
252 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 4, APRIL 1998

Constructive Protocol Specification
Using Cicero

Yen-Min Huang and Chinya V. Ravishankar, Senior Member, IEEE

Abstract—New protocols are often useful, but are hard to implement well. Protocol synthesis is a solution, but synthesized
protocols can be slow. Implementing protocols will be even more challenging in the future, since we expect that more advanced
communication functionality will be moved from applications into protocol implementations to reduce application development effort.
This trend can be seen from the recent enhancements of RPC to include semantics for supporting group communication,
transactions, fault-tolerance, etc. [1], [2], [3], [4]. Protocol developers will also be challenged to provide correct and efficient protocol
implementations that manage numerous concurrent I/O channels, and to increase protocol throughput to meet real-time
requirements. These requirements demand better language support to facilitate precise control of multiple-thread interactions, and
aggressive exploitation of parallelism in protocol execution. Protocol synthesis is also required for dynamic creation of protocol
adapters in heterogeneous environments [5], [6]. This paper describes Cicero, a set of language constructs to allow constructive
protocol specifications. Unlike other protocol specification languages, Cicero gives programmers explicit control over protocol
execution, and facilitates both sequential and parallel implementations, especially for protocols above the transport-layer. It is
intended to be used in conjunction with domain-specific libraries, and is quite different in philosophy and mode of use from existing
protocol specification languages. A feature of Cicero is the use of event patterns [7] to control synchrony, asynchrony, and
concurrency in protocol execution, which helps programmers build robust protocol implementations. Event-pattern driven execution
also enables implementors to exploit parallelism of varying grains in protocol execution. Event patterns can also be translated into
other formal models, so that existing verification techniques may be used.

Index Terms—Protocol synthesis, protocol specification, protocol implementation, event-driven language.

—————————— ✦ ——————————

1 INTRODUCTION

MPLEMENTING protocols is an important but difficult as-
pect of building distributed systems. New protocols are

often useful because they factor out and encapsulate com-
monly observed interaction patterns. However, they can be
hard to implement well. We envision that in the future,
more of the interaction patterns of applications will be fac-
tored out into new protocols, and that the applica-
tion/protocol boundary will become increasingly blurred.

This trend is already evident. For example, RPC suites
now include semantics for supporting group communica-
tion, transactions, fault-tolerance, etc. [1], [2], [3]. Work has
also already been done on moving much of the TCP/IP and
UDP/IP protocol stacks into user space [4]. This move has
allowed network protocol implementation with both high
performance and flexibility, while retaining existing appli-
cation programming interfaces. We expect this trend to
strengthen in the future, particularly for often-used but
complex protocols.

Protocol synthesis also simplifies service management is-
sues in heterogenous environments. For example, the Cygnus
system [5] generalizes the usual client-server model into a
client-service model, and introduces abstract services on the

network. Clients only see abstract services, and are insulated
from having to deal with a heterogenous collection of service
providers. Cygnus deals with heterogeneity by using agents
at client sites that translate client protocols to server proto-
cols. The work in [6], [8], [9] describes how such agents are
synthesized on demand by retrieving constructive specifica-
tions in Cicero from server sites.

As distributed group/multimedia applications continue to
emerge, protocol developers will also be challenged to pro-
vide correct and efficient protocol implementations that
manage numerous concurrent I/O channels, and to increase
the protocol throughput to meet real-time requirements.
These requirements demand better language support to fa-
cilitate precise control of multiple-thread interactions, and
aggressive exploitation of parallelism in protocol execution.

This paper describes Cicero, a set of language constructs
designed to meet these challenges. This language differs in
significant ways in its goals and approach from existing
declarative protocol specification languages [10], [11], [12],
[13], [14], [15]. In particular, Cicero specifications are con-
structive, so that programmers may directly control protocol
execution. They are able to implement run-time event syn-
chronization and control event sequencing and visibility
through event patterns.

Cicero is designed to facilitate hybrid protocol imple-
mentation strategies. Protocols can either be implemented
by hand or be synthesized from specifications. Implement-
ing protocols by hand produces very efficient implementa-
tions, but requires thorough testing and debugging to as-
sure correctness [16], [17]. Testing and debugging can be

0098-5589/98/$10.00 © 1998 IEEE

²²²²²²²²²²²²²²²²

•� Y.-M. Huang is with IBM, Research Triangle Park, NC.
•� C.V. Ravishankar is with the Electrical Engineering and Computer Science

Department, University of Michigan, Ann Arbor, MI 48109.
E-mail: ravi@eecs.umich.edu.

Manuscript received 3 Jan. 1996; revised 6 June 1997.
Recommended for acceptance by D. Wile.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number 101193.

I

HUANG AND RAVISHANKAR: CONSTRUCTIVE PROTCOL SPECIFICATION USING CICERO 253

time consuming, especially for complex protocols. The al-
ternative approach is to generate protocol implementations
from protocol specifications, or to interpret specifications
directly [10], [11], [12], [13], [14], [15]. This approach also
offers programmers tools to construct correct protocol im-
plementations. However, the portions of a protocol imple-
mentation that can be generated depend on the environ-
ment and the specification language used. The efficiency of
generated code is also a concern [18], [19]. The performance
of generated implementations may need tuning because the
assumptions and the implementation decisions made by a
specification compiler may not be optimal for all environ-
ments. However, tuning performance can be error-prone
under these circumstances because it requires understand-
ing of generated code.

The two approaches described above represent opposite
strategies, and are effective in different situations. Cicero
combines them in a protocol construction language and
allows the representation of the operational (execution) as-
pects of protocol implementations. We have found the per-
formance of protocols generated using Cicero [6] to be ex-
cellent. Cicero also allows explicit control of parallelism and
of complex multithreaded interactions in protocol execu-
tion. Thus, protocol implementations in Cicero may exploit
multiprocessor architectures.

Cicero’s language constructs can be used for imple-
menting any protocol. However, they are particularly useful
for protocols above the transport layer. More potential for
concurrent I/O and parallelism exists in such protocols.
Such parallelism is often present at coarser granualities, and
the costs of managing concurrent threads are lower. Cicero
also allows programmers to turn off the multithread sup-
port when it is not needed.

1.1 Cicero Use and Status
An implementation of Cicero has existed for several years.
We have successfully used the language to specify and
synthesize RPC protocols in real systems [6], [8], [9]. Such
synthesis supports the operation of systems like Cygnus
[5], which facilitates resource sharing in heterogeneous
distributed networks. Cygnus clients may retrieve RPC
descriptions from server sites and locally synthesize RPC
translation agents. Since servers are not required to run
any code, this synthesis facility enables clients to access
services offered by insular servers. This approach also
scales very well.

We have found the performance of our synthesized
RPCs to be as good as that of native implementations, and
often better [6]. This paradox arises since we are able to
tailor the semantics and operation of protocols to the im-
mediate needs. In contrast, native implementations must
strive to accommodate all cases, limiting the scope of op-
timizations. Another reason for the superior performance of
our protocol synthesis scheme is that we allow program-
mers direct control over implementations.

Cicero does not make protocol verification a primary
objective, though we provide translations into existing for-
malisms, such as Petri nets. This does leave open the possi-
bility of using existing tools for verification.

2 DESIGN RATIONALE

Cicero is designed to allow constructive specifications of
protocols. Thus, it complements languages like LOTOS [20],
Estelle [21], and SDL [22], designed to support declarative
specifications. Cicero differs fundamentally from such lan-
guages, for it allows programmers to explicitly synchronize
and order events, as well as to control the manner in which
event patterns cause code to be executed.

2.1 Protocol Construction Model
Protocols describe the interactions between computational
threads, specifically in terms of actions to be performed
when various events occur. Thus, Cicero makes events the
fundamental protocol structuring concept. Protocol de-
scriptions in Cicero are operational, but still high-level.
They are hence called protocol constructions. A construction
specifies the structure of events, and relationships between
events and their influences on computational threads are
specified. Thus Cicero manages threads and synchroniza-
tion, but the programmer may control the exact semantics.

