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Abstract 

A common approach to  zmprovzng the performance of 
statzstzcal query processzng 2s t o  use precomputed re- 
sults Another  lower-level approach would be t o  re- 
deszgn the storage structure f o r  stattstzcal databases. 
Thzs avenue as relatzvely unexplored. The objectaue of 
thzs paper zs t o  present a physzcal storage structure for 
statzstzcal databases, whose desagn zs motzvated b y  the 
characterzstzcs of statzstzcal querzes We show that our 
proposal enhances multz-attrzbute clusterzng eficzency, 
and zmproves the performance of statzstzcal and aggre- 
gatzonal querzes Thzs i ustomzzed structure reduces 
the amount of 1/0 zncurred durzng statzstzcal query 
processzng, thus decreaszng Ihc response tzme 

1 Introduction 

There has been much work to  date on statistical 
database and statistical query processing. Such work 
covers the areas of da ta  modeling (see survey in 
[16, 17]), query languages (see survey in [20]), exten- 
sion of t,he relation model [8], the use of pre-computed 
results (summary data) [ I ,  3,  4 ,  7, 10, 141 and access 
methods [19]. Shoshani [18] and Michalewicz [12] have 
given a comprehensive introduction to  issues in statis- 
tical and scientific databases 

In this paper, we are interested in the performance 
aspects of statistical queries. It is difficult to get good 
query processing performance in statistical databases 
for several reasons. Firstly, statistical databases ex- 
hibit high volume and high retention. Data volume in- 
creases monotonically because historical da ta  are usu- 
ally archived rather than discarded. Secondly, statisti- 

cal queries are predominantly aggregational and thus 
data-intensive. As 1 /0  latency is high, these factors 
are compounded in statistical queries by the 1/0 bot- 
tleneck problem. 

A commonly adopted approach to  alleviating the 
problem is through the use of precomputed results. In 
this approach, elementary summary statzstics [3] such 
as ]partial sums, partial sum of products, etc. are pre- 
computed for a set of attributes. The on-line compu- 
tation of these results is time-consuming because a lot 
of l /O is involved. When summary statistics are used 
to satisfy such queries, a lot of effort is saved. Some 
issues in this approach include (1) finding a logical 
data model for these statistics, (2)  developing a query 
language to  access them, (3)  the problem of statis- 
tics derivability, and (4 )  the physical organization and 
management of summary statistics. 

Our approach does not involve summary statistics. 
Instead, we work at the physical organization level 
to  improve the performance of statistical queries, and 
propose a new physical storage structure for statisti- 
cal relations. This structure is motivated by the char- 
acteristics of statistical queries, and we show that i t  
helps to  reduce the amount of 1/0 incurred during the 
execution of statistical queries. 

This paper is organized as follows: In the next sec- 
tion, we examine the idiosyncrasies of statistical da ta  
ancl queries. They are used to derive the design of the 
storage structure, described in Section 3. In Section 4, 
we demonstrate how to  support standard database op- 
erations when this new storage structure is used. This 
is fiurther elaborated in Section 5 on query processing. 
We show that little changes are required. In Section 6,  
we evaluate the performance of this structure with re- 
spect to  query processing. Section 7 discusses previous 
works in the Same area. Finally, we conclude the paper 
with some remarks on future work. 

*'l'his work was supported in part by the Consortium for 
tnternational Earth Science Information Networking. 
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2 Characteristics of Statistical 
Queries 

Statistical databases differ from ordinary databases in 
several ways. The attributes of a relation in a statis- 
tical database may be grouped into two classes: cat- 
egory and summary  [ 3 ,  4, 7,  81. Category attributes 
are generally descriptive (non-numeric) and have dis- 
crete values that  are known in advance. They are 
used in queries as access keys for retrieving tuples, 
and are rarely modified. On the other hand, sum- 
mary attributes are usually numeric because they are 
usually the observed or measured values in some ex- 
periment or survey. They are used in the computation 
of statistics for statistical queries, and have a higher 
probability of being modified. 

This classification of attribute domains is impor- 
tant as it  reflects the differences in functional usage 
within statistical queries. Logical operators are usu- 
ally applied to  the category attributes, while statis- 
tical operations are performed on the summary at- 
tributes. As we shall see in the next section, our new 
storage structure for statistical relation captures and 
exploits this fact. 

