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Abstract 

W e  present  a new distributed algorithm that de- 
tects  and resolves communication deadlocks on-line, 
i .e . ,  simultaneously detects and resolves deadlock as  
communication requests are made,  at no additional 
message t r a f i c  overhead, and with bounded delay be- 
tween the occurrence and detection of a deadlock. This  
i s  achieved via a novel technique for detecting knots, 
which suf ice  for the existence of communication dead- 
locks. Current  distributed deadlock detection algo- 
r i thms lack these features. Thus the algorithm is  suit- 
able for sofl real-time sys tems and large distributed 
sys tems.  W e  also prove that the algorithm detects 
communication deadlocks and that it i s  able t o  deal 
wi th false  deadlocks. 

1 Introduction 

Deadlocks have been categorized into two types 
in the literature [12, 19, 211. In the resource model 
(AND-model), a process that has multiple outstanding 
requests for resources suspends itself until all of them 
are serviced. Resources usually cannot be duplicated. 
In the communication model (OR-model), a process 
may proceed as soon as at least one of the outstand- 
ing requests is serviced. The process may thereupon 
discard the other requests. Some software resources 
are usually managed this way. 

Many distributed algorithms have been proposed to 
detect deadlocks in each of these categories [3, 4,  5, 7, 
13, 16, 17, 18, 20, 211. There are four categories of 
deadlock algorithms [12]: path-pushing, edge-chasing, 
diffusing computat ions and global s tate  detect ion.  In 
this paper, we restrict our attention to edge-chasing 
(or probe-based) algorithms [5, 13, 16, 18, 20, 211. 

'This work was supported in part by the Consortium for 
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These are elegant because they do not require the con- 
struction of a WFG (Waits-For Graph) as in path- 
pushing algorithms. Furthermore, probes are sim- 
ply special messages exchanged among processes, and 
communication deadlocks are caused by the send- 
ing/receiving of messages. However these algorithms 
exhibit the following shortcomings: 

1. Message traffic overhead is high because probing 
messages are required to perform detection. Most 
algorithms are evaluated on the basis of the num- 
ber of messages exchanged to detect deadlocks 
and omit the messages exchanged when there are 
no deadlocks. The algorithms are more expensive 
than they seem. 

2. Deadlock detection is usually initiated when a 
process has waited long enough [21] or when a 
higher priority process is blocked by a lower pri- 
ority process [3, 13, 181. These are arbitrary cri- 
teria. 

3. Deadlock detection and resolution are performed 
separately, usually duplicating effort [19]. The 
duration of deadlocks wastes resources and in- 
creases response time to user requests. Unfortu- 
nately, deadlock resolution is sometimes neglected 
[I, 91 or is not handled properly [14, 171. 

4. These inefficiencies and complications suggest 
that current algorithms are not scalable to large 
distributed algorithms. Message overhead adds 
unnecessary trafic to the network, and delayed 
deadlock detection and resolution wastes re- 
sources and reduces throughput. 

We propose a new algorithm that overcomes these 
shortcomings. Our algorithm performs deadlock de- 
tection and.resolution concurrently on-line at no ad- 
ditional message traffic overhead (see Section 5). The 
rest of the paper is organized as follows: The next sec- 
tion describes the algorithm. Section 3 shows that the 
algorithm is correct. Section 4 is an analysis of the 
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algorithm from various perspectives. In Section 5, we 
present several properties of our algorithm and con- 
clude the paper. 

2 Algorithm description 

2.1 Preliminaries and assumptions 

We model a distributed system as a graph with 
nodes corresponding to physical sites and edges cor- 
responding to communication channels. We assume 
more than one process per site so that some of them 
may continue even when others are blocked. In ad- 
dition, every process has a mailbot thread that per- 
forms forwarding of incoming requests even when the 
process is blocked (see Section 2.6). The terms site 
and node,  are used interchangeably. We also assume 
that a transmitted message may be delayed but is al- 
ways delivered. Moreover, messages are received in 
the order sent. 

The notion of a resource in a communication dead- 
lock is not as well-defined as in a resource deadlock. 
We assume here that it is a service request, such as 
a request for the results of some computation. Hence 
if a process blocks after sending a request to another 
process, it is waiting for a service resource.  An im- 
portant assumption is that once a process is blocked 
waiting for a reply, it does not abort for other reasons. 

We adopt Hoare’s Communicating Sequential Pro- 
cess [lo] as the model for interprocess communication. 
A process may make multiple requests but it waits un- 
til at least one of them is serviced. This corresponds to 
the OR-model of deadlock in [12,19,21]. When a pro- 
cess enters a communication phase (see Section 2.2), it 
initiates a transaction corresponding to a set of pro- 
cesses that it intends to communicate with. These 
processes are called dependents (see Definition 3.1 for 
a formal definition). It then sends the request to the 
dependents, which in turn forward the request to other 
processes only if they are unable to service the request 
themselves. The transaction completes when one or 
more of the dependents have serviced the request. 