Assume that we wish to synchronize and display a pair
of incoming video and audio frames. The following Cicero
fragment accomplishes this task using the synchronization
operator “Á”.
when �YLGHRBLQ Á DXGLRBLQ���

VKRZBIUDPH�EXLOGBIUDPH�YLGHRBLQ��DXGLRBLQ���
end�

The parenthesized expression following when is an event
pattern, a notion borrowed from the language POST [7]. The
pattern is activated when instances of the video_in and
audio_in events arrive. The operator “Á” in the pattern
forces corresponding instances of video_in and audio_in
events to be synchronized. That is, the show_frame routine
is executed only after corresponding instances of both
events have arrived. As explained in Section 3.2.4, Cicero
also provides some additional operators: “,“ to denote par-
allelism, “~” to denote sequencing, and “*” to denote itera-
tion. These operators would be needed, for example, by a
code fragment designed to synchronize and display a se-
ries of video and audio frames. A detailed example ap-
pears in Appendix A.

As protocols get more complex, interactions become
more complex, and understanding them becomes harder.
Special difficulties arise when dealing with synchrony,
asynchrony and concurrency in event occurrence and pro-
tocol execution, especially when multithreaded execution is
involved. A typical challenge in protocol debugging is to
detect and correct a timing-related error which occurs non-
deterministically in 5 percent of all test runs. Such bugs
often arise when interactions among threads are not fully
understood, and are usually most difficult to correct. Deal-
ing with such situations requires support beyond that cur-
rently available. Dealing with complex protocol interactions
will become increasingly important in the future as protocol
implementations use multiple-thread support to implement
multicast protocols, or exploit parallelism in protocol exe-
cution to increase throughputs. Cicero is intended specifi-
cally to address these difficulties.

254 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 4, APRIL 1998

2.2 Language and Execution Model
Cicero is not a full language, but is a language veneer ex-
tending existing languages. It is a small set of high-level
control constructs sufficient to overcome the difficulties in
protocol construction mentioned in Section 2.1. Since Cicero
extends an existing programming language, Cicero users
need learn only the few Cicero constructs, not an entirely
new language. We have chosen C as our present target lan-
guage for Cicero because it is portable and is widely used.

Multithreaded execution is important to increase
throughput and to exploit Multiprocessor systems. We have
chosen a restricted dataflow model [23] to exploit coarse-
grained parallelism in protocol execution, and to model our
event-driven style of execution faithfully. An obvious anal-
ogy can be drawn between events and data tokens in a re-
stricted dataflow model, where token arrival serves as a
mechanism for triggering/firing actions. We simply associ-
ate event patterns with code segments of the proper
granularity. By changing the code granularity with patterns,
we can change the granularity of parallelism exploited in
Cicero. This capability is useful because it allows program-
mers to experiment with different granularities in tuning
performance.

Using the dataflow model also has other advantages.
First, it is mathematically well-defined [24] and well-
understood. Second, it can be translated to/from other for-
mal models (e.g., Petri nets [24]), making it possible to use
existing protocol verification methods/tools, and easier to
construct tools for generating protocol implementations
from existing protocol specifications. These capabilities can
further automate protocol implementation and improve the
quality of implementation.

2.3 Basic Language Abstractions and Semantics
A natural abstraction for specifying synchrony, asyn-
chrony, and concurrency in protocol execution is an event-
driven paradigm, where a protocol is viewed as a machine
reacting to internal/external events or messages [20], [21],
[25], [26], [27]. To describe complex relationships between
events, we have borrowed the notion of event patterns
from POST [7]. Event patterns use event combinators to re-
cursively describe relationships between events. Cicero
uses the three event combinators “Á”, “,”, and “~”, to ex-
press synchronous, asynchronous, and sequential rela-
tionships between events, respectively.

2.3.1 Active and Passive Patterns
Event-pattern semantics can be classified into two types:
active pattern semantics [7], [28] and passive pattern se-
mantics [27]. Event patterns in Cicero have active pattern
semantics. They behave like safeguards, locally guarantee-
ing the relationships between events, rather than passively
detecting these relationships. That is, our event patterns are
useful for implementing control flow, and for enforcing
specified relationships between events before performing
actions. The passive semantics used in many other event-
driven languages [25], [27] would simply detect predefined
relationships between events and then perform the indicated
actions. For example, in Cicero, the event pattern (a ~ b) de-
livers event a before event b to its target code. This local

delivery sequence is enforced even if event b actually occurs
first. In other words, the delivery of b may need to be de-
layed to ensure that event a is delivered first. In contrast,
passive semantics would trigger actions only if it is ob-
served that an occurrence of event a is followed by an oc-
currence an event b.

We believe active pattern semantics enable programmers
to construct more robust protocol implementations than pas-
sive pattern-matching semantics. For example, patterns with
active semantics can be used for flagging unusual situations,
and can be of direct help to programmers in identifying ob-
scure causes for bugs. In contrast, passive pattern semantics
leave it entirely up to programmers to find causes, say, when
some event patterns are not observed, or expected actions not
executed. Such mismatches are often caused by subtle timing
problems, in which case programmers may be forced to labo-
riously examine all possibilities to find the problem. In con-
trast, with active pattern semantics, the problem can often be
avoided altogether, or simply corrected by patching in a few
extra patterns. We believe active pattern semantics can make
implementations more robust by ensuring correct behavior,
and also reduce the possibilities of inadvertently introducing
timing-related bugs while tuning performance.

2.4 The Communication Primitives
Several design choices present themselves for communica-
tion primitives in Cicero: remote events, new communication
constructs, or library calls. The idea of using remote events
sounds attractive because it retains the elegance of event-
driven abstractions. However, our goal is to design a lan-
guage for implementing protocols, not a language for general
distributed computing. Remote events are restrictive since
they impose their semantics on every protocol constructed.
Also, programmers will have no control over messages
passed over the network. We reject new communication con-
structs for similar reasons. Besides, once they become a part
of Cicero, it will be difficult to replace them in the future.
Thus, Cicero provides communication primitives through
library calls because they are flexible and can be easily re-
placed. This approach allows developers to customize Cicero
for implementing different classes of protocols. For example,
we have used Cicero to construct heterogeneous RPC
mechanisms to facilitate the interconnection between the cli-
ent and server programs speaking different RPC protocols
[29], [6]. In our case, a Cicero communication library imple-
menting transport layer services is provided as a part of the
package, and developers are allowed to construct different
RPC protocols on top of the library provided.

3 CICERO CONCEPTS

The Cicero language model is based on the notions of
events, event instances, and event patterns. Events and event
instances will be introduced first. These concepts are identi-
cal to their counterparts in POST [7], which has inspired
much of Cicero design.

3.1 Events and Event Instances
Events are unbounded sequences of event instances. An
event instance is an object modeling the occurrence of a real

HUANG AND RAVISHANKAR: CONSTRUCTIVE PROTCOL SPECIFICATION USING CICERO 255

event. For example, if timeouts are modeled as events, then
the third occurrence of a timeout event is represented by
the third timeout event instance. Instances of an event may
occur at several places in a program, but all instances of the
same event are globally ordered and delivered in order by
the Cicero runtime. No ordering is defined between in-
stances of different events. Delivery order between different
events can only be controlled by patterns. Following the
previous example, if several timeout instances occur con-
currently, they will all be globally ordered, and the order of
instances will be identical for all observers of the timeout
event. Such ordering helps programmers coordinate tasks
among different threads.

3.1.1 Lifecycle of Event Instances
An event instance can be generated (emitted), observed,
and consumed. An event instance can be explicitly emitted
by programs, or can be implicitly generated by the Cicero
language runtime. One copy of an emitted event instance is
made available to each of its observers. Actions may be
triggered when an event instance is observed, and the event
instance copy is consumed when these actions are finished.
An instance is not available after it is consumed.

3.1.2 Event Instance Attributes
An event instance is a structured object containing three
fields representing attributes of the event instance: an in-
stance number field, a priority field, and a value field. The
instance number reflects the global ordering among in-
stances of a given event. The priority affects the execution
priority of the action triggered by the event instance, but
not the order of instance delivery. Priority is used to facili-
tate the implementation of out-of-band and exception
events, which may require actions to be executed immedi-
ately. The value field is used to associate a value or a data
structure (via a pointer) with an event instance. The value
field is used primarily for associating extra state with
events, so that programmers can customize them for differ-
ent situations.

