
On-Line Detection and Resolution of Communication Deadlocks*

Wee K. Ng Chinya V. Ravishankar

Department of Electrical Engineering and Computer Science
The University of Michigan
Ann Arbor, MI 48109-2122

Abstract

W e present a new distributed algorithm that de-
tects and resolves communication deadlocks on-line,
i .e . , simultaneously detects and resolves deadlock as
communication requests are made, at no additional
message t r a f i c overhead, and with bounded delay be-
tween the occurrence and detection of a deadlock. This
i s achieved via a novel technique for detecting knots,
which suf ice for the existence of communication dead-
locks. Current distributed deadlock detection algo-
r i thms lack these features. Thus the algorithm is suit-
able for sofl real-time sys tems and large distributed
sys tems. W e also prove that the algorithm detects
communication deadlocks and that it i s able t o deal
wi th false deadlocks.

1 Introduction

Deadlocks have been categorized into two types
in the literature [12, 19, 211. In the resource model
(AND-model), a process that has multiple outstanding
requests for resources suspends itself until all of them
are serviced. Resources usually cannot be duplicated.
In the communication model (OR-model), a process
may proceed as soon as at least one of the outstand-
ing requests is serviced. The process may thereupon
discard the other requests. Some software resources
are usually managed this way.

Many distributed algorithms have been proposed to
detect deadlocks in each of these categories [3, 4, 5, 7,
13, 16, 17, 18, 20, 211. There are four categories of
deadlock algorithms [12]: path-pushing, edge-chasing,
diffusing computat ions and global s tate detect ion. In
this paper, we restrict our attention to edge-chasing
(or probe-based) algorithms [5, 13, 16, 18, 20, 211.

'This work was supported in part by the Consortium for
International Earth Science Information Networking.

524

These are elegant because they do not require the con-
struction of a WFG (Waits-For Graph) as in path-
pushing algorithms. Furthermore, probes are sim-
ply special messages exchanged among processes, and
communication deadlocks are caused by the send-
ing/receiving of messages. However these algorithms
exhibit the following shortcomings:

1. Message traffic overhead is high because probing
messages are required to perform detection. Most
algorithms are evaluated on the basis of the num-
ber of messages exchanged to detect deadlocks
and omit the messages exchanged when there are
no deadlocks. The algorithms are more expensive
than they seem.

2. Deadlock detection is usually initiated when a
process has waited long enough [21] or when a
higher priority process is blocked by a lower pri-
ority process [3, 13, 181. These are arbitrary cri-
teria.

3. Deadlock detection and resolution are performed
separately, usually duplicating effort [19]. The
duration of deadlocks wastes resources and in-
creases response time to user requests. Unfortu-
nately, deadlock resolution is sometimes neglected
[I, 91 or is not handled properly [14, 171.

4. These inefficiencies and complications suggest
that current algorithms are not scalable to large
distributed algorithms. Message overhead adds
unnecessary trafic to the network, and delayed
deadlock detection and resolution wastes re-
sources and reduces throughput.

We propose a new algorithm that overcomes these
shortcomings. Our algorithm performs deadlock de-
tection and.resolution concurrently on-line at no ad-
ditional message traffic overhead (see Section 5). The
rest of the paper is organized as follows: The next sec-
tion describes the algorithm. Section 3 shows that the
algorithm is correct. Section 4 is an analysis of the

Proceedings of the Twenty-Seventh Annual Hawaii
International Conference on System Sciences, 1994 1060-3425/94 $3.00 0 1994 IEEE

algorithm from various perspectives. In Section 5, we
present several properties of our algorithm and con-
clude the paper.

2 Algorithm description

2.1 Preliminaries and assumptions

We model a distributed system as a graph with
nodes corresponding to physical sites and edges cor-
responding to communication channels. We assume
more than one process per site so that some of them
may continue even when others are blocked. In ad-
dition, every process has a mailbot thread that per-
forms forwarding of incoming requests even when the
process is blocked (see Section 2.6). The terms site
and node, are used interchangeably. We also assume
that a transmitted message may be delayed but is al-
ways delivered. Moreover, messages are received in
the order sent.

The notion of a resource in a communication dead-
lock is not as well-defined as in a resource deadlock.
We assume here that it is a service request, such as
a request for the results of some computation. Hence
if a process blocks after sending a request to another
process, it is waiting for a service resource. An im-
portant assumption is that once a process is blocked
waiting for a reply, it does not abort for other reasons.

