It is also true if clients need to locate
the server which was assigned to do a particular task.

• The benefit of object replication across servers is negli-
gible. That is, the CPU load due to any single object can
be handled by a single server.

The above characteristics cover a wide variety of domains.
Some examples include:

1) Real-Time Producer–Consumer Systems:For example,
in multicast routing protocols such as the core-based trees
(CBT) [1] and protocol independent multicast (PIM) [2]
protocols, receivers’ routers request data for a specific session
by sending a join request toward the root of a distribution tree
for that session, and sources send data to a session via the root
of its tree. The root thus takes on the role of a server, with
receivers and sources becoming clients. Sources and receivers
must rendezvous at the root for effective data transfer.

2) Client-Side WWW Proxy Caches:In the World Wide
Web (WWW), pages can be cached at proxy servers [3], [4].
All outbound client requests can then go through a local proxy
server. If the proxy server has the page cached, the page is
returned to the client without accessing the remote provider.
Otherwise, the page is retrieved and cached for future use.

Note thatserver-side proxy caches often do not fall within
the relevant class of domains. When proxy caches are placed
near servers to handle inbound requests, the number of requests
for a single object may represent enough central processing
unit (CPU) load to make object replication more effective.

3) Task Delegation:In task brokering systems, tasks may
be delegated to various servers. Any clients which desire to
interact with such a task must then contact the server running
that task.

For these domains, we will present an efficient algorithm
which maps requests to servers such that requests for the same
object are sent to the same server, while requests for different
objects are split among multiple servers. We will refer to this
concept as a “name-based” mapping.

It is possible to view the case where all clients send requests
for the same object to the same server as definingaffinities
between objects and servers in a cluster (Fig. 1). A number
of studies (e.g., [5]–[7]) have examined the related notion of
“cache-affinity” scheduling in the context of shared-memory
multiprocessors, in which tasks are sent to processors which
already have data cached. This achieves higher cache hit rates
at the possible expense of load balancing.

1063–6692/98$10.00 1998 IEEE



2 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 6, NO. 1, FEBRUARY 1998

Fig. 1. Object–server affinities.

Several fundamental differences exist, however, between
multiprocessor systems and distributed systems which limit
the applicability of cache-affinity scheduling. First, multi-
processor systems typically assume centralized schedulers,
whereas clients in decentralized distributed systems inde-
pendently choose servers and direct requests to them. A
centralized scheduler in a distributed system also represents
an undesirable performance bottleneck and a single point of
failure.

Second, a centralized scheduler can maintain up-to-date
processor load information, but such information is expensive
to obtain in distributed systems, since scheduling may be
done locally at clients distant from the servers (in terms of
latency). Finally, in some multiprocessor systems, a request in
progress may be migrated to another processor as part of the
scheduling algorithm. Such migration is usually undesirable or
even impossible in distributed systems, and migrated requests
must typically be restarted.

Although cache-affinity scheduling algorithms are not di-
rectly applicable in our domains, our goals are similar: to
increase the cache hit rates and thus reduce latency by using
appropriate scheduling. We highlight the importance of using a
sensible policy for reducing replication and improving hit rates
by directing requests for a given object to the same server.

This paper makes two major contributions. First, it gives
a general model for mapping requests to servers: Section III
describes the model and typical goals of mapping functions,
covers previous work, and shows how common mapping
functions fit within our model. Second, we present our “name-
based” mapping function: Section IV develops this notion,
Section V provides an analysis of our mapping function,
and Section VI describes efficient implementations. Finally,
applications in two popular domains are examined as case
studies in Section VII.

II. GOALS FOR MAPPINGS

Algorithms for mapping requests to individual servers
within clusters have typically concentrated on two goals: load
balancing and low mapping overhead. We argue in this paper
that a number of other goals are important as well. We discuss
these goals in this paper, and proceed to develop the notion
of name-based mappings. We also propose a new mapping
method called highest random weight (HRW) mapping that
meets all the criteria discussed in this section.

A. Traditional Goals

We begin by considering the two goals on which conven-
tional mapping algorithms have focused.

Goal 1 (Low Overhead):The latency introduced in picking
a server within a cluster must be as small as possible.

Schemes which require purely local decisions have low
overhead, while schemes requiring an additional exchange of
network messages have high overhead. Also, for an algorithm
to be applicable to many domains, the mapping function must
be portable and fast enough to use in high-speed applications.

Goal 2 (Load Balancing):To guarantee uniform latency,
requests should be distributed among servers so that each
server sees an equal share of the resulting load (over both
the short and long term) regardless of the object size and
popularity distributions.

To ensure that this goal is realized, one must first define what
load balancing means, and consider how loads are generated.
It is well known (e.g., [8]) that patterns of requests can be
very bursty when the request stream includes machine-initiated
requests, so that the arrival process of requests is not, in
general, Poisson. The packet train [9] model is a widely used
alternative to the traditional Poisson arrival model, and appears
to model such request patterns well. We therefore adopt this
model, and assume that requests arrive in batches, or “trains.”

For load balancing over short time intervals, we focus on
the load resulting from the arrival of a single train of requests.
In this case, we desire that the load resulting from each train
(in terms of amount of resources consumed) be split nearly
equally among the available servers.

After the individual requests in a packet train are assigned
to servers, there are many possibilities for the load on any
single server. We can model the loadon a given server as
the value of a random variable. The random variable may
be viewed as representing a load distribution defined over an
infinite population of identical servers, so that the load on any
one server is a single value sampled from this distribution. We
can similarly model the loads within a cluster of sizeas a
sample of size from this distribution. For the algorithms
we analyze in this paper, we may consider this sample to
be the values of independent arbitrarily distributed random
variables with identical means and variances.

