
A Physical Storage Model for Efficient Statistical
Query Processing*i

WEE E(. NG CHINYA V. RAVISHANKAR
Department of Electrical Engineering and Computer Science

The University of Michigan, Ann Arbor, MI 48109-2122

Email: {wkn,ravi}@eecs.umich.edu

Abstract

A common approach to zmprovzng the performance of
statzstzcal query processzng 2s t o use precomputed re-
sults Another lower-level approach would be t o re-
deszgn the storage structure f o r stattstzcal databases.
Thzs avenue as relatzvely unexplored. The objectaue of
thzs paper zs t o present a physzcal storage structure for
statzstzcal databases, whose desagn zs motzvated b y the
characterzstzcs of statzstzcal querzes We show that our
proposal enhances multz-attrzbute clusterzng eficzency,
and zmproves the performance of statzstzcal and aggre-
gatzonal querzes Thzs i ustomzzed structure reduces
the amount of 1/0 zncurred durzng statzstzcal query
processzng, thus decreaszng Ihc response tzme

1 Introduction

There has been much work to date on statistical
database and statistical query processing. Such work
covers the areas of da ta modeling (see survey in
[16, 17]), query languages (see survey in [20]), exten-
sion of t,he relation model [8], the use of pre-computed
results (summary data) [I , 3, 4 , 7, 10, 141 and access
methods [19]. Shoshani [18] and Michalewicz [12] have
given a comprehensive introduction to issues in statis-
tical and scientific databases

In this paper, we are interested in the performance
aspects of statistical queries. It is difficult to get good
query processing performance in statistical databases
for several reasons. Firstly, statistical databases ex-
hibit high volume and high retention. Data volume in-
creases monotonically because historical da ta are usu-
ally archived rather than discarded. Secondly, statisti-

cal queries are predominantly aggregational and thus
data-intensive. As 1 /0 latency is high, these factors
are compounded in statistical queries by the 1/0 bot-
tleneck problem.

A commonly adopted approach to alleviating the
problem is through the use of precomputed results. In
this approach, elementary summary statzstics [3] such
as]partial sums, partial sum of products, etc. are pre-
computed for a set of attributes. The on-line compu-
tation of these results is time-consuming because a lot
of l /O is involved. When summary statistics are used
to satisfy such queries, a lot of effort is saved. Some
issues in this approach include (1) finding a logical
data model for these statistics, (2) developing a query
language to access them, (3) the problem of statis-
tics derivability, and (4) the physical organization and
management of summary statistics.

Our approach does not involve summary statistics.
Instead, we work at the physical organization level
to improve the performance of statistical queries, and
propose a new physical storage structure for statisti-
cal relations. This structure is motivated by the char-
acteristics of statistical queries, and we show that i t
helps to reduce the amount of 1/0 incurred during the
execution of statistical queries.

This paper is organized as follows: In the next sec-
tion, we examine the idiosyncrasies of statistical da ta
ancl queries. They are used to derive the design of the
storage structure, described in Section 3. In Section 4,
we demonstrate how to support standard database op-
erations when this new storage structure is used. This
is fiurther elaborated in Section 5 on query processing.
We show that little changes are required. In Section 6,
we evaluate the performance of this structure with re-
spect to query processing. Section 7 discusses previous
works in the Same area. Finally, we conclude the paper
with some remarks on future work.

*'l'his work was supported in part by the Consortium for
tnternational Earth Science Information Networking.

t'l'he material contained in this paper may be covered by a
pending patent application.

0-8186-6610-2/94 $04.00 0 1994 IEEE
97

mailto:wkn,ravi}@eecs.umich.edu

2 Characteristics of Statistical
Queries

Statistical databases differ from ordinary databases in
several ways. The attributes of a relation in a statis-
tical database may be grouped into two classes: cat-
egory and summary [3 , 4, 7, 81. Category attributes
are generally descriptive (non-numeric) and have dis-
crete values that are known in advance. They are
used in queries as access keys for retrieving tuples,
and are rarely modified. On the other hand, sum-
mary attributes are usually numeric because they are
usually the observed or measured values in some ex-
periment or survey. They are used in the computation
of statistics for statistical queries, and have a higher
probability of being modified.

This classification of attribute domains is impor-
tant as it reflects the differences in functional usage
within statistical queries. Logical operators are usu-
ally applied to the category attributes, while statis-
tical operations are performed on the summary at-
tributes. As we shall see in the next section, our new
storage structure for statistical relation captures and
exploits this fact.

Since statistical queries are predominantly aggre-
gational, their tuple access pattern is different from
that of ordinary queries. A statistical query usually
needs to access a group of tuples satisfying certain
criteria. Aggregational queries in statistical databases
often require access to all tuples having specified val-
ues in a subset of their attribute fields. Such queries
can result in a proliferation of disk seeks since conven-
tional database structures are not designed for clus-
tering multiple attributes.