The instance number field is read-only, but the priority
and the value fields can be read and set by programmers.
The settable fields can be set only when a new instance is
generated, and become read-only after the generation of the
instance. Thus, no concurrency control is necessary to read
field values. If these field values are not set, the newly-
emitted instance inherits field values from the previous
instance. Default values for the first instance are provided.

3.2 Event Patterns
An event pattern specifies the precise relationships between
event instances that trigger actions in a protocol. Patterns
are based on three basic notions: event combinators, event
pattern instances, and actions.

3.2.1 Event Combinators
Event combinators in Cicero, as in POST [7], are operators
describing the relationships between event instances that
must be ensured before actions can be triggered. These rela-
tionships can be synchronous, asynchronous, or sequential,
and the corresponding event combinators are “Á”, ”,”, and
“~”, respectively. Event combinators may be used to combine

simpler event patterns into more complex ones to express
complex relationships. For example, the code segment “when
(x Á y): emit z; end” specifies that when event instances x and
y are both observed, instance of z is to be emitted.

Because relationships between events often exhibit re-
peating behavior, the repeat operator “*” is introduced, and
specifies that actions are to be executed each time the pattern
conditions are met. All operators/combinators can be recur-
sively applied to construct complex event patterns. The rules
for combining event patterns are defined as follows. Let E1
and E2 be event patterns and c denote a combinator.

1)�An atom x is an event pattern.
2)� (E1) is an event pattern.
3)� (E1) c (E2) is an event pattern.
4)� (E1 c)* is an event pattern. (E1 c) is equivalent to (E1 c)*.
5)� (E1 c)*k is an event pattern, where k ¶ {1, 2, 3 ¤}.

Event patterns constructed using only rules 1) to 3) are
called simple event patterns. Event patterns having syntax 4)
and 5) are called repeating event patterns. Specifically, event
patterns in syntax 4) are called infinite repeating event pat-
terns, and the ones in syntax 5) are called finite repeating
event patterns. Infix operators have higher precedence than
suffix operators, but parentheses may be used to alter this
default precedence. To simplify the syntax, the “*” operator
may be dropped from infinite repeating event patterns.
Thus, if x, y, z are atoms, (x Á y) ~ z, is equivalent to ((x Á y)
~ z,)* which is an infinite repeating event pattern, each of
whose components comprises a pair of synchronized events
(x Á y) followed by a third event z. On the other hand, (x Á
y) ~ (z,)* matches the pair (x Á y) followed by an infinite
sequence of zs.

3.2.2 Event Pattern Instances
Actions are triggered when an instance of the associated
event pattern comes into existence. An instance of an event
pattern comes into existence when the specified event in-
stance relationship is effected, and the event pattern be-
comes active. If the sequencing operator “~” is not used, the
pattern becomes active as soon as the matching event in-
stances have arrived. When the sequencing combinator “~”
is used, activations are serialized; that is, the next pattern
instance does not become active until after the actions trig-
gered by the previous activation have terminated. The
event instances that make an event pattern active are called
the activating instances of the event pattern, and only the
activating instances are accessible (available) in the code
triggered by the pattern. The pattern instance and its acti-
vating instances are consumed when the triggered actions
terminate. The pattern becomes inactive when no active in-
stances exist. For a finite repeating event pattern, additional
overflow actions may be associated with the pattern. The
overflow actions are triggered when the number of pattern
instances exceeds the specified limit. These pattern in-
stances triggering the overflow actions are called overflow
pattern instances.

3.2.3 Actions
An action is a sequence of statements executed when an
appropriate event pattern instance comes into existence. To
encourage coarse-grain parallelism, an action is executed as

256 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 4, APRIL 1998

a thread (light-weight process), which may subsequently
create more threads (actions) in executing the action. To
meet different implementation requirements, we allow
threads to be invoked either synchronously or asynchro-
nously through different mechanisms. Asynchronous invo-
cation is accomplished by emitting event instances, while
synchronous invocation is accomplished using bundle calls
(see Section 4.4). An invoking thread is blocked until all the
synchronously invoked threads are terminated, but may
continue execution without waiting for any asynchronously
invoked threads to finish. Thus, the termination of a thread
is defined as the termination of all its synchronously in-
voked threads plus the termination of itself.

A triggered action is scheduled and executed according
to its execution priority, which is simply the highest of the
priorities of the activating event instances. Actions with
higher execution priorities will be scheduled and executed
first. If there is a tie, actions are scheduled and executed on
a first-come-first-served basis. Scheduling in Cicero is pre-
emptive; however, the scheduling quantum is unspecified.

3.2.4 Event Pattern Semantics
Here we describe the semantics of event patterns infor-
mally. The syntax “P : actions : overflow-actions” denotes an
event pattern, associated actions and overflow actions re-
spectively. Let E1 and E2 be two event patterns comprising
P. Since there may be several concurrent instances of a pat-
tern, we allow the activated code to refer to the activating
pattern instance (see Section 4.2.2). The semantics of P are
as follows:

1)� (e): actions. If e is an atom, the associated actions are
triggered when an instance of the event represented
by e comes into existence.

2)� ((E)): actions. This pattern is equivalent to (E): actions.
3)� (E1 Á E2): actions. This pattern requires that the associ-

ated action be triggered only when corresponding in-
stances of both E1 and E2 come into existence.

4)� (E1, E2): actions. This pattern requires that the associ-
ated action be triggered when an instance of either E1
or E2 comes into existence. The action instances trig-
gered by instances of E1 and E2 may execute concur-
rently (the activating pattern instances may be identi-
fied as in Section 4.2.2).

5)� (E1 ~ E2): actions. This pattern requires the actions to
be triggered separately by instances of E1 and E2, and
in that sequence. No action may be triggered by an in-
stance of E2 unless the action triggered by the corre-
sponding instance E1 is finished.

6)� (E1,)*: actions. This pattern has the same semantics as
the pattern (E1). The associated action is triggered
when each instance of E1 comes into existence, and
triggered action instances may execute concurrently.

7)� (E1 ~)*: actions. The associated action is triggered and
executed sequentially when each instance of E1 comes
into existence. No action may be triggered by the ith in-
stance of E1 unless the action triggered by the (i - 1)th
instance of E1 is finished.

8)� (E1 Á)*: actions. This pattern will never trigger its asso-
ciated action because it must await an infinite number
of instances of E1.

9)� (E1 Á)*N: actions : overflow-action. This pattern requires
that the associated action be triggered only when N
instances of E1 come into existence. The overflow ac-
tion is triggered by all subsequent instances of E1. The
overflow actions for multiple overflows execute con-
currently. The description of overflow semantics is
omitted from here on because they are identical for all
finite repeating event patterns.

10)� (E1,)*N: actions : overflow-actions. This pattern requires
that the associated actions be triggered each time an
instance of E1 comes into existence, up to N times.

11)� (E1 ~)*N: actions : overflow-actions. This pattern re-
quires that the associated action be triggered each
time an instance of E1 coming into existence (up to N
times), provided that the action triggered by the pre-
vious E1 instance has terminated.

4 LANGUAGE CONSTRUCTS IN CICERO

Cicero exists as a veneer over existing programming lan-
guages; the extension defined by Cicero comprises five lan-
guage constructs: emit, when, cond, bundle, and escape.
The emit construct is used to generate new event instances.
The when construct controls the execution of associated
target code. The emit construct creates event instances,
while the when construct consumes them. The cond con-
struct implements conditional branches, and helps distin-
guish active events in an event pattern. The modularization
construct (bundle) provides scoping for events and encour-
ages a modular programming style by factoring out Multi-
threaded subproblems. The escape construct allows pro-
grammers to include statements in the base language.

