
154 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5, NO. 2, FEBRUARY 1994

A Service Acquisition Mechanism for Server-Based
Heterogeneous Distributed Systems
Rong N. Chang, Member, IEEE, and Chinya V. Ravishankar, Member, IEEE

Abstract-This paper presents a mechanism that facilitates and
enhances the use of independently administered remote network
servers in the presence of server interface heterogeneity. The
mechanism is designed under the client-service model, which
extends the client-server model with an abstraction of service to
decouple abstract server capabilities from concrete server inter-
face specifics such as server interface binding protocols and the
interface operation invocation protocols. The mechanism selects
servers, accommodates server interface heterogeneity, and han-
dles server access failures as per the abstract server capabilities
desired by the client. It could return the identity of the server used
for each service access invocation to facilitate billing, refining
service specifications, and reporting server-specific errors.

This paper also illustrates a C library interface to this mecha-
nism, and describes a language veneer over the C programming
language demonstrating how a typed procedural language could
be extended by a few language constructs to support the mech-
anism under the client-service model. In this language, server
capabilities are referenced by abstract data type (ADT) objects,
and are accessed by invoking the objects’ interface operations
using a call-by-value-result paradigm. This language veneer also
makes it easier to port the client software across to systems that
use different service specification schemes.

Our work suggests that this mechanism facilitates the develop-
ment, use, and maintenance of client and server software in large
heterogeneous distributed systems comprising many autonomous
servers. It also shows that the overhead of invoking remote server
operations via the mechanism can be quite low.

Index Terms-Heterogeneous distributed systems, client-server
model, client-service model, service acquisition mechanism,
attribute-based naming, remote procedure call, server interface
directory service, agent process, fault tolerance, object-oriented
programming, language veneer.

I. INTRODUCTION

HIS paper presents the design and implementation of a T mechanism that facilitates and enhances the use of inde-
pendently created and administered remote network servers in
the presence of server interface heterogeneity. This mechanism
[5] is designed under an extended client-server model called
the client-service model. In this model, an abstraction of
service is introduced to decouple abstract server capabilities
from concrete server interface specifics such as server interface
binding protocols and the interface operation invocation pro-

Manuscript received November 12, 1991; revised December 15, 1992. This
work was supported in part by a grant from Bell Northem Research, Inc.

R.N. Chang was with the Department of Electrical Engineering and
Computer Science, University of Michigan, Ann Arbor, MI 48109 and Bell
Communications Research, Morristown, NJ 07962. He is now with IBM,
White Plains, NY 10605.

C.V. Ravishankar is with the Department of Electrical Engineering and
Computer Science, University of Michigan, Ann Arbor, MI 48109.

IEEE Log Number 92 14465.

tocols. The mechanism selects servers, accommodates server
interface heterogeneity, and handles server access failures as
per the abstract server capabilities desired by the client. It
could return the identity of the server used for each ser-
vice access invocation to facilitate billing, refining service
specifications, and reporting server-specific errors.

This paper also illustrates a C library interface to this mecha-
nism, and describes a language veneer over the C programming
language [4] demonstrating how a typed procedural language
may be extended by a few language constructs to support the
mechanism under the extended client-server model. In this
language, server capabilities are referenced by Abstract Dura
Type (ADT) objects, and are accessed by invoking the objects’
interface operations using a call-by-value-result paradigm,
independent of the interfaces exported by the servers in use.

This language veneer also facilitates the development of
ADT-like libraries to model available network services. Such
libraries would greatly simplify the task of specifying services
abstractly. Parametrized objects from the libraries may simply
be included in the client software, making it easier to port
the client software across to systems that use different service
specification schemes.

Our work suggests that this mechanism facilitate the devel-
opment, use, and maintenance of client and server software in
large heterogeneous distributed systems comprising many au-
tonomous servers. It also shows that the overhead of invoking
remote server operations via the mechanism can be quite low.

A. Client-Server Computing Issues

Before distributed computing came into vogue, resource
management functions were provided solely by monolithic
operating system kernels [16]. When many of these func-
tions migrated out of the kernels into user-level processes
to improve system maintainability, extensibility, scalability,
and cost-performance ratios, user-level resource managers
became known as servers and the service notion arose as
a convenient abstraction of server capability [25] , [26] . As
centralized computing models became obsolete, the service
notion evolved into a major abstraction for managing and using
networked resources. The client-server model, which many
current distributed computing systems use [22] , represents the
prevalent implementation of this approach.

When the number of servers grows, however, the client-
server model gives rise to an unsatisfactory paradigm for
client applications to acquire server capabilities or compu-
tational services. Since server capabilities cannot be cleanly
decoupled from server interfaces in the client-server model,

1045-9219/94$04.00 0 1994 IEEE

-

CHANG AND RAVISHANKAR: SERVICE ACQUISITION MECHANISM 155

they must be tied to implementation specifics like server
interface binding protocols, interface operation signatures, and
operation invocation protocols. Thus, client applications must
choose server interfaces matching the desired capabilities and
confront server-specific implementation details. They must
also implement server-dependent fault-tolerant algorithms to
enhance their reliability when a desired server capability can
be provided by several servers.

For example, in the distributed computing environment
(DCE) 1201 promoted by the Open Software Foundation
(OSF), the interface to a DCE Remote Procedure Call (RPC)
server is a set of typed operations and may be defined via
an interface definition language. A specialized distributed
database registers and advertises the associations between
servers and their RPC interfaces. A client could query the
database to search for appropriate servers and to obtain
necessary binding information. It must use the DCE RPC
package to make client-server bindings and to invoke server
interface operations. It also is in charge of handling incomplete
invocations of the operations, should the client-server binding
be broken unexpectedly because of network partition or server
failure. In the client-server model, the RPC run-time is not
obliged to automatically reconfigure the client-server bindings
on behalf of the client.

In order to overcome such deficiencies in using network
servers, we must address the issues concerning 1) how to
specify server capabilities (or services) so that the association
between clients and servers can be changed dynamically
without disturbing the clients, 2) how to accommodate server
interface heterogeneity to support such a specification scheme
and maximize the utilization of the servers, and 3) how
to reconfigure the bindings between server capabilities and
servers when appropriate, without interfering with the client.

These issues are key to the development of robust client
applications, to extending the life cycle of client software when
changes to networking technology are inevitable, to better
using server applications, and to encouraging the exploration
of new server access protocols for improved or specialized
high-performance servers [6].

B. Partial Solutions

Although mechanisms have been developed to address some
hard issues in distributed systems 1171, none of them provide
an integrated solution to the issues we have outlined. For
instance, as a partial solution to the specification issue, generic
names are sometimes assigned to stateless server interfaces
as service identities, so that service-server bindings can be
changed between accesses to the servers. This happens in
the run-time support for remote program execution services
in Marionette 1231, which forwards client requests to a new
server, should the current one be unreachable. Most solutions
to accommodating server interface heterogeneity are limited in
the networking protocols considered. For example, the HCS
RPC run-time [l] is able to emulate Sun RPC and Xerox
Courier RPC. Servers speaking these RPC's may be accessed
by HCS RPC clients with no modifications, though the clients
must configure the emulation library operations correctly for

e ClientjServer Model

- Client requests client-server bindings.
- Client accesses services via server-dependent protocols.
- Client releases client-server bindings.
- Server identity is determined when client-server binding is established.
- Client handles broken client-server bindings.

a ClientIService Model

- Client requests client-service bindings.
- Client could access services via server-independent protocols.
- Client releases client-service bindings.
- Server identity is determined when service-server binding is estabbhed.
- Client handles broken client-service bindings and need not to deal with broken

service-server bindings.

- A service access invocation could return the identity of the server used to
facilitate billing, refining service spdcations, and reporting server-specific
errors.

Fig. 1. Client-server model versus client-service model.

each client-server binding. Similarly, fault-tolerance support
for accessing server capabilities is usually enhanced by im-
proving client-server communication protocols. For example,
in the ISIS 121 distributed system, an access request can be
multicast to a group of servers so that access fails only when
all servers are inaccessible.

C. The Client-Service Model

This paper presents a service acquisition mechanism that
provides a framework for an integrated solution to the three
issues mentioned above. This mechanism is designed under
the client-service model 141, which extends the client-server
model with the abstraction of service' to decouple abstract
server capabilities from concrete server interfaces. A service
abstraction in the model is a description of the processing
capabilities that some server may provide. Fig. 1 provides a
comparison of key features of these two models. In contrast
to the client-server model, a client in the client-service model
uses uniform mechanisms to establish or release client-service
bindings and to obtain services from servers. The client
need not deal with server interface heterogeneity or handle
server access failure. In comparison with (generic) server
interface names, the specification of such a service (or a server
capability) represents 1) a set of server selection criteria, 2) a
set of service access operations* that can be supported by a
single server, and/or 3) a set of service-server reconfiguration
constraints. To facilitate billing and reporting server-specific
errors, a service access invocation could return the identity of
the server used as a standard output argument.

D. The Cygnus Service Acquisition Mechanism

A prototype implementation of the mechanism has been
evaluated in a server-based heterogeneous distributed system
at the University of Michigan at Ann Arbor. This system,
named the Cygnus Distributed System, contains several au-

' In the client-service model, the terms services and server capabilities are
interchangeable.

2These operations may have to be translated into the interface operations
exported by a selected server if the two are different. Further details are given
in Sections 111-A and 111-C.