In a conventional database, tuples of a relation are
physically clustered via a unique key called the order-
ing k e y . An access mechanism, such as a B+ tree, is
used to provide random access. The tuples are non-
clustering with respect to the majority of category at-
tributes. If tuples satisfying some search criteria are
physically clustered together, fewer disk blocks will be
accessed m multiple candidate tuples are found in a
block, thus improving the response time of the query.
We show in the following sections how our approach
enhances multi-attribute clustering.

3 Proposed Storage Structure
We now turn to the issue of how to redesign the

physical storage structure of a relation so as to acco-
modate the characteristic requirements mentioned in
the previous section.

3.1 Attribute domain mapping
A statistical relation scheme R = C1 x . . . x C,, x
SI x . . . x S, is the tuple space containing the set of
all possible tuples where Ci’s and Sj’s are category
and summary attribute domains respectively. We will
write R = ((C, S)). A statistical relation instance (or
simply a relation) RI is a subset of tuples from the
tuple space, i.e., R & R.

Example 3.1 Table 3. l (a) depicts a statistical rela-
tion R which will be used to illustrate all the con-
cepts discussed in this paper. There are four cat-
egory domains C1, C2 , C3, C, and two summary do-
mains SI, S2. I

The first step in defining the new storage structure
is attribute domain mapping. We map each attribute
value of a non-numeric category domain to a numeric
value. The motivation for domain mapping will be
explained in Section 3.3. Table 3. l (b) is the numer-
ically mapped version of Table 3 . l (a) . The mapping
of category domains is easy as they are usually of fi-
nite size with all possible attribute values known in
advance. For every attribute c E C,, we map c into
its ordinal position within the domain. For example,
C1={production, marketing, personnel} is mapped into
c1 = {0,1,2}.

3.2 Multi-attribute clustering
Consider Table 3.l(c), which is identical t o Ta-
ble 3 . l (b) in content, except that the tuples have been
reordered (and domain C, reordered). Notice tha t the
attribute values under column C1 form runs of O’s, 1’s
and 2’s. Column Cz exhibits similar behaviour except
that the runs are shorter.

If the tuples are physically clustered as in Ta-
ble 3 . l (c) , the probability of finding tuples whose ith
attributes are identical being stored within the same
block is very much higher than when they are clustered
via a primary key in conventional style. Searching for
tuples that have a certain category attribute value re-
quires fewer block accesses because multiple candidate
tuples are clustered in the same blocks. This reduces
1 / 0 and improves performance.

Compare this with the conventional approach via
secondary indices. Because the tuples are clustered
physically in a different order, the indices must point
all over to locate the tuples. Thus, when retrieving a
tuple via a secondary index, many random blocks are
accessed, and that the same block be accessed more
than once. As the latency of disk block 1 / 0 is high,

98

7 4 c1 c2 c3

1 personnel worker Spanish
2 personnel manager German
3 marketing supervisor Spanish
4 production worker Spanish
5 marketing manager German
6 marketing worker English
7 personnel leader German
8 personnel supervisor English
9 marketing leader German
10 production supervisor Spanish
11 production worker German
1 2 personnel leader French
13 marketing worker French
14 personnel worker French
15 marketing leader English
1 6 personnel manager French
1 7 production manager Spanish
18 production supervisor German
19 marketing supervisor English
20 personnel leader English
21 marketing leader Spanish
22 production supervisor English
23 personnel worker German
2 4 personnel supervisor Spanish
25 personnel supervisor French
26 marketing worker Spanish
27 marketing manager French
28 production leader Spanish
29 production leader German

(a)

:1 c 2 c 3 c4

0 0 1 1 7
0 1 0 22
0 1 1 10
0 1 3 18
0 2 1 28
0 2 3 29
0 3
0 3 3 11
1 0 2 27
1 0 3
1 1 0 19
1 1
1 2 0 15
1 2 1 21
1 2 3
1 3 0
1 3 1 26
1 3 2 13
2 0 2 16
2 0 3

__
s1 s 2 -
25 30
28 20
24 3 5
32 25
4 7 20
38 25
23 20
3 7 40
44 25
2 3 30
32 20
32 20
34 40
31 30
28 3 5
29 25
46 20
25 20
35 40
26 30
27 30
36 30
29 35
38 30
42 25
24 25
27 30
22 30
28 20 -

s1 s2

46 20
36 30
2 3 30
25 20
22 30
28 20

1 4 3 2 2 5
32 20
27 30

5 4 7 2 0
35 40

1 3 2 4 3 5
28 35
27 30

9 4 4 2 5
6 3 8 2 5

24 25
34 40
29 25

2 2 8 2 0

2 2 0 3
3 1 1 1
4 0 3 1
5 1 0 3
6 1 3 0
7 2 2 3
8 2 1 0
9 1 2 3
1 0 0 1 1
1 1 0 3 3
1 2 2 2 2
1 3 1 3 2
1 4 2 3 2
1 5 1 2 0
1 6 2 0 2
1 7 0 0 1
1 8 0 1 3
1 9 1 1 0
2 0 2 2 0
2 1 1 2 1
2 2 0 1 0
2 3 2 3 3
2 4 2 1 1
2 5 2 1 2
2 6 1 3 1
2 7 1 0 2
2 8 0 2 1
2 9 0 2 3

