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ABSTRACT
Privacy and security for outsourced databases are often provided by
Precise Query Protocols (PQPs). In a PQP, records are individually
encrypted by a client and stored on a server. The client issues en-
crypted queries, which are run under encryption at the server, and
the server returns the exact set of encrypted tuples needed to sat-
isfy the query. We propose a general attack against the privacy of
all PQPs that support range queries, using query results to partially
order encrypted records. Existing attacks that seek to order etuples
are less powerful and depend on weaknesses specific to particular
PQPs. Our novel algorithm identifies permissible positions (loci)
for encrypted records by organizing range query results using PQ-
trees. These results can then be used to infer attribute values of
encrypted records. We propose equivocation and permutation en-
tropy as privacy metrics, and give experimental results that show
PQP privacy to be easily compromised by our attack.

Categories and Subject Descriptors
H.2.7 [Database Management]: Database Administration—Secu-
rity, integrity, and protection; H.3.3 [Information Storage and
Retrieval]: Information Search and Retrieval—Query formulation

General Terms
Security, Algorithms

1. INTRODUCTION
Cloud computing is a popular paradigm that lets clients out-

source data management, but many users still keep sensitive data
offline due to privacy concerns [9]. In the Database As a Service
model [15], clients store, update, and query data on honest-but-
curious cloud servers. Such servers correctly process queries, but
do not respect user data privacy. Data stored on the server are en-
crypted using keys known only to the client (see Figure 1). Queries
are likewise encrypted, and may be issued only by the client. The
server is the principal threat to privacy, having access to all en-
crypted records, queries, responses, and processing, so we treat the
server as the primary attacker.
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Figure 1: Database As a Service with encrypted data, queries,
and results.

Fully secure outsourced databases require a full database scan for
each query [17]. To avoid such costs, many schemes [2, 5, 8, 11,
18, 19, 27] adopt the more practical Precise Query Protocol (PQP)
model defined in [30]. In PQPs, records are individually encrypted
and stored on the server as etuples. The protocol is precise since
the server returns the exact set of etuples needed to satisfy each
query. PQPs are efficient as they return no spurious etuples, but
their precision causes them to leak information that we can use to
order the stored etuples.

We propose a novel attack on the privacy of all PQPs that sup-
port one-dimensional range queries over a query-attribute Q. Our
attack identifies a set P of permissible etuple permutations, which
are potentially-correct orderings of etuples by plaintext Q value.
The permissible permutations in P define a partial ordering of etu-
ples. We use the precise results returned by successive range quer-
ies to exclude permutations from P , refining this partial ordering.
Existing attacks that seek to determine such etuple orderings rely
on properties specific to particular PQPs [19].

Every permutation π ∈ P places etuple e at some position π[e].
The set of positions for e over all π ∈ P yields the permissible
loci of e. If we know the permissible loci, we can make infer-
ences about the plaintext Q value in e. As more range queries are
run, more permutations are excluded from P , and the number of
permissible loci for each etuple drops, improving inferences and
further compromising privacy.

Current literature recognizes that revealing etuple order is a pri-
vacy threat. The Order-Preserving Encryption Scheme (OPES) [2],
an efficient PQP that explicitly reveals etuple order, notes that pri-
vacy will be compromised if the distribution of the query-attribute
is known. It is argued in [11] that schemes such as OPES should
be avoided, as they allow etuples to be ordered easily. Work in [19]
shows how to infer etuple order in PQPs that use prefix-preserving
encryption schemes, and claims that privacy is compromised.

As in [16, 19], our goal is to enable the discovery of sensitive in-
formation associated with etuples, not necessarily to associate etu-
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“Jim” mQGiBEXmeSsRBADP+Iw

“Joan” 78sfVYU43aFesycyctZ

“Dave” LsEhZ6LcADNwC7u6ORI

“Tina” sZAQ7cbkTLX/x08YW70

Salary (Q)

q1 = 25000

q2 = 30000

q3 = 55000

q4 = 70000

?

Figure 2: Employee records in a PQP. Salaries are known, but
not employee-salary relationships.

ples with particular people. PQPs claim to obscure sensitive values,
so revealing them clearly defeats PQP privacy guarantees. Informa-
tion correlated with identity may be inferred through other attacks,
or even stored in the clear.

In the example PQP database of Figure 2, etuples are employee
records and range queries are issued on the salary attribute Q. Ini-
tially, we know nothing about which salary matches which etuple,
so all 4 loci are permissible for each etuple. However, if we can
use query result sets to exclude all permutations that assign Jim’s
etuple to loci 2 and 3, then only loci 1 and 4 are permissible. Con-
sequently, we know that Jim’s salary is either 25000 or 70000.

It is common to assume that attribute distributions are known [2,
7, 11, 16, 19], but our attack does not require exact knowledge ofQ
values or distributions. Even attribute distributions estimated from
other sources, such as public Census Bureau data, suffice once we
reduce the number of permissible loci sufficiently. Permissible loci
can also be used in a larger attack to recover exact Q values [12].

1.1 Our Contributions
We present a novel attack on the privacy of all PQPs that sup-

port one-dimensional range queries. Our work is the first to show
that etuples can be efficiently ordered in any such PQP. Existing at-
tacks exploit weaknesses specific to individual PQPs, but the only
requirement for our attack is the ability to observe the etuples re-
turned by encrypted queries. In Section 3, we outline our attack and
show how to use PQ-trees [6] to efficiently maintain the set of per-
missible permutations. Our core contribution, given in Section 4,
is a novel algorithm that uses a PQ-tree to identify the permissi-
ble loci of each etuple. Query-attribute values can be inferred from
these permissible loci. In Section 5, we define equivocation and
permutation entropy as metrics for PQP privacy. Section 6 gives
experimental results on real and synthetic datasets, showing that
privacy is compromised quickly and that PQPs are highly insecure
against our attack.

2. RELATED WORK
Much work exists on applying the Database As a Service model

to various query types [2, 11, 15, 16, 19, 20, 23, 27]. See [25] for
a survey.

2.1 Precise Query Protocol Schemes
PQPs are used for their efficiency. Table 1 shows the asymptotic

costs of several PQPs. The Order Preserving Encryption Scheme
(OPES) of [2] maps plaintexts to ciphertexts while preserving plain-
text order and flattening the ciphertext distribution. Indexes can
easily be created on the ciphertext, keys are small and nearly con-
stant in size, and encryption costs are low. However, OPES fully
reveals etuple order, making it highly vulnerable to inferences.

Prefix-preserving encryption [19] encrypts the query-attribute of
each record such that if two plaintexts share a k-bit prefix, their
ciphertexts share a (distinct) k-bit prefix. The prefix-preserving ci-
phertexts cause this scheme to leak information about etuple order

more rapidly than other PQPs. PQPs such as the encrypted B+-tree
in [11] process queries interactively between client and server, but
suffer from heavy communication loads.

Some PQPs, including MRQED [27], RASP [8], and Hidden
Vector Encryption (HVE) [5], use novel encryption techniques to
improve privacy. Recent work [18, 26] has used inner-product
predicate encryption to implement HVE and to initially guarantee
privacy of query-attribute values and query ranges. However, when
the scheme is used to support one-dimensional range queries, we
can still infer etuple order using our attack.

Trusted server-side hardware is used in [17] to process queries
and re-encrypt etuples in order to limit the attacker’s ability to make
inferences. Oblivious index traversal techniques [21] are used to
maintain privacy for point queries when PQPs use indexes that are
visible to the server.

