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Abstract. Spatial databases typically assume that the positional at-
tributes of spatial objects are precisely known. In practice, however, they
are known only approximately, with the error depending on the nature
of the measurement and the source of data. In this paper, we address the
problem how to perform spatial database operations in the presence of
uncertainty. We first discuss a probabilistic spatial data model to repre-
sent the positional uncertainty. We then present a method for performing
the probabilistic spatial join operations, which, given two uncertain data
sets, find all pairs of polygons whose probability of overlap is larger than
a given threshold. This method uses an R-tree based probabilistic index
structure (PrR-tree) to support probabilistic filtering, and an efficient al-
gorithm to compute the intersection probability between two uncertain
polygons for the refinement step. Our experiments show that our method
achieves higher accuracy than methods based on traditional spatial joins,
while reducing overall cost by a factor of more than two.

1 Introduction

The past decade has witnessed a significant increase in work on spatial database
management systems. The field has gained significance both in traditional ap-
plications such as urban planning, as well as in emerging areas such as mobile
ad-hoc networks. The increase in GPS-based has also been a significant boost
to this field. A standard assumption in the spatial database domain has been
that the positional attributes of spatial objects are known precisely. Unfortu-
nately, this is often not the case, and various kinds of uncertainty may be associ-
ated with spatial data. GIS researchers, in particular, have long recognized that
spatial data are rarely error-free [8, 30]. Five important components of spatial
data quality are categorized in the National Standard for Spatial Data Accu-
racy(NSSDA) [6]: positional accuracy, attribute accuracy, logical consistency,
completeness and lineage.
In this paper, we focus on positional accuracy. The positional accuracy rep-

resents how closely the coordinate descriptions of spatial objects match their
actual positions (or ground truth). The term positional uncertainty or positional
error is often used to refer the difference between the digital representations
of spatial objects and the actual locations. Numerous factors may contribute
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Fig. 1. Data problems: Overlay
places building (flag) within lake
(grey area), instead of on 5th
Street [18]
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to the positional uncertainty in spatial data. In practice, there are a variety
of ways to capture spatial data, each having its own sources of errors. Sev-
eral widely used data sources are land surveys, GPS information, photography,
remotely sensed satellite images, and digitizing or scanning a paper map. As in-
dicated in [18], errors may be introduced during these processes by the digitizing
methods used, the source material characteristics, generalizations, symbol inter-
pretations, specifications for aerial photography, aerotriangulation techniques,
ground control reliability, photogrammetric characteristics, scribling precision,
resolution, processing algorithms, printing limitations, and so on.
Traditional techniques for querying spatial data need to be revised, since

uncertainties in spatial data may affect the accuracy of the answers to queries.
It is in fact possible for traditional database queries to produce wildly incorrect
or invalid results based on the measured data. To illustrate this point, consider
the example in Figure 1, taken from a document by Minnesota Planning [18]. In
this example, the locations of buildings, shown as the black flag, are measured
by GPS receivers, and then overlaid over a digital base map containing roads,
and lakes. However, this operation results in some buildings being located in the
middle of lakes! The error in this case arises from the differences in data sources
and their differing accuracies. The base map was accurate to 167 feet, while the
GPS data was accurate only to 300 feet.

1.1 Managing Uncertainty

It is generally agreed that positional uncertainties should be reported along
with data, so that users may evaluate the suitability of the data for specific
applications during decision making. One recent attempt is the widely-accepted
standard by NSSDA [6]. NSSDA provides a well-defined statistical method and
promotes the use of root-mean-square error (RMSE) to estimate and report
the positional accuracy. RMSE is the square root of the average of the set of
squared differences between dataset coordinate values and “ground truth” values
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of coordinates from an independent source of higher accuracy for the same points.
For example, [18] shows how to apply NSSDA to report the positional accuracy
in a variety of data. A typical positional accuracy statement is using the National
Standard for Spatial Data Accuracy, the data set tested 0.181meters horizontal
accuracy at 95% confidence level.
Unfortunately, RMSE is merely a gross, global measure of uncertainty, av-

eraged over all points in a given data set. It therefore fails to characterize the
local or spatial structure of uncertainty [7], and is inadequate for analysis of
uncertainty. It remains a research issue to find an appropriate model to estimate
and report the spatial structure of positional uncertainty.
From the perspective of spatial database systems, there are two important

issues to address: modeling and reporting the positional uncertainty, and evaluat-
ing spatial queries over uncertain spatial data. In our work, we develop a prob-
abilistic spatial data model (PSDM) for polygon data that associates proba-
bility distributions with the positional attributes. In PSDM, each polygon is
partitioned into k disjoint independent chunks. Vertices from the same chunk
have fully correlated uncertainties, while vertices from different chunks are inde-
pendent. Furthermore, each chunk’s uncertainty is assumed to follow a circular
normal distribution.
Given the inherent positional uncertainties in the spatial data, exact match

