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Abstract. In this paper we study the problem of how to perform spa-
tial joins between two data sets with no pre-computed spatial indices. No
techniques appear to exist to date that specifically target this problem.
Our solution is also useful in the context of query optimization for com-
plex spatial queries. In addition, we demonstrate that simple sampling
techniques can be effective in reducing spatial join costs.

We extend the work in [LR94, LR95] and introduce the bootstrap-seeding
technique, which allows seeded trees to be constructed directly from
input data sets. We can thus dynamically construct two seeded trees
for two data sets and perform a spatial join between them. The task
of bootstrap-seeding comprises the subtasks of determining the number
and the contents of the slots, and constructing the tree. Simple sampling
techniques are used to determine the slot contents efficiently.

Our experiments show that spatial joins using our methods are very
comparable in performance to that of joins between the same data sets
with pre-computed R-trees, and confirm the viability of our method.
When joining two data sets with different sizes, our studies suggest that
it would be beneficial to bootstrap an initial seeded tree for the smaller
data set, and then to construct a seeded tree for the larger data set using
copy-seeding and the seed level filtering technique.

1 Introduction

Spatial join operations are important and expensive operations in spatial data-
bases. However, relatively little work has been done on them. The large sizes of
the data sets involved is only one reason for the high cost of spatial joins. In
addition, since the values of spatial attributes can not be totally ordered, join
methods developed for traditional databases cannot be used directly in spatial
joins. Existing spatial join algorithms can generally be divided into those based
on tree-like indices [LR94, LR95, BKS93, Gut84, BKSS90, FSR&7, SRF87] and
those based on other methods such as spatial join indices [Rot91, LH92, Val87)
and z-ordering [Ore89, Ore90, Ore91].

Most of these methods assume that some spatial indices have been con-
structed for both operand data sets of the spatial join [BKS93, Gut84, BKSS90,
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FSR87, SRF87], or that some pre-computation has been done before a spa-
tial join is invoked [Rot91, LH92, Val87]. If an operand data set does not have a
pre-computed spatial index, the cost of constructing one at join time can be pro-
hibitive. Such requirements place a operational burden on the spatial database
system, since it may not be cost-effective to maintain index structures for all
data sets regardless of their patterns and frequencies of usage. Furthermore,
such requirements can be impossible to satisfy in many situations. For example,
the inputs to a spatial join may be the results dynamically generated by other
database operations, in which case no spatial indices would exist for such input
data sets. Since most spatial indices are designed for incremental updates rather
than all-at-once construction, building spatial indices dynamically at join time
can be very expensive.

Our work in [LR95] first demonstrated the feasibility of dynamically con-
structing spatial index structures, called seeded trees, to perform spatial joins.
In that work, one operand data set was assumed to have a pre-computed tree-
like spatial index. A seeded tree index was then constructed for the the data
set without a spatial index, using information extracted from the index exist-
ing for the other operand data set. We have also shown that the cost of this
approach is much lower than that of building an R-tree index for the second
data set [LR94, LR95]. There are two reasons for the low costs of the seeded
tree join method. First, constructing a seeded tree dynamically 1s much cheaper
than constructing R-tree dynamically. Second, joining a R-tree and a seeded tree
constructed with information from it is cheaper than joining two independently
constructed R-trees.

However, that work represents only a partial solution to the problem. The
approach to seeded tree construction in [LR94, LRI5] required copying and then
possibly transforming the upper levels of an existing R-tree index. If neither
operand data set had a pre-computed spatial index, we would be forced to con-
struct at least one R-tree dynamically, the cost of which could be exorbitant.
The relative magnitudes of the costs of constructing R trees and seeded trees
are illustrated in Fig. 1.

In this paper, we study methods to construct seeded trees directly from their
associated data sets, with no pre-existing index structures, while retaining con-
struction and join cost advantages. We show how to generate seeding information
directly from the data sets, and without relying on existing index structures.

1.1 Bootstrapping Seeded Trees

This approach to seeded tree construction involves three steps: determining the
structure of the seed levels, sampling the input data set to extract information,
and building the seed levels of the index using this information. We call the
method of generating seeding information directly from the data set bootstrap
seeding to distinguish it from that of [LR94, LR95]. That earlier method, based
on copying information from an existing index, will be called copy seeding.

To join two spatial data sets without existing spatial indices, we first build
a seeded tree by bootstrapping from one operand data set. Then we build a
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Fig. 1. Costs of constructing R trees and seeded trees. r is the ratio of the cost of
accessing a disk page sequentially to that of accessing it randomly.

copy-seeded index tree for the other data set by copying the upper levels of
the bootstrap-seeded tree. Thus, the bootstrap-seeded index plays the role of
the pre-computed R-tree when one exists. After both seeded trees are built,
they are joined to produce the final result. The tree matching algorithm 1is the
same as that between two R-trees, or between a seeded tree and an R-tree

[LR94, LR95, BKS93].