2.2 Imprecise Query Protocols
Many schemes sacrifice query result set precision in favor of im-

proved privacy. In bucketization [15, 16] the server returns all etu-
ples in a range of buckets, yielding a superset of the query result.
Larger buckets improve privacy, but return more spurious etuples,
raising client-side costs.

Other schemes rely on data fragmentation, assuming that some
attributes are only sensitive when paired with others [10]. Such
schemes assume non-colluding servers, high client storage capaci-
ties, or obscured table relations.

Work in [13] uses an encrypted B+-tree and incorporates spurious
queries, client-side caching, and node content shuffling to provide
strong query access pattern privacy. Other schemes with similar
goals are based on Oblivious RAM (ORAM) [28] or Private Infor-
mation Retrieval (PIR) [24]. Such techniques are becoming more
efficient, but still require several communication rounds per query.
Work in [20] uses hierarchical predicate encryption to achieve ac-
cess pattern privacy, but depends on non-colluding proxies and only
supports restricted query ranges.

2.3 Prior Work on Privacy Loss
Even when the privacy of individual records is guaranteed, pri-

vacy can be compromised by careful analysis of query access pat-
terns or indexes [29, 30]. Work in [16] discusses privacy factors of
bucketization in terms of statistical measures such as variance and
entropy, demonstrating a trade-off between privacy and efficiency.

Using relationships between encrypted records to infer plaintext
information is referred to as inference exposure in [11]. A common
technique is to exploit the fact that identical plaintexts generally
produce identical ciphertexts [7, 11]. Other attacks associate fre-
quently requested etuples with significant plaintexts, yielding prob-
abilistic assignments of values to etuples [13].

Authors in [19] propose an attack against PQPs that use prefix-
preserving encryption to support range queries. Their attack col-
lects all pairs of etuples known to be adjacent and uses them to
infer order. Our attack leads to stronger inferences as it uses every-
thing that can be learned about etuple order from the range query
results, not just what can be inferred from adjacent pairs. Further,
our attack applies generally to all PQPs that support range queries.

3. ATTACK MODEL AND OUTLINE
Our attack identifies etuple orderings that are consistent with ob-

served range query result sets. We call these orderings permissible
permutations, and store them using a PQ-tree [6]. In Section 4,
we use the PQ-tree to identify the permissible loci of each etuple,
which we use to make inferences about the etuple’s query-attribute
values (Section 1). Notation is summarized in Table 2.



Table 1: Asymptotic costs for existing PQP schemes, with large costs highlighted. Few papers gave these costs explicitly, so the table
reflects our best-effort analysis. |D| is domain size, n is the etuple count, C is the result set size, N is a 512–4096 bit number, Kg and
Ks are costs of group and symmetric encryption operations, respectively. δ for OPES is small with unknown relation to n.

PQP Scheme Scheme Setup Client Query Client Storage Server Query Query Send Size
Work Pre-Process Work (Bits) Work (Bits)

Order-Preserving Enc. (OPES) [2] O((Ks + δ)n) O(δ) O(δ log |D|+logN) O(|C| + logn) O(log |D|)
Prefix-Preserving Enc. [19] O(Ksn log |D|) O(Ks log2 |D|) O(logN) O(|C|+ logn log |D|) O(log2 |D|)
Encrypted B+-Tree [11] O(Ksn) O(Ks(|C| + logn)) O(logN) O(|C| + logn) O((|C|+logn)(logN))

1D MRQED [27] O(Kgn log |D|) O(Kg log |D|) O(log |D| logN) O(Kgn log |D|) O((log |D|)(logN))

Hidden Vector Enc. (HVE) [5] O(Kgn|D|) O(Kg) O(|D| logN) O(Kgn) O(logN)

HVE with Predicate Enc. [18, 26] O(Kgn|D|) O(Kg|D|) O(|D| logN) O(Kgn|D|) O(|D| logN)

Table 2: PQP and Attack Notation
e, E Encrypted record (etuple), all etuples
re Plaintext record encrypted to form e

Q, re.q Query-attribute Q, Q value of record re
[α, β] Inclusive plaintext range query bounds
Eα,β Etuples needed to satisfy query range [α, β]
πc Correct ordering of etuples according to Q
C Cluster of etuples, defined by a result Eα,β
P Set of permissible permutations of E
Λe Permissible loci of e

3.1 Precise Query Protocols (PQPs)
In a PQP, each plaintext record r is a tuple of attributes. The

data owner, or client, encrypts each record as a single ciphertext e
called an etuple. Let re denote the plaintext record that produced
etuple e. The set E of all etuples is then stored on a semi-trusted,
honest-but-curious server (see Section 1).

The client generates range queries over a query-attribute Q, en-
crypting the plaintext range [α, β] in each query. We let re.q denote
the Q value in record re. The server, without decrypting the query
or any of the etuples, finds and returns the exact result set Eα,β
satisfying the query, where:

Eα,β = {e ∈ E | α ≤ re.q ≤ β}

We can realize such server-oblivious querying protocols using spe-
cialized encryption techniques, ranging from order-preserving en-
cryption to predicate encryption. We do not present details here,
but see [2, 5, 8, 11, 18, 19, 27] for examples of PQPs supporting
range queries.

Queries are encrypted, so they can only be generated by trusted
clients, and an attacker cannot craft his own queries. Instead, he
can mount the attack by observing responses to the queries issued
by the client, without knowing the plaintext query ranges. Etuples
may be inserted/deleted, so we let E be the subset of etuples that
persist in the database across the set of issued queries. We exclude
inserted/deleted etuples before mounting the attack.

3.2 Permissible Permutations and Loci

Definition 1. A correct ordering ofE by attributeQ is a permu-
tation π = e1e2 . . . of E with re1 .q ≤ re2 .q ≤ · · · .

If several etuples have the same Q value, there are multiple cor-
rect orderings. Our attack handles this case, and both our experi-
mental datasets include repeated values. However, for ease of pre-
sentation, we introduce the attack as though only one correct or-
dering, πc, exists. We can use clusters to learn which permutations
might be πc.

Loci

1 2 3 4

π1 e1 e2 e3 e4

π2 e1 e4 e3 e2

π3 e2 e3 e4 e1

π4 e4 e3 e2 e1

e1

1 32 4

π1, π2 π3, π4

e2

1 32 4

π1 π4π3 π2

Λe1 = {1, 4} Λe2 = {1, 2, 3, 4}

Permissible Loci

Figure 3: Permissible loci of etuples e1 and e2, given permissible
permutations P = {π1, π2, π3, π4}.

Definition 2. A cluster C ⊆ E is a subset of etuples that are
contiguous in πc. C denotes a set of clusters.

Let Eα,β ⊆ E be the set of etuples returned by a query on any
range [α, β]. Since Eα,β contains precisely those e ∈ E for which
α ≤ re.q ≤ β, etuples in Eα,β are contiguous in πc. Thus, each
query result set Eα,β is a cluster.

Definition 3. A cluster C excludes a permutation π of E if an
etuple ei /∈ C appears in π between two ej , ek ∈ C. Once π has
been excluded, we know that π 6= πc.

Definition 4. The set P = {π1, π2, . . .} of permissible permu-
tations consists of all permutations of E not excluded by any clus-
ter. A permutation π is permissible if and only if for every cluster
C, the etuples in C are contiguous in π.