2 8 20
24 3 5
32 25
47 20
38 25
2 3 20
37 40
44 25
23 30
32 20
32 20
34 40
31 30
2 8 3 5
29 25
46 20
25 20
35 40
26 30
27 30
36 30
29 35
38 30
42 25
24 25
27 30
22 30
28 20 -

0 0 3 5
0 0 0 8 8
0 0 2 8
0 0 2 1 0
0 0 2 1
0 1 0 1 1
0 0 1 7 5
0 0 2 7
0 0 2 1 6
0 0 1 7 8
0 0 0 8 4
0 0 3 1 2
0 0 1 6
0 0 0 9 7
0 0 1 8 8
0 0 1 2 0
0 0 0 8 7
0 1 0 3
0 0 0 8 6
0 0 0 6
0 0 1 1 6
0 0 1 1
0 0 1 7 5
0 0 2 1 2
0 0 0 9 5
0 0 1 9 4
0 0 1 1 3
0 0 1 9

(4

-
-
-
36 30
2 3 30
25 20

28 20
32 25
32 20

47 20
3 5 40
24 35

27 30
44 25
38 25

34 40
29 25
2 8 20

38 30
42 25
26 30

2 3 20
25 30
31 30
29 35

Table 3.1: A relation R and i ts transformations. There are four category domains in R: C4,C1,C2,C3, denoting the
employee number, department, job t i t l e , and the language spoken respectively, and t w o summary domains SI and Sz,
denoting age and income. Table (a) is the original relation. Table (b) shows the relation after every category domain
has been mapped t o integers. The sizes o f the numerical domains C4, C1, Cz, C3, are 100 ,3 ,4 ,4 respectively. Table (c)
shows the relation ordered via the mixed-radix integeral order. 7-able (d) is the compressed relation of Table (c).

this method of access is expensive. Therefore, multi-
attribute clustering alleviates this difficulty. It is to be
noted that multi-attribute clustering applies t o cate-
gory domains only. The summary domains are not
affected.

3.3 Tuple ordering scheme

What is the order that arranges the tuples in Ta-
ble 3.l(c)? This is the lexicographical order. We also
call it the mized-radiz inlegral order because we treat
each tuple as a mixed-radix integer, and use the value
of this integer as the primary and ordering key, as ex-
plained below.

T h e motivation for domain mapping should now
be clear. With all attributes mapped to integers, a
relation becomes a set of mixed-radix integers. These
intcgers may then be sorted numerically into the form
shown in Table 3.l(c).

Example 3.2 Continuing with our previous example,
we note that the sizes of C1, Cz, C3, C4 are 3 ,4 ,4 ,100
respectively. By adopting the sizes as the radices, the

category portion of the last tuple (2 ,3 ,3 ,23) becomes
2 x (4 x 4 x 100) + 3 x (4 x 100) + 3 x (100) + 23 =
3200 + 1200 + 300 + 23 = 4723. Thus, tuples may be
compared and sorted by comparing their numerical
values. We would like to repeat that the mixed-radix
integral concept is applied to the category half of a tu-
ple only. The summary portion tags along unchanged.
I

3.4 Tuple compression

While lexicographical ordering enhances multi-
attribute clustering, a characteristic requirement of
statistical queries, its greatest side-benefit is that it
also provides compression. Each of the runs of iden-
tical attribute values exhibits value r e d u n d a n c y that
can be eliminated via simple compression techniques
such as run-length coding [9]. However, a straightfor-
ward application of run-length coding on the vertical
runs distorts the structure of a relation: We wish to re-
taiin the t a b l t of t u p l e s definition of a relation. Hence,
additional refinements are needed.

99

Example 3.3 Table 3.l(d) is the compressed version
of Table 3.l(c). Notice the horizontal rows of lead-
ing zeroes in the tuples. By performing a mixed-radix
subtraction between pairwise consecutive tuples of Ta-
ble 3.l(c), one transforms the original vertical runs of
identical attribute values into horizontal rows of lead-
ing zeroes. For instance, category portion of the first
tuple in Table 3 . l (d) , (0 , 0 , 3 , 5) , is obtained by the
subtraction: (0 ,1 ,0 ,22) - (O , O , 1,17) , which are cat-
egory portions of the second and first tuple in Ta-
ble 3.l(c). The redundancies are retained, but the
leading zeroes may now be encoded via run-length
coding without sacrificing the tuple-structure of a re-

I

Table 3. l (d) is the final storage structure for R.
This structure not only exhibits multi-attribute clus-
tering, but its storage requirements are reduced via
compression. We shall refer t o this new storage struc-
ture as the Tuple Differential Structure, or TD struc-
ture for short.

lation. Thus, compression is achieved.