This paper makes three significant contributions by demonstrating the fea-
sibility of bootstrap seeding. First, it solves a problem that was hitherto pro-
hibitively expensive, namely the problem of spatial joins when no spatial indices
exist. Second, it makes a significant contribution to spatial query optimization
by giving the spatial query optimizer new alternatives while planning for the
execution of queries. For example, consider a complex spatial join between three
spatial data sets of equal size A, B and C (see Fig.2). Assume A has a pre-
computed R-tree, while B and C do not. Furthermore, assume the selectivity
between B and C is much lower than that between A and B, or that between
A and C. Without bootstrap seeding, we would be forced to join A-B and A-C
first. However, with bootstrap seeding, we can perform the B-C join first and
exploit its low selectivity by constructing seeded trees for B and C. Third, it
demonstrates the viability of using sampling techniques in helping with spatial
joins.

This paper is organized as follows. Section 2 first describes the structure
and the basic algorithm for constructing seeded trees. Section 3 discusses how
to build a seeded tree directly from an input data set. This task involves the
subtasks of determining the topology of seed levels, extracting information from
the data set, and constructing the seed levels using this information. The tasks
are elaborated in sections 4, 5, and 6, respectively. Section 7 discusses issues in
joining two seeded trees. Section 8 presents experimental results, and section 9
concludes this paper.
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Fig. 2. Join graph for a complex spatial join. Data set A has a pre-computed R-tree,
data sets B and C have not.

2 Seeded Tree Basics

This section outlines the basic algorithms of constructing seeded trees and using
them in spatial joins. For details please refer to [LR94, LR95]. Structurally, a
seeded tree consists of the seed levels and grown levels (see Fig. 3). The tree nodes
at the seed levels are called seed nodes, and those at the grown levels are called
grown nodes. The seed levels start from the root and continue consecutively for
a small number of levels. The grown levels span from the children of the last
seed level to the leaf level. As with R-tree nodes, a non-leaf node in the seeded
tree contains entries of the form (mbr, cp), where cp points to a child node,
and mbr is the minimum bounding rectangle of all objects contained in the child
node. A leaf node contains entries of the form (mbr, oid), where oid refers to
a spatial object in the database, and mbr is the bounding box of that object.

grown / grown

subtree O seed node subtree

m grown node

Fig. 3. Example of a seeded tree.

The construction of a seeded tree consists of a seeding phase, a growing phase
and a simple clean-up phase. The seed levels are numbered from 0 (the root level)
through k& — 1, and the grown levels span from level k to level [ (the leaf level).

2.1 Seeding and Growing Phases

In the seeding phase the seed levels of a seeded tree is determined. These upper
levels will be used to guide the growth of the tree when the data object of



the underlying data set are inserted into it in the growing phase, and will help
determining the shape the tree eventually grows into. With copy seeding, this
is done by extracting information from another tree-like spatial index, calling
a seeding tree [LR94, LRIb5]. More precisely, we copy the first k levels from the
seeding trees into the seeded tree under construction. These k& may undergo
some transformation before they are used in subsequent tree construction. With
bootstrap seeding, this is done by extracting information from the underlying
data set, the details of which will be discussed in the following sections. We call
each (mbr, cp) pair at level k — 1 a slot, and level £ — 1 of the seeded tree, the
slot level.

During the growing phase, data objects of the underlying data set are inserted
into the seeded tree, and the tree grows accordingly. To insert a data object, we
traverse the tree from the root to the slot level, at each level choosing a suitable
node to traverse from the next level. Eventually the slot level is reached and a
slot chosen for inserting the data. If this is the first insertion through this slot, the
child pointer of the slot will be NULL. In this case, a new grown node is allocated,
the child pointer is set to point to the new node, and the data object inserted
into it. Otherwise the data are inserted into the grown node found through the
slot pointer. This grown node behaves like the root of an ordinary R-tree. When
it overflows due to insertions, it will be split into two grown nodes, and a third
grown node allocated to become the parent of the two nodes. The slot pointer
is modified to point to the new root. Subsequent insertions through this slot
behave like ordinary R-tree insertions, the root of the R-tree being the node
pointed to by the slot pointer.

Recall that node splitting does not propagate up to the seed levels, and that
the structure of the seed levels remains unchanged during the whole growing
phase. Thus, a seeded tree can be visualized as consisting of a small tree of seed
nodes, with an R-tree forest of grown nodes attached to the slots. The R-tree
pointed to by the each slot pointer is called a grown subtree (see Fig. 3).

