Synthesizing Translation Agents For Multi-Disciplinary

Data Integration *

Yen-Min Huang

Experimental Systems
IBM Corporation
R.T.P, NC 27715

Abstract

Data integration combines data from different data
sources, so that an integrated view of retrieved data
can be presented to users. Integrating data retrieved
from multi-disciplinary data sources can be very com-
plex because many kinds of data heterogeneities must
be resolved. Such resolution may be accomplished us-
ing translation programs (agents). With a large num-
ber of federated databases, developing and maintaining
translation software for multi-disciplinary data inte-
gration can be prohibitively erpensive. Also, delays
in translation software development may hinder the
avatlability of newly-created data sets. This paper de-
scribes a translation agent synthesis scheme to resolve
these difficulties.

Our translation agent synthesis scheme consists of
two parts: a formal data set description for charac-
terizing data sets and an agent synthesis mechanism.
The data set description describes essential aspects of
a data set including schema, types, units, and seman-
tics. The agent synthesis mechanism uses means-ends
analysis to construct translation agents. The means-
ends analysis is guided by atiribute-value lists speci-
fying the needed translation services. An example of
inter-disciplinary data integration is provided to illus-
trate how a translation agent is synthesized.

1 Introduction

This work is motivated by CIESIN’s mission.
CIESIN (Consortium for International Earth Science
Information Network) is participating in a Federally
funded project to explore technology necessary to in-
tegrate and facilitate the use of global change infor-

*This work was partly supported by the Consortium for In-
ternational Earth Sciences Information Networking

Chinya V. Ravishankar

Department of EECS
The University of Michigan
Ann Arbor, MI 48109-2122

mation. The work includes developing mechanisms to
make this information available to scientists, policy-
makers, and other user communities in researching
and managing global change. CIESIN will serve as a
link between relevant databases and an international
user community and facilitate access, distribution and
use of derived scientific information in the pursuit
of understanding and predicting global environmen-
tal change [1]. To achieve its mission, CIESIN must
develop information management systems which sup-
port context-based information retrieval, heteroge-
neous and distributed databases, and “seamless” user
interfaces. One of the challenges is multi-disciplinary
data integration.

Multi-disciplinary data integration is difficult in
CIESIN’s context. First, resolving some types of
heterogeneities can be difficult. For example, re-
solving heterogeneities in data semantics across dis-
cipline areas is an open research problem. Sec-
ond, the data integration must be accomplished with-
out using a global schema, an approach much pre-
vious work is based on [2, 3, 4, 5]. This is be-
cause the diversity in scientific data makes a single
global schema impractical, if not impossible within
the CIESIN environment. Finally, developing and
maintaining software for data integration can be pro-
hibitively expensive for CIESIN because a large num-
ber of data translation programs may be needed to
resolve all types of heterogeneities [6].

1.1 Our Approach

Many of these difficulties can be resolved if transla-
tion programs (agents) be synthesized either automat-
ically or semi-automatically. A synthesis approach for
generating translation agents has many advantages. It
can create translation agents on demand, minimizing
the costs of software development and maintenance.

Also, if translation agents can be synthesized, newly-
created data sets can be available for data integration
with little delay.

This paper proposes a scheme to synthesize trans-
lation agents for facilitating data integration in
CIESIN’s environment. Our synthesis scheme synthe-
sizes translation agents based on formal data set de-
scriptions, characterizing essential aspects of a data
set including schema, types, units and semantics.

The rest of the paper is organized as the fol-
lows. Section 2 illustrates CIESIN’s data integration
through an example. Section 3 describes our data in-
tegration model and architecture. Section 4 describes
the detail of our agent synthesis scheme. Section 5
concludes the paper and describes future work.

2 A Scenario

We use an example to illustrate some of the data
integration issues faced by the CIESIN system de-
velopers. Consider the following scenario: a medi-
cal scientist is interested in studying how changes in
particulate pollution levels has affected the number
cases of emphysema in the city of Metropolis over the
past few years. The information about emphysema
cases is available in a epidemiology database, and the
measurements of particulate pollution levels are avail-
able in an air-quality database. The relational model
is chosen as our platform for this preliminary work.
Now, consider a typical query that the scientist may
wish to make:

Query: What is the correlation between the measure-
ments of particulate pollution levels and those of
emphysema in the city of Metropolis?