156 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5, NO. 2, FEBRUARY 1994

nr------ n n

Fig. 2. The extended client-server model in Cygnus.

tonomous network servers that may be accessed through
various intermachine interprocess communication (IPC) mech-
anisms, such as Sun RPC, NCS RPC, and BSD UNIX sockets.
The servers export their interfaces through various server
interface directory servers such as Sun’s Network Information
System and RPC port mappers, NCS location brokers, Oracle
databases, and Profile name servers.

This paper also illustrates a C library interface to the mecha-
nism, and presents the design and implementation rationale of
an experimental language, named CygnusC [4], to demonstrate
how a C-like typed procedural language can be extended
with a few language constructs to support the mechanism.
In this language, server capabilities are referenced as abstract
data type (ADT) objects that are instantiated at run-time
via special templates. These templates permit the compiler
to type check service acquisition operations, and enable the
language run-time to invoke user code for validating service
specifications and handling service access failures. A call-by-
value-result paradigm is used to invoke the objects’ methods
(or interface operations). Each operation performed on the
objects is mapped transparently to one or more remote server
invocations.

E. Organization

This paper is organized as follows. Section I1 elaborates
on the computational model supported by the Cygnus service
acquisition mechanism. Section I11 illustrates the design and
implementation of the Cygnus service acquisition mechanism.
Section IV explains how the Cygnus service acquisition op-
erations can be used to access a network service. Section V
demonstrates how the mechanism can be supported in typed
procedural languages like C. Section VI analyzes the cost of
using the Cygnus service acquisition mechanism to access
local or remote servers in our prototype. Section VI1 describes
several typical client-service applications that we have built.
Section VI11 discusses some of the lessons we learned from
the development of several applications. Section IX concludes
the paper.

11. THE CYGNUS COMPUTATIONAL MODEL
Fig. 2 shows the extended client-server model supported

by the Cygnus service acquisition mechanism. In the Cygnus
distributed system, a client or a server is a computing en-
tity (e.g., a UNIX process) that is developed, installed, and
maintained as a unit. A Cygnus client sees the network as
a collection of server-based service abstractions, and every
service access operation returns the identity of the server
used as a standard output argument. Each service abstraction
is bound to exactly one server interface. (See Section I-C.)
Coordinated access to shared servers must be handled either
by the servers themselves or by a coordinator, which is itself
a server.

The set of service abstractions visible to each client is
called its view of the network. A one-to-one relation exists
between clients and views, because each client-generated
abstract service specification must be interpreted in a client-
specific context.

Server interfaces are shown in Fig. 2 because they represent
the sets of operations that the servers are willing to support.
A many-to-one relation exists between server interfaces and
servers, because a server may have several interfaces, but each
interface belongs to only one server. As an example, a server
running on the Internet may support a set of operations either
through the connection-oriented transport protocol, TCP, or
through the unreliable datagram protocol, UDP.

The relation between views and server interfaces is many-to-
many, because an abstract service may represent some abstract
functionality common to several concrete server interfaces, and
each server interface may be associated with several abstract
services. For example, a service designated abstractly as a text
message delivery service may be provided concretely through
the interface of an electronic mail server, a fax server, or an
alphanumeric paging server, whichever happens to be most
appropriate. In addition, an electronic mail server interface
may be used to realize multimedia document transfer services
as well.

A. Cygnus Service Spec$cations

In the Cygnus distributed system, the abstract services in
client views are specified by sets of name-value pairs or
attributes. As an example, a Cygnus client may use the follow-
ing set of name-value pairs to acquire a personal messaging
capability that delivers a text message from Bob to Allen over
the particular communicators (e.g., telephones, fax machines,
or portable computers) that Allen may be using at the moment
of delivery:

((CONTEXT, messager), (SENDER, Bob),

(RECEIVER, Allen), (ACCESS-INTERFACE, send)).

A principal advantage of dealing with this service as a high-
level abstraction is to free Bob from the onus of knowing
where Allen is or from the identities of the communicators
that Allen may be using to receive information. Although
the information must be sent by using the specified server-
independent operational interface send, it may be transformed
from one medium to another (e.g., from text to voice) by
a server, depending on the chosen receiving communicator.
The attribute CONTEXT indicates the context for interpret-
ing the other name-value pairs, and is used to simplify the
interpretation of Cygnus service specifications. (See Section

A Cygnus service specification may contain attributes (e.g.,
MIPS for processor services, lines per second for compile
service, and points per character for print services) that are
orthogonal to the functional specification of the associated
service access interface. We think that this feature is important
because it encourages the clients (and the end users who
run them) to exploit their knowledge about the computing
environment. In other words, this feature allows the cost-

111-D.)

CHANG AND RAVISHANKAR: SERVICE ACQUISITION MECHANISM 157

c : module acavatlom - : Imformntlon ueL..ge
I

4 Server 1

Fig. 3. Cygnus distributed system architecture.

performance ratio of a service operation to be reduced easily
at run-time, with no need to change the client code.

We could have chosen to specify Cygnus services with
character strings (like UNIX file path names) or through
formal languages, without compromising the generality of the
Cygnus computational model. Considering the combinations
of the possible criteria for classifying services, however, string
names would quickly lead to unmanageably large name spaces,
though they might require simpler name resolution algorithms.
On the other hand, formal specification methods would im-
pose too much overhead in encoding andlor decoding service
specifications, though they might help eliminate ambiguous
specifications.

In contrast to the name-value pairs used in other attribute-
based name/directory systems [18], [19], [21], the Cygnus
service specifications are used to facilitate choosing servers
providing services (or server capabilities) that the client de-
sires, and for reconfiguring the bindings between (abstract)
services and concrete server interfaces. Instead of getting back
a set of object identities or object property lists, Cygnus clients
obtain a reference to a client-service binding for each service
specification that is honored by the service acquisition mech-
anism. We illustrate the service specification interpretation
scheme in Section 111-D and describe our experience with it
in Section VIII.

111. THE SERVICE ACQUISITION MECHANISM
Fig. 3 sketches the software architecture of the Cygnus

distributed system. The servers are autonomous computing
entities, and export their interfaces through various server
interface directory servers like the ANSMSA trader [l l] .
The clients have no jurisdiction over the servers, because
the mechanism is designed to use independently developed
remote servers. (See Section I-A.) The Service Acquisition
System hides the service realization details from the clients
and is central to our realization of the Cygnus model. The
Cygnus run-time library insulates the client code from the
implementation details of the Service Acquisition System and
promotes the portability of the client code. The clients trust
the Service Acquisition System. (See Section VIII.)

The Service Acquisition System resides on the client host
for two reasons. First, we want its links to clients to remain
intact, even upon network failure or partition. Second, we
treat servers as autonomous entities that may not be willing to
run additional software. The system is composed of a Service
Acquisition Manager and three kinds of user-level3 processes:
Service Specijication Interpreters, Service Access Monitors,
and Server Access Agents. The Service Acquisition Manager
responds to client requests by creating a Service Specification
Interpreter and a Service Access Monitor per service acquisi-
tion session. Service Specification Interpreters analyze service
specifications, determine service-server bindings, and activate
Server Access Agents locally. They also help the Service
Access Monitors handle server access failures on behalf of
the clients by using server-independent4 algorithms. Server
Access Agents accommodate server interface heterogeneities
and implement server-dependent fault-tolerance algorithms,
so that existing servers need not be modified to make them
accessible to Cygnus clients.

The Cygnus run-time library includes a set of Cygnus-
specific operations for use by the client code to communicate
with the trusted Service Acquisition System running on the
same machine using the RPC paradigm [3]. These operations
are compiler-dependent, because the transformation between
local service acquisition invocations into interprocess commu-
nication (IPC) messages depends on the language run-time
associated with the compiler. Parameters are passed to these
operations by using a call-by-value-result paradigm.

A. Service Acquisition Phases

We now briefly describe the working principles of the
service acquisition mechanism. Further design and implemen-
tation details will be given in the following sections.

Service Request Phase: At the start of each service ac-
quisition session, the client first contacts the local Service
Acquisition Manager to get a service request port, which is
a communication endpoint supported by the Cygnus intemal
IPC facility. It then composes a service request message, ships
out the request through the service request port, and waits for
an acknowledgment.

When the Service Acquisition Manager gets the client’s
request for a service request port, it first creates a Service
Access Monitor and a Service Specification Interpreter. It then
passes one of the Service Access Monitor’s intemal IPC ports
back to the client so that the client can establish a link to the
monitor. It then prepares to serve the next request.

The Service Access Monitor first makes connections to
the associated Service Specification Interpreter and client. It
then accepts the client’s service specification message, and
forwards the message verbatim to the interpreter. It also saves
the message internally to implement service-dependent, server-

’The system was implemented by user-level processes because the inter-
faces between them were considered more important than the implementation
performance. See [4] for further design rationale of the Cygnus distributed
system.

4The algorithm is server-independent because the Service Access Monitor
records service access requests and results in service-specific format. The
algorithm is sketched in Section 111-A, explained in detail in Section 111-E,
evaluated in Section VI-B, and reviewed in Section VIII.

158 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5 , NO. 2, FEBRUARY 1994

independent service-server reconfiguration algorithms. After a
Server Access Agent is activated by the Service Specification
Interpreter for the requested service, the monitor establishes
a link to it on behalf of the client. Finally, it creates a new
service access port and returns it to the client.