At each seed level we must choose a child from the next level to traverse,
until a slot is found. We make this choice based on the information stored in the
bounding box fields of each node. The exact criterion for child selection depends
on whether the value stored is a central point or an area. If central points are
stored, we choose a child whose central point is close to the central point of the
data being inserted. If areas are stored, we choose a child that yields the smallest
bounding box area after insertion, subtracting from it the sum of the areas of
the old bounding box and the input rectangle. This criterion is the same as that
used in R-tree construction.

The clean-up phase begins after all data object in Dg are inserted into the
seeded tree. The bounding box fields of seed node are adjusted to be the true
minimum bounding boxes of their children. Slots containing no data objects are
deleted and relevant data structures made consistent.



2.2 Using Linked Lists in Growing Phase

To avoid random disk accesses due to buffer overflow at the growing phase, we
use intermediate linked lists to assist in tree construction. During the growing
phase, if we estimate that the tree size will be larger than the buffer size, the data
inserted through a slot will not be built into a grown subtree immediately, but
first organized into a linked list of data pages, attached to the slot. The linked
lists grow as data objects are inserted. Eventually all data pages in the buffer
will be allocated. If we now want to insert an additional data object into a linked
list in which all data pages are full, we write all linked lists longer than a small
pre-defined constant to disks, freeing up most of the buffer space. The insertion
process then proceeds as before. When all data objects in Dg are inserted, we
can start constructing grown subtrees from the linked lists. For each slot, an
R-tree is built using the data objects stored in the linked lists grown under that
slot. The slot pointer is modified to point to the root of this R-tree.

Using such intermediate linked lists, we can construct the grown subtrees
one by one instead of all together. Since there are many slots in the seeded tree,
and hence many grown subtrees, the average size of a grown subtree is much
smaller than the size an R-tree built with the same input data. The chances of a
grown subtree overflowing the buffer are therefore much smaller, and the number
of random disk access is significantly reduced. The price this method must pay
is an increase in the number of sequential accesses for writing and reading the
linked lists. However, since sequential access is much faster than random access
in disk T/O, this results in much faster construction times.

3 Bootstrapping Seeding

Now we consider how a seeded tree may be built directly from an input data set.
Our objective is to generate a seeded tree which can be constructed efficiently
and result in efficient join with other seeded trees.

From [LR94, LRI5], we know how to construct a seeded tree given its seed
levels. Thus, our first task is to determine the seed levels for bootstrap seeding.
That is, we must determine the topology of the seed levels and the contents of the
various seed nodes. We have found that the structure and contents of the slots
are most important to the success of the method. The contents of the slots decide
in large measure how the lower levels of the index (the grown levels) develop.
The number of slots used in the seed levels also affects tree construction costs
and join performance. The key to bootstrap seeding thus lies in determining the
number and contents of the slots.

Finding the optimal set of slots for bootstrap seeding requires involved analy-
sis of the characteristics of the data sets participating in the join, and of the sys-
tem resources available for join processing. Since we intend to construct seeded
trees on the fly, we prefer an efficient but sub-optimal method. We divide the
task of determining the slots into the two subtasks of determining their num-
ber and of determining their contents. The system resources and data set sizes



determine the number of slots. The data set contents determine the contents of
the slots.

Spatial data sets being generally quite large, it is infeasible to examine them
in entirety in making such determinations. Instead, we sample the data sets and
determine the slot contents based on the samples. Our experiments have shown
that an appropriately-chosen sample preserves enough information about the
data set to serve our purposes.

The task of finding a set of slots for bootstrap seeding thus consists of the
following steps:

1. Determining the number of slots S.
2. Taking a sample of size k efficiently from the input data set.
3. Placing the S slots on the map area using information in the sample.

Once the set of slots is determined, we can build the seed levels by simply
constructing an R-tree using this set of slots as input. In section 4, we show
that the number of slots is so determined that the size of seed levels is always
smaller than the available buffer size. Therefore, the cost of constructing this
R-tree requires limited CPU costs and no 1/O cost whatsoever. Once the seed
levels are built, the tree growing process for both bootstrap- and copy-seeding

is exactly as described in [LR94, LRO5].