responses to queries are not meaningful, but probabilistic statements about query
results are appropriate. Probabilistic answers to range and nearest-neighbor
queries over moving point objects with uncertain locations were used in [29, 25].
In contrast, our work is concerned with probabilistic responses to queries when
positional uncertainty exists over polygon boundaries. We also consider how to
perform spatial operations in the presence of uncertainty.
In particular, we focus on evaluating probabilistic spatial joins. The response

to a probabilistic spatial join consists of object pairs and the intersection prob-
ability between each pair. For example, consider the set R of state parks in
California, and the set S of burned areas from recent forest fires. An example of
a probabilistic spatial join query between R and S is: Find all burned areas that
overlap state parks in California with a probability of at least 0.8, and compute
their overlap probability.
As with traditional spatial joins, we evaluate probabilistic spatial join in two

steps: filtering and refinement [5]. We propose the Probabilistic R-tree (PrR-
tree) index, which supports a probabilistic filter step. We also propose an efficient
algorithm to obtain the intersection probability between two candidate polygons
for the refinement step.
This paper is organized as follows. Section 2 discusses related work. Section 3

presents PSDM, a probabilistic spatial data model for polygon’s uncertainty. Sec-
tion 4 presents our filtering and refinement algorithms for evaluating probabilsitc
spatial joins. Experimental results are given in Section 5. Section 6 concludes
the paper.
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2 Related Work

Much work has been done on spatial databases, especially on the evaluation
of spatial joins. Typically, spatial objects are approximated and indexed using
their minimal bounding rectangle (MBR). A spatial join query is processed in
two steps: filtering, where all the MBR pairs satisfying the join predicative are
retrieved, and refinement, where the exact geometry of the objects is used to
determine whether the object pair is a true hit or a false hit.
Consequently, previous work on spatial join has focussed on either the fil-

tering or refinement step. For example, [5] proposed an algorithm to perform
spatial join of two datasets indexed by the R-tree and its variations [2, 21].
Similarly, [15, 17] proposed algorithms to join one pre-indexed dataset with one
unindexed dataset, and [16, 12, 23] proposed algorithms for the cases where
neither dataset has existing indices. Other work focuses on how to improve the
performance of the refinement step, which is much more expensive than the fil-
tering step in terms of both I/O and computation costs. A common approach
for the refinement is to approximate the spatial objects with a better approxi-
mation than MBR provides. For instance, [4] proposed a multi-step framework
for processing spatial join, using approximations such as convex hulls, and mini-
mum bounding m-corner boxes. In contrast, [9] proposed the Symbolic Intersect
Detection (SID) technique to reduce the expensive computation cost of exact
geometry test. Raster approximations are proposed for refinement step in [31].
In contrast, little work exists on query evaluation for spatial objects with

uncertain position. In [13], the ε-band model is used to model the probabilistic
distribution of polygon boundaries, and the upper bound of the probability for
the point-in-polygon query is derived. The ε-band model requires one parameter
to describe the uncertainty of a database, and simply assumes that all points, in-
cluding the intermediate points between two vertices have the same uncertainty.
However, as [26] indicates, this assumption may not be valid. The work in [26]
found that the uncertainty of the middle points is lower than that of the two
vertices. Also, [13] showed no experimental results for their approach, so it is
unclear how well their approach works. Furthermore, point-in-polygon queries
are very simple, and are not be applicable to spatial join in any direct way. The
G-Band was proposed in [27] to describe the positional uncertainty of line seg-
ments, assuming that the uncertainties of the endpoints follow two-dimensional
Normal distributions. One good feature of G-Band model is that it accounts
for the dependence between the two end-points of segments. However, it may
impose high computation cost when being applied to query evaluation.
Due to the complexity of spatial uncertainty, Openshaw [22] recommended

the use ofMonte Carlo techniques to evaluate the spatial uncertainty inherited in
the spatial dataset. With this approach, a set of equally probable realizations of
the spatial objects are generated, and these realizations can be used to evaluate
the uncertainty associated with the spatial data. Although this is a computation-
intensive method, Openshaw argued that due to the improvement of computer
technology, this approach would find its way in more and more applications. For
instance, [10, 7] demonstrated how to evaluate point-in-polygon queries using
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Table 1. Summary of notation

Notation Description

pi Vertex i
(xi, yi) The x and y coordinates of vertex pi

σi The standard dviation of the circular normal associated with pi

〈P 〉 A polygon P .
〈P : j〉 The j-th chunk of polygon P

〈pk, pk+1, · · · , pk+l〉 Chunk with vertices pk, pk+1, · · · , pk+l (numbered anti-clockwise)

[|x�, y�, x�, y�|] MBR with lower left corner at (x�, y�) and upper right corner (x�, y�)

σ�
x , σ�

y , σ�
x , σ�

y The standard deviations of respective MBR corners X and Y axes.