We adopt Hoare’s Communicating Sequential Pro-
cess [lo] as the model for interprocess communication.
A process may make multiple requests but it waits un-
til at least one of them is serviced. This corresponds to
the OR-model of deadlock in [12,19,21]. When a pro-
cess enters a communication phase (see Section 2.2), it
initiates a transaction corresponding to a set of pro-
cesses that it intends to communicate with. These
processes are called dependents (see Definition 3.1 for
a formal definition). It then sends the request to the
dependents, which in turn forward the request to other
processes only if they are unable to service the request
themselves. The transaction completes when one or
more of the dependents have serviced the request.

It is well-known that a cycle is necessary for the
existence of a deadlock, but insufficient for a commu-
nication deadlock [16, 211. Due to the nature of a
communication deadlock (OR-model), a process with
multiple outstanding requests may be part of a cy-
cle and not deadlocked if one of the requests can be
granted. Communication deadlocks result when knots
are formed [16, 211.

A knot is a minimal closed subgraph with no edges
directed out of it, and where every node is reachable

from every other node in the subgraph. Thus it con-
sists of a set of closed cycles (see Definition 3.2 for a
formal definition of a knot). The detection of commu-
nication deadlocks in distributed systems reduces to
the detection of a knot. Observe that a process that is
not part of a knot may still be in a deadlock if all its
out-edges lead into knots. Several examples of knots
are given in Figures l(a), 2(a), 2(b), and 3(a).

The On-Line Deadlock Detection and Resolution
(ODDR) algorithm that we propose in this paper ex-
hibits four new features: (1) explicit representation of
deadlock c o n t e t t , (2) a new algorithm for distributed
knot detection, (3) on-line deadlock detection and (4)
immediate resolution after detection. The following
four subsections give an informal and intuitive descrip-
tion of each of them. The algorithm is formally pre-
sented in Section 2.6.

2.2 Deadlock context

A communicaiion transact ion is a cascade of mes-
sages with a single initiator, exchanged with the ob-
jective of responding the initiator’s request. When a
deadlock results, the transaction defines the contet t
for the deadlock. Our algorithm differs from other al-
gorithms in that the context (transaction) is explicitly
represented during deadlock detection. In particular,
the context is contained in each probe list (see Sec-
tion 2.3).

Consider Figure l(a). Suppose process 1 requires
the services of processes 2 or 3 in order to complete
some task. It initiates a communcation transaction
and sends requests to processes 2 and 3. Assuming
that they are unable to service the request, they in
turn seek the services of processes 4 and 5. This cas-
cade of requests occurs under the context of process
1.

This approach presumes a unique, system-wide
identification for a context. We assume that each pro-
cess contains two execution threads, one thread be-
ing the process thread, and the other being the mail-
box thread mentioned earlier. A blocked process may
never initiate a communication transaction, but the
mailbox thread may continue to forward requests. We
concatenate the machine ID and process ID to get the
context ID.

2.3 Knot detection: Probe diffusion

Several algorithms have been proposed for knot de-
tection [2, 151. In [2], a clustering technique is used,
in which cycles of clusters are detected and merged
into bigger clusters. In [15], a diffusing computation

525

1 I4

Figure 1: A knot (communication deadlock) under the
context of process 1. T h e requests are indicated by the
directed edges. T h e labels on the edges are numerical
probe values (see Section 2.3) sent along with the re-
quest. In (b), the cascade of requests is depicted as a
tree (see Section 2.3).

approach is used. Our knot detection algorithm is a
form of diffusing computation that uses probes, but
it differs from previous algorithms in that the probes
carry additional information to permit the distributed
detection of a knot.

The idea of our knot detection algorithm is that the
initiator of a transaction diffuses a numerical probe
value of 1 through the processes involved in the trans-
action. If a knot exists, the sum total of the values
it receives is equal to 1 as well. If the initiator sends
probes to m processes, it divides its initial probe value
of 1 by m and sends the values l / m to each of the m
processes. Similarly, each process k that receives an
incoming sum total probe value of V propagates the
value V/mk to each of the mk processes that it for-
wards the request to. It is important to keep incom-
ing probes values from different transactions distinct.
This is achieved by storing the context identification
in the probe as well. If a knot exists, the initiator will
receive back a sum total probe values of 1 and declares
a deadlock.