4 Determining the Number of Slots

For copy seeding, determining the number of slots is not an issue, since the
seed levels are copied from another tree, thereby determining the number slots.
However, it is clearly an issue for bootstrap seeding.

parameter|definition parameter|definition

D input dataset size (# blocks) ||d number of data item

B buffer size (# blocks) S number of slots

l number of seed levels h tree height

N, number of nodes in seed levels||n; number of nodes at level 2
n; number of nodes at slot level ||fmax maximum fanout

fmin minimum fanout Sfave average fanout of whole tree
fi average fanout at level ¢

Table 1. Parameters in seeded tree construction

This section discusses the relationship between the desirable number of slots,
the system buffer size, and input data set sizes. We will show that for given buffer
and data set sizes, there is a preferred range of choices for the number of slots.
Table 1 lists the parameters used in our discussion. Without loss of generality,



we assume that a tree node, a buffer page, and a disk page are of the same size.
There can be many ways of organizing spatial data. We assume that a data set
contains, for each spatial object, a 16-byte minimum bounding box and a 4-byte
pointer to the detailed description of the object. We also assume that the seeded
tree has large node fanout, so that the size of a tree is approximately the size of
its leaf level.

4.1 Algorithm Requirements

For feasibility and efficiency of the seeded tree algorithm, we require the following
constraints on the structure of seeded trees:

R1 The size of the seed levels should
R1.1 be smaller than the buffer size.
R1.2 occupy a small fraction of the buffer so as to obtain good tree con-
struction performance.
R2 The average grown subtree size should
R2.1 be smaller than the the available buffer space to avoid random disk
access during grown subtree construction.
R2.2 occupy a small fraction of the available buffer for good performance
during actual join.

Requirement R1 Requirement R1.1 is expressed as Ns; < B. For large fanout,
we have n; € n;41, for 1 < i< h,and N; ZZ 1 1 & ng. Therefore, we require
n; < B.

To obtain better performance, we use R1.2 and require seed level nodes to
occupy only a fraction of the buffer, which translates into formula n; < B/E, or

S < %ﬁ, (1)

where E/ > 1 1s a tunable constant.

Requirement R2 Requirement R2.2 states the average grown subtree size
should be smaller than a fraction of the available buffer space. Since the input
data set has D blocks, each grown subtree must hold D/S blocks of input data
on average. A leaf node of a grown subtree is fuye/ fmar full on average, hence
a grown subtree needs (% f‘”e ) leaf nodes to hold D/S blocks of input data.
With large fanout, the numég;zof leaf nodes is approximately the number of
nodes of the tree, and the average size of a grown subtree is thus (?)/(fili)
nodes.

Let B’ be the buffer space available after holding the seed levels in the buffer.
Since the size of the seed levels is approximately n;, B = B — n;. Requirement
R2.2 is expressed as

D - fmax B
[ —— < JR—
S fave C



for some tunable constant C' > 1. Using s = n; - f; and B’ = B — ny, this
formula can be rearranged into n; > %Df"}‘x - =1—. Using K to denote the

B—nl
factor C'D fmazr/(fave fi) and solving for n;, we get a lower bound for n;:

B —+/B%? - 4K
f* <. (2)

Bounds on Number of Seed Levels and Number of Slots Using (1) and
(2) and S = ny - f1, we can derive bounds for the number of slots as follows:

(B_VB;_‘lK)f’ <S< %ﬁ. (3)

4.2 Requirements Imposed by Intermediate Linked Lists

The previous requirements guarantee the feasibility of the algorithm and good
performance during the join phase. For the intermediate linked list mechanism
to provide substantial benefit during the tree construction phase, we further
require

R3 The total number of slot should be
R3.1 smaller than the number of buffer pages to avoid buffer thrashing, and
thus random disk accesses, during linked list construction.
R3.2 smaller than a fraction of buffer pages to obtain good performance
during grown subtree construction.

There are two reasons for R3.2. When we write a batch of linked lists to disk,
the pages at the end of the linked lists are, on average, half-full. When the num-
ber of slots is large and the linked lists are short on average, the fragmentation
problem becomes serious. For example, if the number of slots 1s equals the num-
ber of buffer pages, the average linked list length will be be 1 when a batch write
occurs. In this case, 50% of of the information moved by 1/O effort is useless.
There is also a second and more serious problem. The total number of random
reads incurred when reading linked lists back from disk to build grown subtrees
is proportional to the number of slots. Let Ny, be the average number of batches
a slot participated in the batch writes? The number of random reads required
to read the linked lists back to memory 1s .S - Np,. Therefore, it is beneficial to
make the number of slots as small as possible.