It is well-known that a cycle is necessary for the 
existence of a deadlock, but insufficient for a commu- 
nication deadlock [16, 211. Due to the nature of a 
communication deadlock (OR-model), a process with 
multiple outstanding requests may be part of a cy- 
cle and not deadlocked if one of the requests can be 
granted. Communication deadlocks result when knots 
are formed [16, 211. 

A knot is a minimal closed subgraph with no edges 
directed out of it, and where every node is reachable 

from every other node in the subgraph. Thus it con- 
sists of a set of closed cycles (see Definition 3.2 for a 
formal definition of a knot). The detection of commu- 
nication deadlocks in distributed systems reduces to 
the detection of a knot. Observe that a process that is 
not part of a knot may still be in a deadlock if all its 
out-edges lead into knots. Several examples of knots 
are given in Figures l(a),  2(a), 2(b), and 3(a). 

The On-Line Deadlock Detection and Resolution 
(ODDR) algorithm that we propose in this paper ex- 
hibits four new features: (1) explicit representation of 
deadlock c o n t e t t ,  (2) a new algorithm for distributed 
knot detection, (3) on-line deadlock detection and (4) 
immediate resolution after detection. The following 
four subsections give an informal and intuitive descrip- 
tion of each of them. The algorithm is formally pre- 
sented in Section 2.6. 

2.2 Deadlock context 

A communicaiion transact ion is a cascade of mes- 
sages with a single initiator, exchanged with the ob- 
jective of responding the initiator’s request. When a 
deadlock results, the transaction defines the contet t  
for the deadlock. Our algorithm differs from other al- 
gorithms in that the context (transaction) is explicitly 
represented during deadlock detection. In particular, 
the context is contained in each probe list (see Sec- 
tion 2.3). 

Consider Figure l(a). Suppose process 1 requires 
the services of processes 2 or 3 in order to complete 
some task. It initiates a communcation transaction 
and sends requests to processes 2 and 3. Assuming 
that they are unable to service the request, they in 
turn seek the services of processes 4 and 5. This cas- 
cade of requests occurs under the context of process 
1. 

This approach presumes a unique, system-wide 
identification for a context. We assume that each pro- 
cess contains two execution threads, one thread be- 
ing the process thread, and the other being the mail- 
box thread mentioned earlier. A blocked process may 
never initiate a communication transaction, but the 
mailbox thread may continue to forward requests. We 
concatenate the machine ID and process ID to get the 
context ID. 

2.3 Knot detection: Probe diffusion 

Several algorithms have been proposed for knot de- 
tection [2, 151. In [2], a clustering technique is used, 
in which cycles of clusters are detected and merged 
into bigger clusters. In [15], a diffusing computation 

525 



1 I4 

Figure 1: A knot (communication deadlock) under the 
context of process 1. T h e  requests are indicated by the 
directed edges. T h e  labels on the edges are numerical 
probe values (see Section 2.3) sent along with the re- 
quest. In (b), the cascade of requests is depicted as a 
tree (see Section 2.3). 

approach is used. Our knot detection algorithm is a 
form of diffusing computation that uses probes, but 
it differs from previous algorithms in that the probes 
carry additional information to  permit the distributed 
detection of a knot. 

The idea of our knot detection algorithm is that the 
initiator of a transaction diffuses a numerical probe 
value of 1 through the processes involved in the trans- 
action. If a knot exists, the sum total of the values 
it receives is equal to 1 as well. If the initiator sends 
probes to m processes, it divides its initial probe value 
of 1 by m and sends the values l / m  to each of the m 
processes. Similarly, each process k that receives an 
incoming sum total probe value of V propagates the 
value V/mk to each of the mk processes that it for- 
wards the request to. It is important to keep incom- 
ing probes values from different transactions distinct. 
This is achieved by storing the context identification 
in the probe as well. If a knot exists, the initiator will 
receive back a sum total probe values of 1 and declares 
a deadlock. 

In Figure 1(a), process 1 sends a probe value of 
1/2 to processes 2 and 3.  Since process 2 is unable to 
service the request, it forwards the request to process 
4 together with a probe value of 1/2, since process 4 is 
the only process it forwards to. Observe that process 5 

sends a probe value of 1/4 to  processes 6 and 1 since it 
receives 1/2 from process 3.  Process 6 receives a sum 
total probe value of 1/2 + 1/4 = 3/4  and forwards it 
to process 7 without any division. 