4.1 The EMIT Construct
The emit construct is used to generate or signal event in-
stances. As explained in Section 3.1, instances of the same
event are ordered globally, but no ordering is defined be-
tween instances of different events. After an event instance
is emitted, it is dispatched to all the when constructs that
can observe it. Event instance fields can be set only when
emitting a new instance, and become read-only after the
emission of the instance. If these field values are not set, the
newly-emitted instance inherits field values from the previ-
ous instance. Default values are provided for the first in-
stance. Examples of the use of the emit construct are:

 emit e1: (val = 1, pri = 2); /* emit e1 with field values set */
 emit e1; /* emit e1 with field values inherited */

The first emit generates an event instance of e1 with its
value and priority field set to 1 and 2, respectively. The sec-
ond emit simply generates an instance of e1, whose value
and priority will be inherited from the previous instance.

4.2 The WHEN Construct
A when construct consists of three parts: an event pattern, a
list of target statements, and possibly an overflow state-
ment. The syntax and an example of the when construct are
illustrated below.

when event_pattern: when (e1, e2,)*3:
 action_statements emit e3;

end: overflow_statement end: emit e4;

HUANG AND RAVISHANKAR: CONSTRUCTIVE PROTCOL SPECIFICATION USING CICERO 257

In the above example, when e1 or e2 instance occurs, an
instance of event pattern (e1, e2) is active to trigger the ac-
tion. The activating instance with the highest priority de-
termines the priority of the outer pattern. The activating
instances are accessible while the action is executing, but
are consumed and become inaccessible when the action is
completed. Each when construct consumes only its own
copy of activating instances. Because priorities are associ-
ated with event instances, actions corresponding to differ-
ent instantiations of the same pattern may execute at differ-
ent priorities. The overflow code is executed when the
number of the event-pattern instances exceeds the maxi-
mum number of repeating instances allowed in a pattern (3,
in this example).

4.2.1 Parallelism in Cicero
The when construct defines the granularity of parallelism
in Cicero. Each when construct has its own thread of con-
trol. Since many when constructs may name the same event
in their event patterns, one event instance may trigger
many when constructs. These threads will all run concur-
rently. To invoke threads synchronously, a programmer
must use the bundle construct, which will be discussed in
Section 4.4.

4.2.2 Pattern Instance Variables
As we saw in Section 3.2.4, several instances of a pattern
may be active concurrently. A programmer often wishes to
know what the activating instances are and how many
times a pattern has been active. A mechanism called the
pattern instance variable provides the instance number of
an event pattern. A programmer can cause the pattern in-
stance number to be placed in a variable i by appending
“?i” to the pattern. For example, in:

when (timeout?i, recvmsg?j):
 cond (i > 0): emit wait;
 (j > 0): emit done;
 end;

end;

the pattern instance variables i and j contain the instance
numbers of the event patterns timeout and recvmsg, respec-
tively. If an event pattern is not active, its pattern instance
variable will contain the number zero. Thus, a programmer
can identify active pattern instances by checking the num-
ber of pattern instance variables. In the above example, this
checking is done using the cond construct.

4.3 The COND Construct
Our cond construct is similar to the LISP cond construct (or
the switch statement in C), except that when several condi-
tionals evaluate to true, the statements associated with all
the true conditions will be executed in order. These state-
ments are designed to be executed sequentially to increase
the granularity of parallelism and reduce concurrency con-
trol overhead. An example of a cond construct can be found
in Section 4.2.2.

4.4 The BUNDLE Construct
The modularization construct in Cicero is the bundle; it is
used to group when constructs into a module. The bundle

construct defines the extent of visibility for event instances,
and provides an environment for sharing variables among a
group of when constructs. By default, events and event
instances generated within a bundle are not visible outside
it, nor are event instances outside a bundle visible inside.
However, event instances from outside may be passed into
a bundle through explicit parameter declarations in the
bundle. It is also possible to define a pool of variables in-
side a bundle that are shared among all its when con-
structs.

The bundle construct is similar in a general way to ab-
stract data types in other programming languages. It is use-
ful in factoring out the structure common to a specific class
of problem. For example, a bundle may consolidate a class
of the general producer/consumer problem within a proto-
col construction, and may contain two when constructs
(one for the producer and one for the consumer) sharing a
common data structure.

Although the bundle construct is similar to the traditional
procedure, it differs from the traditional procedure in the
modularization unit, and event instance passing. Because
each when construct has its own thread of control, the bun-
dle construct may be viewed as a container for multiple
threads in Cicero. Passing event instances is different from
passing ordinary parameters. For example, instance numbers
are not valid across scopes. Instead, a mechanism called event
channels is provided to pass event instances.

Event channels are one-directional. When a caller passes
an event instance to a callee through an event channel, a
new event instance is re-emitted in the callee’s scope with
the field value copied from the caller’s event instance. This
direction of copying is reversed when the callee completes
and passes out the latest output event instance to the caller.
Again, a new event instance is emitted in the caller scope to
carry the output field values from the callee. The call se-
mantics for bundle constructs are synchronous, i.e., the
bundle caller is blocked until the completion of the bundle.
The completion of the bundle is indicated by emitting a
special event RETURN, and the return codes can be set in
the value field of RETURN. These synchronous call seman-
tics are designed to make programming easier, because no
concurrency control between the bundle and its caller is
necessary. Bundles can be nested or recursive; therefore, all
the activated threads of a bundle form a thread hierarchy.

There are two other related special events: INIT and
EXIT. The INIT event is automatically generated within the
scope of a bundle each time it is invoked. For each bundle,
only one observer (when construct) is allowed to observe
INIT, and the associated action will be executed before any
other when constructs in the bundle. INIT is designed to
perform initialization of a bundle. EXIT is a special event
that may be emitted to exit the entire program.

4.4.1 BUNDLE Declarations
The bundle declaration is similar to ordinary procedure
declarations except that it also defines event channels. As
with ordinary procedures, the bundle can also have formal
parameters declared in a C-like syntax. However, parame-
ters are passed using copy-in-copy-out semantics. Copy-
in-copy-out semantics are used to be consistent with the

258 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 4, APRIL 1998

mechanics of passing values across address spaces, and to
preserve isolation. The following is an example of the bun-
dle construct declaration and invocation.

bundle send_recv (int id, msgtype; in e1; out e2, e3)
¤ /* body of the bundle */
end /**** end of bundle declaration ****/

/************* the caller *************/
int id; int msgtp;
event send_e, wait_e, recv_e;
¤
when send_e:

send_recv (id, msgtp, send_e, wait_e, recv_e);
end

In the above example, the bundle send_recv is declared
with the reserved word bundle, and has three event chan-
nels: one input channel e1 and two output channels e2 and
e3, which are declared with the reserved words in and out,
respectively. The bundle send_recv is invoked when an in-
stance of event send_e is observed in the caller. It can return
instances of two output events, wait_e and recv_e. At invo-
cation time, an event instance e1 is emitted in the callee’s
scope with the field value copied from the activating in-
stance of send_e. When the bundle send_recv completes, the
latest output event instance (e2 or e3) is passed out through
the output event channel. And, the corresponding event
instance (wait_e or recv_e) in the caller is emitted with the
values copied out from the output event instances (e2 or e3).

4.5 The Escape Construct
The escape construct allows programmers to include target
language statements in a Cicero construction. This inclusion
is accomplished by enclosing these statements within “{“
and “}”. This block of target language statements is called
an escape component. Within the braces, programmers can
declare local variables, access data structures, and call pro-
cedures as in ordinary C programs. See Fig. 3, line 10 for an
illustration of its use.

Although the escape construct is convenient for pro-
grammers, it can make the verification process difficult if
abused. Cicero relies on programmers to provide the correct
assertions for escape components. In particular, Cicero as-
sumes that the code in an escape component terminates.

5 THE CICERO COMMUNICATION LIBRARY

Although Cicero language constructs are not tied to any
specific class of protocol implementations, the Cicero com-
munication library is designed for constructing protocols
above the transport layer. This communication library pro-
vides a set of transport services to facilitate point-to-point
communication. In Cicero, the point-to-point notion is
captured by communication handles which denote associa-
tions between two end points. Multiple communication
handles can be created to model group communication. In
addition, each handle can bind with a different protocol to
support heterogeneous communication.