Service Access Phase: After the client-service binding re-
quest is honored, the client invokes service operations through
the service access port as necessary and awaits results.

When the Service Access Monitor receives an invocation
request, it forwards the request to the Server Access Agent,
which translates the request into one or more invocations on
the associated remote server. It also receives the execution re-
sults from the Server Access Agent and returns them verbatim
to the client. The monitor may save the access request and the
execution results into a log buffer according to a logging-and-
replay descriptor given by the Service Specification Interpreter
in the service specification phase. This descriptor instructs the
Service Access Monitor on how to correctly replay logged
service operations, should the link between the monitor and
the Server Access Agent be broken abnormally.

Service Reconjiguration Phase: The Cygnus Service Ac-
quisition System uses two kinds of failure recovery algorithms
to make clients more resilient to network or server failure. The
first of these depends on the server in use. For transaction-
based servers, for example, the Server Access Agent may stop
its execution until the server machine is up again, so that
the server state can be restored correctly. The second uses
a server-independent operation logging-and-replay algorithm
so that in the event of server (or Server Access Agent) failure,
the Service Access Monitor can send all of the logged service
access requests to another server through a new Server Access
Agent. Should the new server interface be different from the
old one, the new Server Access Agent reconverts the logged
service access requests to server access requests for the new
server. Such reconversion is possible because Server Access
Agents are designed to process server access requests arriving
in server-independent format.

Fig. 3 labels three links as (a), (b), and (c). Any one of
these links may be broken during the service access phase.
For example, link (a) may be broken because of server failure.
The Server Access Agent may close link (b) when it does not
get the execution results from the server in time. Link (c)
may be cut by the Service Specification Interpreter because
the number of requests for generating server access agents
exceeds a predefined limit.

To make the client’s service access link resilient to such
faults, the Service Access Monitor always asks the Service
Specification Interpreter for a new Server Access Agent when
it finds the current one unavailable. If a new Server Access
Agent can be created, the monitor replays the logged opera-
tions. It also ensures the correctness of this replay procedure by
comparing the new execution results with the old ones. The
new Server Access Agent may be instructed by the Service
Specification Interpreter to eliminate some side effects (e.g.,
removing temporary work files) caused by the old server(s)
and Server Access Agent(s) when it starts.

If link (c) in the figure had been broken when the current
Server Access Agent died, the Service Access Monitor asks the

Service Acquisition Manager for another Service Specification
Interpreter. It then sends the saved service specification to
the new interpreter, and reinvokes all of the logged service
operations after link (b) is successfully restored. If the Service
Acquisition Manager is unable to create the required inter-
preter because, for example, the kernel has run out of process
table entries, the monitor informs the client that the service
was interrupted unexpectedly.

Service Termination Phase: A service acquisition session is
terminated when the client invokes the service termination
operation in the Cygnus run-time library. After the Service
Access Monitor receives the message from the client, it 1)
forwards the message to the Server Access Agent, 2) releases
its link to the Service Specification Interpreter if that link is
still active, and 3) terminates itself after performing some other
housekeeping routines like cleaning up log buffers. The Server
Access Agent terminates after notifying the remote server(s)
in use. The Service Specification Interpreter terminates after
the monitor and Server Access Agent exit.

B. The Cygnus Run-Time Library

The Cygnus run-time library includes a set of compiler-
dependent service acquisition primitives and hides the im-
plementation details of the Service Acquisition System. The
required set of OS-dependent IPC routines, which realize the
IPC links, are also included in the library. In this section,
we describe the Application Programming Inte@ace (API)
provided by the library. The use of the API is exemplified
in Sections IV and V.

Cygnus IPC Operations: To facilitate the service-server
reconfiguration support (see Section 111-A), Cygnus IPC
links are designed as reliable two-way communication
channels and support atomic send and receive operations.
They are implemented as follows. Each Cygnus IPC link
is associated with a shared memory segment and two
(System V) named pipes or FIFO’s. To send a message,
the sender places the message in the shared memory segment
and writes a one-byte control token through the sender-to-
receiver FIFO. The receiver determines whether a message
is available through a read operation on the same FIFO.
Because the file descriptors allocated to FIFO’s are closed
automatically when their owners terminate, the write operation
returns an error code if the receiver dies unexpectedly.
No special exception-handling or time-out mechanism is
required.

The message-passing control mechanism could have been
implemented instead by using semaphores, UNIX-domain
stream sockets, or Internet-domain stream sockets. FIFO’s
were chosen because they appeared to perform better under
normal loading conditions on our client host [4].

We have exploited the shared memory mechanism to fur-
ther reduce message-processing overhead. Cygnus clients are
required to initialize (or format) the shared memory segments
that they acquire for accessing Cygnus services. This format is
carefully designed to allow the processes involved to compose
and decompose messages efficiently through data structures
resident in the shared memory.

CHANG AND RAVISHANKAR: SERVICE ACQUISITION MECHANISM 159

A set of name-based data types is defined to facilitate
the communication among Cygnus clients and the service
acquisition agents. The representation scheme for these data
types depends on the IPC facility in use so that these pro-
cesses can encode and decode messages efficiently. This data
representation approach is different from structure-based ones,
such as Sun's XDR.

These internal data types are useful to the implementation
of the Cygnus service acquisition mechanism, because the
mechanism must accommodate three kinds of heterogeneity.
First, since the Service Specification Interpreters may need
to access several different database servers to analyze ser-
vice specifications, they must accommodate database query
protocol heterogeneity. For example, most relational database
servers support SQL queries, whereas most name servers like
DEC's distributed name service [14] have their own query
protocols to meet functional requirements such as access
and/or update performance.

Second, different servers may use different data representa-
tion protocols. Therefore, the Server Access Agents must ac-
commodate such protocol heterogeneity in converting service
operations to server access requests. For example, Sun RPC
servers use Sun's XDR representation scheme, whereas DEC
HDS [8] servers understand Network Command Language
(NCL) data types only.

Third, since different client language run-times may support
different sets of data types, using a single internal data type
representation scheme facilitates the development of library
routines for each language run-time.

Service Acquisition Primitives: Request Service, Ac-
cessservice, and Terminateservice are the three
service acquisition primitives provided by a Cygnus library.
These operations hide the implementation details of the service
acquisition mechanism by using keyword arguments and a
call-by-value-result paradigm, and by forcing the client code
to refer to client-service bindings through specialized opaque
pointer structures called service handles.

A service handle must be initialized to hold service request
messages, and must be bound to a service before it can
carry service access requests. The Cygnus library includes
ShNew to create and initialize unbound service handles and
Requestservice to make bound service handles. To sup-
port the call-by-value-result parameter-passing paradigm, the
argument buffer of a bound service handle must be initialized
by ShClean for each service access request.

The Cygnus library also contains a routine called ser-
vice-errno, which the client may call to get an informative
error code when a service acquisition operation could not
be executed successfully. The routine service-errno-set
permits the client code to save user-defined error codes into
the service handles. To facilitate the implementation of the
library by using OS- andor language-supported lightweight
processes, the error codes are not provided as global variables
and cannot be accessed directly from within the client code.

The library contains two routines to reset and shut down
the service acquisition run-time support: Service Run-
timestart and Service Runtime-stop. These two
operations are provided mainly to permit the client code to

#include "my-header-f ilea"
maincargc, argv) int argc; char *argvCl;
c

initialize-program-variables(argc, argv) ;
establish-link-to-service,requester();
establish-link-to-server();

/* process service access requests */
for (; ; I <

wait-for-access-request 0 ;
if (terminate()) break;
extract-access-arguments 0 ;
invoke-server-operations 0 ;
compose-return-message 0 ;
send-execution-result,ta_service-requestero ;

>
housekeeping-routines 0 ;

1
Fig. 4. Skeleton of a Server Access Agent coded in C.

reclaim resources (like file descriptors) held by the Cygnus
run-time.

C. The Server Access Agenl

Pursuant to the working principles of the Cygnus service
acquisition mechanism described in Section 111-A, Server
Access Agents 1) convert service operations into server access
requests, 2) accommodate server protocol heterogeneity, and
3) implement server-dependent error recovery algorithms. This
section elaborates on how they work and how they can
be implemented easily based on the programming structure
sketched in Fig. 4. Performance overhead imposed by the
Server Access Agents is analyzed in Section VI-A.

Service Request Phase: During the service request phase,
a Server Access Agent normally first initializes itself in
accordance with a set of configuration parameters (e.g., the
network and transport address of a server interface) set by the
service specification interpreter that activates it.

The Server Access Agent then establishes a link to the
service requester. The requester is normally the Service Access
Monitor, but may be a Cygnus client when the fault-tolerance
support provided by the monitor either is not desired by the
client or is not applicable to the desired service. From the
viewpoint of the requester, the Server Access Agent is a local
serves that speaks the Cygnus internal IPC protocol.

The Server Access Agent may also try to establish a link to
the associated server during the service request phase. If the
link cannot be set up successfully, the Server Access Agent
shuts down its link to the requester and terminates itself. If the
requester is not a Cygnus client, the Service Access Monitor
either contacts the Service Specification Interpreter for a new
Server Access Agent or returns an error message to the client.

Service Access Phase: A Server Access Agent falls into
a loop during the service access phase. The code segment
that invokes server operations is usually a multiway branch
statement on the names of the supported service operation.