γ Confidence threshold for probabilistic queries

a Monto Carlo method. Despite great improvements in computer technology,
Monte Carlo method is still not usable in large spatial databases. One possible
use of this approach, suggested by Openshaw, is to serve as a benchmark for the
evaluation of new techniques. Indeed, we use the result of Monte Carlo method
to generate the ground truth values in our experiments.
The notion of probabilistic answers to queries over uncertain data was intro-

duced in [29, 25] for range queries and nearest-neighbor queries when handling
with the uncertainty associated with the location of moving point objects. Each
query returns a set of tuples in the form of (O, p), where O is the object, and p
is the probability that O satisfies the query predicate. The uncertainty of mov-
ing objects also was discussed in [28], where the uncertainty of object locations
was modeled as a 3D cylindrical body along the trajectory, and semantics some-
time, always, everywhere, somewhere, possibly and definitely were added into
the traditional range queries. In [24], Pfoser et. al reported how to represent
the uncertainty of moving objects introduced by the sampling technique and
interpolation, and presented a filter-and-refine approach for probabilistic range
queries.

3 Probabilistic Spatial Data Model

Traditional spatial databases typically use three primitives to represent spatial
extent: points, lines, and polygons. Consequently, the uncertainty of the spatial
extent can be described via the probability distributions of the vertices defin-
ing these three primitive objects. We recognize three requirements for an ideal
probabilistic spatial data model: simplictity, accuracy, and efficiecny. Simplic-
ity dictates that few parameters must be needed to describe the uncertainty,
making it easier to incorporate probabilistic spatial data models into current
spatial databases. Accuracy requires that the model should characterize the un-
certainty with the greatest fidelity. Efficiency dictates that cost of processing the
uncertainty during query execution should be reasonable.
In this section, we will present a probabilsitc spatial data model (PSDM)

which meets these requirements. Table 1 is the list of notations used in this
paper.
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Fig. 3. An uncertain polygon with 4 chunks, and a possible realization for this
polygon

3.1 Positional Uncertainty Model

Our model begins with a partitioning of polygons into contiguous series of ver-
tices called chunks . The positions of vertices from the same chunk are perfectly
correlated, and positions of vertices from different chunks are independent. This
model is reasonable in many practical scenarios since positions of vertices on
polygons defining features are frequently assigned locations with respect to some
standard reference points.
Consider Figure 2, in which a surveyor is mapping out a polygonal region

with seven vertices. Because of site characteristics such as landmark visibility and
distance, the surveyor has chosen to obtain the positions of vertices p1, p2, p3 with
respect to a reference point r1, and the positions of p4, p5, p6, p7 with respect to
a different reference point r2. One approach is to obtain the locations of vertices
relative to reference points via trigonometric calculations using measurements
of distances and angles, the accuracy associated with which approach can be
quite high. It is therefore reasonable to assert that the positional uncertainties
in the locations of these vertices is largely determined by the uncertianties in
the locations of the reference points. In this case, our chunks are 〈p1, p2, p3〉 and
〈p4, p5, p6, p7〉. The errors in the postions of these chunks are uncorrelated as
long the positions of r1 and r2 are.
Errors can occur both systematically and randomly [11, 3]. Generally, sys-

tematic errors, in the form of outliers, biases, blunders, do not follow a distri-
bution function, and can be removed through a posteriori techniques such as
calibration. Random errors commonly arise during measurement and tend to be
distributed Normally [3]. We consider only random errors, and assume that the
positional uncertainty of a point follows a circular Normal distribution, as in
previous work [13, 14].
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Definition 1. Uncertainty of point: Let p be a point in 2 dimensional space
whose position is uncertain. If σ is the uncertainty parameter associated with p,
then the probability that p is located within a circle of radius r centered at p is

given by the circular Normal distribution Prp(r) = 1− e−
r2

2σ2 .

Now, consider the uncertainty associated with a polygon 〈P 〉 with n ver-
tices p1, p2,. . ., pn. If we partition these vertices into the k disjoint chunks 〈P : 1〉,
〈P : 2〉, . . ., 〈P : k〉, all the vertices in any chunk move as a unit. That is, if chunk
〈P : j〉 comprises the contiguous vertices 〈psj , psj+1 , · · · , psj+l

〉 , the positions of
any two of these vertices are perfectly correlated. Consequently, if any vertex in
this set has associated uncertainty parameter σ, every other vertex in the chunk
also has uncertaintly σ. On the other hand, the vertices from different chunk are
independent.
Figure 3(a) shows a polygon 〈P 〉 with four chunks, where the dotted circles

have radius σ, the uncertainty parameter of the corresponding chunk. In Fig-
ure 3(b) the dark polyon is a possible realization for 〈P 〉. Notice that all the
vertices in a chunk move in tandem.
Various types of queries over the uncertain spatial data can be defined under

this model. It is also natural to assign a probability value to each query result.
A similar approache is adopted in [29, 25], where methods are presented for
evaluating probabilistic range queries and nearest neighbour queries over moving
points with location uncertainty. Probabilistic range, distance, and spatial join
queries may now be defined as follows.