Requirement 3 can be formally expressed as S < B—I, where () > 11is a tunable
parameter. The above formula can be solve for S

B
S < —.
Q+ 1

2 When a linked list is shorter than a tunable threshold, it does not participate in the
batch write.
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Since @Qf; + 1 > E, and hence ﬁ o

1
rameters, when considering all three requirements, the bounds on n; becomes

B —VB?—-4K) -
( ©) f’<S< T
2 Q+ 5

, for reasonable choices for pa-

(4)

Note that the upper bound depends on buffer size and average leaf node
fanout only. The lower bound is a monotonically increasing function of the data
size set. When we plan to construct two seeded trees with the same set of slots,
we must ensure that the number of slots satisfies the bounds imposed by both
data sets simultaneously. This means we need only to apply inequality 4 to the
larger data set size to derive the bounds for the number of slots.

5 Taking Samples

After determining k, the number of slots, we must sample from the input data
set. The number of samples n would be a function of k. If the seeded tree is
being constructed for data that is the output of some other operations in the
same query, we can sample as the output is produced. Sampling would incur no
additional T/O costs.

In many cases, we expect the data set to reside in a data file. If the data
in the data file are known to be randomly distributed, that is, the placement
of data in the file has no relation to the closeness in space of the objects they
represent, the sampling task would be easy. We can simply read the first n items
sequentially from disk and use them as sample. The sampling cost is very small
in this case. In practice, we cannot rely on the data set having this property.
Often spatial closeness of data does effect in the closeness of data in the file. In
these cases, we have to sample randomly from the file.

If the number of samples is small in comparison to the size of the file, we
can read the necessary disk blocks through random access. If the number of
samples is large relative to the size of the file, it would be cheaper to sequentially
access all disk blocks and perform the sampling. Algorithms such as those in
[Vit85, Vit84, Ahr85] can be used to sample this sequential data stream.

The expected number of disk blocked accessed as a function of the size of
the random sample has been presented in [Yao77]. Let m be the total number
of disk blocks in the data file, n be the total number of data items and k be the
size of the random sample. The expected number of accessed disk block Xp is

k .
nd—1i4+1
i=1

A simpler expression for a tight lower bound of this formula is [Yao77, Car75]

Xp =m(l—(1—=1/m)*). (6)



Let p be the ratio of the cost of a sequential disk block access to that of
a random block access. If Xp > m - p, it will be cheaper to perform random
sampling through sequential reads. Approximating Xp with 6, this condition
can be expressed as

In(1 — p)

b im); ™

Whether it is cheaper to sample by sequentially accessing the data file de-
pends on the ratio p and the number of blocks in the file. As an example, assume
there are 100,000 data items in a data file, each occupying 20 bytes. The file
will have 2000 blocks. If the ratio p is 1/5, it would be cheaper to sample by
sequentially reading all blocks for sample sizes over 447 items. If the ratio is
1/30, the threshold becomes 68 items.

There are other ways to reduce sampling costs. For instance, when a sample
of size k 1s needed, we can first read in a some small number b of blocks from the
data file and then obtain our & data samples from these b blocks. However, the
feasibility of this approach depends on how the data are clustered in the file. As
our purpose is to demonstrate the viability of building seeded trees from data
sets, and the sampling cost does not dominate the overall cost of join, we do not
pursue this approach further.

6 Slot Placement

In this section, we discuss how to generate a set of S slots from a sample set of
size k. We have the following guidelines for choosing slots for a bootstrap-seeded
tree.

— Place slots at or near the centers of clusters of data. This strategy inserts data
objects that are close to each other into the same grown sub-tree, reduces
dead area in bounding boxes of sub-trees, and improves performance.

— Avoid letting one slot cover too many data objects. Otherwise, we may have
a grown sub-tree that overflows the buffer. Thus, we might want to place
more than one slot in large clusters.

— Use point slots, i.e., slots whose bounding box value is a point. In [LR94],
we have observed that setting the contents of slots to their center points
at the beginning of the growing phase results in seeded trees that are more
efficient during tree matching. Using point slots also simplifies the task of
determining slots for bootstrap-seeded trees, as we need to worry about
setting fewer parameters.

The study of cluster analysis in statistics [Eve93, KR90] addresses problem
similar to ours. However, techniques developed there do not apply directly to
our context for several reasons. First, most cluster analysis is assumed to be
performed off-line. Therefore, expensive, multiple-pass algorithms can be used
to analyze the clustering structure of data sets. For bootstrap seeding, we cannot



afford expensive off-line computation. Second, our purpose is not to determine
the precise clustering structure of data sets, but rather, to choose slots that
support efficient spatial operations. Therefore, we are interested in identifying
fast but formally less rigorous methods.

6.1 Direct Sample Placement

The simplest method 1s to directly use the data objects in sample set as the
slots. In the method, the number of sampled objects is set to be the number of
slots, that is, k = 5. After taking a size S sample from the data file, we calculate
the center point of the sample data objects, which are then used as slots. The
method is simple and straightforward, and is used as basis of comparison in our
study.