To answer this query, two data sets, the epidemiol-
ogy data set and the air-quality data set, are retrieved
from two different data sources (see Tables 1 and 2).
The epidemiology data set holds the total number of
emphysema cases in the city each year. The air-quality
data set provides measurements of the particulate con-
centrations every six months. However, these two data
sets do not provide direct answers to the query men-
tioned above. The two data sets must be joined to
answer the above query, and data translation must be
performed as a prelude to the join.

Now, data retrieved from different sources may have
different data representations, different data units,
and different data semantics. A first step in data in-
tegration is data conversion. In our example, the data
representation corresponding to the attribute “Year”

Year | Emphysema Cases
1988 1,052
1989 1,503
1990 2,162

Table 1: Data Set (1) from Epidemiology Database

Date Particulate Concentration
(mmddyy) (gm/liter)
060188 0.00210
120188 0.00220
060189 0.00222
120189 0.00228
060190 0.00232
120190 0.00240

Table 2: Data Set (2) from Air-Quality Database

in the epidemiology data set are very different from
that corresponding to the attribute “Date” in the air-
quality data set. The data corresponding to the at-
tribute “Year” may be represented as integers (e.g.
1988), while the data corresponding to the attribute
“Date” may be represented as strings (e.g. “060188”).
The data units of these two attributes are also different
(year vs. day-month-year). The data semantics of the
two attributes are also different. The attribute “Year”
indicates which year the data for the number of em-
physema cases belongs to, while the attribute “Date”
shows the date on which air quality was measured.

Data integration must be accomplished by compar-
ing the value corresponding to the “Year” attribute
and the value corresponding to the “Date” attribute.
However, such data comparison is meaningful only if
two data items are on a common referential basis, i.e.,
their data representations, data units and data se-
mantics are the same. Therefore, data of the “Date”
attribute must be converted to the “Year” attribute
before two data sets can be integrated. But conver-
sion may also involve data refinement. For example,
two half-year air-quality measurements may first be
averaged to obtain a yearly air-quality value, then
the two data sets merged. This is a form of data re-
finement which usually requires considerable domain
knowledge, and it may be necessary to involve human
experts in the process. The result for the query may

look like Table 3.

Year | Particulate Conc. | Emphysema Cases
1988 0.00215 1,052
1989 0.00225 1,503
1990 0.00236 2,162

Table 3: The Integrated Data Set For the Query

3 Data Integration Model and Archi-
tecture

This section will describe our data integration
model and architecture which our translation agent
synthesis scheme is based on. Data integration is the
process of combining data from different data sources,
so that an integrated view of retrieved data can be
presented to users. The process of combining differ-
ent data sources may involve repeatedly applying the
following steps:

1. Data Transformation

Data transformation is a process which converts
data between different data representations, dif-
ferent data types, or different data units. Data
transformation does not change the meaning (se-
mantics) of a data set. It simply changes values
or representations of data. In other words, data
transformation is the process of establishing the
common referential basis between two data sets,
so that it is meaningful to compare or to merge
two data sets.

2. Data Synthesis

Data synthesis refers to the process of creating
new data sets with data semantics different from
those of existing data sets. For example, data
synthesis may involve averaging data points, or
joining two data sets. Data synthesis must op-
erate on data that have the same referential ba-
sis to produce meaningful results. For example,
data should not be averaged unless they are rep-
resented using the same unit. Specifically, a data
synthesis process is called data refinement if it in-
volves only one data set.

The nested relationships between above data inte-
gration steps are illustrated in Figure 1. Data integra-
tion is achieved by data synthesis processes. However,
the data synthesis process may require data trans-
formations to achieve a common referential basis for
synthesis. The data transformation may invoke sev-
eral different types of data conversion to accomplish

Data I ntegration

Dat a Synt hesi s

oA

Data Transfornati on

Data Unit
Conver si on

Data Type
Conver si on

AW,

Figure 1: The Relationship Between Data Integration
Steps.

the transformation process. When the necessary data
transformation is completed, the data synthesis pro-
cess can proceed to synthesize the data. Data integra-
tion is complete when all the required data sets are
properly synthesized.