Each permutation in P is potentially the correct ordering, given
the observed clusters, so P defines a partial ordering on E. Ini-
tially, every permutation is in P . As queries arrive, we can identify
clusters and use them to exclude fromP any permutations in which
clustered etuples are not contiguous, thereby refining the partial or-
dering.

Consider the etuple set E = {I, J,K}. Initially, all six permu-
tations of E are permissible. A range query returning J and K
defines a cluster C = {J,K}. Permutations JIK and KIJ are
excluded by C, since I 6∈ C appears between J,K ∈ C. Only
four permutations remain permissible.

Definition 5. The locus ` = π[e] of etuple e in permutation π
is the position of e in π, such that e is the `th etuple in π. The
permissible loci Λe of e are the set of loci of e across all permissible
permutations π ∈ P (see Figure 3):

Λe = {π[e] | π ∈ P}

Λe gives possible positions of e in the correct ordering πc. Etu-
ples in πc are ordered by query-attribute value, so if we have even
partial knowledge of the query-attribute distribution, we can use
Λe to make inferences about the value of re.q. As more clusters



are observed, more permutations are excluded from P , lowering
|Λe| and reducing uncertainty about re.q.

A cluster that excludes any permutation π must also exclude its
reverse π. Thus, given enough distinct clusters, we can exclude
permutations until P = {πc, πc}, but no further. Therefore, we
always have |P| ≥ 2.

3.3 Using PQ-Trees to Maintain P
A PQ-tree [6] is a rooted, ordered tree capable of compactly rep-

resenting the set of permissible permutations P derived from clus-
ter set C. In fact, PQ-trees were designed specifically to represent
such permutations. Non-leaf nodes in PQ-trees are of type P or
Q. Leaves represent etuples from E, so the terms etuple and leaf
will be used interchangeably. The sequence of leaves reached by a
pre-order traversal of a PQ-tree T forms its frontier F (T ), which
defines a permutation of E.

Every P -node andQ-node must have at least two children. Chil-
dren of a P -node can be arbitrarily permuted, while children of a
Q-node may only be reversed. Each combination of rearranged
children in T produces an equivalent tree T ′ ≡ T . The set PT of
permutations consistent with T is PT = {F (T ′) | T ′ ≡ T}.

All PQ-tree leaves start as children of a single P -node, forming a
universal tree consistent with all |E|! possible permutations. Using
a cluster C, we can transform T into a new PQ-tree T ∗ through
a reduction operation. The permutations consistent with T ∗ are
those that are consistent with T and in which all etuples in C are
contiguous. The reduction algorithm runs in time O(|C|) [6].

After successively reducing T using each C ∈ C, T precisely
represents P , giving PT = P . With enough distinct clusters, we
can reduce T until all its leaves are children of a single Q-node, at
which point PT = {πc, πc}.

Let n = |E| be the number of leaves (etuples) in T . Since every
non-leaf node in T has at least two children, the number of nodes
m in the tree is at most 2n − 1. The height of T ranges from 1
when all etuples are children of a single P or Q-node, to n − 1,
such as when T is left-deep.

3.4 Characteristic Examples
We now work through a few simple examples to demonstrate

our attack. In each example, we apply a set of clusters C to the
etuple set E = {I, J,K,L,M,N}, letting πc = IJKLMN . We
then describe the set of permissible permutations P consistent with
C, show the corresponding PQ-tree, and identify the permissible
loci of several etuples. PQ-tree diagrams represent P -nodes using
circles and Q-nodes using rectangles. Etuples are represented by
their labels I · · ·N .

By Definition 4, a permutation π is in P if and only if for every
cluster C ∈ C, etuples in C are contiguous in π. It is helpful to
think of each etuple as a point on a line, where point e has value
re.q. Etuples in a cluster may appear in any order, as long as they
are together on the line and have no other etuples between them.

As more clusters are added, the PQ-tree’s structure can become
quite complex, so we cannot provide examples for all cases here.
For a more thorough demonstration of PQ-trees, see [6]. If C =
∅, all permutations are permissible. In this case, all etuples are
children of a single P node, and every etuple has all 6 possible
permissible loci.

Example 1. (Disjoint Clusters) Let C1 = {I, J,K}, and let
C2 = {L,M}, as in Figure 4. Permutations in P must not inter-
sperse etuples in C1, C2, and {N}. However, the sets themselves
and the elements within each set may appear in any relative order.
There are 3! ways to permute {C1, C2, {N}}, 3! ways to permute
C1, 2 for C2, and 1 for {N}. The PQ-tree representing P is given

L M KN I J

C
2

C
1

π
1
:

I J KN L Mπ
2
:

C
1B

C
1A

C
2

Figure 4: Permutation π1 is
permitted but π2 is excluded
as C1 is split by N /∈ C1 in
π2.

L M K I J

N C
1C

2

Figure 5: PQ-tree with
frontier LMNKIJ reduced
using clusters {I, J,K},
{L,M}.
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Figure 6: Permutation π1 is
permitted but π2 is excluded
as C2 is split by I, J /∈ C2 in
π2.

N M LK J I

L M N

S
1

S
2

S
3

Figure 7: PQ-tree with
frontier NMKLJI re-
duced using {I, J,K,L},
{K,L,M,N}.

in Figure 5. For each e ∈ E, we can still find a π ∈ P that assigns
e to any one of the 6 loci, so all etuples have all 6 permissible loci.

Example 2. (Cluster Overlap) LetC1 = {I, J,K,L} andC2 =
{K,L,M,N} as in Figure 6. We define sets S1 = {I, J}, S2 =
{K,L} = C1 ∩ C2, and S3 = {M,N}. Considering etuples as
points on a line, we know that etuples in C1 appear together, as do
etuples in C2. To meet both of these conditions, etuples in C1∩C2

must together fall between the remaining etuples. That is, etuples
in S2 must be together, and must separate the etuples in S1 from
those in S3.

Thus, S1, S2, and S3 form clusters of their own, and they appear
in order S1S2S3 or S3S2S1. We have 2 ways to permute elements
within each of S1, S2, and S3. The PQ-tree is given in Figure 7,
where we use aQ node to represent the fact that the sets S1, S2, S3

can be in one of two orders. Etuples I, J,M,N are restricted to
permissible loci Λe = {1, 2, 5, 6}, while K and L are restricted to
Λe = {3, 4}.

Example 3. (All 2-Clusters) Figure 8 shows all possible size-
two clusters. Applying arguments from Example 2 to each pair of
intersecting clusters, we get P = {πc, πc}. The PQ-tree is given
in Figure 9. Each etuple has 2 permissible loci. I and N each have
Λe = {1, 6}, J and M have Λe = {2, 5}, and K and N have
Λe = {3, 4}.

4. IDENTIFYING PERMISSIBLE LOCI
We give a novel algorithm for identifying permissible loci Λe

of every etuple e ∈ E given a PQ-tree T . The algorithm runs
in time O(n2 logn) and requires O(n logn) space, where n =
|E|, and includes a dynamic programming solution for a series of

I J LK M Nπc:

N M KL J Iπc:

C

Figure 8: The clusters in C
permit only πc and πc.

LK M N

I J LK M N

Figure 9: PQ-tree fully
reduced using all size-two
clusters.