Let the mean and variance of the distributions of thebe
and , respectively. If are the load values

sampled from the , we are interested in defining a measure
to ensure that these sampled values are as close to each other
as possible. The sample standard deviationprovides a good
measure of dispersion. However, the value ofdepends on
the magnitudes of the sample valueswhose expectation is
the population mean. We therefore normalizeby dividing by
the population mean, and deal with the ratio Our goal
will be to minimize this ratio.

Consider an incoming packet train that containsrequests
Since these requests represent loads, we simply

treat them as loads. Let these requests be drawn from indi-
vidual distributions with mean and variance Let there
be servers and let each server be assigned

requests. The resulting load on server is
thus a sum of random variables . We
begin with the following lemma.

Lemma 1: Let be a random variable whose values
represent the load on server The
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distribution of is approximately normal with mean and
variance as

Proof: The result follows immediately from the central-
limit theorem. See any standard book dealing with sampling
theory ([10], for example).

Hence, for sufficiently large packet train sizes, loads on
all servers are normally distributed. We will now show that
loads in a server cluster become balanced if the coefficient
of variation (ratio of mean to standard deviation) of the load
distribution on servers tends to zero.

Lemma 2: Let be a sample of size from
a normal distribution with mean and standard deviation

If is the sample standard
deviation, as

Proof: Let be the sample mean, and let By
the usual definition of sample variance, we have

The sum on the right side follows the distribution [10]
with degrees of freedom.1 Thus, we may write

Therefore,
Since the distribution is bounded,

as Hence, vanishes as well.
We can now combine these lemmas to conclude that for

sufficiently large packet train sizes: 1) the load distribution on
servers is approximately normal and (2) the loads in a server
cluster become balanced if the coefficient of variation of this
normal distribution tends to zero. We will find this result useful
in studying the properties of request mapping algorithms in
subsequent sections.

B. Additional Goals for Mappings

This section provides the motivation for our name-based
method for assigning objects to servers. We motivate our
approach by discussing the issues of replication and disruption.

1) Replication and Rendezvous Issues:A request mapping
algorithm can reduce retrieval latency not just by balancing
loads and maintaining low overhead but also through a third
mechanism: minimizing replication of work. Poorly designed
mapping schemes can cause several different servers to do the
same work, lowering efficiency. Replication of work arises
when client requests for the same object are sent to multiple
servers, causing them each to retrieve and cache the same
object separately, for example.

Such replication is particularly unacceptable in real-time
producer–consumer domains, where a producer sends real-time
object data to a server. Since consumers retrieve object data
from servers, producers and consumers mustrendezvousat the
server for successful information transfer. That is, producers
and consumers must select the same server independently
and simultaneously. Real-time data requires low end-to-end
latency, so a 100% hit rate for server selection isrequiredfor a
successful rendezvous between producer and consumer. Long

1There are onlym� 1 independent terms in the sum on the right side. We
can choosem � 1 values arbitarily, but the last value is now fixed because
l1 + � � �+ lm = ml must hold.

latency would otherwise result, violating real-time deadlines,
since the server selected by the consumer must first obtain the
data from the producer. Section VII-A describes one example
of this effect.

A 100% hit rate for server selection can only be achieved
when the producer sends its information to all servers in a
cluster (wasting resources), when consumers send requests to
all servers (again wasting resources), or when all producers
and consumers send data and requests for the same object to
the same server. The last of these options may be viewed as
defining affinities between objects and servers.

Replication can also reduce hit rates in caching schemes by
decreasing the effective cache size of the servers in the cluster.
For example, a study conducted in 1992 [11] reported that a 4-
GB cache was necessary for intermediaries to achieve a cache
hit rate of 45% for FTP transfers. Thus, if we used four servers
and a mapping scheme which allows replication,eachserver
would require a 4-GB cache to achieve a 45% hit rate, rather
than only a 1-GB cache each. On the other hand, in a balancing
scheme that avoids replication, each server would see requests
for one fourth of the objects. Intuitively, its response time and
cache hit rates would then be the same as if there were only

the requestable objects, and the probability of finding a
requested object in the cache will thus be greater. As we will
see in Section VII-B, this scheme allows each server to get an
equivalent hit rate with only a 1-GB cache.

If the growth of replication is slow, however, it is unlikely
to be a matter for concern. However, as Theorem 6 of Section
V-E demonstrates, replication can get quickly out of hand,
and an object can be expected to become replicated in all
servers within about requests.

An important factor to consider is that the latency for the
server to retrieve the object from the remote provider is far
longer than the latency to retrieve the object from the server’s
cache. We thus formulate the following additional goal for a
mapping algorithm.

Goal 3 (High Hit Rate): The mapping scheme should at-
tempt to increase the probability of a hit.

2) Minimizing Disruption: Whenever a server comes up or
goes down, the current object–server affinities may change.
This leads to another goal.

Goal 4 (Minimal Disruption): Whenever a server comes
up or goes down, the number of objects that are remapped to
another server must be as small as possible.

In multicast routing, for instance, this goal minimizes the
number of sessions liable to experience data loss as a result of
changes to distribution trees. For distributed caching systems,
this maximizes the likelihood that a request for a previously
cached object will still result in a cache hit.

A parameter of particular significance for schemes to map
objects to servers is thedisruption coefficient , which we
define as the fraction of the total number of objects that must
be remapped when a server comes up or goes down.