3.1 Architecture

The data integration architecture realizes the data
integration model. There are two components in the
data integration architecture: agents and adapters.
Agents are the programs that perform data transfor-
mation and synthesis. An agent can be decomposed
into smaller units called adapters, which either per-
form some specific data conversion or provide inter-
faces to other part of the system. Adapters in an
agent are organized as a tower structure (see Fig-
ure 2), which reflects the order of data integration
steps. Adapters are the basic units used in building
an agent, and are either provided directly through li-
brary routines or synthesized from other adapters. For
complex data integration, multiple agents may be nec-
essary to perform the task. They are organized in a
hierarchical structure, and executed in a bottom-up
order. Figure 2 illustrates the data integration archi-
tecture with multiple agents.

o 00
agent—(N+1) /

data unit adapters

data type adapters

data synthesis

data set 1 data set N

agent-1

data refinement

data unit adapters data unit adapters

data type adapters data type adapters

local DB interface protocol adapters

!

Network

Figure 2: The Data Integration Architecture With Mul-
tiple Agents

3.2 Handling the Adapter Proliferation
Problem

The adapter proliferation problem arises because
N * (N — 1) different adapters are needed to pro-
vide directly conversion between N different types of
data. This growth is unreasonable, especially when
N is large. The adapter proliferation is not a prob-
lem in our scheme because adapter libraries are used
for conversion between basic data types and between
standard data units. Therefore, the number of these
basic adapters are limited. The adapters for non-basic
data types and non-standard data units are synthe-
sized from these basic adapters. If the number of basic
adapters becomes a concern, the proliferation can be
easily controlled with some performance penalty for
rarely used conversions. This can be accomplished
by providing direct conversions to/from a common
type. It can be easily shown that with 2 % (N — 1)
adapters, the conversion can be achieved among N dif-
ferent types with at most two conversion steps. For
frequently-used data conversions, extra adapters can
be constructed to provide direct conversions, so that
the translation performance will be comparable to the
direct conversion for the most of the time. There-
fore, with 2 x (N — 1) + k adapters, we can achieve
performance comparable to the optimal performance
with V * (N — 1) adapters and a linear growth rate

I

R

T2 77— T3 T2 T3
@) (b)

Figure 3: The Maximum Number of Basic Adapters
For (a) Direct Conversion (b) At-Most-2-Step Conver-
sion (N=4, k=1)

of adapters at the same time, where k is the number
of adapters provided for frequently-used conversions.
Figure 3 illustrates both the direct conversion and the
at-most-two-step conversion cases for N equal to 4.
Each arrow in Figure 3 represents an adapter and the
direction of conversion.

4 Translation Agent Synthesis Scheme

Our translation agent synthesis scheme consists of
two parts: a formal data set description for charac-
terizing data sets and an agent synthesis mechanism.
The data set description covers essential aspects of a
data set including schema, units, types, and semantics
(Section 4.1). The agent synthesis mechanism com-
bines attribute-naming scheme and means-ends anal-
ysis to construct the plan for synthesizing translation
agents (Section 4.2).

4.1 Data Set Descriptions

A data set description provides the knowledge nec-
essary for integrating a data set, which must be de-
fined when a data set is exported to the outside world.
A data set is assumed to be organized in a tabular or
relational format. Data set descriptions are primarily
used for facilitating synthesis of translation agents in
data integration. The data description specifies four
aspects of a data set: the data schema aspect, the
data unit aspect, the data type aspect, and the data
semantics aspect. Each aspect is represented using the
definition language ASN.1 [7]. ASN.I is chosen here
because it is a widely used ISO standard for defining
objects and protocols.

4.1.1 The Data Schema Definition

The data schema definition describes all attributes!
in a data set, and contains the same information as
a schema definition in relational databases. It is a
sequence of ordered pairs, each consisting of an at-
tribute name and the data type of the attribute. How-
ever, the data type can be a complex data type, which
is not allowed in traditional relational databases. In
ASN.1, the data schema definition is described using
SEQUENCE-OF and SEQUENCE?. For example, the
schema definition for the Air-Quality data set may
look like the following, where each entry in the schema
has two attributes: “Date” and “ParticulateConcen-
tration”, which have the data type “DateString” and
“Gram-Per-Liter” respectively.