5According to the Cygnus model (see Section 11). a Server Access Agent
that integrates the functions of several servers or need not be bound to a server
to support the desired service operations should be identified as a server and
should not be considered as a component of the service acquisition mechanism

160 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5, NO. 2, FEBRUARY 1994

Fig. 5. Service Specification Interpreter structure.

For each operation, the agent first extracts the input-only
tagged arguments from the service access request message, and
transforms those arguments into a form that the server expects.
The service operation is then implemented by invoking one or
more server interface operations. Finally, the execution results
are converted into a Cygnus IPC message and sent back to
the requester.

Fault-Tolerance Support: The Server Access Agent may
also support various server-dependent fault-tolerance mech-
anisms. This resilience support complements the server-
independent fault-tolerance support provided by the Service
Access Monitor, especially when the associated server can be
shared by other processes to manipulate common data objects.
For example, an optimistic message-logging and process-
checkpointing mechanism can be used by the Server Access
Agents and Servers to make the services in use resilient to
machine crashes [13].

D. The Service Specijcation Interpreter

The Service Specification Interpreters assume the tasks of
1) analyzing service specifications in client-specific contexts,
2) selecting appropriate servers for use by the clients based
on the results of the analysis, and 3) activating Server Access
Agents for the servers that do not support the specified service
access operations directly using the Cygnus IPC mechanism.

Since different interpretation contexts may require different
interpreters and access to different information management
software (such as personal profile managers, user-location
servers [271, and server interface directory servers), a Service
Specification Interpreter must be coded as a collection of
extensible, cooperative computing entities to ensure its quality.
Thus, instead of presenting the implementation details of the
Service Specification Interpreters, this section focuses on how
the Interpreters are structured to perform the tasks well and to
meet the extensibility requirement.

Fig. 5 shows that the Service Specification Interpreter
is composed of a Cygnus IPC module, a Service Request
Manipulation Module, a Server Access Agent Activation Mod-
ule, several Service Specification Interpretation Modules, and
various front-end modules to the databases or directory servers
in the system.

The Service Request Manipulation Module interacts with
the service requester through the Cygnus IPC Module, for-
wards service specifications to Service Specification Interpre-

tation Modules, and controls the activation of Server Access
Agents. The interpretation module for a service specification
is now chosen based on the value of the standard attribute
CONTEXT (see Section 11-A). The module keeps its link to
the service requester active during the service access phase
if the requested service can be supported by several server
interfaces.6

Each Service Specification Interpretation Module analyzes
the given service specification in a certain context. There
are no restrictions on what resources (e.g., databases) can
be used by a Service Specification Interpretation Module, nor
are there any restrictions on how the resources can be used.
As an example, to analyze the personal messaging service
specification given in Section 11-A, the module may access
a user-location server and a cross-domain directory system to
find out what communicators Allen may use at his current
location [7]. The location server and the directory system may
not be required by other interpretation modules.

After a Service Specification Interpretation Module analyzes
a service specification, it returns to the Service Request
Manipulation Module the file path name of a Server Access
Agent program, which will interact with a server providing
the server capability desired by the client. It also returns a
list of arguments that could be passed to the Server Access
Agent as command line arguments and be used to initialize
the agent. Finally, it returns a logging-and-replay descriptor
that could be used by the Service Access Monitor to correctly
reconfigure service-server bindings should the Server Access
Agent become inaccessible unexpectedly. (See Section Ill-E.)

Server Access Agent programs could either be maintained
in a database or be generated on demand via a program
synthesizer [121. When the Service Specification Interpretation
Module does not establish a link to the server on behalf of
the Server Access Agent, i't provides the agent with sufficient
information on the server interface, depending on the Server
Interface Directory Servers that the agent may use. (See
Section 111-C.)

The Server Access Agent Activation Module creates new
Server Access Agents upon request by using the fork and
exec1 system calls. It also reclaims the resources held by
the agents when they terminate by the signal and wait3
system calls.

E. The Service Access Monitor

The Service Access Monitor uses a logging and replay
mechanism to make its link to the client resilient to server
access failure. (See Section 111-A.) This fault-tolerance mech-
anism is server-independent, because the monitor records
service access requests and results in service-specific format. It
records neither server interface operations nor server execution
states. The applicability of this mechanism depends on the
service in use, because not all server access failures can be
recovered by simply replaying the access requests made by
the client. (See Section 111-A.)

To guide the monitor in performing these logging and re-
play operations correctly and efficiently, Service Specification

61n accordance with the Cygnus model, each server interface belongs to
only one server. (See Section 11.)

CHANG AND RAVISHANKAR: SERVICE ACQUISITION MECHANISM 161

01 Xinclude <stdio.h>
02 Xinclude <cygnus/cygnur.h>
03 #define S-to-cS(x) (x)
04 main0
05 c
06
07
08
00
10
11
12
13
14
15
16
17

ServiceHmdle sh;
if (ServiceRuntine-sta() < 0) exit(1);
if (ShledLsh) < 0) exit(1);
ArgIn-cString(sh, "COITEXT" , S-to-cS("display")) ;
RequeatService(sh) ;
if (rervice-ermo(rh) != 0) exit(1);
ShClean(8h) ;
ArgIn-cString(sh, "USG", S-to-cS("hello")) ;
ArgIn-Op(sh, "dirplay") ;
if (AccesrService(rh) < 0) exit(1);
Terminat eSarvic* (&eh) ;
ServiceRunthe-atop();

18 > /* main0 */
Fig. 6. A simple Cygnus client

Interpreters always provide a logging-and-replay descriptor for
each service request message. A logging-and-replay descriptor
presently contains a log code and an optional set of replay
records. The log code indicates what logging and replay
scheme is required. Each replay record includes a service
operation name and a replay code that indicates how to replay
the service operation. When the log code is NoLog, the
monitor lets the client communicate with the Server Access
Agent directly.

The Service Access Monitor interprets the value in the
replay record only when it is instructed to do selective logging
and replay. A service access request is not logged when
the replay code is NoReplay. If the replay code equals
Replaysend, execution results of an access request are not
logged. Both the request and result messages are logged when
the replay code is ReplayAll.

During the service reconfiguration phase, the monitor re-
plays the logged service access requests. To ensure transparent
recovery, it also compares the values returned by the new
Server Access Agent with those in the log. A match indi-
cates functional equivalency between the old and new servers
over the period that the client has accessed the service. The
monitor, however, validates the new execution results only
for the operations whose replay codes are ReplayAll. The
server identities returned by the Server Access Agents are not
compared at all.

The monitor always asks for a new Server Access
Agent when it finds the current one unavailable during
the service access or reconfiguration phase. It also does
so when logged service access requests cannot be replayed
correctly during the service reconfiguration phase. The
number of attempts to recover from a server access failure
is currently bounded by a configuration parameter set by
the Service Acquisition Manager.

The performance overhead imposed by the Service Access
Monitor is analyzed in Section VI. Our experience with the
server-independent service-server reconfiguration mechanism
is given in Section VIII.

IV. AN EXAMPLE

Fig. 6 shows a simple C program that sends the string
"hello" to a display server. The server returns an acknowledg-
ment message after displaying the string on its output device.

The numbers along the left margin are provided for ease of
reference and are not part of the code.

The program starts its execution at line 7, which initializes
the Cygnus service acquisition run-time. At line 8, the client
code initializes an unbound service handle. It then saves
attribute CONTEXT with value 'I display" into that service
handle at line 9 and proceeds to request the service at line 10. If
the service requested can be honored, the Request Service
routine stores necessary information about the allocated Ser-
vice Access Monitor or Server Access Agent into the unbound
service handle; otherwise, it sets an error code in the service
handle.

Lines 12-15 show how to invoke a Cygnus service op-
eration. At line 12, the client first cleans up the bound
service handle. It then stores the input-only keyword argu-
ment MSG with value "hello" and the service operation
name display into the service handle at lines 13 and 14.
The service access primitive Accessservice at line 15
returns a nonnegative number if the request can be processed
successfully.

Lines 16-17 cancel the requested service and terminate the
Cygnus run-time, respectively. These two statements are not
mandatory, though they are recommended.

V. PROGRAMMING LANGUAGE SUPPORT
FOR THE MECHANISM

There are two issues that arise when using Cygnus in this
fashion. First, a user may not know exactly which keywords to
use in specifying a desired service. Such keywords may even
be system- or domain-dependent. Also, since we expect new
services to be created regularly, it is inappropriate to require
that users be sufficiently aware of their details to be able to
infer specification keywords.

Second, the simple example given in Fig. 6 shows that
it can be error-prone in invoking Cygnus run-time library
routines directly. First, service specification attributes and
service operation arguments are expressed in two types of
systems: data types supported by C and the Cygnus IPC
facility. (see Section 111-B.) Second, the type signatures of
service operations can be obscured. Finally, the programmer
must understand the Cygnus model well and be familiar with
the Cygnus run-time library, because each invocation of a
service operation usually takes several statements.

We have therefore developed a language veneer over the
C programming language that supports the Cygnus com-
putational model. The extended language, called CygnusC,
allows programmers to view the client-service bindings as
references to ADT objects that are instantiated at run-time
via special templates. These templates permit the compiler
to type-check service acquisition operations and enable the
language run-time to invoke user code for validating service
specifications and handling service access failures. The ADT
object instantiating and disposal operations in the language
establish and release client-service bindings. Each operation
performed on the objects is mapped transparently to one or
more remote server invocations.