Theorem 1 (Disruption Bounds):For everymapping which
evenly divides objects among servers, the disruption coeffi-
cient satisfies

where is the number of active servers.
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Proof: Let be the number of objects cached within the
cluster. We first observe that no more thanobjects can be
disrupted, giving one as the upper bound on disruption. Next, if
objects are evenly divided among servers, then there are
objects assigned to each server at any time. When one or more
servers go down, all objects assigned to each server that
goes downmustbe reassigned to another server, regardless of
any other changes. Thus, disruption

When one or more servers come back up, all objects which
were previously mapped to each servermustbe reassigned to
it when it comes back up. This is because the set of active
servers is then identical to the set of active servers before the
server(s) originally went down, at which time it had
objects. Since clients making a purely local decision cannot
distinguish between the two cases, the previous mapping must
be restored. Thus, objects must be reassigned to each
new server regardless of any other changes. Hence, again,
disruption

III. A M ODEL FOR MAPPING REQUESTS TOSERVERS

Any scheme which maps a request for an object
to a specific server in a cluster can be logically viewed as
picking the server which minimizes (or maximizes) some value
function Let be a cluster of
servers. A typical mapping function thus selects a server

at time such that

(1)

where and are indices of servers.
A number of mapping functions have been used in practice

that attempt to realize one or more of the goals discussed
in Section II. The goal of balancing loads is particularly
significant from our point of view since it directly influences
response times.

We now present some commonly used value functions and
discuss how well each of them achieves the above goals.

A. Static Priority Mapping

In a static priority scheme, the server list is statically
ordered, e.g., in the model described above. Clients
simply try contacting each server in order until one responds.
While this does provide fault tolerance, the entire load will
typically fall on the highest priority server, potentially causing
long response times during times of heavy use. In addition, the
cache space available is underutilized since the space available
at the other servers is not used.

B. Minimum-Load Mapping

Sending a request to the least loaded server divides requests
between servers so as to keep the load low on each server,
providing faster service times. Here,is some measure of the
current load, i.e., (load on at time , thus requiring
an additional mechanism (either periodic or on-demand) to
determine which server currently has the lowest load. Making
this determination is nontrivial, since clients are constantly
issuing requests, and load information may be out-of-date by

the time it is acquired and used by a client. In the worst case,
all clients issue requests to the same previously idle server,
resulting in a very high load.

Minimum-load mapping is, however, the approach taken in
many existing systems. For example, Cisco’s LocalDirector
[12], which redirects WWW requests to one of a set of local
servers, periodically queries the servers for status information,
thus potentially using out-of-date information. In the Contract
Net protocol [13], servers are queried for load information
when a request is ready, introducing additional latency.

C. Fastest Response Mapping

In the fastest response scheme, a client pings the servers and
picks the one that responds first. Thus, (response time
for When all servers are equally distant, this mapping is
similar to the least loaded scheme (with the same advantages
and disadvantages), since the server with the least load typi-
cally responds first. The Harvest [4] web cache implementation
and the Andrew file system (AFS) [14] both use this method.

D. Round-Robin Mapping

A simpler scheme is round-robin, where successive requests
are sent to consecutive servers. For example, when a name in
the domain name service (DNS) resolves to multiple IP ad-
dresses, DNS returns this list of IP addresses, rotated circularly
after each request. If clients use the first address on this list,
requests will be sent to the various IP addresses in round-robin
fashion,2 thereby balancing the number of requests sent to each
[15]. The NCSA scalable web server configuration [16] is one
example of such use of DNS.

When all servers are up, a true round-robin scheme maps
the th request sent to the cluster to theth server (modulo
m). Thus, To get an ordered list for
robustness, this is logically equivalent to assigning weights in
our model as

where denotes the number of previous requests sent and
is the number of servers.

We now demonstrate formally that round-robin achieves
load balancing when the request rate is high. As discussed
earlier, we will use the packet-train model [9] for our analysis.

Let be the number of requests in the batch or train. Let
be a random variable describing the service time for one

request. Let be a random variable describing the total service
time for all requests in the batch which are mapped to a given
server (Note that is independent of the queue discipline.)

Theorem 2 (Round-Robin Load Balancing):Let be a ran-
dom variable describing the total processing required for all
requests mapped to a given server If requests are
assigned to servers in a round-robin manner, then the square
of the coefficient of variation of is given by

(2)

2Note that DNS may not give true round-robin ordering when clients
generate duplicate requests, due to DNS caching at clients.
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and, hence, when has finite variance

Proof: Since requests are assigned round-robin, each
server will get exactly (when is a multiple of
requests. Since the value offor a given server is the sum of
the service times of the requests mapped to it, we get

(3)

Since service times of individual requests are independent
and identically distributed, the variance is also additive, giving

(4)

Equation (2) directly follows from (3) and (4), since

Lemma 2 now guarantees that the load is balanced when
is large, and the load is therefore significant. This observation
applies both to long-term load balancing (where as
the time interval of interest grows), as well as short-term load
balancing as the request rate increases (i.e., when large batches
of requests arrive within a short period of time).

E. Random Mapping

Another way to balance the expected number of requests
assigned to each server is to send requests to a server chosen
at random, e.g., [ ], as suggested in [14].
This is referred to in queueing theory as arandom split.

As before, let be the number of requests in the batch
or train. Let be a random variable describing the service
time for one request. Let be a random variable describing
the total service time for all requests in the batch which are
mapped to a given server (Note that is independent of
the queue discipline.)

Theorem 3 (Random-Split Load Balancing):Let be a
random variable describing the total processing required for
all requests mapped to a given server. If requests are
randomly assigned to servers, such that the probability that
a request will be mapped to a given server is , then the
square of the coefficient of variation of, is given by

(5)

and, hence, when has finite variance

Proof: Since the value of for a given server is the sum
of the service times of the requests mapped to it, we get

(6)

To find the second moment of the service time, let a server
receive requests Then the square of the total
expected service time is given by

since request service times are i.i.d. We next observe that the
number of requests mapped to a given server is binomially
distributed with success probability Thus, we obtain

This equation can be split into the terms for each moment
of

Letting , we can now solve for the coefficients
and separately as follows:

applying the binomial theorem in the last step. Similarly,

Putting these results back into the original equation, we
obtain

(7)

(8)

Thus, for the square of the coefficient of variation, we get

Simplifying, and using the identity
, we obtain (5).