SCHEMA Air-Quality ::= SEQUENCE OF
Air-Quality-Entry
Air-Quality-Entry ::= SEQUENCE {
Date DateString,
ParticulateConcentration Gram-Per-Liter

4.1.2 The Data Unit Definition

The data unit definition represents the unit that the
data is expressed in. Examples of units are seconds,
centimeters, kilograms, or number of people. Data
units may also be more complex. For example, accel-
eration may have the units meter/second?. The data
unit definition for acceleration may look as follows,
where a one-to-one correspondence exists between the
data unit definition and its mathematical definition.

UNIT Acceleration ::= SEQUENCE {

meter LengthUnit,
divOp UnitOperator,
second TimeUnit,
expOp UnitOperator,

exponent INTEGER { square(2) }

}

It is advantageous to include data unit definitions in
data descriptions. Some units are international stan-
dards and used across different disciplines uniformly.
The units used can provide fundamental semantics
about a data set. Also, the number of different unit
systems is limited, and the mappings across them are

1 As in databases, each attribute represents a column within
a data set (relation).

2 An ASN.1 SEQUENCE is analogous to the record structure
found in programming languages. SEQUENCE-OF is like SE-
QUENCE, except that each element in the SEQUENCE must
be the same type. For example, SEQUENCE OF INTEGER
indicates a series of values, each of which is an INTEGER.

well-understood. Therefore, it is possible to provide a
complete set of data conversion routines without ex-
cessive development cost.

Data unit
an automatic/semi-automatic data conversion system.
They provide unambiguous, mathematical definitions
of data, and are quite unlike attribute names in a data
set, which are usually too ambiguous and imprecise in
meaning to be useful for automatic data conversion.
Also, data unit definitions can be used to catalogue
data unit conversion routines, so that the process of
locating conversion routines can be automated. Each
data unit conversion routine performs unit conversion
according to the differences between the source and
the destination data unit definition. By requiring a
unique name for each data unit definition, each unit
conversion routine can be uniquely identified by pair-
ing the name of the source and the destination data
units. This pairing provides a simple naming mecha-
nism for locating or synthesizing a specific data unit
conversion routine (see Section 4.2 for more details).

Another advantage of providing data unit defini-
tions is that they may indicate whether or not two
data sets are semantically compatible. Two data sets
are semantically compatible if they can be correlated
meaningfully. Two data sets are unit-compatible if
it is possible to perform data unit conversion be-
tween these two data sets. Unit compatibility de-
fines a necessary condition for semantic compatibil-
ity. Unit compatibility can be determined by perform-
ing text matching on unit names in a data unit the-
saurus/dictionary, wherein data units are organized
in unit-compatible groups. Once compatibility is con-
firmed, the required data unit conversion routines can
be easily located using the source-destination defini-
tion pair.

However, data unit conversion may also be needed
between non-standard data units, or those are not de-
fined in our data unit thesaurus/dictionary. When
text matching on unit names fails, user intervention
is needed. A user can define non-standard units us-
ing the existing data units defined in the data unit
thesaurus/dictionary. After a non-standard data unit
is defined, its definition can be incorporated into
the data unit thesaurus/dictionary. This inclusion
will allow the system to locate or synthesize the re-
quired conversion routines to perform unit conversion
to/from this newly-created data unit.

definitions are essential to

4.1.3 The Data Type Definition

The data type definition defines the data types used
in a data schema definition. The data type definition

is a physical representation of data which is computer-
readable; and is used to catalogue data type conver-
sion routines. Each data type conversion routine is
responsible for converting one data type to another.
Each conversion routine can be uniquely identified by
its source and target data types, and is catalogued on
that basis. The data type is recursively defined us-
ing ASN.1. For example, the type definition for the
data type “DateString” may look as follows, where
MonthString (“01” — “12”), DayOfMonthString (“01”
— “317), and Year2DigitString (“00” — “99”) are types
already defined elsewhere.

TYPE DateString ::= SEQUENCE {
mm MonthString
dd DayOfMonthString
yy Year2DigitString

4.1.4 The Data Semantics Definition

For data integration, the semantics of a data set must
be defined. Otherwise, it may not make sense to join
two data sets even they have the same data type and
data unit definitions. For example, the unit “number
of cars” can have many different meanings. It may
mean the volume of cars sold, or manufactured, or
perhaps the number of cars involved in accidents. It
would be a mistake if we try to integrate two data
sets solely depending on data type and data unit def-
initions. Therefore, the meaning (semantics) of two
data sets must be known before we integrate them.
Data semantics definition helps us define the meaning
of data.