The diffusion algorithm constructs a tree for the 
initiator where the root and leaves of the tree becomes 
the initiator when a knot exists. Figure l(b) shows the 
tree for process 1 where the edges are labeled with the 
probe values. Observe how the probe values diffuse in 
numerical value from process 1 through the tree to the 
leaves where they are collected by process 1 again. 

2.4 On-line detection 

The knot detection algorithm just described may 
be initiated either after a WFG is formed, or during 
the incremental formation of the W FG. Most previous 
deadlock detection algorithms [I ,  3, 5 ,  16, 211 adopted 
the former approach, and some time elapses before 
the deadlock is detected. The only algorithm to ap- 
proximate on-line detection is by Isloor and Marsland 
[ I l l .  Their proposed on-line algorithm detects dead- 
locks at the earliest possible instant-the time of mak- 
ing decisions about data allocation at  the concerned 
site. However the algorithm is for the detection and 
resolution of resource deadlocks, not communication 
deadlocks. 

Our knot detection algorithm is executed as the 
requests are made: Each time a process j is unable 
to service an incoming request from process i ,  it for- 
wards the request to other processes together with the 
probe it has received as part of the incoming request. 
The probe value is divided by the number of processes 
forwarded to, as explained in the previous section. To 
avoid loss of precision, the value l / (mlmz . . .mk) may 
be propagated as the product ml m2 . . mk. 

With this approach, a deadlock is detected as soon 
as it is formed. This does not imply instantaneous de- 
tection as probes take time to propagate back. Con- 
sider Figure l(a). Assuming that the request from 
process 5 to process 6 completes the knot, the tree in 
Figure l (b)  shows that two requests (6,7) and (7 , l )  
are needed before process 1 detects a deadlock. In 
Section 3 we gave a bound on the time between the 
occurrence of a deadlock and the declaration of a dead- 
lock. 

Thus far, three features of the algorithm have been 
described. They are (1) the explicit capture of dead- 
lock context, (2) the diffusion of probe values, and (3)  
sending the probes together with the request. A probe 
is a compound message containing the context identifi- 
cation and a numerical value. However, two problems 
may arise. 
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The first problem is that even when a knot exists, 
the initiator may not be included in it, so that the ini- 
tiator does not receive all its probes back. Figure 2(a) 
illustrates the situation where deadlock occurs among 
a subset of the dependents of process 1 and the ini- 
tiator never gets the probes because it is outside the 
knot. We therefore require every process that is un- 
able to service an incoming request to  initiate its own 
probe with its own context as it  forwards the request 
and incoming probe to its dependents. These probes 
are contained in a probe l i s t .  That is, each process 
forwards a compound message comprising the request 
and a probe list containing both the incoming probes 
with value modified (as explained in Section 2.3), and 
its own probe with value 1. With this feature, some 
process in the knot is always able to detect and declare 
a deadlock. 

In Figure 2(b), process 2 initiates its own probe and 
is able to declare a communication deadlock. Since 
every process appends its own probe to the incoming 
probe, every incoming probe contains the ancestors of 
the receiving process. This is a useful piece of infor- 
mation for detecting cycles, as described below. 

The second problem is that there may exist recur- 
rent cycles 90 that some processes never get back the 
sum total of their probe values in finite time, com- 
promising the correctness of the algorithm. There- 
fore a process should not repeatedly forward probes 
to dependents that have already returned them. By 
checking the list of ancestor processes in the incoming 
probe, a process can decide whether to forward any 
further. The details are described in Section 2.6. 

Figure 3(a) is an example with a recurrent cycle 
involving processes 2, 5 and 6. As process 6 forwards 
the request to processes 2 and 1, process 1 only gets 
back portion of the probe, the other 
circulated in the cycle 2,5,6. If process 
forward the returned probes, process 6 
an even smaller value. Thus process 1 
its sum totality of probe values, but 
diminishing values. 

portion being 
1 continues to 
will send back 
never receives 
a sequence of 

2.5 Deadlock resolution 

Deadlock resolution is often neglected [l, 91 or is not 
handled properly [14, 171 in deadlock detection algo- 
rithms. There is often a trade-off between the volume 
of information exchanged during the deadlock detec- 
tion phase and the amount of time needed to resolve 
a deadlock once it is detected [19]. Long messages 
during the detection phase permit quick resolution of 
deadlocks [ll] while short messages may require extra 
computation to resolve a deadlock later [17]. Since we 

Q Q 

Figure 2: A n  exampk of an initiator (process 1) that 
is not included in the knot it has induced. In  (a), the 
edges are labeled with the probe values under process 
1’s context. Note  that process 1 is unable to detect 
the deadlock as n o  probes return. In (b), the edges are 
labeled with probe values under process 2’s context and 
it is able to detect the deadlock. 

are targeting our algorithm for soft real-time systems, 
we adopt the former approach. 