4 Standard DB Operations
How are standard database operations supported in
the TD structure? In this section, we shall look a t tu-
ple access, insertion, deletion and modification. The
next section discusses the support for query process-
ing.

4.1 Access method
As tuples are now clustered under lexicographical or-
der, a primary index for the relation uses an entire
tuple as the search key. Figure 4.1 shows an order-
3 primary B+ tree index constructed for relation R.
Notice the placement of tuples into disk blocks, which
reflects the demarcations shown in Table 3 . l (d) .

There are two distinguishable parts of a tuple: the
category portion and the summary portion, which
we shall refer t o as the category sub-tuple and sum-
mary sub-tuple respectively. Each block begins with
a head tuple which is the numerically smallest cat-
egory sub-tuple in the block. All tuples following
the head tuple are difference tuples. Notice that the
leading zeroes of the category sub-tuples are replaced
by a number indicating the counts of the number
of leading zero (run-length coding). Thus, the first
difference tuple (2 I 3 , 5 I 36,30) in block 1 is de-
coded into (O , O , 3 , 5 1 36,30). The head tuple can be
added (via mixed-radix addition) to the differences to
derive the actual tuples. For instance, block 2 be-
gins with head tuple (0 ,2 ,1 ,28 I 22,30) because the

first difference tuple (O , O , 2 , l I 28,20) = (0 , 3 , 1 , 4 I
32,25) - (0 ,2 ,3 ,29 I 28,30). The purpose of starting
a block with a head tuple is t o restrict the scope of
decompression to within a da ta block. If only a block
is searched, the difference tuples may be decoded im-
mediately without necessitating the decompression of
all preceding blocks.

The primary index is useful only when the cate-
gory portion of a tuple is completely available as the
search key. When only some category attributes are
known, secondary indices are needed. A secondary
index requires a level of indirection between the at-
tribute values and the data blocks where they might
be found. For instance, the following provides the in-
direction for domain CZ: (0 I 2,3 ,5) , (1 I 1 , 3 , 5 , s) , (2 I
1 , 2 , 3 , 4 , 6 , 7) , (3 I 2 , 4 , 5 , 7) , which says that tuples
whose C2 = 0 are located in block 2 , 3 , 5 (see the
block demarcations in Table 3.1(c)). As the exam-
ple relation R is too small, we are unable to construct
a full-scale secondary index for any of the category
attributes. Nevertheless, we may conclude tha t with
the help of the primary and secondary indices, tuple
access carries on as usual, even when the tuples are
stored compressed under the TD structure.

4.2 Tuple insertion and deletion
How are tuple insertion and deletion supported in
the database? Suppose we wish to insert tuple t =
(1 , 0 , 3 , 6 I20,20) , which differs from (1 , 0 , 3 , 5 147,20)
in the last attribute value. The primaryindex provides
the means t o locate the block which contains tuples
that are physically ordered in the neighourhood of t .
With this index, data block 3 is found to be the
didate block for inserting t .

block 3
(1 ,0 ,2 ,27) 27,30
(2 I2 ,16 I47,20) 71 (2 I1 ,78 I35,40)

(2 1 2,16 I 47,20)

(2 I 1 , 7 7 I35,40)
(3 I 8 4 I24,35)

(3 I 1 I 20~20)

can-

The above reflects the changes to da ta block 3. Notice
that only those difference tuples succeeding t are re-
computed, and that the changes are confined to within
the affected block. For tuple deletion, the primary
index is similarly used t o locate the data block and
changes made within the block.

4.3 Tuple modification
In conventional database, tuple modification is per-
formed in s i tu , i.e., right where the tuple is located due

100

pl 1 P o k 2 I I 0,0,1746,20> ,1,28 22,30>
13,5136,30> 212,1128,20>

318812330> 111.0.11132.25~
12,8125,20> 211 ;75132,30>

~12.10122.30> 1 ~212.7127,30> I
L - 1 L- -2

Figure 4 1. Primary index The

213.12128.35>

\

3197144,25>
211,88138,25>
211,20124,25>

2 2 2 1 2 >

&\\\ 2 1 0 8 > 2,2,2,12>

3187134,40>
1 I1,0,3129,25>
3186128,20>
316137.40>

lock 6
.1,0,8 37,40>

211,16138,30>
211,1142,25>
211,75126,30> p' 212.1 2132.30>

3195123,20>
211,94125,30>
21 1,13131,30>
211,9129,35>

data blocks contain difference tuples in lexicographical order. Hence the search key is
an entire tuple. Each block begins w i th a head tuple. All tuples fol lowing the head tuple are difference tuples where
the leading zeroes are replaced by numbers (separated by a bar) indicating the counts. The summary port ion of a tuple
is also separated f r o m the category port ion by a bar.

to the tuple-wise storage structure of a relation. When
tuples are stored in the TD structure, tuple modifica-
tion can expected to be different. Suppose we wish to
modify the first attribute of (1 , 0 , 3 , 5 I 47,20) to get
(2 , 0 , 3 , 5 I 47,20) . Due to the lexicographical ordering
of tuples, the modified tuple would be physically far
away from the pre-modified tuple in a different block.
A tuple modification entails a deletion followed by an
insertion, compared to the zn situ modification in con-
ventional database.