6.2 Nearest Group Center Placement

As noted above, it would be advantageous to place the slots inside data clusters.
Moreover, 1t is useful to place more slots inside clusters that have more data
objects. We adopt the following somewhat stricter criterion:

Given a spatial data set and the number of slots S, place the S slots in
the map area so that the sum of distances from the center of each data
object to its nearest slot is minimized.

In this section, we discuss a heuristic to approach this goal. This method
forms S groups of data, each representing a slot. Data objects from the sample
set are placed one by one into the group whose center of gravity is nearest to
the center of the object. The slot contents are set to the centers of gravity of the
groups at the end of this processing.

The method is described in detail as follows. For each slot, we form a data
group. Each group has a center of gravity and a weight. That is, each group is
represented by triple (u, v, w), where (u, v) is a vector describing the position of
the center of gravity, and w is the weight of the group.

At first, we randomly choose S data objects from the sample set, each to
initialize one data group. For each such object with center at (z, y), its associated
group is initialized to (x,y,1).

For each remaining data object with center at (u,v), we then identify the
group (z,y,w) whose center of gravity is nearest to (u,v). The object is added
into this group and the group triple is updated to

(wx—l—u wy + v w—i—l) (8)

w+1 w+1’

When all objects in the sample set are processed, the centers of gravity can be
output as slots.

This method is sensitive to how we initialize the group centers. To avoid
instability, we can go through the sample data set more than once. At the end of



each pass, we reset the group weights to smaller values, and re-insert all sample
objects into their nearest group.

The parameters of this method are the number of passes and the value to
which we reset the group weights at the beginning of a new pass. The ratio
of the sample set size and slot number is another parameter of this method.
This method requires the sample size k to be several times greater than the slot
number S. Again, we are interested in an efficient but suboptimal method, not
in fine-tuning these parameters. We set the number of passes to two and reset
the weights to one third its original value at the beginning of the second pass.
The ratio of sample set size and slot number is set to 20. Note that when the
ratio and the number of passes are one, the method degenerates into the direct
sample placement method.

7 Joining Two Seeded Trees

Consider a spatial join between two data set Dy and Dg, neither of which has
any spatial index. Suppose we choose data set D and bootstrap a seeded tree
Tgr directly from it. Next we need to build a seeded tree Ty for Dg. There are
three ways to obtain the seed levels for Tys:

1. Copy the seed levels of Tg as when it is built.
2. Use the same seed levels originally constructed for Tg.
3. Construct the seed levels of T by bootstrapping from Dg.

The first two alternatives fall into the category of copying seeding. The third is
bootstrap seeding. Our experiments show the first alternative outperforms the
second alternative slightly. The third alternative incurs additional sampling and
slot placement costs in tree construction without providing better performance
in tree matching. In the following discussion, all seeded tree joins use the first
alternative unless indicated otherwise.

After both seeded trees are built, we join these trees using the same tree
matching algorithm used to join two R-trees, or one R-tree and one seeded tree
[BKS93, LR94, LRY5]. Since the tree matching algorithm does not restrict the
types of the participating trees, it proceed exactly as before.

7.1 Seed-Level Filtering

Seed level filtering [LR94] is a technique that we can use to enhance join per-
formance when one participant is a seeded tree. It works as follows. Say we are
building a seeded tree by copy-seeding from an existing R-tree. When data ob-
jects are inserted into the new seeded tree, we can check to see if the object
overlaps at least one bounding box in the nodes at the slot level. If not, the
object will not overlap any object in the R-tree and need not be inserted at all.
Using this technique in the construction of seeded trees results in smaller seeded
trees, saving costs in subsequent processing. Seed level filtering is useful if the



data set used to construct the seeded tree is large and only a portion of the data
objects in the data set overlap data objects in the R-tree.

This technique is particularly useful with joins between two seeded trees. In
this context, we can first bootstrap a seeded tree from the smaller of the two
data sets, and then construct a seeded tree for the larger data set by copy-
seeding. Seed level filtering can be applied to the larger data set in the during
construction of the second tree.

One argument against bootstrapping from the smaller data set could be that
the common seed levels are built using less information, and may hence result in
inferior tree join performance. However, our experiments show that even without
seed level filtering, the penalty for using the smaller data set for bootstrapping
(and thus to determine the common seed levels) is marginal. Using seed level
filtering, bootstrapping from the smaller data set allows us to filter objects from
the larger data set, potentially screening more data objects from participating
in the subsequent processing. The benefits of filtering objects from the larger
data set far outweigh any penalties for bootstrapping with the more limited
information in the smaller data set.