The communication paradigm between two end points is
the send/receive model illustrated in Fig. 1. Our
send/receive model consists of four essential activities:

preparing a message, sending a message, receiving a mes-
sage, and processing a message. The implementations of
these activities are provided by the communication library.
For example, the communication library provides functions
for both reliable and unreliable message delivery. Also, the
communication model is based on peer-to-peer communi-
cation, and the popular client-server model is treated as a
special case in our peer-to-peer communication model.

Fig. 1. The send/receive model in Cicero.

5.1 Message Types
Programmers describe a protocol by defining their own
message types. They define a message type by providing a
message-type ID and a function which will be invoked
upon receiving a message with this type. Two types of mes-
sages may be defined: the UDef messages and the
UDefCtrl messages. The UDef messages are used to invoke
application-level functions. To perform an RPC, the client
simply sends a UDef message to the server, and the speci-
fied server function will be invoked. When the function is
executed, the results are sent back to the client using the
same message type. Callbacks can also be implemented
easily with UDef messages. For example, when a callback
happens, the server agent simply sends a UDef message
back to the client agent, and the function handling the call-
back will be invoked. The UDefCtrl messages are used to
provide protocol control functions. For example, the pro-
grammers can use UDefCtrl messages to implement out-of-
band control messages.

For the programmer’s convenience, the communication
library also provides five built-in control message types:
start, end, ping, ack, and error. The start message is used
when a client wishes to start a session. A session here is de-
fined as the duration between a start and an end message,
and it is identified by a session number. The end message is
used to reset a channel when a session ends. The ping mes-
sage is used to check whether or not the other end point
(agent) is reachable and alive. The ack message is used to
acknowledge the previous message. The error message is
used to report an error. These five message types are sum-
marized in Table 1.

HUANG AND RAVISHANKAR: CONSTRUCTIVE PROTCOL SPECIFICATION USING CICERO 259

TABLE 1
CONTROL MESSAGE TYPES

Type Meaning

start start a session
end end a session
ping are you there
ack acknowledge a message
error an error has occurred

6 AN EXAMPLE

In this section, we will use an example to illustrate how to
use Cicero to describe an RPC protocol. The protocol de-
scribed here is based on the client-server model, and only
the client code segments are presented. More examples can
be found in Appendix A.

6.1 An At-Least-Once RPC Protocol
In this example, we will construct an RPC protocol with at-
least-once semantics by mirroring the extended finite state
machine specification in Fig. 2 in Cicero code. If the server is
up, but messages may be lost in transit, these RPC semantics
cause the remote operation to be executed at least once.

Although the Cicero specification can be made more
compact, we present a somewhat longer version to make
the implementation easier to understand. There is a one-to-
one mapping of events between the FSM specification in
Fig. 2 and the Cicero code segment, except that the
send_msg event is replaced by a library call. The correspon-
dence between the Cicero code segment and the original
specification is shown in the comments within the code
segment. The library functions used in the code segment
are also briefly described in Table 2.

Fig. 2. An extended FSM diagram for at-least-once semantics.

TABLE 2
DESCRIPTION OF FUNCTIONS USED IN BUNDLE CLIENT_RPC()

Function Description

CC_send_udef_msg sends out an RPC message
CC_recv_udef_msg waits for an RPC reply message
CC_send_ctrl_msg sends out a control message
CC_recv_ctrl_msg waits for receiving a control message
CC_wait pause for a period of time before continuing
CC_ioctl set input/output control options

(similar to Unix ioctl())
CC_set_udef_sendmsg associates an RPC message with the

communication handle so that it can
be sent out later

The Cicero code segment is shown at Fig. 3. Initially, two
events, send_data and recv_data, are emitted to trigger two
when constructs to send and receive RPC messages (line 14
to 15, line 18 and 24). After the sending out the RPC mes-
sage (line 20), a timer when construct (line 29) is triggered.
If a reply is received, the bundle returns (line 26). If a time-
out occurs, a ping event is emitted to send a ping message
(line 31 and 39). A ping message is resent every 60 sec until
either a reply is received, or the number of retries exceeds
the limit Max_Retry (line 35 to 41). In the later case, the
bundle returns with an error (line 36). It is possible that the
original RPC message never reaches the server. In this case,
a NO_SUCH_CALL_ERR error message is returned, and
the original RPC message is resent (line 50 to 51).

7 IMPLEMENTATION AND PERFORMANCE

We have used Cicero to implement both customized and
heterogeneous RPC protocols, and discuss these construc-
tions and their performance in [6]. Here we focus on the
performance of the language implementation. Our Cicero
implementation includes the Cicero compiler and the
Cicero runtime library. The Cicero compiler is implemented
using Unix lex [30] and yacc [31]. Because the implementa-
tion of the compiler front-end is standard, we will focus on
its runtime library.

Each when construct is compiled to a procedure and
executed as a thread. When it observes an event instance, a
when is put in a queue called task queue, which is created
when its enclosing bundle is invoked. For each bundle in-
vocation, a dispatch thread is created to run the when con-
struct at the head of the task queue. All runnable threads
are scheduled using a round-robin scheduling policy. The
dispatch thread terminates when a RETURN event is ob-
served, and the bundle returns.

We have isolated the implementation of event patterns
into a separate package which may be used directly when
extending other languages with Ciciero constructs. Details
on implementing event patterns, their formal semantics,
and their translations into LOTOS [20] and Petri nets ap-
pear in [32].

Since thread packages are often platform-dependent, the
Cicero runtime library does not provide its own thread
package. To improve portability, it provides interfaces to
existing thread packages instead. The minimal functionality
Cicero expects from a thread package are features for start-
ing and terminating a thread, and for guaranteeing mutul
exclusion. Currently, the runtime library supports interfaces
to four thread packages, SUN LWP [33], Brown Threads
[34], Unix Cthreads [35], and Mach Cthreads [36]. If no
thread package is available, the Cicero runtime operates by
calling the when constructs in the task queue in order
within the dispatch routine. In the runtime library, this case
is encapsulated by a special thread package interface called
NOLWP. NOLWP is also used for protocol implementations
that do not benefit from parallelization and wish to avoid
thread management overhead.

The Cicero runtime uses locks to control access to the
shared runtime data structures and the sequential execution
of target instances (when sequential combinators are used).

260 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 4, APRIL 1998

For example, each event is represented by a queue of event
instances, and has a read and a write lock associated with it.
Depending on the operation (read/write), the proper lock
must be obtained before accessing the queue. In Cicero, a
multiple-reader/one-writer policy is implemented for
maximizing concurrent read access to the event instance
fields stored in the queue. The single writer policy serializes
all updates to event queues, which guarantees the global or-
dering of event instances. Starvation is prevented by alter-
nating the priority of readers and writers. Currently, locks are
implemented using monitors/semaphores provided by the
underlying thread package. However, in the case of NOLWP,
locks are not necessary since there is no pre-emption.

The Cicero runtime overhead arises from two sources:
the control mechanism and the underlying thread package.
The control mechanism overhead consists of the overhead

for emitting an event instance and executing event patterns.
The overhead for event instance emission includes creating
an instance data structure, inserting it into the event in-
stance queue, dispatching it to when constructs, and put-
ting when constructs into the task queue. The overhead for
pattern execution includes the overhead for evaluating the
status of an event pattern, computing the execution priority,
and updating the status. The overhead imposed by the un-
derlying thread package is the overhead for the locking
mechanism and the thread management. Table 3 shows the
instance emission and the pattern execution overhead with
and without thread packages. The Cicero runtime over-
heads are measured on a SUN Sparc 1 workstation run-
ning SunOS 4.1.1.

Fig. 3. Cicero code segment for at-least-once semantics.