Since statistical queries are predominantly aggre- 
gational, their tuple access pattern is different from 
that  of ordinary queries. A statistical query usually 
needs to  access a group of tuples satisfying certain 
criteria. Aggregational queries in statistical databases 
often require access to  all tuples having specified val- 
ues in a subset of their attribute fields. Such queries 
can result in a proliferation of disk seeks since conven- 
tional database structures are not designed for clus- 
tering multiple attributes. 

In a conventional database, tuples of a relation are 
physically clustered via a unique key called the order- 
ing k e y .  An access mechanism, such as a B+ tree, is 
used to  provide random access. The tuples are non- 
clustering with respect to  the majority of category at- 
tributes. If tuples satisfying some search criteria are 
physically clustered together, fewer disk blocks will be 
accessed m multiple candidate tuples are found in a 
block, thus improving the response time of the query. 
We show in the following sections how our approach 
enhances multi-attribute clustering. 

3 Proposed Storage Structure 
We now turn to  the issue of how to redesign the 

physical storage structure of a relation so as to  acco- 
modate the characteristic requirements mentioned in 
the previous section. 

3.1 Attribute domain mapping 
A statistical relation scheme R = C1 x . . . x C,, x 
SI x . . . x S, is the tuple space containing the set of 
all possible tuples where Ci’s and Sj’s are category 
and summary attribute domains respectively. We will 
write R = ((C, S)). A statistical relation instance (or 
simply a relation) RI  is a subset of tuples from the 
tuple space, i.e., R & R. 

Example 3.1 Table 3. l (a)  depicts a statistical rela- 
tion R which will be used to  illustrate all the con- 
cepts discussed in this paper. There are four cat- 
egory domains C1,  C2 ,  C3, C, and two summary do- 
mains SI, S2. I 

The first step in defining the new storage structure 
is attribute domain mapping.  We map each attribute 
value of a non-numeric category domain to a numeric 
value. The motivation for domain mapping will be 
explained in Section 3.3. Table 3. l (b)  is the numer- 
ically mapped version of Table 3 . l (a) .  The mapping 
of category domains is easy as they are usually of fi- 
nite size with all possible attribute values known in 
advance. For every attribute c E C,, we map c into 
its ordinal position within the domain. For example, 
C1={production, marketing, personnel} is mapped into 
c1 = {0,1,2}. 

3.2 Multi-attribute clustering 
Consider Table 3.l(c), which is identical t o  Ta- 
ble 3 . l (b)  in content, except that the tuples have been 
reordered (and domain C, reordered). Notice tha t  the 
attribute values under column C1 form runs of O’s, 1’s 
and 2’s. Column Cz exhibits similar behaviour except 
that the runs are shorter. 

If the tuples are physically clustered as in Ta- 
ble 3 . l (c) ,  the probability of finding tuples whose ith 
attributes are identical being stored within the same 
block is very much higher than when they are clustered 
via a primary key in conventional style. Searching for 
tuples that  have a certain category attribute value re- 
quires fewer block accesses because multiple candidate 
tuples are clustered in the same blocks. This reduces 
1 / 0  and improves performance. 

Compare this with the conventional approach via 
secondary indices. Because the tuples are clustered 
physically in a different order, the indices must point 
all over to  locate the tuples. Thus, when retrieving a 
tuple via a secondary index, many random blocks are 
accessed, and that the same block be accessed more 
than once. As the latency of disk block 1 / 0  is high, 
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7 4  c1 c2 c3 

1 personnel worker Spanish 
2 personnel manager German 
3 marketing supervisor Spanish 
4 production worker Spanish 
5 marketing manager German 
6 marketing worker English 
7 personnel leader German 
8 personnel supervisor English 
9 marketing leader German 
10 production supervisor Spanish 
11 production worker German 
1 2  personnel leader French 
13 marketing worker French 
14 personnel worker French 
15 marketing leader English 
1 6  personnel manager French 
1 7  production manager Spanish 
18 production supervisor German 
19 marketing supervisor English 
20 personnel leader English 
21 marketing leader Spanish 
22 production supervisor English 
23 personnel worker German 
2 4  personnel supervisor Spanish 
25 personnel supervisor French 
26 marketing worker Spanish 
27 marketing manager French 
28 production leader Spanish 
29 production leader German 

(a) 

:1 c 2  c 3  c4 

0 0 1 1 7  
0 1 0 22 
0 1 1 10 
0 1 3 18 
0 2 1 28 
0 2 3 29 
0 3 
0 3 3 11 
1 0 2 27 
1 0  3 
1 1 0 19 
1 1  
1 2 0 15  
1 2 1 21 
1 2  3 
1 3  0 
1 3 1 26 
1 3 2 13 
2 0 2 16 
2 0 3 