We aasume that there is a system-wide func- 
tion, RESOLVE, that is commutative and associa- 
tive. Given a set of processes involved in deadlock, 
this function returns a process whose outstanding re- 
quest is to be aborted, thus ending the deadlock. In 
its simplest form, RESOLVE may simply pick the pro- 
cess with the lowest priority, though more complicated 
schemes are clearly feasible. 

Thus far, a probe has contained a context ID and a 
numerical value. We add a third component, abort-id, 
to the probe, indicating the process that is to be 
aborted in the case of a deadlock. I t  is computed as 
follows: Whenever a probe list is propagated from pro- 
cess to process, the abort-id component in each probe 
in the probe list is simultaneously updated by applying 
RESOLVE on the abort-id and the receiving process’s 
ID. As the request gets forwarded from process to pro- 
cess, the function is applied to all the processes in the 
WFG. 

2.6 Formal description 

This section presents the algorithm formally. The 
following are some features of the algorithm presented 
so far: 

A probe contains three components: the context 
ID, a numerical value, and the a b o r t i d .  
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request, it does 80 and the algorithm halts, as do all 
forms of forwarding. Otherwise if p active (L) but is 
unable to satisfy the request, it updates all the probes 
in the probe list by reducing probe values and chang- 
ing the abort-id if necessary (F). In addition, p creates 
a new probe under its own context and forwards it 
together with the probe list. In the case when p is 
blocked (F), it performs the same activities as in (F), 
i.e., updates probe lists and forwards request. 

Now consider the upper subtree rooted at A, cor- 
responding to the case when the received probe list 
contains p’s own probe. First, p totals up the val- 
ues received so far from its own context and checks 
whether this total value is equal to its original probe 
value 1. If so (C), a knot is detected and a dead- 
lock resolution procedure is initiated. In particular, 
since the probe also contains the ID of the process to 
be aborted, a check is made to see if the process has 
already been aborted (H).  If not, an abort message 
is sent to  abort the process (G). If the probe values 
sum to less than 1, we have merely detected a cycle 
(D). Now we must decide which recipient proceses to 
forward to again. We update incoming probes and 
forward only to those processes whose probes do not 
appear in the received probe list (J), that is, to the 
processes not forwarded to already. If all recipient 
processes appear in the received probe list, the cur- 
rent process removes the probes from the probe list 

~i~~~~ 3: A WFG with recurrent ~h~~~ are two 
,.,,bedded cycles, {2,5,6) and {1,3,4}, the knot 
in (a). (b) shows the tree of process 1 and how such 
cycles are handled by the path 6 - 2 - 5 - 6 - 1. 

individually and returns each of them directly to  their 
initiators (I). This form of forwarding is called the re- 
lurn 

Thus far, we have not considered what happens 
when a currently blocked process p receives a reply 
granting its request from one or more of its depen- 
dents. If so, p should inform all of its other dependents 

reply. These dependents in turn inform their depen- 
dents to abort all forwardings. This halts all unneces- 
sary waiting and prevents a false deadlock from ever 
being declared. 

There 
are four procedures. Procedure PROBEHANDLER() 
implements the decision tree described above with 

A Probe lis‘ is a list Of Probes, each to to stop all forwarding since it has already received a 
a different context, i.e., initiated by a different 
process. Note the distinction between a probe 
and a probe list. 

Every process forwards an incoming request to- 
gether with the probe list to other processes only 
if it is unable to service the request. 

The algorithm is presented in Figure 5. 

Figure 4 presents a decision-tree version of the algo- 
rithm executed by each process of the WFG. Assume 
a probe list is received by a process p .  If p is already 
blocked, its mailbox process takes over, and checks 
the probe list to determine whether p’s  context oc- 
curs in it (A). The two subtrees rooted at A and B in 
the figure correspond to the two outcomes. Consider 
the case when the probe list does not contain p’s own 
probe (B). If p is active (E), and is able to  satisfy the 

a modification and calls procedures CREATE 
PROBE() and UPDATEVALUE(). At point B in 
the decision tree, a check is made to  determine if pro- 
cess p is active. If procedure PROBEHANDLER() 
were to be executed by a process, this check could 
only be made before the procedure is executed. So 
if p is active, it executes the procedure. Otherwise 
it’s mailbox thread takes over and execute the proce- 
dure. Thus the algorithm presented in the procedure 
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C 
contains own probe 

c A 

request received + 
update probe list 1 

stop K 
p is active 

do not contain E update probe list 
own probe create new probe 

B * 

Figure 4: Decision tree version of algorithm O D D R .  