HUANG AND RAVISHANKAR: CONSTRUCTIVE PROTCOL SPECIFICATION USING CICERO 261

TABLE 3
CICERO RUNTIME OVERHEAD

Overhead Type
NOLWP
(msec)

Unix Cthread
(msec)

SUNLWP
(msec)

Instance Emission 0.03 0.13 0.19
Pattern Execution 0.02 0.04 0.05

 Total 0.05 0.17 0.24

The basic runtime overhead for emitting an event instance
and triggering target code is about 0.05 msec (0.03 msec for
instance emission and 0.02 msec for pattern execution).
However, with a thread package, this overhead can range
from 0.17 to 0.24 msec. This increase is due to the extra
overhead for locking the sharing runtime data structures
and managing threads (i.e., the thread scheduling and con-
text switch).

As the size of an event pattern gets larger, the overhead
for pattern execution grows, while instance emission over-
head remains constant. The growth of overheads is shown
in Fig. 4. The size of an event pattern is measured by the
number of nodes in an event pattern, which can be either an
event or a combinator. For example, the size of the event
pattern (e1 Á e2) is 3.

Fig. 4. The overhead growth for pattern evaluation.

As shown in Fig. 4, the rate of growth for pattern execu-
tion overhead is moderate. Since most event pattern sizes
are well below 10 (the shaded area), the growth of the over-
head will not be a significant factor in the overall perform-
ance. For protocols above the transport layer, the overhead
is usually well below 5 percent. If the NOLWP option (no
thread support) is specified, the language overhead is neg-
ligible (< 1 percent) compared to the other delays. We ex-
pect the overhead to diminish further if running on a Mul-
tiprocessor architecture, where we can parallelize the pat-
tern execution using divide-and-conquer strategies.

8 RELATED WORK

Cicero is a protocol construction language, useful for either
handcrafting or synthesizing protocol implementations.
Cicero facilitates the handcrafting of protocol implementa-
tions by providing better control semantics through event
patterns. Event patterns enable programmers to control asyn-
chronous, synchronous, and concurrent activities as well as
exploit parallelism in protocol execution. In addition, event

patterns can be translated into other formal models, so that
existing techniques may be used to verify the implementa-
tion. Cicero can also be used as an executable specification
language for generating protocol implementations. Being an
executable specification language, Cicero allows program-
mers to exercise direct control over the nature of synthesized
implementations. Also, programmers can include custom-
ized code in the synthesized implementations directly. Oth-
erwise, customization must be accomplished in a separate
step after the code is generated, and modification to the gen-
erated code may be required.

The most novel aspect of Cicero is its approach to the
integration of existing notions and abstractions to fulfill its
design goals. Cicero integrates the following ideas.

Active Pattern Matching. The semantics of active pattern
matching are borrowed from POST [7]. However, while
POST is a general pattern-driven dataflow language, Cicero
tailors its ideas to run as a language veneer for protocol
construction. Although the semantics of our event patterns
are superficially similar to those of path expressions [28] and
data path expressions [27], the usage and semantics of our
event patterns expressions are very different from theirs.
Event patterns are used to specify when to execute a piece
of code, while path expressions are used to specify the syn-
chronization constraints on how procedures can be exe-
cuted. For example, an event pattern can indicate that some
target code be triggered only when both event e1 and e2
occur. Such constraints cannot easily be expressed by path
expressions alone. Data path expressions have been used
for detecting incorrect behavior in concurrent programs
[27], and provide passive pattern-matching semantics.
While passive pattern semantics are useful for debugging
purposes, it may not be easy to locate the causes from the
detected symptoms. Active pattern matching can alleviate
this difficulty by fixing the symptoms directly.

Event-Driven Abstraction. Our event-driven model is simi-
lar to the notion of event flows in ESTEREL [25]. However, we
have extended the simple event-driven model to include
event patterns, allowing programmers to express complex
relationships between events for controlling the execution.
The Actor model [26] is another well-known model for con-
current computation in distributed systems. In Actor, as in
Cicero, no ordering is defined for unrelated events. However,
we globally order the instances of the same event to facilitate
the coordination among multiple threads.

Separation of Local and Remote Communication Mechanisms.
In the past, much work has been done on integrating local
and remote communication into one abstraction. BSD sock-
ets [37] and remote procedure calls (RPC) [38] are well-
known examples. However, because it is designed for pro-
tocol construction, and not for general distributed comput-
ing, Cicero provides different communication mechanisms
for local and remote communication. Local communication
(within the same address space) is accomplished by emit-
ting/observing events, and remote communication (across
address spaces) is supported by a set of library routines
based on a message passing model. This separation be-
tween the local and remote communication mechanism

262 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 4, APRIL 1998

allows programmers to provide different semantics for local
and remote communication. This is necessary in practice
because remote communication must often deal with the
additional problem of partial failures, and the resilience of
failure can vary greatly across protocols. Also, this separa-
tion allows Cicero to adopt additional programming ab-
stractions for protocol implementation, including the ob-
ject-based abstraction provided in [19]. Currently, Cicero
libraries exist for implementing protocols above the trans-
port-layer, such as RPC.

Restricted Dataflow Execution Model. The dataflow model
[23] is well-known, and many languages [7], [39] and ma-
chines [40], [41] have been designed based on it. Instead of
describing data-dependency or data-access disciplines,
Cicero uses the dataflow model to describe event-driven
execution, allowing programmers to explore parallelism in
different granularities by changing the amount of compu-
tation in the associated actions. The dataflow model also
provides the formalism to allow Cicero to be translated
to/from other protocol specification models (e.g., Petri nets
[24]), so that existing tools may be used to facilitate con-
structing protocols.

Executable Specifications. Several Formal Description
Techniques (FDT), like LOTOS [20], Estelle [21], and SDL
[22], have been developed to specify protocol behavior for-
mally. Much research has been conducted in automatically
generating protocol implementations from these FDTs [13],
[14], [15], [41]. However, the protocol implementations gen-
erated by these means are generally in the form of skeletons
which must be filled in by programmer code [19]. Also, the
efficiency of generated code is a concern [18]. Cicero is de-
signed as an executable specification language to allow pro-
grammers to have direct control over generated code, and
requires no additional patching to the generated code.

9 CONCLUSIONS

Using Cicero constructs for implementing protocols offers
the following advantages under an acceptable overhead:

•� Event patterns can control synchrony, asynchrony,
and sequentiality in protocol execution, and provide a
better implementation paradigm than thread pack-
ages alone.

•� Event patterns can be translated to/from other mod-
els/languages describing protocols. These transla-
tions make it possible to use existing tools/methods
to facilitate protocol implementation and verification.

•� Cicero provides support for multiple-thread execution
under a dataflow model, so that parallelism in proto-
col implementation can be fully exploited.

•� Cicero encourages coarse-grain parallelism by com-
bining smaller event patterns into larger ones, so that
the thread management overhead can be amortized.

We have used Cicero to describe different RPC protocol
implementations, so that gateway agents may be synthe-
sized to interconnect the client and server programs using
different RPC protocols [5], [29], [6].

APPENDIX A – CICERO EXAMPLES

EXAMPLE 1. A Two-Phase Commit Protocol For N Servers.

This example describes a two-phase commit protocol in-
volving N servers. The client starts by sending a request to
all the servers with at-most-once failure semantics (as de-
scribed in Section 6.1). If any server fails, the client multi-
casts an abort message to all servers. After ensuring that all
servers have received the request, the client issues a commit
request to all servers, and waits for an acknowledgment
from each server. If all servers have acknowledged the
commit request, the request is completed. However, if a
timeout occurs before receiving a reply from a server, the
client must resend the commit request to the server. This
retry continues until either the client receives a reply or the
number of retries exceeds the limit. In the later case, the
client aborts the request by multicasting an abort message
to all servers. The protocol is captured by the the Cicero code
segment in Fig. 5, which consists of nine when constructs:

1)�The first when construct (line 7 to 13) initializes a data
structure for recording the number of retries and
emits a call_server event to start sending requests.

2)�The second when construct (line 15 to 21) delivers the
N requests concurrently with at-most-once failure se-
mantics (client_rpc()). This multicast is accomplished
by emitting another call_server event upon the invo-
cation of this when construct (line 16).

3)�The third when construct (line 23 to 28) is responsible
for collecting replies from all servers to ensure the
servers have received the request. If no error has oc-
curred, it emits a commit event to start sending the
commit request, and a recv event to start threads for
receiving the acknowledgment from servers.