__ 
s1 s 2  - 
25 30 
28 20 
24 3 5  
32  25 
4 7  20 
38 25 
23 20 
3 7  40 
44 25 
2 3  30 
32 20 
32  20 
34 40 
31 30 
28 3 5  
29 25 
46 20 
25 20 
35 40 
26 30 
27 30 
36 30 
29 35 
38 30 
42 25 
24 25 
27 30 
22 30 
28 20 - 

s1 s2 

46 20 
36 30 
2 3  30 
25 20 
22 30 
28 20 

1 4 3 2 2 5  
32  20 
27 30 

5 4 7 2 0  
35 40 

1 3 2 4 3 5  
28 35 
27 30 

9 4 4 2 5  
6 3 8 2 5  

24 25 
34 40 
29 25 

2 2 8 2 0  

2 2 0 3  
3 1 1 1  
4 0 3 1  
5 1 0 3  
6 1 3 0  
7 2 2 3  
8 2 1 0  
9 1 2 3  
1 0 0 1  1 
1 1 0 3 3  
1 2 2  2 2 
1 3 1  3 2 
1 4 2  3 2 
1 5 1  2 0  
1 6 2  0 2 
1 7 0  0 1 
1 8 0  1 3  
1 9 1  1 0  
2 0 2  2 0 
2 1 1  2 1 
2 2 0 1  0 
2 3 2  3 3 
2 4 2  1 1  
2 5 2  1 2  
2 6 1  3 1 
2 7 1  0 2 
2 8 0 2  1 
2 9 0  2 3 

2 8  20 
24 3 5  
32 25 
47 20 
38 25 
2 3  20 
37 40  
44 25 
23  30 
32 20 
32 20 
34 40 
31 30 
2 8  3 5  
29 25 
46 20 
25 20 
35 40 
26 30 
27 30 
36 30 
29 35 
38 30 
42 25 
24 25 
27 30 
22 30 
28 20 - 

0 0 3 5  
0 0 0 8 8  
0 0 2 8  
0 0  2 1 0  
0 0 2 1  
0 1 0 1 1  
0 0 1 7 5  
0 0 2 7  
0 0  2 1 6  
0 0 1 7 8  
0 0 0 8 4  
0 0 3 1 2  
0 0 1 6  
0 0 0 9 7  
0 0  1 8 8  
0 0 1 2 0  
0 0 0 8 7  
0 1 0 3  
0 0 0 8 6  
0 0 0 6  
0 0 1 1 6  
0 0 1 1  
0 0 1 7 5  
0 0 2 1 2  
0 0 0 9 5  
0 0  1 9 4  
0 0 1 1 3  
0 0 1 9  

(4 

- 
- 
- 
36 30 
2 3  30 
25 20 

28 20 
32  25 
32  20 

47 20 
3 5  40 
24 35 

27 30 
44 25 
38 25 

34 40  
29 25 
2 8  20 

38 30 
42 25 
26 30 

2 3  20 
25 30 
31 30 
29 35 

Table 3.1: A relation R and i ts  transformations. There are four category domains in  R: C4,C1,C2,C3, denoting the 
employee number, department, job  t i t l e ,  and the language spoken respectively, and t w o  summary domains SI and Sz, 
denoting age and income. Table (a) is the original relation. Table (b) shows the relation after every category domain 
has been mapped t o  integers. The sizes o f  the numerical domains C4, C1, Cz, C3, are 100 ,3 ,4 ,4  respectively. Table (c) 
shows the relation ordered via the mixed-radix integeral order. 7-able (d) is the compressed relation of Table (c). 

this method of access is expensive. Therefore, multi- 
attribute clustering alleviates this difficulty. It is to be 
noted that multi-attribute clustering applies t o  cate- 
gory domains only. The summary domains are not 
affected. 

3.3 Tuple ordering scheme 

What is the order that  arranges the tuples in Ta- 
ble 3.l(c)? This is the lexicographical order. We also 
call it the mized-radiz inlegral order because we treat 
each tuple as a mixed-radix integer, and use the value 
of this integer as the primary and ordering key, as ex- 
plained below. 

T h e  motivation for domain mapping should now 
be clear. With all attributes mapped to  integers, a 
relation becomes a set of mixed-radix integers. These 
intcgers may then be sorted numerically into the form 
shown in Table 3.l(c).  