Table I summarizes how well each function discussed above
meets the desired properties.

IV. M APPINGS BASED ON OBJECT NAMES

Not every scheme which avoids replication has a low
disruption coefficient. For example, the static priority mapping
algorithm (Section III-A) certainly avoids replication, since all
requests are sent to the same server. However, its disruption
coefficient is unity since every object gets remapped when the
primary server fails. Disruption can be minimized by balancing
the number of objects mapped to each server.
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TABLE I
MAPPING FUNCTIONS

One way of accomplishing this goal is to use the name of the
object to derive the identity of the server. Since this mapping
is a purely local decision, its overhead remains low. Unlike
conventional mapping schemes based on name servers, such a
mapping is “stateless” since it depends only on the identities
of the object and the cluster servers, and not on the state at the
cluster servers or that held in a name server. Such a stateless
mapping can be viewed as ahash function, where the key is
the name of the object, and the “buckets” are servers.

In our case, the number of buckets can vary over time as
servers are added or removed. Second, it is possible for one
or more of the servers to be down, so that an object must
hash to another server when one goes down. Therefore, the
output of such a hash function must be anordered list of
servers rather than a single server name. In some domains,
such as PIMv2 [17], the list of servers is dynamically updated
to exclude unreachable servers. In this case, it suffices for
the hash function to map a name to a single server. We are
interested in the more general case, however, and therefore
define a stateless mapping as a function which, given a list
of servers, maps an object name to a specific ordering of the
server list.

A conventional hash function maps a keyto a number
representing one of “buckets” by computing as a function
of , i.e., The function is typically defined
as , where is some function of
(e.g., when is an integer). In our case, a key
corresponds to an object name, and a bucket corresponds to a
server in a cluster. A serious problem with using a modulo-
function for mapping objects to servers, however, arises when
the number of active servers in the cluster changes.

If a simple modulo- hash function were used to map
objects to servers, then when the number of active servers
changes from to (or vice versa), all objects
would be remapped except those for which

When is uniformly distributed, the
disruption coefficient will thus be ; i.e., almost all
objects will need to be reassigned. Clearly, a better scheme
is needed.

A. HRW Hashing

We now introduce a new mapping algorithm, which we call
HRW. HRW operates as follows. An object name and server
address together are used to assign a random “weight” to each
server. The servers are then ordered by weight, and a request
is sent to the active server with the highest weight.

Thus, HRW may be characterized by rewriting (1) as
follows:

(9)

where is the object name, is the IP address of server
and is a pseudorandom function of and

If servers have unequal capacity, the weights assigned to
each server may be scaled by a constant distributed to clients
along with the server’s address. This would allow servers with
more capacity to receive a proportionately higher portion of
the load. In the remainder of our discussion, however, we will
assume that servers have equal capacity.

V. PROPERTIES OFHRW

We now analyze the HRW algorithm described above and
examine how well it satisfies the requirements outlined in
Sections III and IV.

A. Low Overhead

It is easy to see that HRW requires no information beyond
server and object names. This allows clients to make an
immediate decision based on purely local knowledge.

In real-time producer–consumer domains, it must be pos-
sible to change the server in use without requiring the data
transfer to start over. In such domains, some optimizations are
desirable when the server changes, if a client is receiving a
large number of objects simultaneously.

First, when a server goes down, clients must reassign all
objects previously mapped to that server. For each of those ob-
jects, if the list of weights has been preserved,
this list can be used directly to reassign the object to its new
maximum-weight server. Alternatively, the implementation
could trade speed for memory by recalculating the weights
for each server and not storing

Second, when a server comes up (and the lists of weights
have not been preserved), recalculation of all weights for
all objects can be avoided simply by storing the previously
winning weight. Then, when the server comes up, the
implementation need only compute for each
object in use, and compare it to the previously winning
weight for Only those objects for which yields a higher
weight need be reassigned.
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B. Load Balancing

Let there be a set of servers. Let
be the universe of requestable objects.

Some objects are likely to be requested more frequently than
others, so let have popularity , defined as the probability
that an incoming request is for object Let
be a mapping of objects to servers that partitions the objects
equally among the servers.

The actual run-time load experienced by any server
clearly depends on the popularities of the objects mapped to
it. The more popular the objects mapped to, the greater
the load it sees. By analogy with object popularities, we may
define the popularity of a server as a random variable
whose value equals the sum of the popularities of the objects
mapped to it. Thus, represents the probability that a request
will be sent to If are server popularity
values, we must have since

Let the mapping assign objects to server
Since assigns all objects to servers, we can view

as a selection of size from the set , such
that any object is selected with the probability We can
similarly model server popularities by viewing
as a sample of size from , taken without
replacement. In this case, the population mean

, since the sum to 1. Let the
population variance be

We now prove two theorems that characterize the load-
balancing properties of HRW. Theorem 4 states that the
coefficient of variation of vanishes as the number of
objects becomes large. Theorem 5 states that the amount
of processing done by each server is balanced when both
and are large.

Theorem 4 (Hash-Allocation Request Balancing):Let
objects be partitioned among servers using HRW, with each
server receiving exactly objects. If and
are as defined above, then the square of the coefficient of
variation of is given by

(10)

and, hence, when has finite variance

Proof: Let objects be
mapped to As before, we can treat the object popularities

as a sample of size, and write
If is the sample mean, then

, so we have We
know from sampling theory [10] that , so

(11)

We also know from sampling theory [10] that
Since , we can

substitute and simplify to get

(12)

We can now substitute and rearrange
to obtain (10).