Definition 2. Probabilistic Range Query: Given a rectangular region R,
a set of uncertain polygons S, and a constant γ, 0 ≤ γ ≤ 1, a Probabilistic
Range Query (PRQ) returns a set of pairs of the form (si, πi), where si ∈ S, and
πi ≥ γ is the intersection probability between si and R. We call γ the confidence
threshold for the range query.

Definition 3. Probabilistic Distance Query: Given a query point q, a query
distance d, a set of uncertain polygons S, and a constant γ, 0 ≤ γ ≤ 1, a Prob-
abilistic Distance Query (PDQ) returns a set of pairs of the form (si, πi),
where si ∈ S is within distance d from q with probability πi ≥ γ. We call γ
the confidence threshold for the distance query.

Definition 4. Probabilistic Spatial Join: Given two sets of uncertain poly-
gons S1, S2, a query distance d, and a constant γ, 0 ≤ γ ≤ 1, a Probabilistic
Spatial Join (PSJ) returns a set of triples of the form (si, sj, πi), where si ∈ S1

and sj ∈ S2 are within distance d of each other with probability πi ≥ γ. We call
γ the confidence threshold for the join query.

A question common to such queries is how to compute the intersection prob-
ability between two polygons, given that at least one of them has an uncertain
boundary. In the following sections, we will focus on PSJ and show how to eval-
uate it for the case when d = 0, that is for overlap queries. The other queries
are answerable using the resulting methods.
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4 Query Evaluation for PSJ

As the shapes of spatial objects are rarely regular, they are usually approxi-
mated by their Minimum Bounding Rectangles (MBR). Traditional spatial joins
are executed in two steps [5]. In the first or filtering step, the join predicate is
evaluated on the set of MBRs, and a result set of candidate pairs is produced.
The MBRs are indexed with indices such as the R-tree and its variations [2, 21],
or Seeded Trees [15], and a tree matching algorithm is used to find matching
pairs of MBRs. In the second or refinement step, the actual spatial objects are
matched using the join predicate.
This filtering-and-refinement strategy can also be applied to evaluate proba-

bilistic spatial joins. However, traditional spatial indices do not support any no-
tion of uncertainty or probabilistic matching. We must hence modify the MBR
approximations and index structures to support probabilistic filtering. In this
section, we present the PrR-tree, an R-tree based index structure for uncertain
polygons.

4.1 PrR-Tree and Probabilistic Filtering

The PrR-tree is a disk-based, balanced and multi-way tree with the structure of
an R-tree. To support probabilistic filtering, we augment the MBR approxima-
tion with the probability distribution of MBR’s boundary. As in an R-tree, the
entry in a leaf node has the form (MBR, oid) tuples, and contains an object’s
MBR and a pointer to its exact representation. Intermediate node entries have
the form (MBR, ptr), where ptr points to a lower level node, and MBR covers
all the MBRs in this node in the sense explained below.
Consider a polygon 〈P 〉, as in Figure 4, and let its MBR be defined by the

lower-left and upper-right vertices being (x�, y�) and (x�, y�), respectively. We
will represent this MBR as [|x�, y�, x�, y�|]. Observe that x� is determined by
the vertex of 〈P 〉 with the lowest X-coordinate, and that y� is determined by
the vertex with the lowest Y -coordinate. These may be different vertices, so
the uncertainty distribution of the lower-left corner is not a circular Normal,
even when the vertices of 〈P 〉 are associated with uncertainties that are circular
Normals.
We could, in principle, apply the techniques of Order Statistics [20] to de-

rive the probability distribution of x�, from the probability distributions of the
individual vertices. However, these derived distributions tend to have very com-
plicated forms, and would impose a high computation cost during the filter
step. Instead, we obtain approximations for the distributions for x�, y�, x�, y�

in terms of Normal distributions. This approach is reasonable since the means
for the vertex positions are likely to be large compared to their variances.
Therefore, the parameters for the MBR [|x�, y�, x�, y�|] implicitly include

both the mean positions x�, y�, x�, y� as well as the corresponding variances
σ�

x , σ
�
y , σ

�
x , σ

�
y . One obvious benefit of this approach is that the representation of

MBR is quite simple, since we only need add four more values to the traditional
representation of MBRs.
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Fig. 4. The MBR at leaf node and the MBR at intermediate node

Specifically, we order the vertices of 〈P 〉 by the mean values of their X and Y
coordinates, and take lowest of the X-coordinates to be the mean position of x�.
The value of σ�

x is the maximum σ value among all vertices whose mean positions
coincide with the MBR’s left edge. For example, Figure 4 (a) shows a polygon
with four chunks, whose sigma values are 10, 20, 15, 8, respectively. The left
edge of the MBR is defined by one vertex from chunk 2, so that the mean value
of x� is defined by the mean position of this vertex, and σ�

x , the sigma value
for x�, is equal to the sigma value of chunk 2, that is, σ�

x = 20. We can similarly
obtain the mean values for y�, x� and y�, and the sigma values σ�

y = 8, σ
�
x = 8,

and σ�
y = 10.