In Figure 1(a), process 1 sends a probe value of
1/2 to processes 2 and 3. Since process 2 is unable to
service the request, it forwards the request to process
4 together with a probe value of 1/2, since process 4 is
the only process it forwards to. Observe that process 5

sends a probe value of 1/4 to processes 6 and 1 since it
receives 1/2 from process 3. Process 6 receives a sum
total probe value of 1/2 + 1/4 = 3/4 and forwards it
to process 7 without any division.

The diffusion algorithm constructs a tree for the
initiator where the root and leaves of the tree becomes
the initiator when a knot exists. Figure l(b) shows the
tree for process 1 where the edges are labeled with the
probe values. Observe how the probe values diffuse in
numerical value from process 1 through the tree to the
leaves where they are collected by process 1 again.

2.4 On-line detection

The knot detection algorithm just described may
be initiated either after a WFG is formed, or during
the incremental formation of the W FG. Most previous
deadlock detection algorithms [I , 3, 5 , 16, 211 adopted
the former approach, and some time elapses before
the deadlock is detected. The only algorithm to ap-
proximate on-line detection is by Isloor and Marsland
[I l l . Their proposed on-line algorithm detects dead-
locks at the earliest possible instant-the time of mak-
ing decisions about data allocation at the concerned
site. However the algorithm is for the detection and
resolution of resource deadlocks, not communication
deadlocks.

Our knot detection algorithm is executed as the
requests are made: Each time a process j is unable
to service an incoming request from process i , it for-
wards the request to other processes together with the
probe it has received as part of the incoming request.
The probe value is divided by the number of processes
forwarded to, as explained in the previous section. To
avoid loss of precision, the value l / (mlmz . . .mk) may
be propagated as the product ml m2 . . mk.

With this approach, a deadlock is detected as soon
as it is formed. This does not imply instantaneous de-
tection as probes take time to propagate back. Con-
sider Figure l(a). Assuming that the request from
process 5 to process 6 completes the knot, the tree in
Figure l (b) shows that two requests (6,7) and (7 , l)
are needed before process 1 detects a deadlock. In
Section 3 we gave a bound on the time between the
occurrence of a deadlock and the declaration of a dead-
lock.

Thus far, three features of the algorithm have been
described. They are (1) the explicit capture of dead-
lock context, (2) the diffusion of probe values, and (3)
sending the probes together with the request. A probe
is a compound message containing the context identifi-
cation and a numerical value. However, two problems
may arise.

526

The first problem is that even when a knot exists,
the initiator may not be included in it, so that the ini-
tiator does not receive all its probes back. Figure 2(a)
illustrates the situation where deadlock occurs among
a subset of the dependents of process 1 and the ini-
tiator never gets the probes because it is outside the
knot. We therefore require every process that is un-
able to service an incoming request to initiate its own
probe with its own context as it forwards the request
and incoming probe to its dependents. These probes
are contained in a probe l i s t . That is, each process
forwards a compound message comprising the request
and a probe list containing both the incoming probes
with value modified (as explained in Section 2.3), and
its own probe with value 1. With this feature, some
process in the knot is always able to detect and declare
a deadlock.

In Figure 2(b), process 2 initiates its own probe and
is able to declare a communication deadlock. Since
every process appends its own probe to the incoming
probe, every incoming probe contains the ancestors of
the receiving process. This is a useful piece of infor-
mation for detecting cycles, as described below.

The second problem is that there may exist recur-
rent cycles 90 that some processes never get back the
sum total of their probe values in finite time, com-
promising the correctness of the algorithm. There-
fore a process should not repeatedly forward probes
to dependents that have already returned them. By
checking the list of ancestor processes in the incoming
probe, a process can decide whether to forward any
further. The details are described in Section 2.6.

Figure 3(a) is an example with a recurrent cycle
involving processes 2, 5 and 6. As process 6 forwards
the request to processes 2 and 1, process 1 only gets
back portion of the probe, the other
circulated in the cycle 2,5,6. If process
forward the returned probes, process 6
an even smaller value. Thus process 1
its sum totality of probe values, but
diminishing values.

portion being
1 continues to
will send back
never receives
a sequence of

2.5 Deadlock resolution

Deadlock resolution is often neglected [l, 91 or is not
handled properly [14, 171 in deadlock detection algo-
rithms. There is often a trade-off between the volume
of information exchanged during the deadlock detec-
tion phase and the amount of time needed to resolve
a deadlock once it is detected [19]. Long messages
during the detection phase permit quick resolution of
deadlocks [ll] while short messages may require extra
computation to resolve a deadlock later [17]. Since we

Q Q

Figure 2: A n exampk of an initiator (process 1) that
is not included in the knot it has induced. In (a), the
edges are labeled with the probe values under process
1’s context. Note that process 1 is unable to detect
the deadlock as n o probes return. In (b), the edges are
labeled with probe values under process 2’s context and
it is able to detect the deadlock.

are targeting our algorithm for soft real-time systems,
we adopt the former approach.