Theorem 5 (Hash-Allocation Load Balancing):Let ob-
jects be randomly partitioned among servers using HRW,
with each server receiving exactly objects. Let be the
request train size, and let the service timeof requests and

both have finite variance. Then, if is a random variable
representing the amount of processing done by server

(13)

Proof: From Theorem 4, the coefficient of variation of
as for any server. From (11),

is independent of so that as and,
hence, We can now apply Theorem 3, and (13)
follows immediately.

Using Lemma 2, we can now conclude that the processor
loads are balanced when the conditions of Theorem 5 are
met. That is, the load-balancing effectivenessincreasesas the
demand increases.

C. High Hit Rate

It is easy to see that HRW avoids replication, thus potentially
giving a higher hit rate, as long as clients have a consistent
list of servers for each cluster. Again, we assume that the
server list is known to clientsa priori. For example, it
may be statically configured, resolved at client startup time,
or periodically distributed to clients. See [18] for further
discussion of these issues.

D. Minimal Disruption

When a server goes down, all objects which mapped
to that server must be reassigned. All other objects will be
unaffected, and so the optimum disruption bound is achieved.
The randomizing property of HRW allows the reassigned
objects to be evenly divided among the remaining servers,
thus preserving load balancing.

When a server comes back up or when a server
is added to the set , then the objects which get

reassigned to it are exactly those that yield a higher weight for
than for any other server. This again achieves the optimum

disruption bound of
Thus, we have shown that HRW achieves the minimum

disruption bound.

E. Comparing HRW with Other Mappings

It is instructive to compare the performance of HRW qual-
itatively with that of other mappings, particularly with the
round-robin and random mappings, which are also stateless.
Section VII presents an empirical comparison of HRW with
other mappings.

The round-robin and random mappings do an excellent
job of balancing loads, as Theorems 2 and 3 demonstrate.
However, balancing server loads is not the primary criterion
for favoring a mapping. Ultimately, it is often more important
to optimize response time. For the application domains of our
interest, server load balancing is an important goal only to the
extent that it helps optimize response time.
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Optimizing response time means reducing both the expected
value as well as the variance of the response time. A serious
problem with the round-robin and random mappings in caching
domains we consider is that decreases in response time due
to load balancing tend to be counterbalanced in practice by
significant increases in retrieval latency due to cache misses.
Each cache miss requires a retrieval from a remote provider,
an operation that may be orders of magnitude more expensive
than retrieval from a local cache.

Some of this effect arises from replication of data elements
in the server cache. In an intuitive sense, replication decreases
the effective cache size for the cluster as a whole since repli-
cated objects are held in more than one server, thus wasting
cache space. However, replication is likely to be problem only
if it grows quickly enough. We now demonstrate that in the
absence of a deliberate effort to control it, replication can
quickly get out of hand.

Theorem 6 (Replication Growth for Random Selection):Let
be a cluster of servers, and let

be a series of requests for objectFor each such
request , randomly select a server , and assign to If

requests are processed before allservers cache the object
, then

(14)

where is Euler’s constant.
Proof: We can view the progression to full replication as

a series of phases, with phasebeing the duration between
servers caching the object andservers caching it. The

process begins with phase 1 and ends after phase
Let be the number of requests in phaseClearly,

By definition

(15)

During phase there are servers which cache the
object and servers that do not. Since requests
are randomly assigned to servers, the probability that a given
phase- request is sent to a server that does not cache the object
is Thus , the number of phase-requests
follows a geometric distribution, so that

Using linearity of expectation in (15), we get
After changing the

summation index appropriately, this reduces to

It is well known (see [19], for example) that

Substituting above, the theorem follows.

It is clear that full replication is achieved rather quickly.
With ten servers in a cluster, the expected number of requests
to reach full replication is about 30. Therefore, the effective
cache size of the cluster is reduced by a factor of ten after
an average of about 30 requests per object. In contrast, the
replication factor in HRW is always zero. Thus, the effective
cache size remains unchanged under HRW mappings.

1) Caching Under HRW:Since the goal of a caching pol-
icy is to maximize the hit rate, a caching policy attempts to
cache the set of objects most likely to be requested next. Since
the future is unknown, the caching algorithm must predict this
set in practice.

An “optimal” caching policy is one which maximizes the
probability that the object named in the next request is in the
cache. Let object have size and let be its popularity
at time That is, is the probability that an incoming
request at time is for object The expected hit rate for the
next request is then equal to where is the set of
cached objects. Thus, the optimal set of objects to cache at
time in a cache of size maximizes subject to
the constraint that This is an instance of the
Knapsack problem, which is known to be NP-complete [20].

Cache replacement strategies can then be viewed as heuris-
tics to solve this problem. Since the future is unknown, they
must use local estimates of the ’s based on statistics such
as recency or frequency of reference, typically deriving them
from past history.

If a request for object may be sent to any server
in a cluster with equal probability, then each server will
see the same set of object popularities That is, the
probability that the next incoming request is for objectis the
same at all servers. We will refer to such mapping schemes
as “nonpartitioned mappings.” These include all mappings
previously discussed which allow replication (i.e., all except
static priority and HRW). Conversely, we will refer to mapping
schemes under which is nonzero at exactly one server for
each as (completely) “partitioned mappings.” These include
HRW and static priority.

Assuming equal cache sizes, all servers under a nonparti-
tioned mapping will have the same expected hit rate under an
optimal caching scheme, since they all see the same object
popularities. However, as the number of servers grows, each
server will see a smaller fraction of incoming requests, spaced
farther apart, and so its estimates of can degrade in
quality. Thus, we expect the hit rate seen by nonpartitioned
mappings to decrease as the number of servers grows. As
we will see in Section VII-B, trace-driven simulations have
confirmed that this is indeed the case in practice.