Example 3.2 Continuing with our previous example, 
we note that the sizes of C1, Cz, C3, C4 are 3 ,4 ,4 ,100  
respectively. By adopting the sizes as the radices, the 

category portion of the last tuple (2 ,3 ,3 ,23 )  becomes 
2 x (4 x 4 x 100) + 3 x (4 x 100) + 3 x (100) + 23 = 
3200 + 1200 + 300 + 23 = 4723. Thus, tuples may be 
compared and sorted by comparing their numerical 
values. We would like to  repeat that  the mixed-radix 
integral concept is applied to  the category half of a tu- 
ple only. The summary portion tags along unchanged. 
I 

3.4 Tuple compression 

While lexicographical ordering enhances multi- 
attribute clustering, a characteristic requirement of 
statistical queries, its greatest side-benefit is that it 
also provides compression. Each of the runs of iden- 
tical attribute values exhibits value r e d u n d a n c y  that  
can be eliminated via simple compression techniques 
such as run-length coding [9]. However, a straightfor- 
ward application of run-length coding on the vertical 
runs distorts the structure of a relation: We wish to re- 
taiin the t a b l t  of t u p l e s  definition of a relation. Hence, 
additional refinements are needed. 
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Example 3.3 Table 3.l(d) is the compressed version 
of Table 3.l(c). Notice the horizontal rows of lead- 
ing zeroes in the tuples. By performing a mixed-radix 
subtraction between pairwise consecutive tuples of Ta- 
ble 3.l(c), one transforms the original vertical runs of 
identical attribute values into horizontal rows of lead- 
ing zeroes. For instance, category portion of the first 
tuple in Table 3 . l (d) ,  ( 0 , 0 , 3 , 5 ) ,  is obtained by the 
subtraction: (0 ,1 ,0 ,22)  - ( O , O ,  1,17) ,  which are cat- 
egory portions of the second and first tuple in Ta- 
ble 3.l(c). The redundancies are retained, but the 
leading zeroes may now be encoded via run-length 
coding without sacrificing the tuple-structure of a re- 

I 

Table 3. l (d)  is the final storage structure for R. 
This structure not only exhibits multi-attribute clus- 
tering, but its storage requirements are reduced via 
compression. We shall refer t o  this new storage struc- 
ture as the Tuple Differential Structure,  or TD struc- 
ture for short. 

lation. Thus, compression is achieved. 

4 Standard DB Operations 
How are standard database operations supported in 
the TD structure? In this section, we shall look a t  tu- 
ple access, insertion, deletion and modification. The 
next section discusses the support for query process- 
ing. 

4.1 Access method 
As tuples are now clustered under lexicographical or- 
der, a primary index for the relation uses an entire 
tuple as the search key. Figure 4.1 shows an order- 
3 primary B+ tree index constructed for relation R. 
Notice the placement of tuples into disk blocks, which 
reflects the demarcations shown in Table 3 . l (d) .  

There are two distinguishable parts of a tuple: the 
category portion and the summary portion, which 
we shall refer t o  as the category sub-tuple and sum- 
mary sub-tuple respectively. Each block begins with 
a head tuple which is the numerically smallest cat- 
egory sub-tuple in the block. All tuples following 
the head tuple are difference tuples. Notice that  the 
leading zeroes of the category sub-tuples are replaced 
by a number indicating the counts of the number 
of leading zero (run-length coding). Thus, the first 
difference tuple (2 I 3 , 5  I 36,30) in block 1 is de- 
coded into ( O , O ,  3 , 5  1 36,30). The head tuple can be 
added (via mixed-radix addition) to  the differences to  
derive the actual tuples. For instance, block 2 be- 
gins with head tuple (0 ,2 ,1 ,28  I 22,30) because the 

first difference tuple ( O , O ,  2 , l  I 28,20) = ( 0 , 3 , 1 , 4  I 
32,25) - (0 ,2 ,3 ,29  I 28,30). The purpose of starting 
a block with a head tuple is t o  restrict the scope of 
decompression to  within a da ta  block. If only a block 
is searched, the difference tuples may be decoded im- 
mediately without necessitating the decompression of 
all preceding blocks. 

The primary index is useful only when the cate- 
gory portion of a tuple is completely available as the 
search key. When only some category attributes are 
known, secondary indices are needed. A secondary 
index requires a level of indirection between the at- 
tribute values and the data  blocks where they might 
be found. For instance, the following provides the in- 
direction for domain CZ: (0 I 2,3 ,5) ,  (1 I 1 , 3 , 5 ,  s ) ,  (2 I 
1 , 2 , 3 , 4 , 6 , 7 ) ,  (3  I 2 , 4 , 5 , 7 ) ,  which says that  tuples 
whose C2 = 0 are located in block 2 , 3 , 5  (see the 
block demarcations in Table 3.1(c)). As the exam- 
ple relation R is too small, we are unable to  construct 
a full-scale secondary index for any of the category 
attributes. Nevertheless, we may conclude tha t  with 
the help of the primary and secondary indices, tuple 
access carries on as usual, even when the tuples are 
stored compressed under the TD structure. 