162 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5, NO. 2, FEBRUARY 1994

The CygnusC compiler ensures that the service operations
are invoked as they are declared, but does not insert code
for run-time type-checking. It relies on the service acquisition
system to detect run-time type errors, because the clients
can compose service specifications at run-time and because
different services may be associated with different sets of
operations.

CygnusC is carefully designed so that compilers for it can
be implemented easily via native C compilers. For example, on
our client machine, the compiler is implemented by pipelining
the native C preprocessor cpp , a CygnusC precompiler,
and the native C compiler compile. The precompiler [4]
transforms CygnusC constructs into C statements with no
macros. A big advantage of this approach is that it permits the
programmers to develop CygnusC software by using existing
C libraries and programming tools.

We note that one of the CygnusC design goals is to
experiment with a few language constructs that facilitate the
development of client applications in server-based hetero-
geneous distributed systems. These constructs may also be
established on top of languages other than C, in the manner of
Linda [9] or Concert [29]. Thus, CygnusC must not be viewed
as a full distributed programming language, but as an instance
of our language veneer resulting in extensions to C. As such,
CygnusC lacks many of the features and trappings of a full
distributed programming language.

In the remainder of this section, we first present a simple
CygnusC program to outline the extensions that we have made
to the C programming language. We then give the rationale
for these extensions. The C code generated by the CygnusC
precompiler for each of the service acquisition constructs
is shown to 1) explain the semantics of the new language
constructs, 2) exhibit the C features used by the precompiler,
and 3) illustrate a good way of structuring Cygnus library
routines.

A. A Message Dispatcher Coded in CygnusC

Fig. 7 shows a simple CygnusC program that calls the
attention of the Department Computing Organization (DCO) to
problems with the computing environment. Only one response
from the DCO staff is required for each execution of the
program. The staff member who acknowledges a message
may be contacted by a server through a pager, by electronic
mail, or by another device. Before terminating its execution
successfully, this program prints an acknowledgment code and
an identification string for the notification server used on a
default output device. The client need not know beforehand
how the dispatched message will be sent to the DCO staff or
how the message will be acknowledged.

This sample program is organized as follows. Lines 1-3 im-
port the interfaces from the required run-time libraries. Lines
4-19 declare a service specijication template with name spec
to define a family of bound service handles (see Section 111-B)
for accessing Cygnus services. The Attribute component
(lines 6-8) of this template specifies the set of attributes
associated with those service handles. The Constraint
component (lines 9-13) contains user code for validating the
service specifications composed at run-time. The Operat ion

01 Xmclude (stdio h>
02 Xmclude <cygnus/cypus h>
03 Xinclude "userlib h"
04 Sarvicenmdle Spec /* S e r V l C O speClflCatlOn templatm t/
05 I
06 Attribute /* specify attribute n a e s m d their types */
07 COITEXT(cString)String="notif).".
08 LIST(cString)Stri~="d=o',,
09
10
11 printf ("Invalid attribute COITEIT Y.s\n*' .CONTEXT),
12 return(i),
13 >
14 Operation /I .pacify servxw operations I/
16 dlspatch~USG~cStrml(~Strmn~->CAQt~cInt~int.SERVER~cStri~)Stringl,
16 OnError /* arror hmdler for service access operations */
17 printf("accmss ermo = Xd\n",service_ermo(ap.c)),

10 1 /* spec r/
20 mam(ugc. ugv) int ugc. char r u g v 0 ,
21 C
22 c h u *id. lnt ack. Servicenmdle spsc ah,
23 if (S m r r i c e n u n t u m _ o t i r t O < o) axit(i),
24 if (ugc'3) sh=Smrvican.ndl* specU.
26 else sh=Sarvicm8undle spec CCONTEXT~ugvC211,
26 if (smrvicm-ermo(sh)'=O) exit(1).
27 Cack=ACI(.id=SERVB11l=sh dispatchCHSG=ugvCllI,
28 prlntf("(Server ID, Acknoslodge code) (X s , %d)\n".id,ack),
29 Ta~inatmServica(ksh).
30 ServiceRuntimo-stop(),

Constraint /* user coda for validating spacification */
if ((0 ' -ntrcmp(CO~EXT,"son")) W O I =strcmp(CO~T."notify")))C

18 .Xlt(l),

31 > /* U l U O */

Fig 7 A message dispatcher coded In CygnusC

component (lines 14-15) declares the type signatures of the
required service access operations so that the compiler can
ensure that they are invoked as declared. The OnError
component (lines 16-19) includes code for handling service
access errors at run-time. These components are dealt with in
detail in Section V-B.

This program starts its execution from the statement at line
23, which initializes the Cygnus library routines. The service
request statement at line 24 is executed with the default service
attribute values defined in the At tribute part of spec when
the value of attribute CONTEXT is unavailable as an input
argument. The service handle returned by this invocation is
saved in the service handle variable sh declared at line 22.
Arguments for the request statement at line 25 are DCO for
attribute LIST, and the second command line input argument
for CONTEXT.

The service operation dispatch is invoked at line 27
if the service handle returned was successfully bound to
the requested service. In accordance with our call-by-value-
result service invocation paradigm, the input-only keyword
argument MSG is first set to the message to be shipped out.
The Accessservice routine in the Cygnus library is then
invoked with service handle sh, operation name dispatch,
and an input argument with tag MSG. When the invocation
completes, the value of output-only keyword argument ACK is
assigned to the integer variable ack, and the value of SERVER
to pointer variable id.

The Terminateservice operation at line 29 is invoked
to reclaim the resources allocated to service handle sh.
Necessary housekeeping tasks would also be performed on
the associated server host. Finally, the client shuts down the
Cygnus service run-time gracefully at line 30. These last two
statements are not mandatory, but recommended.

B. The Service SpeciJcation Template

From the viewpoint of the client code, a service specification
template defines a set of ADT objects for accessing remote

CHANG AND RAVISHANKAR: SERVICE ACQUISITION MECHANISM 163

services. Executing a service request statement instantiates an
ADT object for a specific service at run-time. Invocations
of the associated service operations are similar to those on
an ADT object: The caller knows only the type signature of
the invoked operation, and is ignorant of the implementation
details. In the remainder of this section, we present the design
rationale of this template.

Attribute: The CygnusC data type' and Cygnus IPC data
type for every attribute must be declared in the Attribute
component to enable the compiler to type-check the operations
on attribute values and determine necessary type conversion
routines between those two types.

The Cygnus run-time library contains type conversion rou-
tines between primitive CygnusC (or C) and Cygnus IPC
data types. For example, two routines int-to-cInt and
cInt-to-int are incorporated in the library to convert C
int values to Cygnus cInt values, and vice versa. When the
language data type of a service attribute is a composite or user-
defined data type, the programmer must provide the required
conversion routines for that data type. As Sun XDR library
routines are to the user-provided XDR routines, so are the
Cygnus library routines to the user-provided type conversion
routines.
Constraint: The Constraint component is used for

screening service specifications. The syntax of its body is
the same as that of a C function without enclosing braces.
The formal parameters of this function-like component are the
attributes declared in the Attribute component. It must
be written to return a nonzero integer value as a user-defined
service request error code when the service specification given
fails to pass the test.

We expect the Constraint component to be very useful
in large heterogeneous systems, where the number of servers
tends to be large. In such an environment, the cost of invoking
a service request operation increases with the cost of locating
a server interface.

Fig. 8 shows how our CygnusC precompiler translates the
Constraint component of dco.ccc into C code. The
declaration of the specification checking function shown in
Fig. 8(b) is emitted at the point where the service specification
template is declared in the source code. This function is named
by appending "_-constraint" to the name of the associated
service specification template, i.e., "spec." Two underline
characters are used to reduce the chance of redefining an
existing function. Statements in Fig. 8(c) constitute the func-
tion's definition, and are emitted by the precompiler only if
the program starting routine main () is defined in the source
file.
Operat ion: The programmer must define the type signa-

tures of service access operations in the Operat ion compo-
nent to allow compile-time type checks on service operation
invocations. For example, line 15 in Fig. 7 declares that
operation dispatch needs the input argument MSG and
two output arguments: ACK and SERVER. The Cygnus IPC
data type of MSG is cString, and the language data type
is String. Similarly, the Cygnus IPC data type of ACK

'The CygnusC and C programming languages share a common type system.

OB Constraint /* uaar code for ralidatlng apeciflcation I/
10
11
12 return(1);
13 1

li ((0 ! =atrcmp(COITEXT,"ao.")) W O I=atrc.p(COITEXT,"notify"))) I
printf ("Invalid attribute COITEXT: %a\n",COITEXT);

(a)

01 int apac--constraintO ;

(b)

01 int spec--constraint(COfEXT, LIST) String COITEXT; String LIST;

03
04
06 roturn(1);
OB >
07 >

01 c
if ((O ! ='trcmp(COITEXT,"aoa")) W O 1 =strcmp(COXTEXT."notify"))){
printf ("Invalid attribute COITEXT: %r\n",COITEXT);

(c)

Fig. 8. Precompiler output for the Constraint component.

16 OnBrror
17
18 exit(1);

printf ("access errno = %d\n",servicr_ermo(rprc)) ;

(a)

01 void rpec--onarror();

(b)

01 void rpec--onerror(spec) ServiceEmdle spec;
02 I
03
04 exi t (1) ;
06 >

printf ("access errno = %d\n".rervicr_ermo(rpec)) ;

(c)

Fig. 9. Precompiler output for the OnError component.

is cInt and language data type int. When the compiler
encounters the service access statement at line 27, it validates
the number of arguments and the related assignments. For
example, if variable ack is declared as a pointer to an
integer, the compiler would issue a type error message at this
line.