update probe list 
create new probe 

L A forward 

does not perform the process status check. Procedure 
INIT-TRANS() is invoked whenever a process starts 
a new request. It creates a transact ion with the new 
context and sends it together with the request to those 
processes that may service the request. Acknowledge- 
ments and other replies do not complete the trans- 
action. In procedure CREATE-PROBE(), the new 
probe is initialized with the three components: con- 
text-id identifying the initiator of the request, abort-id 
identifying the process to  be aborted in the case of a 
deadlock and the probe-value, which is initially taken 
to be 1. The variables used are described below: 

e 

e 

0 

e 

3 

ProbeList is a list of ordered probes. 
number of processes in ProbeList .  

MyId is a concatenation of the machine’s identi- 
fication and a process’s identification. 

out-degree is a count of the number of processes 
the initiator intends to  send to. 

n is the 

s u m  keeps track of the sum total of the probe 
values a process will receive after it has initiator 
its own probe. It is initialized to 0. 

Proof of correctness 

graph-theoretic proof of the correctness of our algo- 
rithm. A deadlock detection algorithm is correct if it  
satisfies two criteria [19, 201: 

1. It detects all existing deadlocks in finite time. 

2. It should not report false deadlocks. 

We first define some terms and notations that will be 
used throughout the discussion. 

Definition 3.1 (Waits-For) U -+ v denotes that U 
i s  waiting for a reply f r o m  process v .  U 2, v denotes  
that process U i s  transitively waiting for process U. 

Process U can be waiting for process v only if it 
has sent v a message containing both the request and 
probes and has not received a reply from v. v is a 
dependent process of U. The Waits-For relationship is 
transitive. I t  is reflexive and symmetric only if there 
is a cycle containing both U and v .  

Definition 3.2 (Communication Deadlock) 
Given a distributed s y s t e m  represented as a directed 
graph S = (V, E ) ,  where V and E are the set of 
si tes  and requests respectively, a communicat ion dead- 
lock i s  a knot in  the Wai ts -For  graph, i .e . ,  a subgraph 
D = (VD, ED) ,  where VD E V and ED E such that: 
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ProbeLisi = {probel ,  probez, . . . ,probe , } ;  
probe c record 

Contextid : integer; 
Abortid : iuteger, 
value : real; 

end; 

procedure CREATE-PROBE(); 
Begin 

NewProbe. Contextld + MyId; 
NewProbe.Abortld t nil; 
NewProbe.value c l /outdegree; 
sum t 0; 

end; 

procedure INIT- TRANS(Requcsf);  
begin 

OutNodes c set  of dependent processes; 
NewProbe c CREATE-PROBE(); 
ProbeLiat c ProbeList U {NcwProbe}; 
for each process in OutNodes do 

SEND(Request, ProbeList); 
endfor; 

end; 

procedure UPDA TE- VAL UE(Pro beLis t ) ;  
begin 

for each probe, in ProbeLisi do 
pro be. A b ort Id c RESOLVE( My Id, pro b e .  A bort Id) ; 
probe.valuc - p r o  b e .  value/out-degree; 

endfor; 
end: 

Figure 5: Algorithm ODDR for on-line deadlock detec- 
tion and resolution. 

Therefore a communication deadlock contains a 
knot such that every node is reachable from every 
other node and there are no edges out of the knot. 
By this definition, which also appears in [21, 151, a 
deadlock does not include nodes not in a knot, but 
which may be blocked on some nodes in a knot. An 
example is process 1 in Figure 2(a). The following 
lemma is needed: 

Lemma 3.1 A n y  probe initiated during the format ion 
of knot Ii' ultimately reaches all nodes in K .  

Proof:  We first observe that each process may initiate 
only one probe during the formation of a knot, for 
it blocks immediately afterwards. Let U be a process 
that creates and forwards its probe to  its immediate 
dependents, having appended it to  the incoming probe 
list. Every recipient (active or blocked) of a probe 
list, in turn, forwards it to those of its dependents 
not already in the probe list. Thus, if U 5 U ,  then 
v ultimately receives U ' S  probe. If a knot I( forms, 

procedure PROBE-HANDLER(Rcquest, ProbeList), 
begin 

if (probe,.  Conteztld = MyId) then 
sum c sum + probe,.uahe; 
probe,.value t nil; 
if (sum = 1 )  then 

else 
SEND(A6ort-Signal, probe, .AboriId); 

UPDATE- VAL UE(Pro6eList); 
OutNodes c set of dependent processes; 
S + set o f  OutNodes already rn ProbeLiat; 
OutNodes +- OutNodes - S; 
if (OutNodes = empty) 

else 
atrip ProbeLiat and forward; 

for each process in OutNodes do 
SEND (Requesi, ProbeLaat); 

endfor; 
endif; 

if (can satisfy request) 

elae 

elae 

D 0- REQUEST( Request) ; 

UPDATE- VAL UE(ProbeList); 
NewProbe c CREATE-PROBE(); 
ProbeList t ProbeList U {Newprobe}; 
OutNodes c set of dependent processes; 
for each process in OutNodes do 

SEND (Request, ProbeLwi); 
endfor; 

endit 
end; 

Figure 5: continuation. 