The definition of data semantics is also the most
difficult among our four data definitions. The defi-
nition representation must be general enough to de-
scribe all possible data semantics precisely, so that
semantic compatibility can be determined automati-
cally. To provide such semantic representation is very
difficult, if not impossible. Even if we restrict our do-
main, no existing methods/representations are likely
to be adequate since it appears that we must handle
very diverse data sets.

Therefore, we attempt a semi-automatic solution.
Our solution is to have the system suggest possible
semantics-compatible data sets based on unit com-
patibility, and let the user make the final decision on
whether or not these data sets should be integrated
based on the semantics definitions.

The semantics definition is formally viewed as con-
text information for a data set. Each attribute in a

top level topics

O OccoO

Pollytion
air pollution noise pollution oo
air quality haze smog visibility

organization: NASA
data set #: 1023

Figure 4: The Global Context Hierarchy.

data set will be annotated with its semantics defini-
tion. In the above example, the context information
“car sales” or “cars involved in accidents” will be the
annotation for the data attribute “number of cars”.

It is important to have a consensus on how context
information is represented and interpreted, so that
confusion can be minimized. This is necessary because
each data set administrator may have his or her own
interpretation of the data set contents. To avoid con-
fusion, administrators must use a common framework
to define the semantics of a data set. This common
framework represents a level of standardization which
must be followed to achieve any shared semantics un-
derstanding. Therefore, a global context hierarchy is
proposed to achieve this goal.

The global context hierarchy represents a hierar-
chical classification, where the universe of objects is
divided into successively narrower classes. Each node
in the hierarchy represents a unique semantic keyword
(class), such as epidemiology and emphysema. The
children of each node refine its class. The leaves of the
hierarchy contain directory information for the actual
data set and its data set description. Figure 4 shows a
partial context hierarchy representing a class for air-
quality data sets.

To export a data set, a data set administrator nav-
igates the global context hierarchy. The effect of nav-
igation is to place the directory information of a data
set at a leaf of the hierarchy and to extract semantics
keywords along the navigation path, which become the
semantic definition for the data set. The semantics
definition is represented as an OBJECT INDENTI-
FIER in ASN.1. For example, the semantics definition
of an air-quality data set in Figure 4 may be { ...,

pollution, air-pollution, air-quality }.

Clearly, the key to this solution is proposing a suf-
ficiently complete set of keywords and structure in the
context hierarchy. A draft list and hierarchy of key-
words has been developed by CIESIN [8].

4.2 Adapter and Agent Synthesis

The major task in adapter/agent synthesis is to
locate the appropriate adapters and assemble them
into an agent with the correct order. This task is
accomplished by combining two schemes: attribute-
based naming [9, 10] to locate adapters and means-
ends analysis [12] to construct the plan for assembling
adapters. An attribute-based naming scheme is used
because it provides a location-independent abstraction
for specifying the services (functionalities) provided by
adapters/agents, resulting in a cleaner system design.
This approach has been used in the CYGNUS dis-
tributed system [11] as its service acquisition mech-
anism. In our context, each service provided by an
agent can be divided into smaller services provided by
a set of adapters. FEach service is represented by a
list of attribute-value pairs. The attribute-value list
is used to describe an agent/adapter that needs to be
synthesized. The following are two examples using
attribute-value lists to represent services.

(ServiceClass=Data-Type-Conversion,
ServiceName=STRING-INTEGER,
SrcName=Emphysema.year)

(ServiceClass=Data-Synthesis, ServiceName=JOIN,
SrcName=(Air-Quality.Date, Emphysema.Year))

The first list states that the system is looking for a
data type conversion service to convert the data of
the attribute “Year” in the Emphysema schema from
STRING to INTEGER. The second list states that
the system wants a data synthesis service to join two
data sets based on the “Date” attribute in Air-Quality
and the “Year” attribute in the Emphysema data set.