The input and output arguments of each service access
operation are explicitly identified, because their positions are
not linked to the properties of the desired server capabilities.
The service acquisition run-time is in charge of marshaling the
keyword arguments for the servers in use.
OnError: The syntax of the OnError component is the

same as that of the Constraint component. The OnError
component, however, is used to include user code for handling
service access errors. When a service operation invocation
fails, the service acquisition run-time sets an error code in
the service handle and passes control to this component via
the language's procedure call mechanism. This component
can then remedy the error based on the error code or abort
the program's execution as it does in dco . ccc. When this
component retums, control is passed back to the statement
following the service access statement being executed.

Fig. 9 shows the precompiler output for this component in
dco. ccc. The declaration of function spec--onerror is
emitted immediately after the service specification template
spec is completely parsed. The precompiler does not emit
this function's definition unless the starting routine main ()
is defined in the source file.

164 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5, NO. 2. FEBRUARY 1994

01 Ssrvicetlandle spac--init();

(C)

01 SarvicaEmdla spac--init(COITEXT,LIST) String COITEXT; String LIST;
02 <
03 int ret; ServiceRmdle ah;
04 if (Shlee(tsh)<O) axit(1);
06 if ((rmt = spac__constralnt(C01IT,LIST))==O)I
08 ArgIn_cString(sh,"COITBXT".String-to-cString(COl~XT)~;
07 ArgIn_cString(sh."LIST",Stringto_cStr~g~LIST~~;
08 RequastSarvica(6h);
OB 1 also sarvica_armo_set(sh,rat);
10 retum(sh);
11 1

(d)

Fig. 10. Precompiler output for service request statements.

C. Service Request Statement

A service request statement is executed as follows. The
service attributes are first initialized to the defaults declared
in the associated service specification template. These defaults
may be ovemdden by new pairs of attribute name and value
in the argument list of the service request statement. This
specification is then validated by the constraint code defined in
the associated Constraint component. Finally, the service
acquisition run-time returns a bound service handle after
establishing a client-service link. An unbound service handle
is returned with an error code if the link could not be set
up successfully. This error code could be set by the service
acquisition run-time or by the user-defined constraint code.
The service handle returned always appears to the client code
as a pointer to an opaque data structure. In Fig. 7, service
handle variable sh is declared at line 22, and is initialized at
line 24 or 25.

Fig. 10 shows how the precompiler translates such service
request statements into C statements. Fig. 10(a) lists the
if statement that contains two service request statements in
our sample CygnusC program. The C code shown in Fig.
10(b) is emitted when the precompiler encounters the if
statement. The associated specification validation function is
named by appending ''Anit'' to the name of the associated
service specification template. A declaration for this function
is emitted when the specification template has been completely
parsed. To prevent duplicate definitions, this function will not
be defined in the precompiler output file if the routine main ()
is undefined.

Fig. 10(d) shows that the service specification screening
routine generated by the precompiler always initializes an
unbound service handle first by invoking routine ShNew
provided by the Cygnus run-time library. (See Section
111-B.) If the set of attributes provided fails to satisfy
the constraints given in the Constraint component, a
user-defined error code is stored into the unbound service
handle via the service-errno-set routine in the Cygnus
library.

27 Cack=ACK, id=SERVERI =ah: dirpatchCMSG=up Cl11 ;

(a)
01 CSorvicrBmdlr tmp--sh;
02 tnp--sh=sh;
03 ShClrm(tmp--sh) ;
M
OS ArgIn-Koy(tmp--sh, "ACK") ;
OS ArgIn-Koy(tmp--oh, "SBRVER") ;
07 ArgIn_Op(tmp--rh. "dispatch") ;
08 if (AccossSorvicr(trp__sh)<O){
08 spoc--onorror(t.p--sh) ;
10 > 01.0 c
11 ack = cInt-to-Int(~gOut_cInt(t.p__rh."ACK")) ;
12 id = cString-to_string(rrg~t-cStr~(trp--sh,"S~V~")) ;
13 >
14 >

ArgIn-cString (tap--sh, "IISG" , String_to-cStr~(u~lrCil)) ;

(b)

Fig. 11. Precompiler output for service access statements.

After the validated attributes are copied into the unbound
service handle, routine Requestservice is invoked to bind
the service handle with the requested service. If the binding
process fails, the service handle remains unbound and holds
an error code set by the service acquisition run-time.

D. Service Access Statement

From the viewpoint of the client code, a service access
statement is a function invocation with a bound service handle,
a service operation name, and a set of input-only keyword
arguments as parameters. The service handle argument can
be specified by a simple variable, such as sh, in the sample
program, or by a more complicated postfix expression such
as ShArray [i++ 1 . The output values are assigned to a set
of tagged address references under our call-by-value-result
parameter-passing paradigm.

Fig. 11 shows how a CygnusC service access statement is
translated into C code by our precompiler. The service handle
expression in the statement, i.e., sh, is first evaluated and
assigned to a temporary service handle variable (see Fig. 1 l(b))
to ensure that the expression will be executed only once in the
generated C code. After the service handle is initialized, input
arguments to the service access primitive Accessservice
are copied into the handle through various Cygnus library
routines. If Accessservice fails, the service acquisition
subsystem sets an error code and passes control to the associ-
ated OnError component as a C procedure call. If the access
invocation succeeds, the output values are extracted and copied
into the corresponding memory locations. In order to reduce
the overhead in extracting the invocation results, the output
argument labels are made available to the service acquisition
run-time via ArgIn-Key. The overhead is presently a linear
function of the number of the tagged values returned because a
linear search algorithm is used in the Cygnus library to locate
the value associated with a specific tag.

VI. PERFORMANCE
We developed a Sun RPC client-server pair to estimate the

performance overhead that Cygnus clients may incur in using
the service acquisition mechanism to access local or remote

CHANG AND RAVISHANKAR: SERVICE ACQUISITION MECHANlSM 165

- Inter-machine Sun RPC comt - Intra-mrchlne Sun RPC comt - - Service access overhad when Service Access Monitor exlmts
Servlce accew overherd when !Service Acceu Monitor doe# not erht

12 1

- 10 - i
4 8

t8
B
H
: 4

2

0
0 1024 2048 3072 4098

Length of mtring rrgument (bytes)

Fig. 12. Performance of Cygnus service access mechanism.

servers. The client stub, server stub, the main program of the
server, and the required C header files were generated by Sun’s
r p c g e n . The RPC Language (RPCL) code specifies only one
void function with one input argument of type s t r i n g . The
server implements that function with a dummy routine.

We measured the cost of a Sun RPC call as the expected
elapsed time in executing the c l n t - c a l l statement in the
rpcgen-emitted client stub. With reference to Fig. 6, it is
the expected elapsed time in executing the statements at lines
12-15. Thus, the overhead is the difference between these
two times. The computing environment was under very light
load conditions when the performance data were collected.
For intermachine calls, the server ran on another Sun 4/60
workstation sitting on the same ethemet and with the same
configuration as the client host. We view the performance
of intramachine Sun RPC as a baseline data for the cost of
invoking server operations.

A. The Service Access Mechanism

Fig. 12 shows that the overhead is small in absolute terms
and acceptable in relative terms. When the message length is
less than 512 bytes, the Cygnus IPC cost is less than 2 ms
when the Service Access Monitor runs between the client and
Server Access Agent, and less than 1.2 ms when the monitor
does not exist. These numbers are independent of the network
load, but depend on the processor load on the client machine.
The overhead is small because under normal load conditions,
it usually takes tens to hundreds of milliseconds to send a
1024-byte string remotely via Sun RPC.

We are satisfied with the performance of the current Cygnus
service access mechanism, because the mechanism is currently
implemented by heavyweight processes. We have observed
that process scheduling delay is the bottleneck in our present
implementation of the Cygnus service access mechanism. We

I I

2Dc

0 -
4

15%

10%
0 1024 2048 3072 1086

Length of sMag mrgmaemt (bytea)

Fig. 13. Cygnus reconfiguration support overhead.

estimate that scheduling delay contributes more than 97%
of the Cygnus IPC cost for a one-byte message, and more
than 30% for a 3840-byte message. Moreover, the percentages
increase with the system’s load.

B. The Reconjigurution Support

Fig. 13 depicts the reconfiguration support overhead in
comparison with the local and remote Sun RPC costs. The
reconfiguration support cost is the Cygnus IPC cost when the
Service Access Monitor exists, minus the IPC cost when the
logger does not exist. (See Fig. 12.) For both cases, the ratios
never exceed 25%, and tend to decline when the message size
increases.

The logging and replay mechanism could be implemented
very efficiently for three reasons. First, the logs were not

166 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5 , NO. 2, FEBRUARY 1994

4- Cy*- "km library
-f- Sua RPC Ubrmry

1.2

1 -
i 0.0
.U e
3 o.O E

0.4

0.2

..
0.0

0 1 OS4 204. 3070 4000
Lmstb 01 atrlnm mmm*nt @pa.)