Definition 3.2 guarantees that U f w for every w E Ii'. 
Thus, every process in the knot receives U ' S  probe. I 

Theorem 3.1 The algorithm ODDR detects commu- 
nicat i on dead locks. 

Proof: We express the theorem as the following state- 
ment: There is some process that receives back probe 
values summing up to 1 if and only if there is a com- 
munication deadlock. We shall show both necessary 
and sufficient conditions. 

Let v be a node that receives back probe values 
summing to  1. If v were not in a knot, there exists a 

node U such that v f U but U U. The first con- 
dition implies that U receives some fraction fu of the 
original probe values from U ,  but the second condition 
implies that v never receives back fu from U. Thus 
the returned values could not have summed up to 1, 
a contradiction. 
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Conversely, suppose a knot exists, and let v be a 
process in this knot. The propagation of probe values 
originating from v defines a spanning tree rooted at v ,  
with v at all leaf positions as well (Lemma 3.1). All 
propagation paths for probes originating at v end at 
U, so v receives back probe values adding up to 1. I 

We next present the second part of the correctness 
proof. Communication deadlocks present a more diffi- 
cult problem than do resource deadlocks because they 
may involve several cycles. An edge may be shared by 
multiple cycles, so that deleting the edge will break all 
the cycles. However, since the search for cycles may be 
performed independently by individual processes, the 
deadlock detection algorithm may not be aware of the 
deleted cycles, resulting in the reporting of false dead- 
locks. Therefore false deadlocks occur when deadlock 
detection and resolution is performed simultaneously 
by independent processes, each working with a past 
snapshot of the global state. We show in the following 
that algorithm ODDR does not report false deadlocks. 

Theorem 3.2 T h e  algorithm O D D R  does not detect 
false communication deadlocks. 

Proof:  We show that every process in the knot iden- 
tifies the same victim process to abort to resolve the 
deadlocks. False deadlocks are avoided by checking 
this victim process. By Lemma 3.1, the probes initi- 
ated by two nodes in the same knot define spanning 
traversals TI and T2 in the knot. Thus the function 
RESOLVE sees all the nodes in the knot whether it 
is applied at the nodes of TI or those of Tz. Since 
RESOLVE is commutative and associative, it  returns 
the same abort-id for TI and T2. I 

4 Complexity analysis 

We evaluate the algorithm in terms of the number 
of messages, message size, local computation cost, and 
the length of time for which the probes circulate in the 
WFG before a deadlock is declared. As the probes are 
embedded in the normal request message, there are no 
separate messages exchanged for deadlock detection 
and resolution. However a tradeoff shows up directly 
in the message size. In fact, since the overall message 
size is extended by the probes, the message size is 
directly proportional to the number of probes in the 
probe list. 

Theorem 4.1 In  the worst  case, algorithm O D D R  
places l E ~ l  probe lists i n  circulation at any t ime,  
where ED i s  the set  of edges i n  the WFG of the dead- 
lock. 

Proof: Whenever a new probe list is received, a process 
introduces its own probe and forwards it together with 
the probe list to  each of its dependents. Since each 
forwarding to a dependent corresponds to an edge in 
the WFG, there is a maximum of [ED! probe lists in 

As deadlock detection and resolution are performed 
together, the number of messages for resolution up to 
the point of detection is also bounded by IEI. When 
a proceas detects a deadlock, it performs a multicast 
to the processes to be aborted, as indicated by the 
returned probes. This number is bounded by IVDI. 
Therefore the message complexity is still the same, as 
expressed by the following corollary: 

Corollary 4.1 The upper bound on the number of  
probe lists t o  perform deadlock resolution by algorithm 
O D D R  i s  !ED\,  where ED i s  the set  of edges an the 
WFG. 

circulation at any time. I 

Next, we estimate the length of time the probes lists 
are in circulation before their circulation is halted by 
the detection of a deadlock. Since probes are intro- 
duced as the requests are made, the algorithm may 
never terminate if no deadlock is formed. As soon as 
a deadlock is formed, the probes are already on their 
way to inform some processes of the deadlock. 