N M LK J I

z3

∆y ∆z3

Λy = {1}

Λz3 = {1, 5}

ΛI = {1, 2, 5, 6}

ΛK = {3, 4}

z2z1

y

Figure 10: Labeled PQ-tree (Example 4).

related subset sum problems that we must solve for each P node.
Partial results for each solution are cached in a depth-first manner
to exploit problem similarities. We also give a variation called κ-
pruning, which finds Λe for etuples with |Λe| < κ in O(nκ log κ)
time andO(κ logn) space. Key notation is summarized in Table 3.

4.1 Algorithm Outline and Terminology
Let y be a node in PQ-tree T . Our goal is to identify the permis-

sible loci of each etuple (leaf) in T .

Definition 6. The etuple descendants ∆y of y are the etuples
(leaves) descended from y in T . If y is a leaf, ∆y = {y}.

Definition 7. The spread σy is the number of etuple descendants
of y, σy = |∆y|. We can pre-compute spreads for all nodes in time
O(n).

Definition 8. The symbol η represents an offset, which denotes
the total number of etuples descended from all siblings that precede
a given node in a PQ-tree.

Definition 9. The locus of a node y in PQ-tree T ′ is the position
in the frontier F (T ′) at which etuples in ∆y begin to appear. The
permissible loci Λy of y are the set of all such loci of y across all
T ′ ≡ T . If y is the root, Λy = {1}. Since each such frontier is
a permissible permutation of etuples (Section 3.3), this definition
generalizes Definition 5 from etuples to any node. For brevity, we
often refer to Λy as simply the loci of y.

Let z1, . . . , zc be the c ≥ 0 children of y. The locus of zi in
T ′ is offset from the locus of y by the spreads of all children of
y that precede zi in T ′. The subsets of children that may precede
zi in any tree T ′ ≡ T are determined by y’s node type (P or Q).
Thus, given Λy , y’s type, and the spreads σz1 , . . . , σzc of each of
y’s children, we can identify Λz1 , . . . ,Λzc . We apply this tech-
nique recursively to identify the permissible loci of all nodes in T ,
including its leaves.

Example 4. In Figure 10, y is the root of a PQ-tree, so no leaves
can precede ∆y , and Λy = {1}. Since y is a Q node, its children
can be reversed, so exactly 0 or 4 of the leaves in ∆y must precede
∆z3 . Thus, the permissible loci Λz3 are offset from Λy by η1 = 0
and η2 = 4, giving Λz3 = {1, 5}. Similarly, η3 = 0 or η4 = 1
of the leaves in ∆z3 precede ∆I for each locus in Λz3 , so ΛI =
{1, 2, 5, 6}.

4.2 Identifying Loci for Children of Q-Nodes
Let y be a Q-node in T . We let←−ηzi be the number of etuples in

∆y that precede ∆zi in T , and −→ηzi the number that precede ∆zi

in the equivalent tree where y’s children are reversed. Thus,←−ηzi =∑i−1
j=1 σzj and −→ηzi =

∑c
j=i+1 σzj . Λzi are offset from Λy by

either←−ηzi or −→ηzi , as in Figure 11:

Λzi = {`+←−ηzi | ` ∈ Λy} ∪ {`+−→ηzi | ` ∈ Λy} (1)

ηz3 = σz1 + σz2
z3 z4z1 z2

y

ηz3 = σz4 z3z4 z1z2

Λy = {1}

Λz3 = {(1+ σz1 + σz2), (1 + σz4)}

Figure 11: The loci Λz3 are offset from Λy by←−ηz3 when y’s chil-
dren are ordered left-to-right, and by −→ηz3 when ordered right-
to-left.

z3 z4z1 z2

y

z3 z4z1 z2

z3 z4z1 z2
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η2 = 0

η3 = σz1

z3z4z1 z2 η8 = σz + σz + σz

z3z4 z1z2 η7 = σz2 + σz4

…

Λy = {1}

z3z4z1 z2 η8 = σz1 + σz2 + σz4

Λz3 = {(1+ σz1 + σz2), (1), (1 + σz1), …, 

(1 + σz2 + σz4), (1 + σz1 + σz2 + σz4)}

Figure 12: For P -node y, each subset of children to the left of
z3 yield an offset η of Λz3 from Λy .

We call this addition/union operation an expansion of Λy to Λzi ,
since |Λzi | ≥ |Λy|. Since |Λy| ∈ O(n) for all y ∈ T , each expan-
sion takes O(n) time. We perform one such expansion per child,
so the per-child cost is O(n). Pseudocode is given in Algorithm 1,
Lines 12–23. For space efficiency, we perform the expansion for
the child with the largest spread last (see Section 4.4).

4.3 Identifying Loci for Children of P -Nodes
If y is a P -node in T , any permutation of y’s children z1, . . . , zc

yields an equivalent PQ-tree. Since a child zi may be preceded
by any subset of the other c − 1 children, the number of possible
offsets for the loci Λzi from Λy may be large. In contrast, Q-
node children may only be reversed, so there are at most two offsets
for each child. Thus, computing loci for P -node children is more
challenging.

As Figure 12 shows, the sum of spreads of every possible subset
of the other c−1 children is a valid offset η of Λzi from Λy . To test
whether a given value of η is an offset, we must solve a subset-sum
problem, where the target sum is η and the list of integers is the
multiset {σzj | j 6= i} of the spreads of the c− 1 children.

4.3.1 Each Child Considered Separately
The general subset-sum problem is NP-complete, but we know

that the sum of all child spreads never exceeds n. Using this fact,∑c
j=1 σzj ≤ n, we can compute all the offsets of any Λzi from Λy

in timeO(nc) using the standard pseudo-polynomial-time dynamic



Table 3: Notation for Node y of PQ-Tree T
E, n Set/number of etuples (leaves) in T
m Total number of nodes (P , Q, and leaf) in T
PT Set of permutations of E consistent with T
C Cluster of etuples defined by a query result

∆y The set of etuples descended from y
σy The spread of y, σy ≡ |∆y|
Λy The permissible loci of y (starting loci of ∆y)
Φy A set of intermediate loci used in computation
η An offset; a number of etuples preceding a node

programming algorithm for enumerating subset sums [14]. The
dynamic program is based on the insight that we can choose each
child zj , j 6= i to precede or succeed zi independently. Thus, when
computing subset sums, we can independently add in or not add in
each spread σzj , j 6= i, in any order.

Once we compute the possible offsets, we must add them to the
loci in Λy as we did for Q-nodes in Equation 1. We can combine
both steps by initializing the algorithm with Λy , yielding the fol-
lowing recurrence for Λzi , where Φj represents the intermediate
loci set obtained after considering the first j children:

Λzi = Φc, where (2)

Φj =


Λy, j = 0

Φj−1, j = i

Φj−1 ∪ {`+ σzj | ` ∈ Φj−1}, otherwise

We make no change to the intermediate loci when j = i, since zi
cannot precede itself. As in Equation 1, we call each addition/union
operation an expansion withO(n) cost. Identifying Λzi for a single
child zi using Equation 2 requires c−1 expansions, so the per-child
cost is O(nc).

Example 5. Let y be a P -node with Λy = {1} and 4 children as
in Figure 12. Let σz1 = 2, σz2 = 3, σz4 = 2. We show how to find
Λz3 using Equation 2 with i = 3. First, we have Φ0 = Λy = {1}.
We expand with σz1 to get Φ1 = {1} ∪ {1 + 2} = {1, 3}, then
expand with σz2 to get Φ2 = {1, 3}∪{1+3, 3+3} = {1, 3, 4, 6}.
Φ3 = Φ2 since we skip over σz3 , and we expand with σz4 to get
Φ4 = {1, 3, 4, 6}∪{1+2, 3+2, 4+2, 6+2} = {1, 3, 4, 5, 6, 8}.