Means-ends analysis is used to derive the correct
order to assemble adapters/agents. Means-ends anal-
ysis is the problem solving technique used in the Gen-
eral Problem Solver (GPS) [12], and uses the divide-
and-conquer strategy to achieve its goal. The goal
is recursively decomposed into smaller goals (sub-
goaling) until they can be achieved by the available
operators (means). In our context, when the sys-
tem encounters a service description (goal), it applies
means-ends analysis is to determine whether or not
appropriate adapters/agents (operators) are available
to provide the service. If appropriate adapters/agents
are not available, the system recursively decomposes

the current service into smaller services by consulting
its synthesis-rule database, which contains the rules
for decomposing services. The decomposition process
continues until either all the decomposed services are
provided by some existing adapters/agents, or the sys-
tem discovers a service that cannot be satisfied (i.e., a
service can neither be decomposed nor be provided by
existing adapters/agents). This decomposition pro-
cess can be represented by a tree structure called the
service decomposition tree. Each node in the service
decomposition tree represents a service. The service
request at a leaf node is satisfied if there exists an
adapter/agent can provide this service. The service
request at an intermediate node is satisfied if the ser-
vice requests at all its children are satisfied. After
all service requests in a decomposition tree are satis-
fied, the synthesis plan can be extracted by travers-
ing the decomposition tree and threading all the leaf
nodes in order. This order represents the synthesis
plan for generating the agen/adapter code. Because
each service at a leaf node is satisfied by an existing
adapter/agent, the synthesized code will simply con-
sist of a sequence of calls to existing adapters/agents
in the order described in the synthesis plan. In the
case that some services cannot be satisfied, the user
must provide the necessary agents/adapters to satisfy
these services. Figure 5 illustrates a service decompo-
sition tree, which is used to synthesize the agent for
joining the emphysema and the air-quality data sets
described in the scenario section?.

The system generates the decomposition tree in
Figure 5 as follows. First, the system is given a data
synthesis request, which is placed at the root of the
tree (Node A). The request is to synthesize an agent
(JOIN-Agent) to merge two data sets, Emphysema
and Air-Quality, by matching the field “Year” in the
Emphysema data set and the field “Date” in the Air-
Quality data set. Second, to join two data sets having
different referential basis, the system divides the ser-
vice into two smaller services: a data transformation
service (Node B) and a data synthesis service (Node
C). This decision is based on the rule that a data
transformation service must complete before applying
a data synthesis operation (i.e., the JOIN operation).
Finally, by examining the data type and unit defini-
tions of the source (“Date”) and the target (“Year”)
attributes, the system discovers that the source and
the target have different data units and data types.
Therefore, the system further divides the transforma-

3This join operation alone does not answer the query in Sec-
tion 2 directly. We still need to compute the yearly average
from the result of this operation.

(A)
ServiceClass = DATA-SYNTHESIS

DestName = Result
ServiceName = JOIN-Agent

SrcName = (Emphysema.Year, Air—Quality.Date)

ServiceClass = DATA-TRANSFORMATION
SrcName = Air—Quality.Date

DestName = Air-Quality.Year

ServiceName = ?

(B) ©)

ServiceClass = DATA-SYNTHESIS

SrcName = (Emphysema.Year, Air-Quality.Year)
DestName = Result

ServiceName = JOIN

==> Adapter Found

ServiceClass = DATA-UNIT-CONVERSION
SrcName = Air—Quality.Date

DestName = Air—Quality.yy

ServiceName = UnitDate—UnitYear

) E)

ServiceClass = DATA-TYPE-CONVERSION

SrcName = Air—Quality.yy

DestName = Air—-Quality.year

ServiceName = Year2DigitsString—Year4DigitINTEGER

==> Adapter Found

==> Adapter Found

Figure 5: An Example of A Service Decomposition Tree

tion service into a data-unit conversion service (Node
D) and a data-type conversion service (Node E). Be-
cause both data conversion services can be satisfied by
existing adapters, the system completes the process of
building this part of the tree, and starts to traverse
the other part of the tree. Eventually, all all the ser-
vices are satisfied, the decomposition tree is ready for
the synthesis agents.