Covering MBRs. The MBR at the intermediate level of the PrR-Tree can be
derived as follows. We represent MBRs as [|x�, y�, x�, y�|], and use σ�

x , σ
�
y , σ

�
x ,

σ�
y to represent the standard deviation of x

�, y�, x�, y�, respectively.
We say MBR [|x�, y�, x�, y�|] covers the MBRs at an intermediate node in

the PrR-tree if it overlays these MBRs tightly. First, the mean position of x�

must correspond to the farthest left of the lower-left corners of the coveredMBRs.

r

p

r+ r
δθ
θ

δ

Fig. 5. Shadow area is 	p(r, θ) for vertex p
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Also, the value of σ�
x of the covered MBR must also correspond to the σ�

x value
of this corner. (In the case where several covered MBRs have their lower-left
corners at the extreme left position, we pick the corner with the highest σ�

x

value.) We proceed similarly for the values of y�, x�, y�, and the uncertainty
parameters σ�

y , σ�
x and σ�

y .
For example, Figure 4 (b) shows a MBR R at the intermediate node covering

the three MBRs R1, R2, and R3. For simplicity, we only show the σ values of
these MBRs. Since R3 defines the lower X-bound of R, the σ�

x for R is equal to
the sigma value of R3’s lower X-bound, that is, 8. Computing σ�

x is a bit more
involved, since the mean positions of the right edges of R1 and R2 coincide, so
that they both define the upper X-bound of R. In this case, we must take R’s
σ�

x as equal to the higher of the σ�
x values of R1 and R2, that is, as equal to 15.

In a similar fashion, we can calculate σ�
y and σ�

y .

Insertion and Deletion. The insertion and deletion algorithm of the R-tree
can be directly applied to the PrR-tree, as the mean positions of MBRs are used
to compute their areas, intersection areas, and margins. However, we must main-
tain the σ values for the MBRs as described above during insertions, deletions,
or node split processing.

Filtering Algorithm. The basic idea behind the filtering step for PSJ is to
simultaneously traverse the two PrR-trees, checking whether the intersection
probabilities between pairs of MBRs exceeds γ. If the intersection probability of
two MBRs is less than γ, there can be no PSJ candidate pairs among the MBRs
covered by them. Otherwise, there could be candidate pairs whose intersection
probability equals or exceeds γ, in the corresponding subtrees.
While our algorithm is similar to the traditional tree-matching algorithm

for spatial join in [5], it is also different since it must compute the intersec-
tion probability between two MBRs. Given two MBRs R1 = [|x�

1 , y
�
1 , x

�
1 , y

�
1 |],

and R2 = [|x�
2 , y

�
2 , x

�
2 , y

�
2 |], the intersection probability between them can be

computed as follows:

Pr[R1∩R2] = (1−Pr[x�
2 ≤ x�

1 ]−Pr[x�
1 ≤ x�

2 ])×(1−Pr[y�2 ≤ y�1 ]−Pr[y�1 ≤ y�2 ]).
(1)

If X , Y are two independent Normal random variables, then X − Y is also
Normal. Therefore, it is quite easy to get Pr(X ≤ Y ) by computing Pr(X −
Y <= 0). Since x�

1 , y�1 , x�
1 , y�1 , x�

2 , y�2 , x�
2 all follow Normal distributions, we

can easily compute Pr(x�
2 ≤ x�

1 ), Pr(x�
1 ≤ x�

2 ), Pr(y�2 ≤ y�1 ), and Pr(y�1 ≤ y�2 ),
and thus derive Pr[R1 ∩R2].

Heuristic Adjustment of the Threshold γ. In Figure 4(b), let the lower
bounds along the X-axis for R, R1, R2, and R3 be x�, x�

1 , x�
2 , and x�

3 . Since we
have approximated the distribution of x� with the distribution of x�

1 , we risk
missing some true hits if we simply used γ as the threshold in the filtering step.
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To minimize this risk, we heuristically adjust γ by estimating the probability
that our approximation is correct.
Let δ�x be the probability that x

�
1 is less than both x�

2 and x�
3 . Let δ

�
x , δ

�
y , and

δ�y be similarly defined, and let δ be the highest of these values. (Since x�
1 , x

�
2

and x�
3 follow Normal distributions, these probabilities are easy to compute.) We

store δ in R, and use the value (δ× γ) as the threshold during the filtering step.
Our experiments show that this adjustment reduces the number of false negatives
at the cost of some increase in false positives. However, the total number of errors
is also reduced in the process. Since our problem definition inherently involves
uncertainty, not exact matching, this is a reasonable tradeoff.