4.2 Tuple insertion and deletion 
How are tuple insertion and deletion supported in 
the database? Suppose we wish to  insert tuple t = 
( 1 , 0 , 3 , 6  I20,20) ,  which differs from ( 1 , 0 , 3 , 5  147,20) 
in the last attribute value. The primaryindex provides 
the means t o  locate the block which contains tuples 
that  are physically ordered in the neighourhood of t .  
With this index, data  block 3 is found to  be the 
didate block for inserting t .  

block 3 
(1 ,0 ,2 ,27 )  27,30 
(2 I2 ,16  I47,20) 71 (2 I1 ,78  I35,40) 

(2 1 2,16 I 47,20) 

(2 I 1 , 7 7  I35,40) 
(3 I 8 4  I24,35) 

(3 I 1 I 20~20)  

can- 

The above reflects the changes to  da ta  block 3. Notice 
that  only those difference tuples succeeding t are re- 
computed, and that  the changes are confined to  within 
the affected block. For tuple deletion, the primary 
index is similarly used t o  locate the data  block and 
changes made within the block. 

4.3 Tuple modification 
In conventional database, tuple modification is per- 
formed in  s i tu ,  i.e., right where the tuple is located due 
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pl 1 P o k 2  I I 0,0,1746,20> ,1,28 22,30> 
13,5136,30> 212,1128,20> 

318812330> 111.0.11132.25~ 
12,8125,20> 211 ;75132,30> 

~12.10122.30> 1 ~212.7127,30> I 
L -  1 L- -2 

Figure 4 1. Primary index The 

213.12128.35> 

\ 

3197144,25> 
211,88138,25> 
211,20124,25> 

2 2 2 1 2 >  

&\\\ 2 1  0 8 >  2,2,2,12> 

3187134,40> 
1 I1,0,3129,25> 
3186128,20> 
316137.40> 

lock 6 
.1,0,8 37,40> 

211,16138,30> 
211,1142,25> 
211,75126,30> p' 212.1 2132.30> 

3195123,20> 
211,94125,30> 
21 1,13131,30> 
211,9129,35> 

data blocks contain difference tuples in  lexicographical order. Hence the search key is 
an entire tuple. Each block begins w i th  a head tuple. All tuples fol lowing the head tuple are difference tuples where 
the leading zeroes are replaced by numbers (separated by a bar) indicating the counts. The summary port ion of a tuple 
is also separated f r o m  the category port ion by a bar. 

to the tuple-wise storage structure of a relation. When 
tuples are stored in the TD structure, tuple modifica- 
tion can expected to  be different. Suppose we wish to  
modify the first attribute of ( 1 , 0 , 3 , 5  I 47,20) to get 
( 2 , 0 , 3 , 5  I 47,20) .  Due to  the lexicographical ordering 
of tuples, the modified tuple would be physically far 
away from the pre-modified tuple in a different block. 
A tuple modification entails a deletion followed by an 
insertion, compared to the zn situ modification in con- 
ventional database. 

A closer look! however, reveals that  the modifica- 
tion above has been made to a category attribute, 
which is rare in statistical databases (see Section 2) .  
Statistical queries are by nature access-only; new sta- 
tistical da ta  are generated by reading a relation. Mod- 
ifications, if any, are generally made only to  summary 
attributes. Since summary attributes in the TD struc- 
ture arc stored tuple-wise (see Table 3.1(d)), tuple 
modification is still performed rzghl-where-il-is. 

I11 summary, standard database operations are the 
same even when the relation is stored in the new stor- 
age structure. The  only difference being that the 
search key of the primary index is the entire tuple. 
All othcr indices are non-clustering and secondary, as 
in standard databases. 

5 Statistical Query Processing 
The primary objective of the TD structure is to reduce 
thc amount of I/O for statistical queries, which gener- 
ally involve large da ta  transfers between main memory 

and secondary storage. In the next subsections, we ex- 
amine some of the commonly encountered statistical 
queries. 