Fig. 14. Performance of Cygnus run-time library.

stored on stable storage, because crash recovery support for
the client was not available. Second, the service-server recon-
figuration mechanism requires that no more than one server be
available at any one time. Unlike other replication-based fault-
tolerance mechanisms, like that in ISIS [2], this reconfiguration
mechanism does not incur the overhead of synchronizing
the executions of a group of functionally identical servers
running on different hosts. Finally, since the logging and
replay algorithm is applied on the basis of nonshared client-
service bindings, it is far less complicated than those used
in transaction-based systems such as Quicksilver [lo]. The
corresponding mechanisms in those systems are designed to
optimize the throughput of updating shared persistent ob-
jects, and must be coupled with checkpointing and rollback
mechanisms.

C. The Cygnus Run-Time Library

We have also compared the performance of the Cygnus run-
time library with the Sun RPC library. The performance of
the Sun RPC library was measured as the expected CPU time
spent in executing the c ln t -ca l l statement with no BSD
socket invocations. The FIFO system calls were commented
out when we measured the performance of the Cygnus run-
time library. It turns out that the Cygnus run-time library even
consumes less CPU cycles when the size of the string argument
is less than 1024 bytes as depicted in Fig. 14. Fig. 14 shows
that the slope of the curve for the Cygnus run-time library is
about 0.28 ms per byte, and that the Sun RPC library 0.24
ms per byte. Since these two libraries use the same routines
to move string arguments into message buffers, we think the
difference is caused by the system overhead for shared memory
support. In any event, it shows that the cost of processing IPC
messages is much less than the cost of making interprocess
invocations.

4.3, and IBM PS/2 running 0 9 2 1.2. Besides the examples
given in the previous sections (i.e., the personal messaging
service in Section 11-A, the text display service in Section IV,
and the message dispatcher in Section V-A), three other very
different distributed applications have also been developed
to investigate the usefulness of the mechanism: a dictionary
service, a snake game service, and a computational vision
service.

The dictionary service enables the clients to look up words
in Webster's dictionary (7th ed.) with no need to handle
server access failures. The servers accessed may run on other
Internet nodes over which we have no control. The source code
for a client program named webster . c is available in the
public domain. The Cygnus client contains mainly the user-
interface code in webster . c, and the Server Access Agent
incorporates the code for accessing the server.

The computer game snake is a display-based chase game,
and was written as monolithic software to help people famil-
iarize themselves with text editor v i . To develop a distributed
version of this game, we first split the original source code
into two parts: one contains mainly user-interface routines,
and the other implements the rules of the game. The service
operations are defined in light of the interactions between
these two modules. The snake client contains the user-interface
routines and invokes the service operations through CygnusC
service acquisition facilities. Two snake servers with different
interfaces were developed: one of them exports its interface
through Sun RPCKDR protocol, and the other uses the NCS
RPC/NDR protocol. Two corresponding Server Access Agent
programs also exist. The only differences between those two
agent programs are that they use different binding protocols to
establish links to the servers and convert service operations to
different remote calls. Their interfaces to Cygnus clients are
the same. The logging-and-replay descriptor for this service
instructs the logger not to replay the operations for refreshing
the screen.

The computational vision service is designed to analyze
two-dimensional or three-dimensional images by using the
generate-and-test (or hypothesize-and-test) approach. The ser-
vice operations are presented to the client code as a set
of re-entrant library routines. The computations, however,
are performed by remote servers that may run on Sun 4
workstations, Apollo DN4000 workstations, or Alliant FX-
8 compute servers. To avoid running a specialized daemon
process on each of the server machines for this service, the
servers are created by the Server Access Agents dynamically
via BSD UNIX rexec system call. Only one Server Access
Agent program was written for this application. The Service
Access Monitor replays only the last incomplete service access
request when a server access fails. The service access requests
and associated execution results are not logged, because each
service operation represents an atomic computation. There
is no state information needed to be restored for a broken
service-server link.

'I1. OTHER ?kPICAL APPLICAT1oNs OF THE To the best of our knowledge, none of the existing dis-
TO date, the service acquisition mechanism has been imple-

mented on Sun 3 workstations running Mach or SunOS 4.x,
Sun 4 workstations running SunOS 4.x, IBM RT running BSD

tributed systems provides a comparably uniform approach
to supporting these services for the client applications. For
example, most of the contemporary distributed systems have

CHANG AND RAVISHANKAR: SERVICE ACQUISITION MECHANISM 167

problems in supporting fault tolerance and in accommodating
server protocol heterogeneity. Specialized service acquisition
systems like Marionette [23] and RM [24] cannot enhance the
resilience of service access links as our service acquisition
mechanism does. Language-based distributed systems like
Argus [15], Emerald, and DEC HDS requires an instance of
the language run-time to run on each of the participating hosts,
whereas the Cygnus service acquisition system needs to be
installed only on the client hosts. Command-interpreter-based
approaches like the Profile shell [21] and Wills shell [28] have
difficulty in providing application routines with services like
our computational vision service.

VIII. EXPERIENCE AND LESSONS LEARNED

Below we outline some of our experiences in implementing
and using the service acquisition mechanism, the CygnusC
programming language, and the applications.

0 Generality is useful, but domain structure must be
used to regulate generality. This work was motivated by the
issues arising from the increasing prevalence of independently
developed network servers, and the resulting possibilities of
making a wide variety of services available to clients. The
client-server model offers a clean and simple framework for
addressing these issues. The Cygnus service request primitive
is general enough to enable the client to specify whatever
server capabilities and service access interfaces it desires. The
Cygnus service access primitive can be used to access many
network services under an RPC paradigm.

However, we found unmitigated generality to be a hindrance
to disturbed computing. In their raw form, the Cygnus prim-
itives can be very general and powerful, but they are not
always useful to application creators. Programmers often just
need to know what service specifications a client is allowed to
compose, and what service access operations a certain service
specification defines in some programming language. This
experience lead us to the work on programming language
support for the Cygnus service acquisition mechanism (see
Section V).

Similarly, at one point, we thought that we needed a
Smalltalk-like object-oriented model to address the issues
raised in Section I-A, but soon realized that such a model
was far too general to provide a useful perspective on the
issues. It became apparent that the use of a computational
model should be justified only in the context of a well-defined
problem domain. Generality does not automatically help at all
levels.

0 Descriptive naming is a good approach to realizing the
client-service model when used properly. Our experience
with the applications that we have built verifies that expressing
server capabilities via name-value pairs is a good approach
to realizing the client-service model (see Section 11-A) when
the flexibility can be controlled well. Completely unstruc-
tured descriptive names can be messy, and it is important
to introduce rules or conventions to restrict the mechanism’s
power. For example, a Cygnus service specification is now
analyzed by first extracting the CONTEXT field from the
specification to determine which routine to invoke to analyze

the remaining name-value pairs. This scheme can be used
recursively; successive routines may analyze remaining name-
value pairs partially and pass the rest to other routines to finish
the analysis. This service specification analysis scheme permits
us to provide new services for the client by introducing new
service attributes and new Service Specification Interpretation
Modules (see Section 111-D), without worrying about the
possibility that a partial change in semantics would have
global effects. It also facilitates easy modification of current
service specifications and the maintenance of interpretation
modules.

0 The server-independent service-server reconfiguration
mechanism is useful, but may complicate the task of
interpreting service specifications. Although the implemen-
tation of the logging-and-replay mechanism used by the Ser-
vice Access Monitor is not fancy, it performs well when
the state of the client-service link can be restored by re-
playing the logged service access operations on the new
Server Access Agent. When the Server Access Agents for
a service support a common set of service state check-
pointing and reset operations, the Service Access Monitor
can reduce the reconfiguration cost further by intelligently
recording the state from time to time transparently to the
client. Thus, like table-driven syntax analyzers, the Service
Access Monitor becomes a generic descriptor-driven fault-
tolerance mechanism that can be used or shared by many
applications.

We recognize that server-dependent fault-tolerance mech-
anisms are still necessary because the logging-and-replay
mechanism is not applicable to all kinds of services (see
Section 111-A), especially when the server state is part of
the client-service state and cannot be recorded by the Ser-
vice Access Monitor. These mechanisms may also be pre-
ferred over the server-independent ones when they incur
less performance overhead. Since the logging-and-replay de-
scriptor and Server Access Agents for a service acquisi-
tion session are determined by a Service Specification Inter-
pretation Module, the task of interpreting service specifica-
tions can be complicated when the choice between server-
dependent and server-independent mechanisms is not straight-
forward.

0 Security issues in Cygnus must be addressed by mecha-
nisms native to the client host. We thought it was unnecessary
to incorporate a security mechanism directly into our prototype
implementation of the Service Acquisition System (see Fig. 3)
because the security mechanisms local to the client should take
precedence over any that the Service Acquisition System might
use. The Cygnus Service Acquisition System must be modified
when its execution could break some security rule enforced
on the local host. Thus, it is important to realize that more
efficient implementations of the Service Acquisition System
must be done in conformance with the local trust model and
security mechanisms.

As an example, implementing the Cygnus Service Acquisi-
tion System components by a dynamic linking facility might
improve the performance of accessing remote servers in high
trust systems, but might violate several local security rules in
widely used multitasking computing environments.

168 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5, NO. 2, FEBRUARY 1994

On our client hosts, the Cygnus IPC mechanism is supposed
to be secure. The Service Acquisition System is assumed
to be trusted enough to access data and acquire server ca-
pabilities on behalf of the client. In order to support this
trust model on our multiuser Unix workstations, the Service
Acquisition System components belong to the super user
root. They use the setuid () system call to change their
real and effective ID when it needs to access personal files
or to execute a program (which may be a shell script) on
behalf of the client. From the viewpoint of the server, the
Service Acquisition System is part of the client software.
As an RPC, run-time is to the RPC client module, so is
the Service Acquisition System to the client. Although this
scheme is vulnerable to many kinds of threats, it seems to
work pretty well in academic or industrial research computing
environments.