Theorem 7 (Partitioning Non-Harmful):Under an optimal
caching scheme, the expected hit rate in a partitioned mapping
will be greater than or equal to the expected hit rate in a
nonpartitioned mapping.

Proof: At time , let be the set of objects cached at
some server under a nonpartitioned mapping and an optimal
caching scheme using a cache of sizeLet
be the expected hit rate for a request sent to that server at
time Under an optimal caching scheme, we know that
is maximized, subject to Without partitioning,
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all servers see the same set of object popularities, sois the
same for all servers. Hence the expected hit rate of the entire
cluster is also

Let be the set of objects mapped to server in a
partitioned mapping. Let be the portion
of due to objects which get mapped to in a partitioned
mapping. (Thus, Let be the set of
objects cached at under an optimal caching scheme using
a cache of size

Let be the expected hit rate at server
under a partitioned mapping and an optimal caching scheme.
We will now show by contradiction that and, hence,

(i.e., the hit rate of the cluster is not decreased
under a partitioned mapping).

Assume that Then there exists a set of objects
, with , and

Thus, was not the
optimum solution to the Knapsack problem at, and we have
a contradiction.

Thus, the expected hit rate under an optimal caching scheme
in any partitioning scheme will be greater than or equal to the
expected hit rate under an optimal caching scheme in any
nonpartitioning scheme, and grows as the number of servers
is increased since more objects can be cached. In addition, a
server sees the entire request history for objects assigned to it,
regardless of the total number of servers. Thus, the quality of
estimates of does not degrade as the number of servers
increases.

Since caching policies depend on such estimates in practice,
the hit rate is expected to increase with the number of servers
in HRW and decrease in all other mapping schemes which do
not partition the set of requestable objects. Again, as we will
see in Section VII-B, trace-driven simulations have confirmed
that this is indeed the case in practice.

Thus, HRW allows the hit rate to be increased. For this
effect to be significant, the maximum hit rate possible must
also be significant, i.e., a significant number of requests must
be for objects which were requested in the past. Combining
this observation with the conditions in Theorem 5 giving good
load balancing, we obtain the following corollary.

Corollary 1 (HRW Applicability): HRW is particularly
suitable for domains where there are a large number of
requestable objects, the request rate is high, and there is a high
probability that a requested object will be requested again.

This condition is true in a wide variety of domains. We will
study two of them, multicast routing and WWW caching, in
more detail in Section VII.

VI. I MPLEMENTING HRW MAPPINGS

The weight function is the crucial determinant of HRW
performance. To achieve a high hit rate, all clients should use
the same weight function. Based on an evaluation of different
randomization schemes (see Section VI-A), we recommend a
HRW scheme based on the weight function defined as

(16)

where is a 31-bit digest of the object name, and is
the address of theth server in the cluster. Note that the length
of the address does not matter, as only the low-order 31 bits
are significant in modulo 2 arithmetic.

This function generates a pseudorandom weight in the range
and is derived from the original BSDrand

function,3 where it corresponds to

srand(Si)
srand(rand() D(k))
Weight rand().

This function can be implemented with only a few ma-
chine instructions,4 requires only 32-bit integer arithmetic,
and exhibits a number of desirable properties, as we will
see in Section VI-A. Thus, implementing HRW entails first
computing and then computing for each

The time to do this is typically negligible compared to the
network latency.

In the unlikely event that multiple servers are assigned the
same weight for a name, ties can be broken by choosing
the server with the highest The following theorem states
exactly when such ties will occur.

Theorem 8: In the function, a tie between two
servers and occurs if and only if

Proof: First, assume that Then it
is easy to see from (16) that
since modulo-2 congruence is preserved under addition,
multiplication, and the XOR operation.

For the other direction, assume that
Then, since modulo-2 congruence is pre-

served under subtraction

(17)

where But and 2 are
relatively prime, so a standard result from number theory [21]
tells us that we may cancel, leaving us with

Using the fact that modulo-2 congruence is preserved under
the XOR operation, then by repeating the procedures above,
we finally get that This will be the case if
and only if the low 31 bits of and are the same.

Theorem 8 can be used to determine when ties can occur
in a given domain. It guarantees, for example, that a tie can
occur in IPv4 only if the IP addresses of the two servers differ
only in the most significant bit. Thus, no tie-breaking rule is
needed such as when it is known that all servers are within
the same network.

A. Comparison of Weight Functions

We now compare the performance of the function
with that of other possible weight functions to see how well

3Sincerand is no longer the same on all platforms, implementations should
use (16) directly.

4For example, 7 on an i386 withgcc-O2 , not counting the digest.
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(a)

(b)

Fig. 2. Two-stage random weight functions.

it achieves load balancing. We consider several alternative
weight functions.

The first competing weight function we consider is based on
the Unix system functionsrandom andsrandom in place of
rand and srand , resulting in a weight function we denote

.5 The second function we consider uses the minimal
standard random number generator [22], [23], resulting in the
weight function

Our third alternative is to modify the function as
follows:

(18)

It can be shown that Theorem 8 applies to as well,
using a similar proof. Fig. 2 depicts the relationship between

and , where each of the small boxes represents
a randomizing filter.

Finally we evaluate the option of performing an 8-bit
exclusive-OR over all the bytes of and to get a single
one-byte result. We call this the weight function.

As a basis for comparing functions, we will assume that
100 randomly selected objects are being serviced at a time,
and look at the coefficient of variation of the number of
objects assigned to each server. Fig. 3 shows the results of
this simulation, with each point representing an average over
5000 trials.

Fig. 3(a) and (b) shows the results using random addresses
for servers, and models the performance when servers are dis-
tributed across different networks. In Fig. 3(b), object names
which yield consecutive values starting at

were used. As can be seen, exhibits the
best performance.