A closer look! however, reveals that the modifica-
tion above has been made to a category attribute,
which is rare in statistical databases (see Section 2) .
Statistical queries are by nature access-only; new sta-
tistical da ta are generated by reading a relation. Mod-
ifications, if any, are generally made only to summary
attributes. Since summary attributes in the TD struc-
ture arc stored tuple-wise (see Table 3.1(d)), tuple
modification is still performed rzghl-where-il-is.

I11 summary, standard database operations are the
same even when the relation is stored in the new stor-
age structure. The only difference being that the
search key of the primary index is the entire tuple.
All othcr indices are non-clustering and secondary, as
in standard databases.

5 Statistical Query Processing
The primary objective of the TD structure is to reduce
thc amount of I/O for statistical queries, which gener-
ally involve large da ta transfers between main memory

and secondary storage. In the next subsections, we ex-
amine some of the commonly encountered statistical
queries.

5:l Range query

We first look a t a simple SQL query

SELECT employee.number, income
FROM employee
WHERE department = marketing OR

which is translated into the following relational al-
gebraic expression with respect t o relation R shown
in 'Table 3.l(a): al<c,<z(R), where CI={product ion,
marketing, personnel) has been mapped numerically to

Strictly speaking, the above query is not the most
appropriate illustration of a range query. However,
it demonstrates the fact that range queries are usu-
ally translated into ezact-match queries where the
specified attribute assumes values within a consecu-
tive range. In the example, we are looking for tu-
ples whose C1 attribute values are marketing or per-
sonnel, i.e., C1 E {1,2}. In any case, satisfying such
queries requires accessing a large portion of the re-
lat,ion involved. With a secondary index constructed
from C1, we are able to locate tuples whose department
attribute is marketing or personnel. The example illus-
trates the fact that when locating tuples via any at-
tributes, we find that multiple candidate tuples match-
ing the query selection criteria are physically clustered

department = personnel

c1 = {0 ,1>2} .

101

in the same blocks because of the multi-attribute clus-
tering feature of the TD structure. As a result, the
actual amount of data blocks accessed is reduced.

Test number
Data skew

Domain variance

5.2 Cross tabulation and aggregate
query

Statistical queries are characterized by aggregate com-
putations. One is usually looking for aggregates of
some attributes of a group of tuples satisfying certain
criteria. Suppose a query desires the average income
of employees categorized by their department and job-
title:

1,5 2,6 3,7 4,s
Yes Yes No No

Small Large Small Large

S EL E CT
FROM employee
WHERE department = marketing AND

GROUP BY job-title

job- tit le, AVG(i n com e)

(job-title = leader OR job-title = worker)

In order t o satisfy the above query, we need to (1)
select tuples satisfying the multi-attribute selection
criteria, (2) group tuples by job-title, and (3) compute
the average income within each group.

The first step may be simplified into a combination
of single-attribute retrievals. Using the secondary in-
dex for each attribute, the set of candidate tuples are
retrieved. Retrieving tuples by a search key has been
discussed in the previous section. In any case, a large
portion of relation is accessed. Since the overall num-
ber of blocks of a relation stored under the TD struc-
ture is reduced, processing this query will be substan-
tially faster than a conventionally stored relation.

In summary, reducing the amount of 1/0 increases
the performance of queries involving large data trans-
fers. The new storage structure realizes the reduction
through multi-attribute clustering of tuples and tuple
compression.

6 Performance Measurements

How good is the new storage structure in terms of im-
proving the performance of statistical queries? Specif-
ically, we want t o know the following: (1) What re-
duction in disk block access is achieved on average
per query? (2) What is the average reduction in the
number of disk blocks accessed when locating tuples
satisfying a selection criteria?

Table 6.2: Test parameters. The two parameters, data
skew and domain variance, give a total of four combina-
tions for three sets of four tests. Tests 1 , 2 , 3 , 4 measure
the number of disk blocks accessed on average per query
for different relation sizes. Tests 5 , 6 , 7 , 8 measure the
number o f blocks required for database storage for dif-
ferent relation sizes.

6.1 Multi-attribute clustering

The first question concerns the multi-attribute cluster-
ing efficiency of the TD storage structure. This ques-
tion is easy to answer: We have only to compare the
average amount of 1 / 0 required for a typical query
for a relation that is stored conventionally and in the
storage structure. This raises two issues: What con-
stitutes a typical query and a typical relation?