8 Experiments

Assume we need to perform a spatial join between data sets Dg and Dg, both
without pre-computed spatial indices. We will call the seeded tree constructed
for Dg, Tk, and that constructed for Dg, Ts.

For simplicity, we assume that the disk page size and the memory page size
are both 1K bytes, as are the node sizes for both seeded trees. The data files are
assumed to contain entries consisting of a 16-byte bounding box and a 4-byte
object identifier. We also assume a dedicated buffer of 512 pages.

We studied data of different degrees of spatial clustering. The degree of clus-
tering was controlled by a simple scheme, similar to the one in [LR94]. When
generating a data set of z x y objects, we first generated x cluster rectangles,
whose centers were randomly distributed in the map area. We then randomly
distributed the centers of y data rectangles within each clustering rectangle. By
controlling the total area of the clustering rectangles, we could control the degree
of clustering of the data set. The smaller the total area of the clustering rectan-
gles, the more clustered the data set. The length and the width of each clustering
rectangle was chosen randomly and independently to lie between 0 and a prede-
fined upper bound. This upper bound controlled the total area of the clustering
rectangles. The size and shape of data rectangles were similarly chosen using a
smaller upper bound. When clustering rectangles or data rectangles extended
over the boundary of the map area, they were clipped to fit into the map area.
When a data rectangle extended over the boundary of its clustering rectangle,
it was not clipped. In the experiments, the number of data objects per cluster
was set to be 200, and the number of clustering rectangles was set according to
the total number of data objects. Without loss of generality, the map area under
study was assumed to range from 0 to 1 along both X and Y axes.



The degree of clustering of the data sets used in our experiments were cate-
gorized as high, medium, or low, meaning that the side lengths of the clustering
rectangles were no larger than 0.03, 0.04, and 0.09, respectively. We used four
join dataset pairs A, B, C, and D, respectively. A, B, C contained data sets of
cardinalities 100k and 40k, respectively. The data sets in D had cardinalities
100k and 80k. The degree of clustering in A, B, and C was low, medium, and
high, respectively. The degree of clustering in D was medium.
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Fig. 4. Costs of spatial joins under various conditions.

A preview of the performance of our method may be appropriate at this point.
Although we assume no pre-existing indices, and are addressing an inherently
more difficult problem, the performance of our method compares very favorably
with the easier cases where indices pre-exist. Figure 4 illustrates the total join
costs of for three scenarios, with different numbers of pre-existing indices. Data
set pair B was used as input data set. Column “Two indices” is the cost of
joining two pre-existing R-trees. No construction costs are incurred in this case.
Column “Once index” is the combined cost of constructing a seeded tree for the
smaller data set and that of joining the seeded tree with a pre-existing R-tree for
the larger data set. Column “No indices” is cost of constructing two seeded trees
plus that of joining them?®. The costs are shown under different assumptions for
p, the ratio of the costs of sequential and random I/O. In the first group of
columns, labeled “r = 1/5”| the value of p = 1/5. In the second and the third
groups, p = 1/10, and p = 1/30, respectively. As Fig. 4 shows, even in the case
in which there is not any pre-computed spatial indices, the costs of dynamically
constructing two seeded trees and then joining them is quite comparable to the
cost of joining two R-trees pre-computed from the same input data sets.

Figure 5 shows the break up of the total cost of spatial joins on data set pair
B, with the number of slots set to 100. The columns labeled “input” show the cost

% The number of slots used is 100.



of Initially reading in the input data sets during tree construction. The columns
labeled “sampling bound” are the maximum possible costs of sampling from the
larger of the two data sets. This value is the upper bound on sampling cost in all
cases. The columnslabeled “processing” shows all other costs, including the costs
incurred during the growing phases of the two seeded trees and those during tree
matching. As seen in the figure, the upper bound on the sampling cost is very
small under all assumptions, which makes it less rewarding to optimize on the
sampling costs. The input costs are fixed and are also small portions of the total
costs. Our experiments on other data set showed similar cost break-downs. The
numbers lists in the following discussion are the processing costs only only. Also,
different p ratiosin general demonstrated the same trends in various experiments.
For clarity of presentation, we will show only the performance numbers obtained
under the assumption of p = 1/30.
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Fig. 5. Break-ups of seeded tree join costs.

8.1 Choice of Number of Slots

We studied the effect of using different numbers of slots on the performance
of seeded-tree joins. We were particularly interested in studying whether the
lower and upper bounds derived in Sect. 4 were useful guides to choosing slot
numbers. The group-center sampling method was used to determine the values
of slots after their number was decided.