4)�The fourth when construct (line 30 to 34) multicasts
the commit request, and starts the timer for each
commit request by emitting a wait event. The destina-
tion of each commit request is saved in the value field
of the wait event.

5)�The fifth when construct (line 36 to 39) implements the
timer. When a timeout occurs, it sends a retry event to
resend the commit request. The destination of the retry
is obtained from the triggering wait event instance.

6)�The sixth when construct (line 41 to 47) performs the
retry of the commit request. It records the number of
retries for each destination. If the number of retries ex-
ceeds the limit (Max_Retry), an abort event is emitted.

7)�The seventh when construct (line 49 to 55) will start
up N threads to receive the commit acknowledgment
from servers. Upon receiving an acknowledgement, it
emits an ack event, which will be collected by the
eighth when construct.

8)�The eighth when construct is responsible for counting
the number of acknowledgment from servers. If
enough acknowledgment is collected, the bundle re-
turns.

9)�The ninth when construct is triggered when an abort
event is emitted. It multicasts abort requests to all
servers.

HUANG AND RAVISHANKAR: CONSTRUCTIVE PROTCOL SPECIFICATION USING CICERO 263

EXAMPLE 2. A Video/Audio Server.

In this example, we will use Cicero to describe a
video/audio server, which retrieves and sends both video
and audio data to its client through two stream connections.
The video and audio streams are stored at separate files,
and are sent through separate channels. The stored video is
encoded using the MPEG standard [43], which is based on a
scheme to predict motion from frame to frame in the tem-
poral direction. Frame prediction in MPEG is based upon
intra frames (still images) in the video. To facilitate parallel
MPEG decoding, additional indices are built to locate these
frames. Thus, the entire video can be partitioned into many

frame sets, each consisting of an intra frame and a sequence
of predicted frames. Audio data are indexed synchronously
to the video stream. Before sending video/audio data, ad-
ditional synchronization markers are introduced while de-
coding the video and audio data. These synchronization
markers facilitate the synchronization between the corre-
sponding video and audio frame sets and controlling the
flow of outgoing video and audio data streams. Thus, they
are sent to the client along with the video and audio data as
a part of the communication protocol. This scheme is illus-
trated in Fig. 6.

Cicero code segments for our video/audio server are or-
ganized into three bundles (see Figs. 7 and 8).

Fig. 5. Cicero code segment for N-server two-phase commit protocol.

264 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 4, APRIL 1998

Fig. 6. Illustration of video/audio data.

Fig. 7. Cicero code segment for proc_video_request.

HUANG AND RAVISHANKAR: CONSTRUCTIVE PROTCOL SPECIFICATION USING CICERO 265

Fig. 8. Cicero Code Segment for send_video_audio_msg().

Fig. 9. Cicero code segment for proc_frame_set().

266 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 4, APRIL 1998

proc_video_request(). The bundle proc_video_request() is
the top-level driver for processing a request. It reads indi-
ces and sets up threads for processing video and audio (line
9 to 15). In particular, two video threads are used to process
the odd-number and the even-number frame sets concur-
rently to increase through-put (line 17 to 23 and line 25 to
31). Finally, it synchronizes the processed video and audio
data before sending them out (line 41 to 51). To ensure both
video and audio data are ready in the desired sequence, it
uses the event pattern ((v_rdy1 ~ v_rdy2 ~)* Á a_rdy) to re-
strict the execution of the actions. This event pattern en-
sures two conditions before triggering the actions: (1) the
even numbered and odd numbered frame sets, which are
processed concurrently, must be delivered in the frame-
number order 0, 1, 2, ¤, and (2) the corresponding audio
frame set must be ready and synchronized.

send_video_audio_frame_set(). The bundle send_video_
audio_msg() is called by proc_video_request() to send proc-
essed video and audio data messages (see Fig. 8). It also
sends the synchronization markers and performs flow con-
trol by synchronizing the video and audio sending activities
periodically. Two threads (when constructs) are used to
send video and audio data concurrently through separate
channels (lines 12–23 and lines 25–36). Both when con-
structs have identical structure. They continue sending data
messages until they encounter either a synchronization
marker (SYNC) or the end of the message list (END). When
they encounter a synchronization marker, they emits a flow
control event (video_sync or audio_sync) after sending out
the synchronization marker. If they reach the end of the
message list, a video_end event is emitted. The flow control
is accomplished by synchronizing both video_sync and
audio_sync events before it restarts sending messages. It
adjusts the flow of the outgoing video and audio streams,
such that both video and audio channels will be synchro-
nized. The last when construct (lines 42–45) frees up re-
sources when no more message are to be sent.

proc_frame_set(). The bundle proc_frame_set() is called by
proc_video_request() to decode a video or an audio frame set
into a list of messages (see Fig. 9). It consists of two when
constructs. The first when construct (line 10 to 13) initializes
variables, and emits a proc_data event to start processing the
data. The second when construct (line 15 to 29) decodes
individual frame and appends the resulting message to a
list, and a given flag data_type is used to select the proper
decoding routine. A finite repeating pattern is used here to
detect the overflow condition.

ACKNOWLEDGMENT

This work was partly supported by NASA’s Socioeconomic
Data and Applications Center operated by the Consortium
for International Earth Sciences Information Networking.

REFERENCES

[1]� K.S. Yap, P. Jalote, and S. Tripathi, “Fault Tolerant Remote Proce-
dure Call,” Proc. Eighth Int’l Conf. Distributed Computing Systems,
San Jose, Calif., pp. 48–54, June 1988.

[2]� B. Liskov and R. Scheifler, “Guardians and Actions: Linguistic
Support for Robust, Distributed Programs,” ACM Trans. Program-
ming Languages and Systems, vol. 5, no. 3, pp. 381–404, July 1983.

[3]� L. Zahn, T.H. Dineen, P.J. Leach, E.A. Martin, N.W. Mishkin, J.N.
Pato, and G.L. Wyant, Network Computing Architecture. Englewood
Cliffs, N.J.: Prentice Hall, 1990.

[4]� C. Maeda and B.N. Bershad, “Protocol Service Decomposition for
High-Performance Networking,” Proc 14th ACM Symp. Operating
Systems Principles, Comm. ACM, Dec. 1993.

[5]� R.N. Chang and C.V. Ravishankar, “A Service Acquistion Mecha-
nism for Server-Based Heterogeneous Distributed Systems,” IEEE
Trans. Parallel and Distributed Systems, vol. 5, no. 2, pp. 154–169,
Feb. 1984.

[6]� Y. Huang and C.V. Ravishankar, “Designing An Agent Synthesis
System for Cross RPC Communication,” IEEE Trans. Software Eng.,
vol. 20, no. 3, Mar. 1994.

[7]� C.V Ravishankar, “POST: A Language for Dataflow Programming,”
PhD thesis, Computer Sciences Dept., Univ. of Wisconsin, Madi-
son, 1987.

[8]� Y. Huang and C.V. Ravishankar, “URPC: A Toolkit for Prototyping
Remote Procedure Calls,” The Computer J., vol. 39, no. 6, 1996.

[9]� Y. Huang and C.V. Ravishankar, “Secure Synthesis and Activation
of Protocol Translation Agents,” Distributed Systems Eng. J., vol. 4,
1997.

[10]� T.P. Blumer and D.S. Sidhu, “Mechanical Verification and Auto-
matic Implementation of Communication Protocol,” IEEE Trans.
Software Eng., vol. 12, no. 8, pp. 827–843, Aug. 1986.

[11]� G. v. Bochmann, G. Gerbert, and J.M. Serre, “Semiautomatic Im-
plementation of Communication Protocols,” IEEE Trans. Software
Eng., vol. 13, no. 9, pp. 989–999, Sept. 1987.

[12]� J.P. Briand, M.C. Fehri, L. Logrippo, and A. Obaid, “Executing
LOTOS Specifications,” B. Sarikaya and G. v. Bochmann, eds., Pro-
tocol Specification, Testing and Verification VI (IFIP/WG 6.1). Am-
sterdam, The Netherlands: North-Holland, 1987.