We aasume that there is a system-wide func-
tion, RESOLVE, that is commutative and associa-
tive. Given a set of processes involved in deadlock,
this function returns a process whose outstanding re-
quest is to be aborted, thus ending the deadlock. In
its simplest form, RESOLVE may simply pick the pro-
cess with the lowest priority, though more complicated
schemes are clearly feasible.

Thus far, a probe has contained a context ID and a
numerical value. We add a third component, abort-id,
to the probe, indicating the process that is to be
aborted in the case of a deadlock. I t is computed as
follows: Whenever a probe list is propagated from pro-
cess to process, the abort-id component in each probe
in the probe list is simultaneously updated by applying
RESOLVE on the abort-id and the receiving process’s
ID. As the request gets forwarded from process to pro-
cess, the function is applied to all the processes in the
WFG.

2.6 Formal description

This section presents the algorithm formally. The
following are some features of the algorithm presented
so far:

A probe contains three components: the context
ID, a numerical value, and the a b o r t i d .

527

request, it does 80 and the algorithm halts, as do all
forms of forwarding. Otherwise if p active (L) but is
unable to satisfy the request, it updates all the probes
in the probe list by reducing probe values and chang-
ing the abort-id if necessary (F). In addition, p creates
a new probe under its own context and forwards it
together with the probe list. In the case when p is
blocked (F), it performs the same activities as in (F),
i.e., updates probe lists and forwards request.

Now consider the upper subtree rooted at A, cor-
responding to the case when the received probe list
contains p’s own probe. First, p totals up the val-
ues received so far from its own context and checks
whether this total value is equal to its original probe
value 1. If so (C), a knot is detected and a dead-
lock resolution procedure is initiated. In particular,
since the probe also contains the ID of the process to
be aborted, a check is made to see if the process has
already been aborted (H). If not, an abort message
is sent to abort the process (G). If the probe values
sum to less than 1, we have merely detected a cycle
(D). Now we must decide which recipient proceses to
forward to again. We update incoming probes and
forward only to those processes whose probes do not
appear in the received probe list (J), that is, to the
processes not forwarded to already. If all recipient
processes appear in the received probe list, the cur-
rent process removes the probes from the probe list

~i~~~~ 3: A WFG with recurrent ~h~~~ are two
,.,,bedded cycles, {2,5,6) and {1,3,4}, the knot
in (a). (b) shows the tree of process 1 and how such
cycles are handled by the path 6 - 2 - 5 - 6 - 1.

individually and returns each of them directly to their
initiators (I). This form of forwarding is called the re-
lurn

Thus far, we have not considered what happens
when a currently blocked process p receives a reply
granting its request from one or more of its depen-
dents. If so, p should inform all of its other dependents

reply. These dependents in turn inform their depen-
dents to abort all forwardings. This halts all unneces-
sary waiting and prevents a false deadlock from ever
being declared.

There
are four procedures. Procedure PROBEHANDLER()
implements the decision tree described above with

A Probe lis‘ is a list Of Probes, each to to stop all forwarding since it has already received a
a different context, i.e., initiated by a different
process. Note the distinction between a probe
and a probe list.

Every process forwards an incoming request to-
gether with the probe list to other processes only
if it is unable to service the request.

The algorithm is presented in Figure 5.