5:l Range query 

We first look a t  a simple SQL query 

SELECT employee.number, income 
FROM employee 
WHERE department = marketing OR 

which is translated into the following relational al- 
gebraic expression with respect t o  relation R shown 
in 'Table 3.l(a): al<c,<z(R), where CI={product ion,  
marketing, personnel) has been mapped numerically to  

Strictly speaking, the above query is not the most 
appropriate illustration of a range query. However, 
it demonstrates the fact that  range queries are usu- 
ally translated into ezact-match queries where the 
specified attribute assumes values within a consecu- 
tive range. In the example, we are looking for tu- 
ples whose C1 attribute values are marketing or per- 
sonnel, i.e., C1 E {1,2}. In any case, satisfying such 
queries requires accessing a large portion of the re- 
lat,ion involved. With a secondary index constructed 
from C1, we are able to  locate tuples whose department 
attribute is marketing or personnel. The example illus- 
trates the fact that  when locating tuples via any  at- 
tributes, we find that multiple candidate tuples match- 
ing the query selection criteria are physically clustered 

department = personnel 

c1 = {0 ,1>2} .  
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in the same blocks because of the multi-attribute clus- 
tering feature of the TD structure. As a result, the 
actual amount of data  blocks accessed is reduced. 

Test number 
Data skew 

Domain variance 

5.2 Cross tabulation and aggregate 
query 

Statistical queries are characterized by aggregate com- 
putations. One is usually looking for aggregates of 
some attributes of a group of tuples satisfying certain 
criteria. Suppose a query desires the average income 
of employees categorized by their department and job- 
title: 

1,5 2,6 3,7 4,s 
Yes Yes No No  

Small Large Small Large 

S EL E CT 
FROM employee 
WHERE department = marketing AND 

GROUP BY job-title 

job- tit le, AVG( i n com e) 

(job-title = leader OR job-title = worker) 

In order t o  satisfy the above query, we need to  (1) 
select tuples satisfying the multi-attribute selection 
criteria, (2) group tuples by job-title, and (3) compute 
the average income within each group. 

The first step may be simplified into a combination 
of single-attribute retrievals. Using the secondary in- 
dex for each attribute, the set of candidate tuples are 
retrieved. Retrieving tuples by a search key has been 
discussed in the previous section. In any case, a large 
portion of relation is accessed. Since the overall num- 
ber of blocks of a relation stored under the TD struc- 
ture is reduced, processing this query will be substan- 
tially faster than a conventionally stored relation. 

In summary, reducing the amount of 1/0 increases 
the performance of queries involving large data trans- 
fers. The  new storage structure realizes the reduction 
through multi-attribute clustering of tuples and tuple 
compression. 

6 Performance Measurements 

How good is the new storage structure in terms of im- 
proving the performance of statistical queries? Specif- 
ically, we want t o  know the following: (1) What re- 
duction in disk block access is achieved on average 
per query? (2) What is the average reduction in the 
number of disk blocks accessed when locating tuples 
satisfying a selection criteria? 

Table 6.2: Test parameters. The  two parameters, data 
skew and domain variance, give a total of four combina- 
tions for three sets of four tests. Tests 1 , 2 , 3 , 4  measure 
the number of disk blocks accessed on average per query 
for different relation sizes. Tests 5 , 6 , 7 , 8  measure the 
number o f  blocks required for database storage for dif- 
ferent relation sizes. 

6.1 Multi-attribute clustering 

The first question concerns the multi-attribute cluster- 
ing efficiency of the TD storage structure. This ques- 
tion is easy to answer: We have only to  compare the 
average amount of 1 / 0  required for a typical query 
for a relation that is stored conventionally and in the 
storage structure. This raises two issues: What  con- 
stitutes a typical query and a typical relation? 

It is difficult to generate a typical “query” as there 
are many possibilities. To simplify things, we con- 
sider selects of the form U C ~ = ~ , , C , = ~ ~  ,,.., C ~ = ~ * ( R ) ,  i.e., 
selecting a set of tuples whose category attributes sat- 
isfy certain values. Here, k < n where n is the total 
number of category attributes and ti's are randomly 
generated attribute values of C;, 1 5 i 5 k .  

In order t o  ensure a fair evaluation, we generated 
relations of various sizes and characteristics. They dif- 
fered in: (1) relation size (i.e., the number of tuples), 
(2) variance in category attribute domain size, and (3) 
category attribute value skew (see Table 6.2). When 
the differences in domain sizes were no more than 10% 
of the average domain size, we took the domain size 
variance to be low. Otherwise, we took the variance 
to be high. The distribution of values within a domain 
was taken to  be skewed when 60% of the values were 
drawn from 40% of the domain. When no skew ex- 
isted, values were drawn uniformly from the domain. 
There were 8 category domains and 2 summary do- 
mains in all relations. The variations were applied to  
the category domains only. 