4.2 The Refinement Step

The filtering step returns a set of candidate pairs whose MBRs intersect with
probability at least (δ × γ). This set, however, may contain false hits which
do not satisfy the join predicate. The refinement step must retrieve the exact
representations of polygons, compute the intersection probability between two
polygons, and evaluate the join predicate. We now consider this problem in
greater detail.
Consider two polygons 〈P1〉 and 〈P2〉. To get the intersection probability

between 〈P1〉 and 〈P2〉, we first compute the probability that at least one vertex
of 〈P1〉 is located inside 〈P2〉, and the probability that at least one vertex of 〈P2〉
is located inside 〈P1〉. We then use the larger of these values as the intersection
probability between 〈P1〉 and 〈P2〉.
Denote the event that at least one vertex of 〈P1〉 is located inside 〈P2〉, by

[〈P1〉 � 〈P2〉]. We now consider how to compute the probability Pr[〈P1〉 � 〈P2〉].
The exact representations of 〈P1〉 and 〈P2〉 are retrieved. Since the uncertainties
of any two chunks are independent, the event that the vertices of 〈P1 : i〉 are
outside of 〈P2〉 is independent of the event that the vertices of 〈P1 : j〉 are outside
of 〈P2〉. It therefore follows that

Pr[〈P1〉 � 〈P2〉] = 1− Pr[〈P1〉 � 〈P2〉] = 1−
k∏

j=1

(1− Pr[〈P1 : j〉 � 〈P2〉]). (2)

Now, given the chunk 〈P1 : j〉, it remains to show how to compute Pr[〈P1 :
j〉 � 〈P2〉], the probability that any vertex in 〈P1 : j〉 is located inside 〈P2〉.

Computing Intersection Probabilities. In Figure 5, let 	p(r, θ) denote the
shaded area between the circles of radii r and r + δr at angles θ and θ + δθ
centered around the mean position of p, here p is any vertex from the chunk
〈P1 : j〉. From Definition 1, the probability that p is located within a circle of

radius r centered at its mean is given by the distribution Pr(r) = 1 − e−
r2

2σ2 ,
where σ is the uncertainty parameter of p and the other vertices in 〈P1 : j〉. The
corresponding density function is pr(r) = r

σ2 e
−r2/(2σ2). Then, the probability
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Fig. 6. Computing Pr[〈P1, 2〉 � 〈P2〉

that p is located inside 	p(r, θ) is obtained from the corresponding density
function as pr(r) ∗ δr ∗ δθ

2π .
Recall that our aim is to get the probability that any vertex from the chunk

〈P1 : j〉 is located inside 〈P2〉. That is, we don’t really care if more than one
such vertex is located inside 〈P2〉. We therefore define an indicator function
I(r, θ), such that I(r, θ) = 1 if and only if there is a vertex from 〈P1 : j〉, for
which 	p(r, θ) is inside 〈P2〉 for some values of r and θ. Now, we can obtain
Pr[〈P1 : j〉 � 〈P2〉] by integrating over all possible r and θ to get

Pr[〈P1 : j〉 � 〈P2〉] =
∫ ∞

0

dr

∫ 2π

0

1
2π
pr(r) ∗ I(r, θ)dθ. (3)

ε-Circles and Efficient Computation of the Integral. In practice, it is
unnecessary to integrate from 0 to ∞, since the Gaussian distribution is con-
centrated near its mean. For instance, the probability that p is inside a circle
of radius r = 3σ is more than 0.99. We can simplify the integral by choosing
a probability ε, and then finding the rε such that Pr[rε] = 1 − ε. In this case,
the probability that p is beyond radius rε is no more than ε. Now, we are safe
in computing the above integral by integrating from 0 to rε. For a given value
of ε, this resulting circle of radius rε is called the ε-circle.
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Table 2. Characteristics of the Data Sets Used in the Experiments

Set Description Size Density Vsize Csize CVarea CVdist

LAB Los Angeles block groups 6357 0.79 35.2 6.9 0.17
LAL Los Angeles landmark polygons 5135 0.45 31.8 6.2 0.27 0.0023

UM1 Uniformly distributed monotone polygons 10000 0.34 30.0 5.9 0.35
UM2 Uniformly distributed monotone polygons 10000 0.31 30.0 5.9 0.35 0.0018

UM3 Uniformly distributed monotone polygons 50000 0.39 29.9 5.9 0.35
UM4 Uniformly distributed monotone polygons 50000 0.39 30.0 5.9 0.35 0.0010

We simplify the computation of the integral
∫ rε

0 dr
∫ 2π

0
1
2πpr(r) ∗ I(r, θ)dθ.