Fig. 3(c) and (d) shows the results using consecutive ad-
dresses for servers, starting with the arbitrarily chosen IP
address 173.187.132.245. In Fig. 3(d), object names that yield

5The algorithm used bysrandom is quite complex. As we will see, it
does not perform significantly better thanWrand as a hash function, and is
not worth describing here.

consecutive values starting at
were again used. It is interesting to note that all methods but

and were sensitive to the number of servers.
We also ran other experiments (not shown) with different
starting server addresses, and observed that the same methods
were sensitive to the starting IP address as well. and

remained relatively unaffected.
The relative performance of and can best

be understood by examining Fig. 2, which represents the
functions as two randomization stages separated by an
operator. If we fix the input to the first stage at a given value,
and input a series of numbers to the XOR operator, we
would expect the input to the second stage to be significantly
correlated with the series Whenever we input a sequential
series of numbers to the XOR in our experiments, the input to
the second stage will be correlated with this sequential series,
lowering the degree of randomness of theweightvalue output.
On the other hand, when the second input is also uniformly
distributed, both functions perform similarly.

We also observed that and were about 200
times faster than , sincesrandom is computationally
expensive.

We thus conclude that, of those weight functions studied,
and give the best load-balancing performance.

The choice of which is most appropriate for use with HRW
depends on the characteristics of the domain of use.

Finally, while we could have simulated many other types
of pseudorandom functions, we note that finding a good pseu-
dorandom function is hard [22]. Given the good performance
of as a hash function, we felt that investigating other
weight functions was not necessary.

VII. CASE STUDIES

To show how HRW applies to a variety of domains, we now
examine two applications in more detail.

A. Shared-Tree Multicast Routing

In shared-tree multicast routing protocols such as PIM [2]
and CBT [1], receivers’ routers request packets for a specific
session by sending a “join session” request toward the root of a
distribution tree for that session. Sources send data to a session
by sending it toward the root of its tree. The root, known as
a rendezvous point (RP) in PIM, and acore in CBT, thus
takes on the role of a server. Routers with directly-connected
senders and receivers become the “clients.”

An “object” in this domain is a multicast session identified
by an IP multicast group address. The size of the object is
unbounded. Since session data is real-time, and may be sent
from multiple sources, it is essential for clients and providers
to determine the correct server (RP) quickly. Otherwise, real-
time data sent by a host could overflow the local router buffers
before it is able to identify the correct RP server. Low latency
is also important to receivers who want to join a session in
progress.

One example motivating the low latency requirement is
known as the “bursty-source problem” [18], where a source
periodically sends a burst of data and then remains silent for
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(a) (b)

(c) (d)

Fig. 3. Weight functions compared. TheY -axis is the coefficient variable of the number of serviced objects across cluster servers.

a long time. An example is an application which broadcasts
its current state once a day. If the source’s router had to
resolve the correct server via an exchange of network messages
each time (since the number of sessions may be too large to
maintain mapping state for idle sessions), then every burst
could be missed and receivers would never get useful data.

In this application, the number of possible objects is large
(2 multicast addresses), and all receivers for the same session
request the same object, causing a significant concentration of
requests. The conditions of Corollary 1 are thus satisfied, and
the situation is ideal for the use of HRW.

We focus on sparse-mode PIM in particular, since its
evolution illustrates many of the concepts and goals discussed
in Section III. The original description of PIMv1 [2] did not
specify any mapping algorithm for assigning join requests
to servers. Since replication was not prevented, providers
sent session data to all servers in a cluster. This resulted in
undesirable complexity and resource consumption.

The next step, as the design of PIM evolved, was to specify a
static priority scheme as the mapping algorithm. This avoided
replication, reducing complexity and resource consumption,
but meant that the liveness of higher priority servers in the
cluster had to be tracked, incurring additional complexity.

Finally, PIMv2 adopted our algorithm, HRW, as its mapping
algorithm. The result is that the protocol complexity and state
requirements are significantly lower than in PIMv1. Multicast

address allocation can be done using a variety of methods, so
that object names may be assigned randomly or sequentially,
while servers are likely to be scattered among many subnets
within the routing domain. Since these circumstances roughly
correspond to Fig. 3(a) and (b), was adopted as the
weight function of choice in PIMv2.

B. WWW Client-Side Proxy Caching

WWW usage continues to increase and, hence, popular
servers are likely to become more and more congested. One
solution to this problem is to cache web pages at HTTP proxies
[3], [4], [24]. Client requests then go through a local proxy
server. If the proxy server has the page cached, the page is
returned to the client without accessing the remote server.
Otherwise, the page is retrieved and cached for future use.
Various studies (e.g., [25] and [26]) have found that a cache
hit rate of up to 50% can be achieved. Thus, since the number
of possible objects is large and a significant concentration of
requests exists, the conditions are appropriate for HRW.

Popular WWW browsers such as Netscape Navigator,6

NCSA Mosaic, andlynx , now allow specifying one or
more proxy servers through which requests for remote objects
are sent. A single proxy, however, does not provide any
fault tolerance. For a robust deployment, multiple proxies are

6Netscape Communications Corporation, Netscape Navigator software.
Available: HTTP: http://www.netscape.com.
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TABLE II
TRACE SUMMARY

required. For example, a single proxy hostname might map to
multiple IP addresses.

Some criteria must be used by a client to select a proxy
to which to send a request. We now wish to compare various
mapping algorithms through simulation, using an actual trace
of WWW requests. In the discussion below, we will use the
term “server” below to refer to the proxy rather than the actual
server holding the object. This will allow the terminology to
apply to the more general problem.