Figure 4 presents a decision-tree version of the algo-
rithm executed by each process of the WFG. Assume
a probe list is received by a process p . If p is already
blocked, its mailbox process takes over, and checks
the probe list to determine whether p’s context oc-
curs in it (A). The two subtrees rooted at A and B in
the figure correspond to the two outcomes. Consider
the case when the probe list does not contain p’s own
probe (B). If p is active (E), and is able to satisfy the

a modification and calls procedures CREATE
PROBE() and UPDATEVALUE(). At point B in
the decision tree, a check is made to determine if pro-
cess p is active. If procedure PROBEHANDLER()
were to be executed by a process, this check could
only be made before the procedure is executed. So
if p is active, it executes the procedure. Otherwise
it’s mailbox thread takes over and execute the proce-
dure. Thus the algorithm presented in the procedure

528

C
contains own probe

c A

request received +
update probe list 1

stop K
p is active

do not contain E update probe list
own probe create new probe

B *

Figure 4: Decision tree version of algorithm O D D R .

update probe list
create new probe

L A forward

does not perform the process status check. Procedure
INIT-TRANS() is invoked whenever a process starts
a new request. It creates a transact ion with the new
context and sends it together with the request to those
processes that may service the request. Acknowledge-
ments and other replies do not complete the trans-
action. In procedure CREATE-PROBE(), the new
probe is initialized with the three components: con-
text-id identifying the initiator of the request, abort-id
identifying the process to be aborted in the case of a
deadlock and the probe-value, which is initially taken
to be 1. The variables used are described below:

e

e

0

e

3

ProbeList is a list of ordered probes.
number of processes in ProbeList .

MyId is a concatenation of the machine’s identi-
fication and a process’s identification.

out-degree is a count of the number of processes
the initiator intends to send to.

n is the

s u m keeps track of the sum total of the probe
values a process will receive after it has initiator
its own probe. It is initialized to 0.

Proof of correctness

graph-theoretic proof of the correctness of our algo-
rithm. A deadlock detection algorithm is correct if it
satisfies two criteria [19, 201:

1. It detects all existing deadlocks in finite time.

2. It should not report false deadlocks.

We first define some terms and notations that will be
used throughout the discussion.

Definition 3.1 (Waits-For) U -+ v denotes that U
i s waiting for a reply f r o m process v . U 2, v denotes
that process U i s transitively waiting for process U.

Process U can be waiting for process v only if it
has sent v a message containing both the request and
probes and has not received a reply from v. v is a
dependent process of U. The Waits-For relationship is
transitive. I t is reflexive and symmetric only if there
is a cycle containing both U and v .

Definition 3.2 (Communication Deadlock)
Given a distributed s y s t e m represented as a directed
graph S = (V, E) , where V and E are the set of
si tes and requests respectively, a communicat ion dead-
lock i s a knot in the Wai ts -For graph, i .e . , a subgraph
D = (VD, ED) , where VD E V and ED E such that:

529

ProbeLisi = {probel , probez, . . . ,probe , } ;
probe c record

Contextid : integer;
Abortid : iuteger,
value : real;

end;

procedure CREATE-PROBE();
Begin

NewProbe. Contextld + MyId;
NewProbe.Abortld t nil;
NewProbe.value c l /outdegree;
sum t 0;

end;

procedure INIT- TRANS(Requcsf);
begin

OutNodes c set of dependent processes;
NewProbe c CREATE-PROBE();
ProbeLiat c ProbeList U {NcwProbe};
for each process in OutNodes do

SEND(Request, ProbeList);
endfor;

end;

procedure UPDA TE- VAL UE(Pro beLis t) ;
begin

for each probe, in ProbeLisi do
pro be. A b ort Id c RESOLVE(My Id, pro b e . A bort Id) ;
probe.valuc - p r o b e . value/out-degree;

endfor;
end:

Figure 5: Algorithm ODDR for on-line deadlock detec-
tion and resolution.

Therefore a communication deadlock contains a
knot such that every node is reachable from every
other node and there are no edges out of the knot.
By this definition, which also appears in [21, 151, a
deadlock does not include nodes not in a knot, but
which may be blocked on some nodes in a knot. An
example is process 1 in Figure 2(a). The following
lemma is needed:

Lemma 3.1 A n y probe initiated during the format ion
of knot Ii' ultimately reaches all nodes in K .

Proof: We first observe that each process may initiate
only one probe during the formation of a knot, for
it blocks immediately afterwards. Let U be a process
that creates and forwards its probe to its immediate
dependents, having appended it to the incoming probe
list. Every recipient (active or blocked) of a probe
list, in turn, forwards it to those of its dependents
not already in the probe list. Thus, if U 5 U , then
v ultimately receives U ' S probe. If a knot I(forms,

procedure PROBE-HANDLER(Rcquest, ProbeList),
begin

if (probe,. Conteztld = MyId) then
sum c sum + probe,.uahe;
probe,.value t nil;
if (sum = 1) then

else
SEND(A6ort-Signal, probe, .AboriId);