4.3.2 All Children Considered Together
If zi, zk are children of y, a direct application of Equation 2

identifies Λzi and Λzk by successively expanding Λy with each
spread in {σzj | j 6= i} and {σzj | j 6= k}, respectively. Thus,
both Λzi and Λzk require expansions that use the shared spreads
{σzj | j 6= i, k}. We can reduce the per-child cost of our algo-
rithm from O(nc) to O(n log c) by limiting the number of expan-
sions performed with shared spreads.

Since y is a P -node, all child orders are legal. Thus, when we
identify any Λzi using Equation 2, we can change the order in
which we consider spreads for expansion, as long as we skip over
σzi . By manipulating the spread order, we can avoid unnecessar-
ily repeating expansions with shared spreads when identifying both
Λzi and Λzk , k 6= i.

For example, we can first expand Λy using all the shared spreads
{σzj | j 6= i, k} to get the intermediate loci set Φzi,zk . We then
expand Φzi,zk using σzk to get Λzi , and expand Φzi,zk using σzi
to get Λzk , reducing the number of expansions from 2c − 2 to c.
We can apply this principle recursively to efficiently identify the
loci of every child of y.

Algorithm 1 Identifying Λe for all e ∈ E descended from node y.
Children of y are z1, . . . , zc.
1: procedure TRAVERSENODE(y,Λy)
2: if y ∈ E then
3: report Λe = Λy for etuple e = y
4: else if y is a Q-node then
5: QNODE(y,Λy)
6: else
7: sort y’s children s.t. σz1 ≤ σz2 ≤ · · · ≤ σzc
8: PNODE(y,Λy, [1, . . . , c])
9: end if

10: end procedure
11:
12: procedure QNODE(y,Λy)
13: max ← index of child zmax of y with max σzmax

14: for i← 1 . . . c do
15: if i 6= max then
16: Λzi ← EXPAND(Λy,

∑i−1
j=1 σzj ,

∑c
j=i+1 σzj )

17: TRAVERSENODE(zi,Λzi )
18: end if
19: end for
20: Λzmax ← EXPAND(Λy,

∑max−1
j=1 σzj ,

∑c
j=max+1 σzj )

21: DESTROY(Λy)
22: TRAVERSENODE(zmax ,Λzmax )
23: end procedure
24:
25: procedure PNODE(y,Φ, S)
26: if |S| = 1 then TRAVERSENODE(zS(1),Φ)
27: else
28: Φ′ ← copy of Φ
29: mid ← b|S|/2c
30: for i← (mid + 1) . . . |S| do
31: Φ′ ← EXPAND(Φ′, 0, σzS(i)

)
32: end for
33: PNODE(y,Φ′, [S(1), . . . , S(mid)])
34: DESTROY(Φ′)
35: for i← 1 . . .mid do
36: Φ ← EXPAND(Φ, 0, σzS(i)

)
37: end for
38: PNODE(y,Φ, [S(mid + 1), . . . , S(|S|)])
39: end if
40: end procedure
41:
42: function EXPAND(Φ, η1, η2)
43: return {`+ η1 | ` ∈ Φ} ∪ {`+ η2 | ` ∈ Φ}
44: end function

We use a depth-first divide-and-conquer approach. Expansions
using the shared spreads from the second half of the children, given
by σz(c/2)+1

, . . . , σzc , are common to identifying loci for each of
the first half of the children Λz1 , . . . ,Λzc/2 , and vice-versa. Iden-
tifying loci for each fourth of the children we use spreads from the
other three fourths, etc.

Example 6. Let y be a PNODE with children z1, . . . , z8, as in
Figure 13. Let Φzi,...,zk , i ≤ k, represent the intermediate loci
after expanding Λy using all shared spreads common to identifying
Λzi , . . . ,Λzk . Our goal is to identify all loci Λz1 , . . . ,Λz8 . We
first identify and cache Φz1,z2,z3,z4 by expanding Λy using spreads
σz5 , σz6 , σz7 , σz8 . We then identify and cache Φz1,z2 by expand-
ing Φz1,z2,z3,z4 using σz3 , σz4 . Finally, we identify Λz1 by ex-
panding Φz1,z2 using σz2 . We then backtrack and again expand the
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Figure 13: Identifying permissible loci for children of P -node
y. Each arrow indicates expansions using the labeled spreads.
Eight expansions are performed at each of three levels. (Exam-
ple 6)

cached Φz1,z2 , this time with σz1 , to get Λz2 . We backtrack again
to identify Φz3,z4 by expanding Φz1,z2,z3,z4 using σz1 , σz2 , and
so on until we identify Λz8 . In all, we perform only 8 log2 8 = 24
expansions, instead of 8·(8−1) = 56, as we would if we identified
loci for each child separately.

Pseudocode is given in Algorithm 1, Lines 7, 8, and 25–40. The
children are initially sorted by spread for space efficiency (see Sec-
tion 4.4). S is a sequence of child indexes, initialized to [1, . . . , c]
(Line 8). If |S| = 1, the intermediate loci Φ are the loci of a par-
ticular child (Line 26), and we can recursively find the loci of that
child’s children. Otherwise, we split S in half, and save a copy
of Φ. We then expand the copy of Φ using the second half of
the spreads σzS(b|S|/2c+1)

, . . . , σzS(|S|) , and recursively call PN-
ODE with the expanded Φ and the first half of the spreads, given
by σzS(1)

, . . . , σzS(b|S|/2c) (Lines 28–33). We then repeat the pro-
cess, expanding Φ using the first half of the spreads, and recursively
calling PNODE using the second half of the spreads (Lines 35–38).

The recursion has O(log c) levels, and we expand using each
spread at most once for each level, so the total cost is O(nc log c),
with a per-child cost of only O(n log c), down from O(nc) when
the loci of each child are identified separately (Section 4.3.1).

4.4 Analysis and Space-Time Tradeoff
Algorithm 1 combines our methods for P and Q-node children

using a depth-first approach. Once we identify the permissible loci
for a node in T , we immediately start identifying the permissible
loci of its children. Algorithm 1 identifies loci for O(n) nodes
and generates O(n) sets of intermediate loci via recursive calls to
PNODE, with O(n) loci in each set.

There is a tradeoff between improved speed if we cache more
loci and reduced space if we cache fewer. One possible extreme
is to store all O(n) loci sets, using O(n2) space. However, since
we can easily have n ≥ 106, storing O(n2) items in memory is
unacceptable. (Even storing the permissible loci for every etuple
takes O(n2) space, but we assume that the attacker logs any loci of
long-term interest to secondary storage.)

Another extreme is to store only one set of loci at a time, and
apply Equations 1 and 2 directly. Since we do not cache any in-
termediate loci, we must start from the root every time we want to
identify Λe for a different e. For each node y on the path from the
root to e, this algorithm takes time O(nc), where y has c children.
Thus, identifying Λe requires O(n2) time for each etuple, but only
O(n) total space. Repeating for all n etuples takes time O(n3).

Algorithm 1 is a compromise between these extremes. It caches
intermediate loci, but discards them as soon as possible (Lines 21

and 34). By carefully structuring our traversal of T , we can find
all Λe in time O(n2 logn), using only O(n logn) space. For ex-
ample, we can discard the loci of a Q-node as soon as we identify
the loci of its last child. Since T can have height O(n), a naïve
traversal still requires O(n2) space, so we must carefully select the
order in which we perform expansions.