We chose the values of parameters C' and @ to be 3 in inequality 4, which
means that the average grown subtree size and the number of slots will both be
about 1/3 of the number of pages in the buffer. For the buffer and data set sizes
used, this formula yields 16 and 165 as the lower and upper bounds respectively,
for the number of slots.

Figure 6 shows the effects of slot numbers, using data sets A, B and D. Two
observations are of interest. First, there is in general a range of slot numbers
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Fig. 6. Effect of slot number on seeded tree join performance.

yielding low cost, instead just a single point of lowest cost. This means when
performing a spatial join, we do have a range of slot numbers to choose from.
This flexibility can be useful when optimizing the other parameters. Second,
the ranges defined by the lower and upper bounds of inequality 4 generally do
coincide with the actual ranges of good performance, but are slightly stricter.
This means it 1s safe to use formula 4 to guide the choice of number of slots.

8.2 Slot Placement Methods

Figure 7 shows the results of joins using seeded trees constructed with two dif-
ferent slot placement methods: direct placement and the group-center methods.
The direct placement method samples the same number of data objects as the
number of slots. The number of data objects sampled by the group center meth-
ods is a parameter of the method. Here we set that number to be 20 times the
number of slots. The group center method used here makes two passes, resetting
the group weights at the start of the second pass to 1/3 of their values at the
end of the first pass.

As Fig. 7 shows, the performance of the direct placement method is surpris-
ingly close to that of the group center method. This demonstrates the adaptabil-
ity of the seeded tree construction algorithm and robustness of the performance
of seeded trees. Even if the slots are not placed in the best positions, the perfor-
mance of the seeded tree join shows very little degradation. The closeness of the
two methods precludes the need for testing group center method with smaller
sample size-slot number ratios.

8.3 Seed Level Filtering and Data Set Sizes

As discussed earlier, given two data sets with no indices, we can bootstrap the
initial seeded tree for either the larger or the smaller data set, and use that index
to copy-seed the second. Figure 8 shows the performance differences between
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Fig. 7. Performance of boot-strap seeded trees constructed with different slot place-
ment methods.

such choices. Consider first the lines labeled “big” and “small”, which show join
performance using the larger and smaller data set as the basis for bootstrapping,
respectively. The data sets used here were of medium clustering and the larger
of the two data sets was always of cardinality 100,000. The X-axis is the ratio of
the size of the smaller data set to that of the larger data set. The performance of
the two alternatives is quite close, with the “big” variation being slightly better.
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Fig. 8. Effect of seed level filtering.

When we turned on the seed level filtering technique [LR94], the situation
reversed. When the larger data set was used for bootstrapping and filtering was
applied the smaller data set (“big-fil”), the improvements were marginal. On the
other hand, when the roles were reversed and the larger data set was filtered,
many more data objects became exempt from insertion into the tree. Thus the



size of the copy-seeded tree was reduced significantly, resulting in significant
cost savings. The improvement is particularly significant when the size difference
between the two data sets is high. In the case where the size ratio was 0.2, the
difference between “big” and “sml-fil” was close to 50%. When the size of the
two data sets was close (e.g. when ratio = 0.8 ), the performance of the two
filtering options was very close. Generally, filtered variations outperformed the
non-filtered variations of the method.

This result suggests that when joining two data sets of different sizes, it is
beneficial to bootstrap from the smaller data set, then construct a copy-seeded
tree for the larger data set, with seed-level filtering turned on.

9 Conclusions

In this paper we studied the problem of how to perform spatial joins between two
data sets with no pre-computed spatial indices. To the best of our knowledge,
no solution has hitherto existed for this problem in the context of spatial joins.
Solving this problem also contributes to query optimization for complex spatial
queries. In addition, we have demonstrated the feasibility of using sampling
techniques to advantage in spatial joins.

We have extended the work in [LR94, LR95] and introduced the bootstrap-
seeding technique, which allows seeded trees to be constructed directly from
underlying data sets. The task of bootstrap-seeding is divided into that of de-
termining the number of slots, assigning values to slots, and constructing the
index tree. We have derived upper and lower bounds on the range of the accept-
able number of slots for a seeded tree. We have also developed a technique for
determining the contents of slots. This technique first samples the underlying
data set to extract information, then derives slot contents from this information
using simple, but effective data clustering heuristics.

Our experiments have confirmed that the upper and lower bounds we have
derived do accurately describe the range of acceptable slot numbers. They also
indicate that the slot contents need not be optimally determined for good join
performance, and further, that complicated data clustering algorithms are un-
necessary. When joining two data sets with different sizes, our results suggest
that it would be beneficial to bootstrap an initial seeded tree for the smaller
data set, and then to construct a copy-seeded tree with the larger data set using
the seed level filtering technique.
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