UPDATE- VAL UE(Pro6eList);
OutNodes c set of dependent processes;
S + set o f OutNodes already rn ProbeLiat;
OutNodes +- OutNodes - S;
if (OutNodes = empty)

else
atrip ProbeLiat and forward;

for each process in OutNodes do
SEND (Requesi, ProbeLaat);

endfor;
endif;

if (can satisfy request)

elae

elae

D 0- REQUEST(Request) ;

UPDATE- VAL UE(ProbeList);
NewProbe c CREATE-PROBE();
ProbeList t ProbeList U {Newprobe};
OutNodes c set of dependent processes;
for each process in OutNodes do

SEND (Request, ProbeLwi);
endfor;

endit
end;

Figure 5: continuation.

Definition 3.2 guarantees that U f w for every w E Ii'.
Thus, every process in the knot receives U ' S probe. I

Theorem 3.1 The algorithm ODDR detects commu-
nicat i on dead locks.

Proof: We express the theorem as the following state-
ment: There is some process that receives back probe
values summing up to 1 if and only if there is a com-
munication deadlock. We shall show both necessary
and sufficient conditions.

Let v be a node that receives back probe values
summing to 1. If v were not in a knot, there exists a

node U such that v f U but U U. The first con-
dition implies that U receives some fraction fu of the
original probe values from U , but the second condition
implies that v never receives back fu from U. Thus
the returned values could not have summed up to 1,
a contradiction.

530

Conversely, suppose a knot exists, and let v be a
process in this knot. The propagation of probe values
originating from v defines a spanning tree rooted at v ,
with v at all leaf positions as well (Lemma 3.1). All
propagation paths for probes originating at v end at
U, so v receives back probe values adding up to 1. I

We next present the second part of the correctness
proof. Communication deadlocks present a more diffi-
cult problem than do resource deadlocks because they
may involve several cycles. An edge may be shared by
multiple cycles, so that deleting the edge will break all
the cycles. However, since the search for cycles may be
performed independently by individual processes, the
deadlock detection algorithm may not be aware of the
deleted cycles, resulting in the reporting of false dead-
locks. Therefore false deadlocks occur when deadlock
detection and resolution is performed simultaneously
by independent processes, each working with a past
snapshot of the global state. We show in the following
that algorithm ODDR does not report false deadlocks.

Theorem 3.2 T h e algorithm O D D R does not detect
false communication deadlocks.

Proof: We show that every process in the knot iden-
tifies the same victim process to abort to resolve the
deadlocks. False deadlocks are avoided by checking
this victim process. By Lemma 3.1, the probes initi-
ated by two nodes in the same knot define spanning
traversals TI and T2 in the knot. Thus the function
RESOLVE sees all the nodes in the knot whether it
is applied at the nodes of TI or those of Tz. Since
RESOLVE is commutative and associative, it returns
the same abort-id for TI and T2. I

4 Complexity analysis

We evaluate the algorithm in terms of the number
of messages, message size, local computation cost, and
the length of time for which the probes circulate in the
WFG before a deadlock is declared. As the probes are
embedded in the normal request message, there are no
separate messages exchanged for deadlock detection
and resolution. However a tradeoff shows up directly
in the message size. In fact, since the overall message
size is extended by the probes, the message size is
directly proportional to the number of probes in the
probe list.

Theorem 4.1 In the worst case, algorithm O D D R
places l E ~ l probe lists i n circulation at any t ime,
where ED i s the set of edges i n the WFG of the dead-
lock.

Proof: Whenever a new probe list is received, a process
introduces its own probe and forwards it together with
the probe list to each of its dependents. Since each
forwarding to a dependent corresponds to an edge in
the WFG, there is a maximum of [ED! probe lists in

As deadlock detection and resolution are performed
together, the number of messages for resolution up to
the point of detection is also bounded by IEI. When
a proceas detects a deadlock, it performs a multicast
to the processes to be aborted, as indicated by the
returned probes. This number is bounded by IVDI.
Therefore the message complexity is still the same, as
expressed by the following corollary:

Corollary 4.1 The upper bound on the number of
probe lists t o perform deadlock resolution by algorithm
O D D R i s !ED\, where ED i s the set of edges an the
WFG.

circulation at any time. I

Next, we estimate the length of time the probes lists
are in circulation before their circulation is halted by
the detection of a deadlock. Since probes are intro-
duced as the requests are made, the algorithm may
never terminate if no deadlock is formed. As soon as
a deadlock is formed, the probes are already on their
way to inform some processes of the deadlock.