It is difficult to generate a typical “query” as there
are many possibilities. To simplify things, we con-
sider selects of the form U C ~ = ~ , , C , = ~ ~ ,,.., C ~ = ~ * (R) , i.e.,
selecting a set of tuples whose category attributes sat-
isfy certain values. Here, k < n where n is the total
number of category attributes and ti's are randomly
generated attribute values of C;, 1 5 i 5 k .

In order t o ensure a fair evaluation, we generated
relations of various sizes and characteristics. They dif-
fered in: (1) relation size (i.e., the number of tuples),
(2) variance in category attribute domain size, and (3)
category attribute value skew (see Table 6.2). When
the differences in domain sizes were no more than 10%
of the average domain size, we took the domain size
variance to be low. Otherwise, we took the variance
to be high. The distribution of values within a domain
was taken to be skewed when 60% of the values were
drawn from 40% of the domain. When no skew ex-
isted, values were drawn uniformly from the domain.
There were 8 category domains and 2 summary do-
mains in all relations. The variations were applied to
the category domains only.

In order t o evaluate the multi-attribute clustering
efficiency, two sets of four tests are performed. Tests
1 , 2 , 3 , 4 measure the number of disk blocks accessed
on average per query for different relation sizes. The
four tests correspond to four combinations of relation
characteristics: small variance and no data skew, large
variance and no data skew, small variance and data

102

Test 1 Test 2

10000
new' +-- I

I I

old t old t

0 2 Mb 2 Mb 20 Mb 0 . 2 Mb 2 Mb 20 Mb

Test 3 Test 4

' o o o l l 100

10 --
- new +

old t

:L 0 I I I 1

0 2 Mb 2 Mb 20 Mb 13 2 Mb 2 Mb 20 Mb

Figure 6.2: Number of data blocks accessed versus relation size. The parameters of the tests are found in Table 6.2.
Both axes have undergone a log,, transformation so tha t the units are equally spaced. "new" and "old" stand for
relations stored i n the TD and conventional storage structures respectively. Observe tha t the average number of blocks
accessed per query is fewer when relations are stored in the TD structure.

skew, large variance and da ta skew. For each test, a
set of 100 selection queries of the form mentioned pre-
viously were randomly generated for a given relation
size. The number of attributes in the selection criteria
of the queries randomly varied between 1 and 4. The
total number of blocks accessed was divided by 100
to yield the average number of blocks for that rela-
tion size. Four relation sizes were used: 0.2 Mbytes, 2
Mbytes, 20 Mbytes, and 40 Mbytes. The results are
shown in Figure 6.2 and the efficiency ratios are in
Figure 6.4. The following observations may be made:

0 The da ta blocks accessed on average per query
are greatly reduced when the relation is stored
via the proposed storage structure. In fact, an
efficiency of 1344 : 262 (5.2 : 1) was achieved for
test 1 a t a relation size of 20 Mbytes.

0 The multi-attribute clustering efficiency increases
for larger relations. This is seen from the widen-
ing gap between each pair of graphs in each test.
The efficiency ratios plotted in Figure 6.4 also
concur.

0 Large variance in attribute domain sizes decreases
the multi-attribute clustering efficiency slightly.
For example, the efficiency for tests a t a relation
size of 20 Mbytes under data skew decreases from
1344:262 (5.2: l) to 458: 130 (3.5: 1).

0 Data skew increases multi-attribute clustering ef-
ficiency because it reduces the variety in the at-
tribute distribution. For instance, the efficiency
for tests a t a relation size of 20 Mbytes under
small domain variances increases from 1363 : 350
(3.9 : 1) with no data skew to 1344 : 262 (5.2 : 1)
with data skew.

6.2 Compression efficiency
The second question concerns the compression effi-
ciency of run-length coding on the leading zeroes. The
target of interest is the number of data blocks occu-
pied by a relation before and after compression.

To achieve a good mix of relation types, we again
varied relation characteristics as above, and performed
another set of four tests, numbered 5 , 6 , 7 , 8 . This

103

Test 5 Test 6

0.2 Mb 2 Mb 20 Mb

100000

10000

1000

100

Test 7

- old t

0.2 Mb 2 Mb 20 Mb

Test 8

- old t

t I I I I 1
0 .2 Mb 2 Mb 20 Mb 0.2 Mb 2 Mb 20 Mb

Figure 6.3: Number of data blocks stored versus relation size. T h e parameters o f the tests are found in Table 6.2.
Both axes have undergone a log,, transformation so that the units are equally spaced. "new" and "old" stand for
relations stored in the TD and conventional storage structures respectively. W e observe that relations stored under the
TD structure are more space efficient than relations under the old structure.

time, however, we measured the number of blocks re-
quired by a relation. For each test, we randomly gener-
ated a relation and compared its storage requirements
before and after storing it in the TD structure. This
was performed for various relation sizes. The results
are shown in Figure 6 .3 .