After the system completes the process of build-
ing the service decomposition tree, the system begins
synthesizing the agent code. By traversing the decom-
position tree, the following agent code is synthesized:

JOIN-Agent (Emphysema,Air-Quality,Result)
{
NewAttribute(Air-Quality,"yy",
"Year2DigitString");
/* Node D */
UnitDate-UnitYear (Air-Quality.Date,
Air-Quality.yy);
NewAttribute(Air-Quality,"Year",
"Year4DigitINTEGER");
/* Node E %/
Year2DigitString-Year4Digit INTEGER(
Air-Quality.yy, Air-Quality.year);
/* Node C */
JOIN (Emphysema,Air-Quality,Result);
}

The function call “NewAttribute” adds a new at-
tribute in a data set by given an attribute name and
the type of the attribute. This function is inserted

whenever a new attribute is needed to hold interme-
diate results. The rest of functions are ordered by
traversing the leaf nodes in the service decomposition
tree.

5 Conclusions and Future Work

Synthesizing translation agents is advantageous be-
cause it can reduce the costs of software development
and maintenance significantly. It also can greatly im-
prove the availability of data sets, especially for newly-
created ones. It seems feasible in practice and does
not require too much software development. This is
because the number of adapters are limited and most
technologies used in the synthesis scheme have been
well-studied and developed.

The contribution of our work is to design a semi-
automatic agent synthesis scheme, which can be used
for multi-disciplinary data integration. The most de-
sign effort is at designing and integrating the following
approaches:

e characterizing essential aspects of a data set using
formal definition

e using a global context hierarchy to describe data
set semantics

e using an attribute naming scheme to describe
data integration services and the means-ends
analysis to synthesize agents.

Although many issues still need to be studied, our [13] N. Hinds, Y. Huang, and C. Ravishankar. A semantic

research work is currently focus on automation in se- data dictionary method for database schema integra-
mantic schema integration and mechanisms for facili- tion in CIESIN. In Proceedings of the Conference on
tating data sets discovery [13] and synthesizing proto- Earth and Space Science Information Systems, Febu-
col adapters [14]. Our development work is currently rary 1992.

focus on prototyping our agent synthesis system. [14] Y. Huang and C. V. Ravishankar. Accommodating

RPC Heterogeneities Using Automatic Agent Synthe-
sis. Technical report, Department of Electrical En-

gineering and Computer Science, The University of
References Michigan, Ann Arbor, Michigan, 1992.

[1] N. Roller et al. Draft: Ciesin mission statement. Tech-
nical report, CIESIN, June 1991.

[2] J. P. Fry, E. Birss, and et al. An assessment of the
technology for data- and program-related conversion.
In Proceedings of AFIPS National Computer Confer-

ence, volume 47, June 1978.

[3] T. Landers and R. Rosenberg. An overview of
MULTIBASE. In H. Schneider, editor, Distributed
Data Bases, pages 153—-183. North-Holland, 1982.

[4] A. Sheth and J. Larson. Federated database sys-
tems for managing distributed heterogeneous, and
autonomous databases. ACM Computing Surveys,
22(3), September 1990.

[5] R. Ahmed and et al. The Pegasus Heterogeneous
Multibase System. IEEE Computer, 24(12):19-27,
December 1991.

[6] D. K. Hsiao and M. N. Kamel. Heterogeneous
Databases: Proliferations, Issues and Solutions. /EFFE
Trans. on Knowledge and Data Engineering, 1(1):45—
62, 1989.

[7] OSI. Information Processing — Open System Intercon-
nection — Specification of Abstract Syntax Notation
One (ASN.1). Technical Report International Stan-
dard 8824, International Organization for Standard
and International Electrotechnical Committee, 1987.

[8] CIESIN. Ciesin global environmental directory:
Phase 1 concept demonstration design document.
Technical report, CIESIN, September 1991.

[9] G. Neufeld. Descriptive naming in x.500. In SIG-
COMM 89 Symposium, Communications Architec-
tures and Protocols, pages 64-T1, September 1989.

[10] L. Peterson. The profile naming service. ACM Trans-
actions on Computer Systems, 6(4), November 1988.

[11] R. N. Chang and C. V. Ravishankar. A Service Ac-
quisition Mechanism for the Client/Service Model in
Cygnus. In Proc. of 11th International Conference
on Distributed Computing Systems, pages 90-97, May
1991.

[12] A. Newell and H. A. Simon. Human Problem Solving.
Prentice-Hall Book Company, Englewood Cliffs, NJ.,
1973.