Theorem 4.2 ((On-Line Property)) There i s a
O(lV0I) delay between the occurrence of a communi-
cation deadlock and the declaration of a deadlock in
algorithm O D D R .

Proof: In the worst case, a probe may have to traverse
the length of a cycle before returning. Since the length
is in the worst case bounded by 0 (l V ~ l > , the theorem
follows. I

Upon receipt of a request and probe list, each node
performs O(IVD I) divisions in the worst case because
there are at most l V ~ l - 1 probes in the probe list.
As mentioned in Section 2.4, multiplication may be
performed instead of division with no loss of preci-
sion. The computation cost does not slow down the
local system because (1) it is relatively inexpensive
compared to communication cost, (2) a process that
is blocked after forwarding the request and probe list
will not perform any more arithmetic under the same
context as the request it is waiting.

5 Conclusions

We have considered the detection and resolution in
communication deadlocks from the point of view of

531

efficiency and timeliness. To the best of our knowl-
edge, no other algorithm has adopted an integrated
approach that achieves both algorithm efficiency and
on-line performance.

Algorithm ODDR is clearly a fully distributed al-
gorithm. There is no centralized detector of dead-
locks, and no need for any election of deadlock detector
nodes as required in [16]. Every process that is part of
the same waits-for graph exercises the same protocol.
Thus every process has an equal chance of detecting
deadlocks. The algorithm will never terminate if there
is no communication deadlock. But whenever it termi-
nates, it not only declares a deadlock but also names
the set of processes to be aborted in order to resolve
the deadlock. The algorithm ODDR possesses the fol-
lowing properties:

The algorithm does not require explicit rounds of
probe signals as do most probe-based algorithms.
Thus it not does not incur additional message
traffic. In Natarajan’s algorithm [16], probe sig-
nals are sent periodically, regardless of whether
deadlocks have occurred. This generates lots of
messages. Haas and Mohan [9] presented an a l g e
rithm that requires the transmission of exponen-
tially many messages for deadlock detection in the
worst case, which is unacceptable in practical ap-
plications. In our algorithm, deadlock detection
is part of the process’s communication pattern.
Hence the algorithm is cheap to execute.
Deadlock resolution is often cumbersome in dis-
tributed deadlock detection algorithms because
several sites may not be aware of other sites
and/or processes involved in the deadlock [19].
The ODDR algorithm avoids this problem. The
probe lists that return to the initiators indicate
the same abort i f s because they have traversed
the entire knot.

The function RESOLVE, which is used to select
a process in a deadlock, subsumes all previous
priority-based detection algorithms [5 , 3, 4, 7, 18,
201. In these algorithms, all transactions are as-
signed a priority under the assumption that there
exists an o priori scale against which a transac-
tion is marked.

A minor weakness of the ODDR algorithm is the
trade-off of the message size for minimal deadlock
duration. However, this is not a serious weakness
since the additional information is simply piggy-
backed on to request messages. The overhead in-
curred is several orders of magnitude less than
that incurred when separate messages are being

sent. The size of the request message is variable
and depends on two factors:

(a) The proximity of a transaction to the ini-
tiator of the detection process. Processes
that are farther away receive request m e
sages with more probes.

(b) The number of processes in the knot. The
larger the knot, the more probe lists there
are in circulation.

I t is intuitively clear that algorithm ODDR detects
existing communication deadlocks. However it is also
interesting to note how it handles false deadlocks. Past
algorithms fail in this aspect because they detect and
resolve individual cycles in the deadlock. Our algo-
rithm is unique in that if a deadlock exists, every
process that reports the deadlock agrees on the same
process to be aborted. Thus false deadlocks have no
adverse effects.

Acknowledgements

The authors would like to thank Wei-Lun Yeh for
contributing ideas leading to the initial version of this
algorithm.

References

[l] K. M. Chandy, J. Misra, “A Distributed Algorithm
for Detecting Resource Deadlocks in Distributed Sys-
tems,” Proceedings Z s t ACM Symposuim on Princi-
ples of Distributed Computing, pp. 157-164, 1982.

[2] I. Cidon, “An Efficient Distributed Knot Detection
Algorithm,” IEEE Transactions on Software Engi-
neering, Vol. 15, No. 5, pp. 644-649, May 1989.