[13]� J.P. Ansart, P.D. Amer, V. Chari, J.F. Lenotre, L. Lumbroso, E.
Mariani, and E. Mattera, “Software Tools for Estelle,” B. Sarikaya
and G. v. Bochmann, eds., Protocol Specification, Testing and Verifica-
tion VI (IFIP/WG 6.1). Amsterdam, The Netherlands: North-
Holland, 1987.

[14]� S.T. Vuong, A.C. Lau, and R.I. Chan, “Semiautomatic Implemen-
tation of Protocols Using an Estelle-C Compiler,” IEEE Trans.
Software Eng., vol. 14, no. 3, pp. 384–393, Mar. 1988.

[15]� G. Albertengo, S. Forno, and A. Fumagalli, “TOP/PDT: A Toolkit
for Development of Communication Protocols,” IEEE J. Selected
Areas in Communications,. vol. 8, no. 9, pp. 1,763–1,770, Dec. 1990.

[16]� H.J. Burkhardt, H. Eckert, and A. Giessler, “Testing of Protocol
Implementations—A Systematic Approach to Derivation of Test
Sequences from Global Protocol Specifications,” M. Diaz, ed., Pro-
tocol Specification, Testing and Verification V (IFIP/WG 6.1). Amster-
dam, The Netherlands: North-Holland, 1986.

[17]� J. Favreau and Jr. R.J. Linn, “Automatic Generation of Test Sce-
nario Skeletons from Protocol Specifications Written in Estelle,” B.
Sarikaya and G. v. Bochmann, eds., Protocol Specification, Testing
and Verification VI (IFIP/WG 6.1). Amsterdam, The Netherlands:
North-Holland, 1987.

[18]� L. Svobodova, “Implementing OSI Systems,” IEEE J. Selected Areas
in Communications, vol. 7, no. 7, pp. 1,115–1,130, Sept. 1989.

[19]� M.B. Abbott and L.L. Peterson, “A Language-Based Approach to
Protocol Implementation,” IEEE/ACM Trans. Networking, vol. 1,
no. 1, pp. 4–19, Feb. 1993.

[20]� ISO, Information Processing Systems—Open System Interconnection—
LOTOS—A Formal Description Technique Based on the Temporal Or-
dering of Observational Behavior, 1985.

[21]� ISO, Information Processing Systems—Open System Interconnection–
Estelle (Formal Description Technique Based on an Extended State
Transition Model), 1987.

[22]� CCITT, Specification and Description Language—Recommendation
Z.100. 1986.

[23]� R.M. Karp and R.E. Miller, “Properties of a Model for Parallel
Computation: Determinacy, Termination, Queueing,” SIAM J. of
Applied Math., pp. 1,390–1,411, Nov. 1966.

[24]� K.M. Kavi, B.P. Buckles, and U.N. Bhat, “Isomorphism Between
Petri Nets and Dataflow Graphs,” IEEE Trans. Software Eng., vol.
13, no. 10, pp. 1,127–1,134, Oct. 1987.

[25]� G. Berry and G. Gonthier, “The Synchronous Programming Lan-
guage ESTEREL: Design, Semantics, Implementation,” Technical
Report 842, INRIA, 1988.

HUANG AND RAVISHANKAR: CONSTRUCTIVE PROTCOL SPECIFICATION USING CICERO 267

[26]� G. Agha, Actors: A Model of Concurrent Computation in Distributed
Systems. Cambridge, Mass.: MIT Press, 1986.

[27]� W. Hseush and G.E. Kaiser, “Modeling Concurrency in Parallel
Debugging,” Proc. Second ACM SIGLPAN Symp. Principles and
Practice of Parallel Programming, pp. 11–20, Mar. 1990.

[28]� R.H. Campbell and A.N. Habermann, “The Specification of Proc-
ess Synchronization by Path Expression,” Lecture Notes in Com-
puter Science 16, pp. 89–102. New York: Springer-Verlag, 1974.

[29]� Y. Huang and C.V. Ravishankar, “Accommodating RPC Hetero-
geneities in Large Heterogeneous Distributed Environments,”
Proc. 26th Hawaii Int’l Conf. System Sciences, HICSS-26, Jan. 1993.

[30]� M. E. Lesk and E. Schmidt, “Lex—A Lexical Analyzer Generator,”
Unix Programmer’s Supplementary Documents, vol. 1, 1986.

[31]� S.C. Johnson, “Yacc: Yet Another Compiler-Compiler,” Unix Pro-
grammer’s Supplementary Documents, vol. 1, 1986.

[32]� Y.M. Huang, “Constructive Specification and Synthesis of Agents
for Custom and Cross-RPC,” PhD thesis, Electrical Eng. and
Computer Science Dept., Univ. of Michigan, Ann Arbor, 1994.

[33]� Sun Microsystems, Programming Utilities and Libraries. Mar. 1990.
[34]� T.W. Doeppner, “A Threads Tutorial,” Technical Report CS-87-06,

Dept. of Computer Science, Brown Univ., Mar. 1987.
[35]� K. Schwan, H. Forbes, A. Gheith, B. Mukherjee, and Y. Samiotakis,

“A CThread Library for Multiprocessors,” Technical Report GIT-
ICS-91/02, College of Computing, Georgia Instit. of Tech., 1991.

[36]� E.C. Cooper and R.P. Draves, C Threads. Dept. of Computer Sci-
ence, Carnegie Mellon Univ., July 1987.

[37]� S. Sechrest, “An Introductory 4.3BSD Interprocess Comm. Tuto-
rial,” Unix Programmer’s Manual Supplementary Documents 1,
1:PS1:7–1—PS1:–25, 1986.

[38]� A.P. Birrell and B.J. Nelson, “Implementing Remote Procedure
Call,” ACM Trans. Computer Systems, vol. 2, no. 1, pp. 39–59, Jan.
1984.

[39]� W.W. Wadge and E.A. Ashcroft, Lucid, the Dataflow Programming
Language. Academic Press, United Kingdom, 1985.

[40]� W.W. Hwu and Y. Patt, “HPSm, A High Performance Restricted
Data Flow Architecture having Minimal Functionality,” Proc. The
13th Int’l Symp. Computer Architecture Conf., pp. 297–306, June
1986.

[41]� M. Johnson, Superscalar Microprocessor Design. Englewood Cliffs,
N.J.: Prentice Hall, 1991.

[42]� A. Valenzano, R. Sisto, and L. Ciminiera, “Rapid Prototyping of
Protocols from LOTOS Specification,” Software—Practice and Expe-
rience, vol. 23, no. 1, pp. 31–54, Jan. 1993.

[43]� D. Le Gall, “MPEG: A Video Compression Standard for Multime-
dia Applications,” Comm. ACM, vol. 34, no. 4, pp. 46–58, 1991.

Yen-Min Huang received the BS degree in chemical engineering from
National Taiwan University, Taipei, in 1982, and dual MSE degrees in
chemical engineering and CICE (computer information and control
engineering) from the University of Michigan, Ann Arbor, in 1986. Dr.
Huang received the PhD degree in computer science and engineering
from the University of Michigan, Ann Arbor, at the end of 1993. He is
now with IBM, Research Triangle Park, North Carolina. His current
research interests include distributed systems and computer networks.

Chinya V. Ravishankar received the MS
and PhD degrees in computer sciences
from the University of Wisconsin at Madi-
son in 1986 and 1987, respectively. He
has been with the Electrical Engineering.
and Computer Science Department at the
University of Michigan, Ann Arbor, since
1986. His teaching and research at the
University of Michigan have been in the
area of programming languages, data-
bases, and distributed systems. Dr. Ravis-
hankar founded the Software Systems
Research Laboratory at the University of

Michigan. He is actively involved in the Engineering Research Center
on Reconfigurable Machining Systems, and is a member of the Real-
Time Computing Laboratory at the University of Michigan. His present
research interests include large-scale distribution, heterogeneity, pro-
tocol synthesis, real-time systems, and spatial databases and data
warehousing. Dr. Ravishankar is a senior member of the IEEE, a
member of the Association for Computing Machinery, and a member of
the IEEE Computer Society.