The values obtained are much larger than those in
the previous four tests because we are taking the en-
tire relation into account, rather than portions of it.
Otherwise, the results of the test are similar to those
of previous tests.

As a further illustration of its applicability, we have
used the TD structure to store the 1990 census data.
The 1990 Public User Microdata Samples (PUMS)
from the U.S. Bureau of Census contain records repre-
senting 5% or 1% samples of the housing units in the
U.S. and of persons residing in them. The 1% samples
contain 2.3 million records and occupy 800 Mbytes,
while the 5% samples contain 13 million records and
occupy 4 gigabytes. Performing aggregational queries
on these data is prohibitively slow because of the im-
mense amounts of I/Os generated. By adopting the

proposed structure, we are able to improve the re-
sponse time of statistical queries significantly [13].

In summary, the features afforded by the proposed
structure: multi-attribute clustering and compression
reduces the amount of 1/0 incurred during query pro-
cessing.

7 Related Work
Several techniques have been proposed for physical or-
ganization of statistical databases [2, 5, 6 , 111 mostly
in the context of statistical database compression.
Due to space limitations, we shall discuss only the
more relevant ones.

Attribute encoding is a popular approach in physi-
cal database organization [2, 211. Since attribute val-
ues are often repeated, the set of attribute values oc-
curring in a domain may be mapped to a smaller set
of codes to achieve compression. A database may
also be attribute transposed so that it is stored as
a collection of contiguous attribute columns, i.e., all
data for an attribute is stored together. In this case,

104

Multi-attribute clustering efficiency Compression efficiency

I I I I test 5 90 I I I

test 6 +
-test 7 0

test 8 X

75 <
test 1 0 -
test 2 + - c
test 3 0 -
test 4 X - >F

70 -

55 I I I I

0 2 Mb 2 Mb 20 Mb 0 2 M b 2 Mb 20 Mb

Figure 6.4: Efficiency rat io (in percent) versus relation size. The t w o sets o f graphs are derived f r o m the results of
Figure 6 .2 and Figure 6.3. Observe tha t bo th efficiencies increase wi th larger relations, which is not entirely apparent
in Figure 6.2 and Figure 6.3.

attribute-level coding is useful as it can exploit the nu-
merous repeated occurrence of attribute values. Such
schemes have even been carried to the extreme where
the database is bit-transposed; i.e., all of the da ta for
single bit position of an attribute encoding is stored
together [21]. Depending of the type of coding cho-
sen, attribute encoding may also face the problem of
running out of codes for new attributes [2].

We have used the attribute transposition technique
in our Allegro system' for interactive statistical query-
ing of the Public Use Microdata Samples of the U.S.
Census of Bureau. However, attribute transposition
has both strengths and weaknesses with respect to
o u r tuple-wise storage technique. It is comparatively
fastcr only i f the sclected set of attributes in a query
is vcry much smaller than thc entire set of attributes.
In this case, it has the advantage of bringing in only a
small subset of the database into memory for process-
ing. However, due to the numerous smaller attribute
files generated by attribute transposition, there is a
higher lcvel of disk block fragmentation. This may re-
sult in higher seek times when locating attributes. In
addition, it may no longer be economical to construct
indices for each of the attribute files for random access.

[5, 6, 111 are concerned with statistical databases
that assume a flat file structure, i.e., a database
consisting of onc or more sequential file(s) of bytes.
Such databases usually contain numeric data gener-
ated from the results of laboratory experiments, mon-
itoring of seismic activitics, business trends, etc. Such
databases exhibit little or no record structure. Hence,
they are not useful when tuple structures must be pre-
served. The primary fociis of these techniques is the

Allegro is a proprietary system developed for the Consor-
tium for International Earth Science Information Networking.

removal of constants from the databases. Constants
are runs of identical da ta values that are usually re-
moved or coded using run-length coding or its vari-
ant,s. As the database is a contiguous sequence of
bytes, much of the work is concerned with the de-
termination of efficient mappings between the uncom-
pressed and compressed database. Although statis-
tical databases are relatively static, new records are
often inserted as more data are gathered. Such inser-
tions complicate the maintenance of mappings.

8 Conclusions
We have designed a new storage structure for sta-
tistical relations that improves the efficiency of sta-
tistical queries through multi-attribute clustering and
Compression, which results in 1/0 reduction. Our de-
sign is motivated by the characteristics of statistical
d at abases :

e Attributes are of two types: category and sum-
mary. Category attributes are used as the search
keys for access. Summary attributes are the tar-
gets of queries, and modifications are rarely made
to them, if ever.

Most queries are access-only in nature; little or
no modifications are made. New statistical da ta
that are created as a result of the query do not
affect the existing statistical relations.

Our design incorporates these characteristics by con-
ceptually segregating a relation into two halves corre-
sponding to the category and summary portions. Tu-
pleis in the category half are stored in the lexicographi-
cal order in order to enhance multi-attribute clustering

105

and permit compression. Since category attributes are
generally used as search keys, the new clustering and
compression reduce the amount of 1/0 involved. Be-
cause only the summary attributes are modified, tuple
modification is performed in situ, as in conventional
databases.