In the following simulations, the objects and object sizes
are taken from the publicly available WWW client-based
traces described in [27], where all URL’s accessed from 37
workstations at Boston University were logged over a period
of five months. Since we are interested in the performance
of a proxy scheme, we use only those URL’s which referred
to remote sites (not within thebu.edu domain) and were
not found in the browser’s own cache. Table II shows the
characterization of the resulting data set used for simulation.
Note that about 50% of the URL’s requested were unique,
giving an upper bound on the cache hit rate of around 50%,
which agrees with the bound observed by [25] and [26].

Since a unique object namecan, in general, have arbitrary
length, and we wish to obtain a digest with which we can do
32-bit arithmetic, our simulation defined to be the 31-bit
digest of the object name obtained by computing its CRC-32
[28] checksum and discarding the most significant bit.

1) Simulation: Our simulator implemented HRW, a round-
robin scheme, and a random allocation scheme. In a fourth
scheme, similar to least-loaded allocation, a request was sent
to the server with the least number of objects currently being
serviced (with ties broken randomly). A fifth alternative, which
fails to provide robustness, is to add more cache space to
a single server rather than adding another server; thus, all
available cache space is combined at a single server.

We first preloaded server caches by simulating the caches
with 60 000 requests and a least recently used (LRU) replace-
ment strategy (by which point, the caches were full). We then
computed statistics over the next 100 000 requests. In addition,
we made the simplifying assumptions that all objects were
cacheable, and that no objects were invalidated during the
lifetime of the simulation (160 000 requests).

Fig. 4 shows how the hit rate varied with the number of
servers under each allocation scheme using 100-MB caches.
The hit rate of HRW increased, approaching the maximum
bound of 50%, since the effective cache size increases linearly
with the number of servers. The hit rate decreased for other

Fig. 4. Hit rates of various allocation schemes.

Fig. 5. Hit rates of various total cache sizes under HRW.

allocation schemes, however, since the more servers there are,
the less likely it is that a previous request for the same object
was seen by the same server. Their hit rate curves were similar
since each assigns requests independently of where objects are
cached. We observe that, by six servers, HRW’s hit rate is
double the hit rate of the other schemes.

In Fig. 5, we compare the effects of using HRW with
multiple 100-MB servers against those of combining all of the
available cache space into a single server (in which case all
mapping schemes are equivalent). As can be seen, when HRW
is used, adding another 100-MB server is indeed comparable
to adding another 100 MB of space to a single server. HRW
with multiple servers provides better availability, however. In
other words, other schemes give a hit rate that depends on the
cache size oneachserver, whereas the HRW hit rate depends
on thetotal cache space available at all servers combined. The
small difference observed between the two curves in Fig. 5 is
due to the fact that only whole objects are cached. That is,
when there is enough space at all servers combined to hold
an object, but not at any single server, HRW must evict an
object from a cache.

Fig. 6 shows the time that the server took to retrieve the
requested object (which was zero if the object was cached). By
comparison, Glassman [26] found the average response time

seen by a client for an uncached page to be between
6–9 s, compared with 1.5 s for a cached page, using a
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Fig. 6. Latency of various allocation schemes.

Fig. 7. Speed improvement of HRW over random.

digital web relay. Using and Fig. 7
shows the expected speed improvement as seen by the client.
The line shown is based on the ratio of HRW’s latency to that
seen by random. We expect the improvement to be much more
pronounced for sites with low bandwidth connectivity to the
outside world, such as New Zealand [29], since will
rise while remains constant.

Fig. 8 shows the hit rate and cache space used when no
limit exists on cache space. Again, since we assume that no
objects are invalidated during the lifetime of the simulation, no
time-based expirations were simulated and, hence, no objects
were evicted from any cache. As shown, hash allocation again
achieves a much higher hit rate and lower space requirement as
the number of servers increases, where the space requirement
shown is ratio of the total amount of cache space used at the
end of the simulation, over the combined size of all objects
requested.

In summary, WWW clients can achieve faster response time
from clusters of proxy servers by using HRW. For example,
when a proxy hostname resolves to multiple IP addresses,
HRW could be used to choose an appropriate address rather
than simply using the first address in the list.

VIII. C ONCLUSIONS

We began with a model that views the mapping of requests
to servers in a cluster as a minimization operation on a

(a)

(b)

Fig. 8. Time-based cache performance.

value function and we showed that this model adequately
characterizes the behavior of typical mapping functions. Typ-
ical mapping functions permit replication, resulting in longer
latencies and increased space requirements in the domains
that we consider. We argued that reducing replication would
decrease latency and space requirements and would increase
hit rates at cluster servers. In combination with the need
for all clients to have the same view of which objects map
to which servers, these considerations motivated the need
for stateless mappings from objects to servers. We described
various desirable properties of stateless mappings, including
load balancing, minimal disruption as the set of active servers
evolves, and efficient implementation. We then described an
algorithm (HRW) which meets those needs using a purely local
decision on the part of the client.

We compared HRW to traditional schemes for assigning
requests to servers, and showed that in distributed caching,
using a stateless mapping allows a higher cache hit rate for
fixed-size caches and a lower space requirement for variable-
size caches. We also showed that HRW is very useful in
real-time producer–consumer domains, where it is valuable
for clients to independently deduce object–server mappings,
and that HRW allows them to minimize overhead by relying
on purely local decisions.

Finally, we provided empirical evidence that our algorithm
gives faster service times than traditional allocation schemes.
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HRW is most suitable for domains in which there are a large
number of requestable objects, the request rate is high, there
is a high probability that a requested object will be requested
again, and the load due to a single object can be handled by
a single server.

HRW has already been applied to multicast routing, where
it has been recently incorporated by both the PIM [17] and
CBT [30] protocols. HRW is also applicable to the WWW.
WWW clients could improve response time by using HRW
to select servers in a cluster rather than by simply using the
order presented by DNS. This improvement would be most
significant at sites with low-bandwidth connectivity to the
Internet using a cluster of proxy servers for outbound requests.
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