Consider Figure 6 (a), where we need compute Pr[〈P1 : 2〉 � 〈P2〉], the proba-
bility that some vertex of the chunk 〈P1 : 2〉 of 〈P1〉 is located inside 〈P2〉. First,
we pick a constant ε, and for each vertex p in chunk 〈P1 : 2〉, we compute the
overlap area between 〈P2〉 and an ε-circle around p (see Figure 6 (b), (c)). If
the union of these intersection areas is A (see Figure 6 (d)), we simply compute∫ ∫

A
1
2πpr(r)drdθ.

5 Experimental Evaluation

We conducted experiments to examine the performance of PSJ with both syn-
thetic and real-life datasets, to determine the accuracy, efficiency, and the scal-
ability of our Probabilistic Spatial Join method.

5.1 Data Sets

In our experiments, we used quasi-real and synthetic datasets. The quasi-real
datasets were generated using real map information as follows. We used the
TIGER/LINE data from the U.S Bureau of the Census [19] to determine the
mean position of the polygons. We then randomly generated chunks and asso-
ciated uncertainties (standard deviations σ for the circular normal distribution
in our case). For synthetic datasets, both the polygons and chunks with uncer-
tainties were generated randomly.
Table 2 describes several quasi-real and synthetic datasets used in the exper-

iments. We use density, defined as the total area of the polygons’ MBR divided
by the total area of the workspace, to measure the coverage of the datasets. The
metric Vsize represents the average number of vertices per polygon, while Csize
represents the average number of chunks per polygon. Also, we use the coefficient
of variation for the polygons’ area(CVarea) and the coefficient of variation for
the distance between two polygons (CVdist) to measure the degree of uncertainty
of the datasets.
The data set LAB contains the block groups in Los Angeles, while LAL

contains the landmark polygons in Los Angeles. The synthetic dataset UM1,
UM2,UM3,UM4 are created according to a uniformly distributions with 100
clusters. As in [16], we first generated 100 cluster rectangles, whose centers were
randomly distributed in the map area. Once the cluster rectangles are generated,
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we can randomly generate the MBRs of the polygons, which fixes the size and
location of the random polygons.
Given the MBRs, we use the method in [1] to generate random monotone

polygons, a very common class of polygons, as follows. First, a set of random
points is chosen inside the MBR, and a random horizontal line is drawn through
them. The points above and below the line are sorted by their x coordinates
and connected in the sorted order. The leftmost and rightmost points are moved
vertically to the splitting line, and are connected to the other points to form
a polygon. Finally, this horizontally aligned polygon is rotated by a random
angle.
The ground truth in our experiments is computed using Monte Carlo ap-

proach. Given two datasets associated with uncertainty, n equally probable re-
alizations are generated and spatial join is applied to these n realizations. Based
on the results from n runs, the intersection probability between any polygons are
computed. These experimentally obtained intersection probabilities are assumed
to be the ground truth and used to measure the accuracy of different approaches.
In our experiment, we set n = 1000.

5.2 Competing Methods

To demonstrate the efficiency and accuracy of PSJ, we compare it with two
other competitors: Mean Spatial join (MSJ) and Random Spatial Join (RSJ).
PSJ is our algorithm, as described in Section 4. It has two PrR-trees before
evaluating join operations. MSJ is the normal R-tree based spatial join using
the mean positions of the polygons. Both the two datasets have pre-existing R∗-
tree indices and the query is executed using the algorithm in [5]. RSJ is same
as the Monte Carlo Simulation approach used to get the ground truth, except
that RSJ uses much fewer random samples. The notations RSJ3, RSJ5, RSJ10
indicate that the number of random realizations were 3, 5, and 10, respectively.
Each run of RSJ executes the following four steps. First, the the uncertain

polygons are read in, and a random sample is generated. Next, we build two
R∗-tree for this random sample. The third step is to run the filter step using
these two R∗-tree . The final step is to run the refinement step using plane sweep
algorithm.
As indicated in [16], it is much more expensive to perform spatial join

for two non-indexed datasets using R∗-tree based approach, compared with
other approaches like spatial hash join [16], size separation spatial join [12] and
PBSM [23]. To make our comparisons with RSJ reasonable, we ignore the costs
of tree construction and the costs of the filter step. That is, we counted the CPU
and I/O costs of only the first and fourth steps described above. No matter which
filtering technique is used, those two steps are essential. In other words, for RSJ,
the measured CPU and I/O costs are underestimates, and the real costs should
be larger than our measurements.
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Table 3. Space and overall construction costs of PrR-tree, normalized to those costs
of R∗-tree