[3] A. N. Choudhary, W. H. Kohler, J. A. Stankovic,
D. Towsley, “A Modified Priority Based Probe Algo-
rithm for Distributed Deadlock Detection and Resc-
lution,” IEEE Transactions on Software Engineering,

[4] A. N. Choudhary, W. H. Kohler, J. A. Stankovic, D.
Towsley, “Correction to ‘A Modified Priority Based
Probe Algorithm for Distributed Deadlock Detection
and Resolution’,” IEEE Transactions on Software En-
gineering, Vol. 15, No. 1, pp. 10-17, Jan. 1989.

[5] K. M. Chandy, J. Misra, L. M. Haas, “Distributed
Deadlock Detection,” A CM Transactions on Com-
puter Systems, Vol. 1, No. 2, pp. 144-156, May 1983.

[6] K. J. Compton, C. V. Ravishankar, “Mean Time to
Deadlock in a Multiprocessing System,” under prepa-
ration for the Journal of the ACM.

Vol. 15, NO. 1, pp. 10-17, Jan. 1989.

532

(71 A. K. Datta, S. Ghosh, "Deadlock Detection in Dik
tributed Systems," Proceedings 9th Annual Znterna-
tional Phoenit Conference on Computers and Com-
munications, pp. 131-136, Mar. 1990.

[8] J. Gray, P. Homan, R. Obermarck, H. Korth, "A
Straw-Man Analysis of the Probability of Waiting and
Deadlocks in a Database System," ZBM Research Re-
port, RJ 3066, IBM San Jose Research Laboratory,
Feb. 1981.

[9] L. M. Ham, C. Mohan, "A Distributed Deadlock
Detection Algorithm for a Resource-Based System,"
ZBM Research Report, RJ 3765, IBM San Jose Rc
search Laboratory, 1983.

[lo] C. A. R. Hoare, "Communicating Sequential Pro-
cesses," Communications of the ACM, Vol. 21, No.

[11] S. S. Isloor, T. A. Marsland, "An Effective
On-Line Deadlock Detection Technique for Dis-
tributed Database Management Systems," Proceed-
ings COMPSAC '78, pp. 283-288, Nov. 1978.

[12] E. Knapp, "Deadlock Detection in Distributed Sya-
tems," ACM Computing Surveys, Vol. 19, No. 4, pp.

[13] A. D. Kshemkalyani, M. Singhal, "Invariant-Based
Verification of a Distributed Deadlock Detection Al-
gorithm," IEEE Transactions on Software Engineer-
ing, Vol. 17, No. 8, pp. 789-799, Aug. 1991.

[14] D. A. Menasce, R. Muntz, "Locking and Deadlock
Detection in Distributed Databases," IEEE Transac-
tions on Softwan Engineering, Vol. 5, No. 3, pp. 195-
202, May 1979.

[15] J. Misra, K. M. Chandy, "A Distributed Graph Algo-
rithm: Knot Detection," ACM Tmnsactions on Pm-
gmmming Languages and Systems, Vol. 4, No. 4, pp.

[16] N. Natarajan, "A Distributed Scheme for Detecting
Communication Deadlocks," IEEE Transactions on
Software Engineering, Vol. 12, No. 4, pp. 531-537,
Apr. 1986.

[17] R. Obermarck, "Distributed Deadlock Detection Al-
gorithm," ACM Tmnsactions on Database Systems,
Vol. 7, No. 2, pp. 187-208, Jun. 1982.

[le] M. K. Sinha, N. Natarajan, "A Priority Based
Distributed Deadlock Detection Algorithm," ZEEE
Transactions on Software Engineering, Vol. 11, No.

[19] M. Singhal, "Deadlock Detection in Distributed Sys-
tems," Computer, Vol. 22, No. 11, pp. 3748, Nov.
1989.

[20] S. H. Wang, G. Voesen, "Towards Efficient Algorithms
for Dedlock Detection and Resolution in Distributed
Systems," Proceedings 5th International Conference
on Data Engineering, pp. 287-294, Feb. 1989.

[21] B. E. W b j d , Z. M. Wbjdk, "Sufficient Condition
for a Communication Deadlock and Distributed Dead-
lock Detection," ZEEE Tmnsactions on Software En-
gineering,Vol. 15, No. 12, pp. 1587-1595, Dec. 1989.

8, pp. 666-677, Aug. 1978.

303-328, Dec. 1987.

678-686, Oct. 1982.

1, pp. 67-81, Jan. 1985.

533