Theorem 4.2 ((On-Line Property)) There i s  a 
O(lV0I) delay between the occurrence of a communi- 
cation deadlock and the declaration of a deadlock in  
algorithm O D D R .  

Proof:  In the worst case, a probe may have to traverse 
the length of a cycle before returning. Since the length 
is in the worst case bounded by 0 ( l V ~ l > ,  the theorem 
follows. I 

Upon receipt of a request and probe list, each node 
performs O( IVD I) divisions in the worst case because 
there are at most l V ~ l  - 1 probes in the probe list. 
As mentioned in Section 2.4, multiplication may be 
performed instead of division with no loss of preci- 
sion. The computation cost does not slow down the 
local system because (1) it is relatively inexpensive 
compared to communication cost, (2) a process that 
is blocked after forwarding the request and probe list 
will not perform any more arithmetic under the same 
context as the request it is waiting. 

5 Conclusions 

We have considered the detection and resolution in 
communication deadlocks from the point of view of 
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efficiency and timeliness. To the best of our knowl- 
edge, no other algorithm has adopted an integrated 
approach that achieves both algorithm efficiency and 
on-line performance. 

Algorithm ODDR is clearly a fully distributed al- 
gorithm. There is no centralized detector of dead- 
locks, and no need for any election of deadlock detector 
nodes as required in [16]. Every process that is part of 
the same waits-for graph exercises the same protocol. 
Thus every process has an equal chance of detecting 
deadlocks. The algorithm will never terminate if there 
is no communication deadlock. But whenever it termi- 
nates, it  not only declares a deadlock but also names 
the set of processes to be aborted in order to resolve 
the deadlock. The algorithm ODDR possesses the fol- 
lowing properties: 

The algorithm does not require explicit rounds of 
probe signals as do most probe-based algorithms. 
Thus it not does not incur additional message 
traffic. In Natarajan’s algorithm [16], probe sig- 
nals are sent periodically, regardless of whether 
deadlocks have occurred. This generates lots of 
messages. Haas and Mohan [9] presented an a l g e  
rithm that requires the transmission of exponen- 
tially many messages for deadlock detection in the 
worst case, which is unacceptable in practical ap- 
plications. In our algorithm, deadlock detection 
is part of the process’s communication pattern. 
Hence the algorithm is cheap to execute. 
Deadlock resolution is often cumbersome in dis- 
tributed deadlock detection algorithms because 
several sites may not be aware of other sites 
and/or processes involved in the deadlock [19]. 
The ODDR algorithm avoids this problem. The 
probe lists that return to the initiators indicate 
the same abort i f s  because they have traversed 
the entire knot. 

The function RESOLVE, which is used to select 
a process in a deadlock, subsumes all previous 
priority-based detection algorithms [5 ,  3, 4, 7, 18, 
201. In these algorithms, all transactions are as- 
signed a priority under the assumption that there 
exists an o priori scale against which a transac- 
tion is marked. 

A minor weakness of the ODDR algorithm is the 
trade-off of the message size for minimal deadlock 
duration. However, this is not a serious weakness 
since the additional information is simply piggy- 
backed on to request messages. The overhead in- 
curred is several orders of magnitude less than 
that incurred when separate messages are being 

sent. The size of the request message is variable 
and depends on two factors: 

(a) The proximity of a transaction to the ini- 
tiator of the detection process. Processes 
that are farther away receive request m e  
sages with more probes. 

(b) The number of processes in the knot. The 
larger the knot, the more probe lists there 
are in circulation. 

I t  is intuitively clear that algorithm ODDR detects 
existing communication deadlocks. However it is also 
interesting to note how it handles false deadlocks. Past 
algorithms fail in this aspect because they detect and 
resolve individual cycles in the deadlock. Our algo- 
rithm is unique in that  if a deadlock exists, every 
process that reports the deadlock agrees on the same 
process to be aborted. Thus false deadlocks have no 
adverse effects. 

Acknowledgements 

The authors would like to thank Wei-Lun Yeh for 
contributing ideas leading to the initial version of this 
algorithm. 

References 

[l] K. M. Chandy, J. Misra, “A Distributed Algorithm 
for Detecting Resource Deadlocks in Distributed Sys- 
tems,” Proceedings Z s t  ACM Symposuim on Princi- 
ples of Distributed Computing, pp. 157-164, 1982. 

[2] I. Cidon, “An Efficient Distributed Knot Detection 
Algorithm,” IEEE Transactions on Software Engi- 
neering, Vol. 15, No. 5, pp. 644-649, May 1989. 