Dataset Ratio of space cost Ratio of overall construction cost

LAL 1.89 1.90

UM1 1.84 2.04

UM3 1.93 1.85

5.3 Experimental Setup

The experiments were conducted on a Pentium IV 1.7GHz machine with
512MBytes of RAM, running Mandrake Linux 8.2. All the algorithms were im-
plemented in C++ using GNU compilers. To measure I/O costs, we assumed
a buffer page size of 8K. The buffer size is set to be 10% of the total size of
two datasets. In our experiments, the datasets used have size of 8M, 11M, 55M,
respectively. Therefore, the buffer size is set to be 800K(100 pages), 1112K(139
pages), 5536K(692 pages). To compute the I/O cost more precisely, it is desirable
to distinguish sequential I/O access from random I/O access. We assumed the
ratio of the cost of accessing one disk block randomly to that of accessing one
disk block sequentially to be 5 [16], and measured the I/O cost as the number
of weighted disk access. The CPU cost can be accurately measured during the
program is running. The overall cost is obtained by charging 10ms each random
disk access, charging 2ms each sequential access.

5.4 Performance Metrics and Evaluation

The first set of experiments is to evaluate the space and overall construction
cost of PrR-tree, compared with those of R∗-tree . Table 3 presents the ratio of
the size of PrR-tree to the size of R∗-tree for the three groups of datasets, and
the ratio of the overall cost of building PrR-tree to the overall cost of building
R∗-tree . Note here the buffer size is set to be 10% of the size of PrR-trees.
We then evaluate the accuracy of the three methods. Accuracy covers two

aspects: completeness , or how well the method is able to find the object pairs that
should be found, and fidelity, which measures how close the returned probability
is to the actual probability defined by ground truth.
Two metrics are used to measure the completeness aspect of the accuracy of

the three methods: ratio of false negative(Rfn) and ratio of false positive(Rfp).
Let GT represent the ground true result, QR represents the query result. Rfn

is defined as |GT − QR|/|QT |, and Rfp is defined as |QR − GT |/|QR|. The
accuracy of competing methods is compared in terms of errorRatio, defined as
the sum of Rfn and Rfp. The comparisons are shown in Figure 7(a) - (c).
As for fidelity, we use the root mean square error (square root of the average

of the set of squared differences) between the returned probability and the actual
probability (RMSE). These comparisons are shown in Figure 7(d)-(f).
Finally, we evaluate the efficiency of the three methods, in terms of CPU

cost, weighted I/O cost and overall cost. The results are shown in Figure 8.
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Fig. 7. Experimental comparison of error ratio and RMSE
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Fig. 8. Experimental comparison of Evaluation Cost

5.5 Comparisons

As Table 3 shows, the space and construction costs for PrR-tree is roughly 80% -
100% higher than that of R∗-tree . This is expected, since each entry of PrR-tree
records the mean positions as well as the standard deviations, and the insertion
procedure must maintain both these values.
Figures 7 and 8 show that MSJ has the lowest CPU cost, weighted I/O cost

and overall cost for all of the datasets. However, MSJ’s errorRatio is among one
of the highest. In particular, when the confidence threshold ranges between 0.85
- 0.99, its errorRatio increased dramatically to about 0.3 - 0.5. We conclude
that MSJ does not make much sense when the confidence threshold is relatively
high, although it has low CPU cost and I/O cost.
RSJ has lower CPU cost than PSJ, but much higher I/O cost. RSJ’s I/O

costs and accuracy increase with the number of samples since it must retrieve
the representations of uncertain polygons and generate random samples for each
run. Also, RSJ’s I/O cost dominates the overall cost. With the gap between
computation speed and I/O speed continuing to increase, the overhead of RSJ’s
I/O cost makes it unsuitable for large spatial databases.
In contrast, PSJ achieves the lowest errorRatio and RMSE among the three

competitors, with the overall cost being reduced by a factor of 2.4–5.3 over
RSJ10, which has the highest accuracy among the three variations of RSJ. PSJ
has the highest CPU cost, since it must compute integrals during the refinement
step. However, this drawback is compensated for by its weighted I/O cost, which
is much lower than RSJ’s. It is worth noting that PSJ outperforms RSJ10 in
proportional to dataset size, since RSJ10 has much higher I/O overhead. We
believe that with the continuing increases in CPU speed, PSJ’s computation
overhead will not be a great problem.

6 Conclusions

The modeling of spatial objects with uncertain boundaries and evaluating spatial
queries over them is an open issue. We have presented a method for performing
spatial joins over uncertain spatial data. We have also proposed a probabilistic
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spatial data model to model the positional uncertainty of polygons. Based on
this model, we present the PrR-tree, a probabilisitc index structure to support
probabilistic filtering, and an algorithm for the refinement step. Our experiments
demonstrate that our approach achieves higher accuracy for probabilistic spatial
join queries, while reducing the overall cost by a factor of more than two.
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