THEOREM 1. Algorithm 1 takes time O(n2 logn).

PROOF. Per-child time is O(n) for children of Q-nodes (Sec-
tion 4.2) and O(n log c) for children of P -nodes (Section 4.3.2).
The per-child time for sorting children of P -nodes (Line 7) is only
O(log c). Thus, the worst-case per-child time in Algorithm 1 is
O(n log c) ⊂ O(n logn). Since T has n leaves, and each non-leaf
node has at least two children, there areO(n) nodes, and thusO(n)
children, in T . With O(n) children, and time O(n logn) per child,
the total time for Algorithm 1 is in O(n2 logn).

The parameters in Algorithm 1 are pass-by-reference. Before we
prove that Algorithm 1 requires O(n logn) space, we must intro-
duce the following definitions.

Definition 10. A caching call is a procedure call to QNODE or
PNODE for which we are caching a set of loci (Λy in QNODE, Φ′

in PNODE). Each call is a caching call until its cached loci are
destroyed (Lines 21, 34), except for PNODE calls with |S| = 1,
which are not caching calls.

Definition 11. The coverage of a call is the number of etuples
for which Λe is reported (Line 3) by the call and all its descendant
calls. Thus, the coverage of a call is the sum of coverages of its
sub-calls. A TRAVERSENODE or QNODE call has coverage σy ,
and a PNODE call has coverage

∑|S|
i=1 σzS(i)

.

LEMMA 1. Calls to QNODE and PNODE in Algorithm 1 al-
ways make the sub-call with the largest coverage last.

PROOF. For calls to QNODE, all sub-calls are calls to TRA-
VERSENODE on the children z1, . . . , zc. Thus, by Definition 11,
the coverage of a sub-call for child zi is the spread σzi . Since Al-
gorithm 1 explicitly makes the call for the child with the largest
spread last, it makes the sub-call with the largest coverage last.

For calls to PNODE, if |S| = 1, the sub-call with largest cov-
erage is the last and only sub-call. Otherwise, PNODE makes two
sub-calls to PNODE. The first sub-call has coverage given by the
sum

∑b|S|/2c
j=1 σzS(j)

, and the second by
∑|S|
j=b|S|/2c+1 σzS(j)

. The
second sub-call’s coverage sums at least as many spreads as the
first, since b|S|/2c ≤ |S|/2. Further, the indexes in S are always
in increasing order, and the children are sorted such that for any
two children zi, zk, with i < k, we have that σzi ≤ σzk (Line 7).
Thus,

∑b|S|/2c
j=1 σzS(j)

≤
∑|S|
j=b|S|/2c+1 σzS(j)

, so the last (sec-
ond) sub-call has the largest coverage.

LEMMA 2. The coverage of each caching call is at least twice
that of its active sub-call.

PROOF. Let ψ be a caching call with active sub-call λ and last
sub-callω. By Lemma 1, ω is the sub-call with the largest coverage.
By Definition 10, ψ must be a call to PNODE or QNODE, and λ 6=
ω, since cached loci are destroyed before sub-call ω is made. The
coverage of ψ is at least that of λ and ω combined, and since the
coverage of ω is at least that of λ, the coverage of ψ is at least twice
that of λ.

THEOREM 2. Algorithm 1 requires O(n logn) space.



PROOF. Let e be a leaf for which we are reporting Λe (Line 3),
and let χ be the number of currently cached loci sets. Since loci
are only cached by a caching call, χ is also the number of caching
calls in the current call stack.

The coverage of the root’s TRAVERSENODE call is n. By Defi-
nition 11, the coverage of any call is at least as large as the coverage
of each of its sub-calls. By Lemma 2, the coverage of the ith deep-
est caching call is at least twice that of the (i+1)st deepest caching
call. Thus, the coverage of the deepest call is at most n/2χ. The
deepest call is the TRAVERSENODE call reporting Λe, which has
coverage σe = 1 according to Definition 11. Thus, we have:

n

2χ
≥ 1 → 2χ ≤ n → χ ≤ log2 n (3)

Each of the χ cached loci sets consumes O(n) space, so Algo-
rithm 1 requires O(n logn) space.

4.5 The κ-Pruning Variant
Etuples with fewer permissible loci (smaller |Λe|) yield more

information (Section 3.2). Thus, we may want to identify Λe for
only those etuples with |Λe| < κ, for some threshold κ. We can
prune the call tree in Algorithm 1 to find such loci in O(κ logn)
space and O(nκ log κ) time. We refer to the resulting algorithm as
the κ-pruning variant.

If zi is a child of y, we expand Λy to get Λzi , so |Λzi | ≥ |Λy|.
Thus, if |Λy| ≥ κ, all etuple descendants of y will have |Λe| ≥ κ,
and we can prune y, skipping the TRAVERSENODE calls for y and
all its descendants. Since we need only traverse nodes with |Λy| <
κ, we need only store loci sets with at mostO(κ) loci, so κ-pruning
has space complexity O(κ logn). When y is a P -node, we may be
able to use the following theorem to prune y even if |Λy| < κ.

THEOREM 3. If y is a P -node with children z1, . . . , zc, then
for every child zi, |Λzi | ≥ |Λy|+ c− 1.

PROOF. Let mj be the maximum value in Φj in Equation 2.
For each expansion (j 6= i), σzj is added to each element in Φj−1,
including mj−1, and the results are placed in Φj . Thus, mj ≥
σzj + mj−1. Since σzj ≥ 1, mj > mj−1 and thus mj /∈ Φj−1.
Since Φj−1 ⊂ Φj , and Φj has at least one element (mj) that is
not in Φj−1, we know that |Φj | ≥ |Φj−1| + 1. We perform c − 1
expansions going from Φ0 to Φc, so |Λzi | = |Φc| ≥ |Φ0| + (c −
1) = |Λy|+ (c− 1), and thus |Λzi | ≥ |Λy|+ c− 1.

By Theorem 3, we know that if y is a P -node, and if |Λy|+ c−
1 ≥ κ, then for every child zi of y, |Λzi | ≥ κ. Thus, we can prune
y if it has at least c ≥ κ−|Λy|+ 1 children. Since we always have
|Λy| ≥ 1, we can always prune y if c ≥ κ.

Algorithm 1 requires O(1) expansions per child for a Q-node,
and O(log c) per child for a P -node. Since we need only traverse
P -nodes with c < κ, we need at most O(log κ) expansions per
child. Loci sets now contain at most O(κ) loci, so each expansion
takes time O(κ). In pathological cases, we still traverse O(n) chil-
dren, so the total time for κ-pruning is O(nκ log κ). In practice,
κ-pruning runs much faster than this asymptotic bound.

The following theorem will be used in Section 6.

THEOREM 4. If at least κ − 1 etuples appear in none of the
clusters in C, then every etuple has |Λe| ≥ κ, for 1 < κ < n.

PROOF. Let y be the root of T , with |Λy| = 1. Recall that y
starts out as a P -node with all etuples as its children. If κ > 1 and
at least κ− 1 etuples do not appear in any cluster, then those κ− 1
etuples must still be children of y, and y must still be a P -node
with at least κ children. Therefore, by Theorem 3, every child zi
of y has |Λzi | ≥ |Λy| + κ − 1 = κ. Thus, since all etuples are
descendants of y, every etuple also has |Λe| ≥ κ.