In order t o  evaluate the multi-attribute clustering 
efficiency, two sets of four tests are performed. Tests 
1 , 2 , 3 , 4  measure the number of disk blocks accessed 
on average per query for different relation sizes. The 
four tests correspond to four combinations of relation 
characteristics: small variance and no data  skew, large 
variance and no data  skew, small variance and data 
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Figure 6.2: Number of data blocks accessed versus relation size. The parameters of the tests are found in  Table 6.2. 
Both  axes have undergone a log,, transformation so tha t  the units are equally spaced. "new" and "old" stand for 
relations stored i n  the TD and conventional storage structures respectively. Observe tha t  the average number of blocks 
accessed per query is fewer when relations are stored in  the TD structure. 

skew, large variance and da ta  skew. For each test, a 
set of 100 selection queries of the form mentioned pre- 
viously were randomly generated for a given relation 
size. The number of attributes in the selection criteria 
of the queries randomly varied between 1 and 4. The 
total number of blocks accessed was divided by 100 
to  yield the average number of blocks for that  rela- 
tion size. Four relation sizes were used: 0.2 Mbytes, 2 
Mbytes, 20 Mbytes, and 40 Mbytes. The results are 
shown in Figure 6.2 and the efficiency ratios are in 
Figure 6.4. The following observations may be made: 

0 The da ta  blocks accessed on average per query 
are greatly reduced when the relation is stored 
via the proposed storage structure. In fact, an 
efficiency of 1344 : 262 (5.2 : 1) was achieved for 
test 1 a t  a relation size of 20 Mbytes. 

0 The multi-attribute clustering efficiency increases 
for larger relations. This is seen from the widen- 
ing gap between each pair of graphs in each test. 
The efficiency ratios plotted in Figure 6.4 also 
concur. 

0 Large variance in attribute domain sizes decreases 
the multi-attribute clustering efficiency slightly. 
For example, the efficiency for tests a t  a relation 
size of 20 Mbytes under data  skew decreases from 
1344:262 (5.2: l )  to 458: 130 (3.5: 1). 

0 Data skew increases multi-attribute clustering ef- 
ficiency because it reduces the variety in the at- 
tribute distribution. For instance, the efficiency 
for tests a t  a relation size of 20 Mbytes under 
small domain variances increases from 1363 : 350 
(3.9 : 1) with no data  skew to  1344 : 262 (5.2 : 1) 
with data  skew. 

6.2 Compression efficiency 
The second question concerns the compression effi- 
ciency of run-length coding on the leading zeroes. The 
target of interest is the number of data  blocks occu- 
pied by a relation before and after compression. 

To achieve a good mix of relation types, we again 
varied relation characteristics as above, and performed 
another set of four tests, numbered 5 , 6 , 7 , 8 .  This 
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Figure 6.3: Number of data blocks stored versus relation size. T h e  parameters o f  the tests are found in Table 6.2. 
Both axes have undergone a log,, transformation so that  the units are equally spaced. "new" and "old" stand for 
relations stored in the TD and conventional storage structures respectively. W e  observe that  relations stored under the 
TD structure are more space efficient than relations under the old structure. 

time, however, we measured the number of blocks re- 
quired by a relation. For each test, we randomly gener- 
ated a relation and compared its storage requirements 
before and after storing it in the TD structure. This 
was performed for various relation sizes. The results 
are shown in Figure 6 .3 .  

The values obtained are much larger than those in 
the previous four tests because we are taking the en- 
tire relation into account, rather than portions of it.  
Otherwise, the results of the test are similar to those 
of previous tests. 

As a further illustration of its applicability, we have 
used the TD structure to  store the 1990 census data. 
The 1990 Public User Microdata Samples (PUMS) 
from the U.S. Bureau of Census contain records repre- 
senting 5% or 1% samples of the housing units in the 
U.S. and of persons residing in them. The 1% samples 
contain 2.3 million records and occupy 800 Mbytes, 
while the 5% samples contain 13 million records and 
occupy 4 gigabytes. Performing aggregational queries 
on these data  is prohibitively slow because of the im- 
mense amounts of I/Os generated. By adopting the 

proposed structure, we are able to  improve the re- 
sponse time of statistical queries significantly [13]. 