[3] A. N.  Choudhary, W. H. Kohler, J. A. Stankovic, 
D. Towsley, “A Modified Priority Based Probe Algo- 
rithm for Distributed Deadlock Detection and Resc- 
lution,” IEEE Transactions on Software Engineering, 

[4] A. N.  Choudhary, W. H. Kohler, J. A. Stankovic, D. 
Towsley, “Correction to ‘A Modified Priority Based 
Probe Algorithm for Distributed Deadlock Detection 
and Resolution’,” IEEE Transactions on Software En- 
gineering, Vol. 15, No. 1, pp. 10-17, Jan. 1989. 

[5] K. M. Chandy, J. Misra, L. M. Haas, “Distributed 
Deadlock Detection,” A CM Transactions on Com- 
puter Systems, Vol. 1, No. 2, pp. 144-156, May 1983. 

[6] K.  J. Compton, C. V. Ravishankar, “Mean Time to 
Deadlock in a Multiprocessing System,” under prepa- 
ration for the Journal of the ACM. 

Vol. 15, NO. 1, pp. 10-17, Jan. 1989. 

532 



(71 A. K. Datta, S. Ghosh, "Deadlock Detection in Dik 
tributed Systems," Proceedings 9th Annual Znterna- 
tional Phoenit Conference on Computers and Com- 
munications, pp. 131-136, Mar. 1990. 

[8] J. Gray, P. Homan, R. Obermarck, H. Korth, "A 
Straw-Man Analysis of the Probability of Waiting and 
Deadlocks in a Database System," ZBM Research Re- 
port, RJ 3066, IBM San Jose  Research Laboratory, 
Feb. 1981. 

[9] L. M. Ham, C. Mohan, "A Distributed Deadlock 
Detection Algorithm for a Resource-Based System," 
ZBM Research Report, RJ 3765, IBM San Jose Rc 
search Laboratory, 1983. 

[lo] C. A. R. Hoare, "Communicating Sequential Pro- 
cesses," Communications of the ACM, Vol. 21, No. 

[11] S. S. Isloor, T. A. Marsland, "An Effective 
On-Line Deadlock Detection Technique for Dis- 
tributed Database Management Systems," Proceed- 
ings COMPSAC '78, pp. 283-288, Nov. 1978. 

[12] E. Knapp, "Deadlock Detection in Distributed Sya- 
tems," ACM Computing Surveys, Vol. 19, No. 4, pp. 

[13] A. D. Kshemkalyani, M. Singhal, "Invariant-Based 
Verification of a Distributed Deadlock Detection Al- 
gorithm," IEEE Transactions on Software Engineer- 
ing, Vol. 17, No. 8, pp. 789-799, Aug. 1991. 

[14] D. A. Menasce, R. Muntz, "Locking and Deadlock 
Detection in Distributed Databases," IEEE Transac- 
tions on Softwan Engineering, Vol. 5, No. 3, pp. 195- 
202, May 1979. 

[15] J. Misra, K. M. Chandy, "A Distributed Graph Algo- 
rithm: Knot Detection," ACM Tmnsactions on Pm- 
gmmming Languages and Systems, Vol. 4, No. 4, pp. 

[16] N. Natarajan, "A Distributed Scheme for Detecting 
Communication Deadlocks," IEEE Transactions on 
Software Engineering, Vol. 12, No. 4, pp. 531-537, 
Apr. 1986. 

[17] R. Obermarck, "Distributed Deadlock Detection Al- 
gorithm," ACM Tmnsactions on Database Systems, 
Vol. 7, No. 2, pp. 187-208, Jun. 1982. 

[le] M. K. Sinha, N. Natarajan, "A Priority Based 
Distributed Deadlock Detection Algorithm," ZEEE 
Transactions on Software Engineering, Vol. 11, No. 

[19] M. Singhal, "Deadlock Detection in Distributed Sys- 
tems," Computer, Vol. 22, No. 11, pp. 3748, Nov. 
1989. 

[20] S. H. Wang, G. Voesen, "Towards Efficient Algorithms 
for Dedlock Detection and Resolution in Distributed 
Systems," Proceedings 5th International Conference 
on Data Engineering, pp. 287-294, Feb. 1989. 

[21] B. E. W b j d ,  Z. M. Wbjdk, "Sufficient Condition 
for a Communication Deadlock and Distributed Dead- 
lock Detection," ZEEE Tmnsactions on Software En- 
gineering,Vol. 15, No. 12, pp. 1587-1595, Dec. 1989. 

8, pp. 666-677, Aug. 1978. 

303-328, Dec. 1987. 

678-686, Oct. 1982. 

1, pp. 67-81, Jan. 1985. 

533 