5. MEASURING PRIVACY LOSS
As the number of permissible loci |Λe| becomes smaller, more

information is revealed about the query-attribute of e, reducing pri-
vacy. Equivocation captures this measure of progress toward com-
promising PQP privacy.

Definition 12. Etuple e has equivocation εe = |Λe|.

We can compute εe using Algorithm 1. Since πc ∈ P if πc ∈ P ,
we can have εe = 1 only if e is the center etuple in πc. Otherwise,
εe ≥ 2. When εe ≤ 2, we have learned all that we can about
e using clusters, and e’s privacy has clearly been compromised.
Most clients will not accept the privacy compromise of any of their
etuples, so we can state:

Definition 13. The privacy of a PQP is compromised if εe ≤ 2
for any e ∈ E.

Having εe ≤ 2 for some e ∈ E is sufficient, but not necessary, to
compromise privacy. In requiring all etuples to have equivocation
at least 3, we propose a notion of privacy similar to `-diversity [22],
where each entity must be associated with at least ` sensitive val-
ues. Here, these values are loci. In Section 6, we demonstrate that
PQPs are insecure by showing that at least one etuple’s equivoca-
tion quickly drops below 3.

5.1 Alternate and Related Metrics
We could also measure progress toward compromising privacy

in terms of uncertainty about which permutation is the correct or-
dering πc. Each π ∈ P has equal likelihood of being πc, and each
π /∈ P has likelihood zero, so we can measure this uncertainty
using permutation entropy [3].

Definition 14. The permutation entropy of E is log2 |P|.
Permutation entropy is straightforward to compute using a PQ-

tree T . Since every tree T ′ ≡ T represents a unique permutation
π ∈ PT , there are |PT | trees equivalent to T . Let f(yi) be the
number of ways to rearrange the children of node yi in T . Every
combination of valid child arrangements yields an equivalent tree,
so |PT | = f(y1) · · · f(ym). Thus log2 |PT | = log2 f(y1) + · · ·+
log2 f(ym) gives the permutation entropy, which we can compute
in time O(m) = O(n).

If yi is a leaf node, f(yi) = 1. If yi is a Q-node, f(yi) = 2,
as yi’s children can only be in forward or reverse order. If yi is a
P -node with ci children, then f(yi) = ci!, as the children can be
arbitrarily permuted.

We give experimental results measuring permutation entropy in
Section 6. Permutation entropy adequately measures uncertainty
about πc, but it fails to capture the idea that P may give more in-
formation about some etuples than others. Thus, equivocation is
generally preferable.

Another alternative is to extend Algorithm 1 to count the number
of permissible permutations that assign each etuple to each of its
permissible loci. Intuitively, loci deemed permissible by more per-
mutations are more likely to be correct. We could then merge this
information with knowledge of the query-attribute distribution to
obtain a precise metric for the uncertainty about the query-attribute
value of each etuple. Unfortunately, this modification to Algorithm
1 raises its costs to O(n3/ logn) space, and O(n4) time, leaving
equivocation as a better choice when n is large. Due to space con-
straints, we omit details for this modification of Algorithm 1.

Work in [11] uses a metric akin to permutation entropy to an-
alyze attacks based on repeated ciphertexts. Averaging equivoca-
tions also resembles work in [11], and counting etuples with εe < κ
relates to confidential intervals in [29].



6. EXPERIMENTS AND EVALUATION
We conducted experiments to study how quickly the privacy of

Precise Query Protocols (PQPs) is compromised. In each experi-
ment, we generate a setE of n etuples, and create an initial PQ-tree
T with all n etuples as leaves of a single P node. We then generate
a series of random range queries, obtain the cluster C of etuples re-
turned by each query, and use eachC to reduce T (see Section 3.3).
We use the algorithms described in Section 4 to identify permissi-
ble loci and compute equivocations when needed. When averages
are reported, they are computed by averaging results from 10 sets
of queries issued on a single dataset.

We ran experiments using two datasets. In the Random dataset,
each etuple is given a query-attribute value sampled uniformly with
replacement from the domainD = Z108 . For our real-world Salary
dataset, we used a set of 162591 federal employee salaries [1] with
values from D = Z373071. Only a tenth of the salaries are distinct.
Over 600 have minimum value 0, while only one has maximum
value. In practice, this property could be used to distinguish low
and high-salary etuples, and thus to distinguish the correct ordering
from its reverse. The most frequent salary appears over 7000 times.

The integer center of each query range is sampled from the uni-
form distribution U(0, |D|). Integer query widths are sampled ei-
ther from U(0, |D|) or from a Gaussian distribution. We refer to
such queries as Uniform and Gaussian, respectively. The Gaussian
distribution is given by N(105, 5 × 104) for the Random dataset,
and N(2× 104, 104) for the Salary dataset. Uniform query widths
tend to be large, while Gaussian widths are smaller. The Gaussian
queries used for the Salary dataset are larger, relative to |D|, than
for the Random dataset, to ensure that at least one query spans each
pair of adjacent etuples. In the Salary dataset, the maximum sepa-
ration between subsequent query-attribute values is nearly 25000,
despite its small domain size. We use the following terms:

• Query Count: The number of queries issued so far.

• Total Return Count: The total number of etuples returned by
queries issued so far.

• Distinct Return Count: The number of distinct etuples re-
turned so far.

• Privacy Compromise: The event of at least one etuple reach-
ing equivocation εe ≤ 2, as in Definition 13. Recall that this
condition is sufficient, but not necessary, for PQP privacy to
be compromised.

6.1 Progress Before Privacy Compromise
Query Count and Total Return Count both measure query pro-

cessing work done by the server. We primarily use Total Return
Count, as it is less sensitive to the distribution of query widths.
Figures 14 and 15 show equivalent results under both metrics for
the Random dataset.

Figure 14 gives the average Query Count before Privacy Com-
promise occurs. These numbers are strikingly low. Privacy is com-
promised sooner for the larger, Uniform queries since large queries
are more likely to intersect with others, and thus exclude more per-
mutations.

In most cases, for any etuple to have εe ≤ 2, the root of T must
be a Q node, which will not happen until all etuples are linked
together or covered by overlapping clusters. Further, the clusters
must be dense enough that the intersection of at least one pair of
clusters contains only one etuple. For a given query width dis-
tribution, reaching sufficient coverage requires a constant number
of queries, while reaching sufficient density requires a number of
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Figure 14: Query Count before Privacy Compromise, Random
dataset.
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Figure 15: Total Return Count before Privacy Compromise, Ran-
dom dataset.

queries that increases when etuples are more closely spaced along
the domain (larger n).

The larger, Uniform queries reach sufficient coverage before suf-
ficient density, so as n increases, we need more of them in order to
reach Privacy Compromise. However, the Gaussian queries reach
sufficient density before sufficient coverage, so we need nearly the
same number of them for all n. In fact, as n increases, the num-
ber of Gaussian queries needed drops slightly, as the regions where
query ranges overlap are more likely to contain etuples, and thus to
yield intersecting clusters.

Figure 14 shows that issuing even 100 queries is risky. In princi-
ple, even a single query can cause Privacy Compromise if it returns
all but one etuple, as captured by curve Bound. All etuples returned
by such a query are contiguous, so the remaining etuple e must be
assigned to locus 1 or n in the correct ordering. That is, e has
Λe = {1, n}, and εe = 2.