IX. CONCLUSION
The increasing prevalence of networked servers has resulted

in a great demand to increase the use of the servers
and to reduce the development and maintenance cost of
robust client applications. The Cygnus service acquisition
mechanism provides the client a clean, simple view of
server capabilities and a uniform, reliable service access
interface that is independent of the interface exported by
the ultimate service provider. The mechanism could be
easily supported by C-like typed procedural languages.
Several typical and useful applications have been devel-
oped to ensure the quality of the mechanism. Our work
suggests that the mechanism facilitates the development,
use, and maintenance of client and server software in
large heterogeneous distributed systems comprising many
autonomous servers. It also shows that the overhead of
invoking remote server operations via the mechanism can
be insignificant.

ACKNOWLEDGMENT

We are grateful to P. Honeyman for his numerous
constructive suggestions on our work. We would like to
thank D. Ballou, H. Bussy, S. Mohan, S. Sechrest, T.
Teorey, S. Weinstein, R. Wolff, and our reviewers for their
comments on earlier drafts of this paper. We appreciate
the assistance provided by the Center for Information
Technology Integration (CITI) and the EECS DCO staff at
the University of Michigan, and the computer staff of the
Information Networking Research Laboratory at Bellcore.
Finally, we acknowledge the work done by other students
in the Cygnus group: Nigel Hinds developed the snake
servers on Sun 3, Sun 4, and HP Apollo workstations;
Hsiu-ying Hsu ported our service acquisition mechanism
on IBM PS/2 under OS/2 1.2; Yen-min Huang measured
the performance of Sun RPC library and ported the service
acquisition mechanism on Mach 2.5 machines; Shih-ping
Liou developed the computational vision service; and Aruna
Victor developed several servers and service agents for the

Webster’s and snake service by using Sun RPC and NCS
RPC.

REFERENCES
B. Bershad, D. Ching, E. Lazowska, J . Sanislo, and M. Schwartz,
“A remote procedure call facility for interconnecting heterogeneous
computer systems,” IEEE Trans. Software Eng., vol. SE-13, no. 8, pp.
880-894 Aug. 1987.
K. Birman and T. Joseph, “Reliable communication in an unreliable
environment,” ACM Trans. Comput. Syst. vol. 5 , no. I , pp. 47-76, Feb.
1987.
A. Birrell and B. Nelson, “Implementing remote procedure calls,” ACM
Trans. Comput. Syst. , vol. 2, no. 1, pp. 39-59, Feb. 1984.
R. Chang, “A network service acquisition mechanism for the client/
service model,” Ph.D. dissertation, Dept. of Electrical Eng. Comput.
Sci., University of Michigan, 1990.
R. Chang and C. Ravishankar, “Service acquisition mechanism for
the client-service model in Cygnus,” in Proc. 11th Int. Con$ Distrib.
Computing Syst., May 1991, pp. 90-97.
R. Chang and S. Mohan, “Realizing the client-service model in the infor-
mation networking (INA),” Tech. Memo. TM-ARH-02 1800, Bellcore,
Oct. 1992.
R. Chang, S. Mohan, and R. Wolff, “SISAS: A server-independent
service acquisition system for distributed personal communications
applications,” in Proc. Inr. Con5 Communications ICC ’93, May 1993,

J. Falcone, “A programmable interface language for heterogeneous
distributed systems,” ACM Trans. Comput. Syst., vol. 5 , no. 4, pp.
80-1 12, Nov. 1987.
D. Gelemter, “Generative communication in Linda,” ACM Trans. Pro-
gramming Languages Sysr. vol. 7, no. I , pp. 80-1 12, Jan. 1985.
R. Haskin, Y. Malachi, W. Sawdon, and G. Chan, “Recovery manage-
ment in QuickSilver,” ACM Trans. Comput. Sysr., vol. 6, pp. 82-108,
Feb. 1988.
A. Herbert, “The computational projection of ANSA,” in Distributed
Systems, S. Mullender, Ed.
Y.-M. Huang and C. Ravishankar, “Accommodating RPC hetero-
geneities using automatic agent synthesis,” Tech. Rep. CSE-TR- 13 1-92,
Dept. Electrical Eng. and Comput. Sci., Univ. of Michigan, 1992.
D. Johnson and W. Zwaenepoel, “Recovery in distributed systems using
optimistic message logging and checkpointing,” ACM Symp. Principles
Distrib. Computing, 1988, pp. 171-181.
B. W. Lampson, “Designing a global name service,” in ACM 5th Symp.
Principles Distrib. Computing, 1986, pp. 1-10.
B. Liskov and R. Scheiffer, “Guardians and actions: Linguistic support
for robust, distributed programs,” ACM Trans. Programming Languages
Sysr., vol. 5 , no. 3, July 1983, pp. 381404.
S. Madnick and J . Donovan, Operating Systems. New York: McGraw-
Hill, 1974
S. Mullender, Ed., Distributed Systems. Reading, MA: Addison-
Wesley, 1989.
G. Neufeld, “Descriptive names in X.500,” in Proc. S/GCOMM ’89
Symp. Commun. Architectures Protocols, 1989, pp. 64-7 I .
D. Oppen and Y. Dalal, “The clearinghouse: A decentralized agent for
locating named objects in a distributed environment,” ACM Trans. OfJice
Inform. Syst. . vol. 1, no. 3, pp. 23Ck253, July 1983.
OSF, Introduction to OSF LICE. Englewood Cliffs, NJ: Prentice-Hall,
1992.
L. Peterson, “The profile naming service,” ACM Trans. Comput. Syst.
vol. 6 , pp. 341-364, Nov. 1988.
A. Sinha, “Client-server computing: Current technology review,” Com-
mun. ACM vol. 3.5, pp. 77-98, July 1992.
M. Sullivan and D. Anderson, “Marionette: A system for parallel
distributed programming using a mastedslave model,” in Proc. 9th Int.
Con$ Distrib. Computing Sysr., 1989, pp. 181-188.
R. Summers, “A resource sharing system for personal computers in a
LAN: Concepts, design, and experience,” IEEE Trans. Software Eng.

L. Svobodova, “File servers for network-based distributed systems,”
ACM Computing Surveys vol. 16, pp. 353-398, Dec. 1984.
A. Tanenbaum and R. Renesse, “Distributed operating systems,” ACM
Computing Surveys, vol. 17, no. 4, pp. 419470, Dec. 1985.
R. Want, A. Hopper, V. Falcao, and J. Gibbons, “The active badge
location system,” ACM Trans. Inform. Sysr. vol. IO, pp, 91-102, Jan.
1992.
C.E. Wills, “A service execution mechanism for a distributed envi-
ronment,” in Proc. 9th Inr. Con$ Distrib. Computing Sysr., 1989, pp.
326-334.

pp. 307-312.

Reading, MA: Addison-Wesley, 1989.

vol. SE-13, pp. 895-904, Aug. 1987.

CHANG AND RAVISHANKAR: SERVICE ACQUISITION MECHANISM

[29] S. A. Yemini, G. S. Goldszmidt, A.D. Stoyenko, Y.-H. Wei, and L. W.
Beeck, “Concert: A high-level-language approach to heterogeneous
distributed systems,” in Proc. 9rh Inr. Con$ on Diswibured Compuring
Systems, 1989, pp. 162-171.

R.N. Chang (S’86-M’90) received the B.S. degree
in computer engineering with honors from the Na-
tional Chiao Tung University, Taiwan, in 1982, and
the M.S. and Ph.D. degrees in computer science and
engineering from the University of Michigan, Ann
Arbor, in 1989 and 1990, respectively.

He is currently Manager of Server Systems in the
Intemetworking and Multimedia Services Division
of IBM. From 1990 to 1993, he was a member of the
Technical Staff in the Applied Research Area of Bell
Communications Research. From 1982 to 1984, he

served in the Chinese Army Communications School, Taiwan, as a Lecturer in
computer science. His research interests include multimedia communications
and computing, personal mobilehomadic computing, distributed systems,
operating systems, and software engineering.

Dr. Chang is a member of the IEEE Computer Society and the IEEE
Communications Society, the Association of Computing Machinery, the
USENIX Association, Eta Kappa Nu, and Tau Beta Pi.

169

C. V. Ravishankar (S’82-M’86) received the
B.Tech. degree in chemical engineering from the
Indian Institute of Technology, Bombay, India, in
1975, and the M.S. and Ph.D. degrees in computer
sciences from the University of Wisconsin,
Madison, in 1986 and 1987, respectively.

He has been with the Department of Electrical
Engineering and Computer Science, University
of Michigan, Ann Arbor, since 1986. He is also
a member of the Software Systems Research
Laboratorv and the Real-Time Comuuter Laboratorv ~-, ~ ~ ~~

at the University of Michigan. His teaching and research at the University
of Michigan have been in the areas of distributed systems and programming
languages. His present research interests include large-scale distribution,
heterogeneity, protocol synthesis, real-time systems, and database systems.

Dr. Ravishankar is a member ‘of the IEEE Computer Society and the
Association for Computing Machinery.