Much work has been done in improving statistical
query processing. The most common approach is the
use of precomputed results or summary data. Our
approach is not t o be seen as orthogonal to existing
work as complementing it so as to achieve comprehen-
sive improvements in statistical query processing.

References
[I] S. ABAD-MOTA. Approximate Query Processing with

Summary Tables in Statistical Databases. Lecture
Notes in Computer Science, Vol. 580, pp. 499-515,
1992.

[2] D. S. RATORY. Index Coding: A Compression Tech-
nique for Large Statistical Databases. Proceedings
of the Second International Workshop in Statistical
Database Management, pp. 306-314, September 1983.

[3] M . C. CHEN, L. P . MCNAMEE. On the Data Model
and Access Method of Summary Data Management.
IEEE Transactions on Knowledge and Data Engineer-
ing, Vol. 1 , No. 4, pp. 519-528, Dec. 1989.

[4] M. C. CHEN, L. P. MCNAMEE, M. MELKANOFF.
A Model of Summary Data and its Applications in
Statistical Databases. Proceedings of the 4th Interna-
tional Working Conference on Statistical and Scien-
tific Database Management, 1988.

[5] S. J. EGGERS, A. SHOSHANI. Efficient Access of Com-
pressed Data. Proceedings of the International Con-
ference on Very Large Data Bases, pp. 205-211, 1980.

[6] S. J. EGGERS, F. OLKEN, A. SHOSHANI. A Com-
pression Technique for Large Statistical Databases.
Proceedings of the International Conference on Very
Large Data Bases, pp. 424-434, 1981.

[7] S. P. GHOSH. Statistical Relational Tables for Statis-
tical Database Management. IEEE Transactions on
Software Engineering, Vol. 12, No. 12, pp. 1106-1116,
Dec. 1986. Also published as IBM Research Report
R J4394.

[8] S. P. GHOSH. Statistical Relational Model. Chap
ter 10 in Statistical and Scientific Databases,
Z . Michalewicz (Editor), Ellis Horwood, New York,
1991.

[9] S. W . GOLOMB. Run-Length Encodings. IEEE Trans-
actions on Information Theory, Vol. 12, pp. 399-401,
Jul. 1966.

[lo] G. HEBRAIL. A Model of Summaries for Very Large
Database. Proceedings of the 3rd International Work-
shop on Statistical Databases, 1986.

[ll] J. Z. LI, D. ROTEM, H . K . T. WONG. A New
Compression Method with Fast Searching on Large
Databases. Proceedings of the International Confer-
ence on Very Large Data Bases, pp. 311-318, 1987.

[12] Z . MICHALEWICZ. Statistical and Scientific
Databases, Z . Michalewicz (Editor), Ellis Horwood,
New York, 1991.

[13] W . K . NG, C. V. RAVISHANKAR. Block Ori-
ented Compression Techniques for Large Statistical
Databases. Under journal review.

[I41 G . OZSOYOGLU, Z. M. OZSOYOGLU, F. MATA. A
Language and a Physical Organization Technique for
Summary Tables. Proceedings of the ACM SIGMOD
International Conference on Management of Data,
pp. 3-16, 1985.

[15] Census of Population and Housing, 1990: Public
Use Microdata Samples U.S. (machine readable data
files). Prepared by the Bureau of the Census. Wash-
ington: The Bureau, 1992.

[16] M. RAFANELLI. Data Models. Chapter 6 in Statisti-
cal and Scientific Databases, Z . Michalewicz (Editor),
Ellis Horwood, New York, 1991.

[17] H . SATO. Statistical Data Models: From a Statisti-
cal Table to a Conceptual Approach. Chapter 7 in
Statistical and Scientific Databases, Z . Michalewicz
(Editor), Ellis Horwood, New York, 1991.

[18] A. SHOSHANI. Statistical Databases: Characteristics,
Problems, and Some Solutions. Proceedings of the In-
ternational Conference on Very Large Data Bases,
pp. 208-222, Sep. 1982.

[19] J. SRIVASTAVA, J . S. E. TAN, V. Y. LUM. TB-
SAM: An Access Method for Efficient Processing of
Statistical Queries. IEEE Transactions on Knowledge
and Data Engineering, Vol. 1, No. 4, pp. 414-423,
Dec. 1989.

[20] A. U. TANSEL. Statistical Database Query Lan-
guages. Chapter 9 in Statistical and Scientific
Databases, 2. Michalewicz (Editor), Ellis Horwood,
New York, 1991.

[21] H . K. T. WONG, H. F. LIU, F. OLKEN, D. ROTEM,
L. WONG. Bit Transposed Files. Proceedings of the
International Conference on Very Large Data Bases,
pp. 448-457, 1985.

106