Figure 15 measures against Total Return Count instead of Query
Count. It shows that for small queries, on average, Privacy Com-
promise occurs after the Total Return Count reaches roughly 10
times the database size (10n). Privacy Compromise is just as quick
for the Salary dataset (n = 162591), averaging 13.2 queries or
1.017×106 etuples returned (Uniform), and averaging 100.9 quer-
ies or 1.019× 106 etuples (Gaussian).

While larger queries exclude more permutations, they exclude
fewer permutations than several small queries with the same total
size. Thus, privacy is compromised sooner for the smaller, Gaus-
sian queries in terms of the Total Return Count, since the Gaussian
queries exclude more permutations per etuple returned. This con-
trasts with the fact that privacy is compromised sooner for Uniform
queries in terms of Query Count (Figure 14).
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Figure 16: Random dataset, Gaussian widths: N(105, 5×104).
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Figure 17: Random dataset, Uniform widths: U(0, 108).

6.2 Higher Thresholds and Larger κ

If value is distributed across many records, we may permit many
etuples to have small equivocations. In other cases, it is unaccept-
able for any etuple to have even a moderate equivocation, such as
when an attacker is guessing a passcode and can afford several at-
tempts. Figures 16-19 illustrate the rate of privacy loss in such
cases by plotting the fraction of etuples with equivocation εe < κ,
for various κ.

We explain the threshold phenomenon in Figure 16 by consid-
ering the Distinct Return Count, which is the number of distinct
etuples returned so far. If the Distinct Return Count is at most
(n − κ + 1), then at least κ − 1 etuples have not been returned,
and thus do not appear in any cluster. By Theorem 4 (Section 4.5),
every etuple e ∈ E then has equivocation εe ≥ κ, for 1 < κ < n.
Thus, no etuples have εe < κ until the Distinct Return Count ex-
ceeds n− k + 1.

This threshold is reached with only a few of the large, Uniform
queries, but requires many of the small, Gaussian queries. The
numerous Gaussian queries exclude many permutations, such that
many etuples have equivocations only slightly larger than κ. When
the threshold is reached, many such etuples drop to εe < κ to-
gether, yielding the phenomenon in Figure 16. With the larger, Uni-
form queries, fewer permutations are excluded before the threshold
is reached, so the trend is more gradual (Figure 17).

This same threshold phenomenon appears for Gaussian queries
in the Salary dataset (Figure 18), though it is almost undetectable
since the queries are larger relative to the domain. The Salary
dataset contains many indistinguishable etuples (etuples with du-
plicate values), so only a few etuples can ever reach low equivoca-
tions (Figures 18-19).

6.3 Permutation Entropy
Figure 20 plots permutation entropy against the Total Return

Count for the experiments in Figures 16–19. Permutation entropy
is independent of κ and captures overall progress toward identify-
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Figure 18: Salary dataset, Gaussian widths: N(2× 104, 104).
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Figure 19: Salary dataset, Uniform widths: U(0, 373071).

ing the correct ordering. In these experiments, permutation entropy
remains high even after equivocation drops below 3 for several etu-
ples, at which point privacy is compromised. Thus it appears that
equivocation is a more reliable privacy metric. Permutation entropy
stays higher for the Salary dataset because of the large number of
indistinguishable etuples with duplicate query-attribute values.

Permutation entropy is useful when the query distribution is so
skewed that many etuples are never returned and all equivocations
remain large. Privacy may still be eroding, as etuples that are re-
turned become relatively ordered, allowing the attacker to make
limited inferences. In such cases, permutation entropy is an effec-
tive and efficient privacy metric, whereas equivocation is expensive
for large κ and gives no indication of privacy loss for small κ.

6.4 Effects of Indexes on PQP Privacy
We have shown that the privacy of any PQP can be compromised

quickly as queries are issued, regardless of the PQP’s encryption
and querying mechanisms. In practice, Privacy Compromise oc-
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Figure 20: Drop rates of permutation entropy for Gaussian and
Uniform query width distributions on the Random and Salary
datasets.
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Figure 21: Effects of a binary range tree index on the average
Total Return Count reached before Privacy Compromise.

curs even sooner, as most PQPs use a server-side index that leaks
additional information.

For example, consider a balanced, binary range tree, with nodes
that hold encrypted query-attribute ranges. The children of a sin-
gle parent node hold disjoint ranges covering the parent’s range.
Each leaf represents a single query-attribute value, and points to all
etuples with that value. The server receives encrypted query range
tokens from the client and uses them to search the tree by homo-
morphically checking whether query and node ranges overlap, all
without learning the plaintext ranges. Similar indexes can be found
in [8] and [19].

In such an index, etuples descended from each node form a clus-
ter. These clusters, along with those obtained from query result
sets, can be used to reduce a PQ-tree. In Figure 21, we see that
including such an index dramatically reduces the average Total Re-
turn Count reached before Privacy Compromise.

6.5 Consequences and Alternatives
The Figures above show that in a PQP that supports range quer-

ies, Privacy Compromise can occur quickly. Faced with this reality,
clients have two options: abandon PQPs, or assume that query-
attribute distributions are hidden.

6.5.1 Assuming Attribute Distributions are Hidden
The client may choose to make the dangerous assumption that

the attacker will never learn the query-attribute distribution. In this
case, our work shows that the client should operate under the as-
sumption that the attacker knows the correct etuple ordering. PQPs
like OPES [2] are designed for this scenario, and claim decent pri-
vacy properties [4] and excellent efficiency. Thus it is hard to see
much advantage to using a more complex PQP, which will likely
be less efficient (see Table 1).

6.5.2 Abandoning PQPs Altogether
If the distribution is known, the client must find alternatives to

PQPs. One option is to use partitioning schemes [15, 16], which
make privacy guarantees in terms of entropy and indistinguishabil-
ity, at the cost of spurious results.

An alternative is to periodically re-encrypt etuples using a new
key. The attacker cannot correlate old and re-encrypted etuples, so
he must then restart his attack. As Figure 15 shows, we must re-
encrypt at least one etuple for every 10–100 returned to retain even
a basic level of privacy.

Re-encryption, also called node swapping or shuffling, is already
used to support privacy-preserving point queries in work on obliv-

ious index traversal techniques [13, 21], and Oblivious RAM [28].
Oblivious index traversals generally use spurious queries and a tun-
able constant number of re-encryptions per etuple returned in or-
der to achieve probabilistic privacy guarantees. Existing oblivious
RAM schemes require at least logn re-encryptions per etuple re-
turned, and achieve provable access pattern indistinguishability by
requesting spurious items and frequently re-encrypting recently re-
quested items. Such techniques are promising, but have not yet
been optimized for range queries.

7. CONCLUSION
We have presented an attack that can be used to infer attribute

values of encrypted records in any Precise Query Protocol (PQP)
that supports one-dimensional range queries. We mounted the at-
tack using PQ-trees and a novel algorithm for identifying permis-
sible loci. Experimental results demonstrate that our attack re-
quires us to observe only 104 queries to compromise privacy for a
database of over 106 records, indicating that PQPs are highly inse-
cure when query-attribute distributions are known. Future research
on privacy-preserving range queries should investigate efficient al-
ternatives to PQPs.

We will explore additional privacy metrics for PQPs in future
work. We are also interested in finding an analog to our attack for
multi-dimensional queries, where returned etuples are contiguous
along multiple attributes at once.
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