In summary, the features afforded by the proposed 
structure: multi-attribute clustering and compression 
reduces the amount of 1/0 incurred during query pro- 
cessing. 

7 Related Work 
Several techniques have been proposed for physical or- 
ganization of statistical databases [2, 5, 6 ,  111 mostly 
in the context of statistical database compression. 
Due to  space limitations, we shall discuss only the 
more relevant ones. 

Attribute encoding is a popular approach in physi- 
cal database organization [2, 211. Since attribute val- 
ues are often repeated, the set of attribute values oc- 
curring in a domain may be mapped to  a smaller set 
of codes to achieve compression. A database may 
also be attribute transposed so that it is stored as 
a collection of contiguous attribute columns, i.e., all 
data for an attribute is stored together. In this case, 
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Figure 6.4: Efficiency rat io ( in percent) versus relation size. The t w o  sets o f  graphs are derived f r o m  the results of 
Figure 6 .2  and Figure 6.3. Observe tha t  bo th  efficiencies increase wi th  larger relations, which is not  entirely apparent 
in  Figure 6.2 and Figure 6.3. 

attribute-level coding is useful as  it can exploit the nu- 
merous repeated occurrence of attribute values. Such 
schemes have even been carried to the extreme where 
the database is bit-transposed; i.e., all of the da ta  for 
single bit position of an attribute encoding is stored 
together [21]. Depending of the type of coding cho- 
sen, attribute encoding may also face the problem of 
running out of codes for new attributes [2]. 

We have used the attribute transposition technique 
in our  Allegro system' for interactive statistical query- 
ing of the Public Use Microdata Samples of the U.S. 
Census of Bureau. However, attribute transposition 
has both strengths and weaknesses with respect to 
o u r  tuple-wise storage technique. It is comparatively 
fastcr only i f  the sclected set of attributes in a query 
is vcry much smaller than thc entire set of attributes. 
In this case, it has the advantage of bringing in only a 
small subset of the database into memory for process- 
ing. However, due to  the numerous smaller attribute 
files generated by attribute transposition, there is a 
higher lcvel of disk block fragmentation. This may re- 
sult in higher seek times when locating attributes. In 
addition, it may no longer be economical to construct 
indices for each of the attribute files for random access. 

[5, 6,  111 are concerned with statistical databases 
that assume a flat file structure, i.e., a database 
consisting of onc or more sequential file(s) of bytes. 
Such databases usually contain numeric data gener- 
ated from the results of laboratory experiments, mon- 
itoring of seismic activitics, business trends, etc. Such 
databases exhibit little or no record structure. Hence, 
they are not useful when tuple structures must be pre- 
served. The primary fociis of these techniques is the 

Allegro is a proprietary system developed for the Consor- 
tium for International Earth Science Information Networking. 

removal of constants from the databases. Constants 
are runs of identical da ta  values that are usually re- 
moved or coded using run-length coding or its vari- 
ant,s. As the database is a contiguous sequence of 
bytes, much of the work is concerned with the de- 
termination of efficient mappings between the uncom- 
pressed and compressed database. Although statis- 
tical databases are relatively static, new records are 
often inserted as more data  are gathered. Such inser- 
tions complicate the maintenance of mappings. 

8 Conclusions 
We have designed a new storage structure for sta- 
tistical relations that improves the efficiency of sta- 
tistical queries through multi-attribute clustering and 
Compression, which results in 1/0 reduction. Our de- 
sign is motivated by the characteristics of statistical 
d at abases : 

e Attributes are of two types: category and sum- 
mary. Category attributes are used as the search 
keys for access. Summary attributes are the tar- 
gets of queries, and modifications are rarely made 
to  them, if  ever. 

Most queries are access-only in nature; little or 
no modifications are made. New statistical da ta  
that are created as a result of the query do not 
affect the existing statistical relations. 

Our design incorporates these characteristics by con- 
ceptually segregating a relation into two halves corre- 
sponding to the category and summary portions. Tu- 
pleis in the category half are stored in the lexicographi- 
cal order in order to enhance multi-attribute clustering 
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and permit compression. Since category attributes are 
generally used as search keys, the new clustering and 
compression reduce the amount of 1/0 involved. Be- 
cause only the summary attributes are modified, tuple 
modification is performed in situ, as in conventional 
databases. 

Much work has been done in improving statistical 
query processing. The most common approach is the 
use of precomputed results or summary data.  Our 
approach is not t o  be seen as orthogonal to existing 
work as complementing it so as to achieve comprehen- 
sive improvements in statistical query processing. 
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