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Abstract

Nested transactions[6, 5] provide fine grain atom-
icity, efficient recovery control, and structural mod-
ularity. In distributed environments, they provide
a natural and semantically clean way of modelin g
computations . However, the characteristics of nes-
ted transactions are sufficiently different from those o f
traditional single-level transactions that concurrency
control for nested transactions should be reconsidere d
in order to exploit all its advantages .

In this paper, we investigate a new concurrenc y
control protocol for nested transactions, and introduc e
the notion of a request list for that purpose . Our ob-
jectives are to provide shorter transaction turn-aroun d
times and better system throughput . These goals are
accomplished by exploiting intra-transaction concur-
rency and by reducing the time a transaction has t o
wait for consistent data states .

1 Introduction

Nested transactions are introduced to model long o r
complex transactions by offering fine-grain fault atom-
icity, more efficient recovery control, and structura l
modularity[6] . Nested transactions are most suitabl e
when the amount of computation in a transaction is
large, when the data accessing pattern is complex, o r
when one unit of computation directly or indirectl y
invokes computations at remote sites . Computations
invoked at the remote sites are usually modeled as sub-
transactions . These characteristics make nested trans -
actions a suitable candidate for modeling transaction s
in systems such as object oriented database systems .

Because of the aforementioned characteristics, nes-
ted transactions used to their full advantages tend to
be larger . They have the following properties in com-
parison to single level transactions : for a nested trans-
action, (1) the expected execution time is longer, (2)
the expect number of data items accessed is larger,

and (3) during the its life time, the expected number o f
transactions trying to access the same resources it ha s
accessed is larger . Although all nested transactions
are not large, a well-designed nested transaction man-
agement system should cope with situations in which
the number of large transactions is significant . Three
problems could arise in such situations :

1. Transaction execution times may be longer be-
cause of larger and more complicated computa-
tions . Communications to pass subtransaction
status between application and system software
modules and communications between parent an d
children subtransactions at different sites can also
increase the life time of nested transactions . This
may result in degraded response time for inter -
active users .

2. The effect of resource waiting may seriously pro -
long transaction execution times . A transaction
waiting for resources may wait a long time simpl y
because the waited nested transactions have a lo t
of work to do . However, the waited nested trans-
actions may very well be waiting for resources ac-
cessed by other transactions, since nested trans-
actions access more data items than single-level
ones . The chain of resource waiting can be-
come very long if the concurrency control pro-
tocol is not properly designed . When the sys-
tem workload is heavy, the degradation in trans -
action execution time and system throughput due
to resource waiting can be multiplicative, and th e
chance for deadlock can be high . This makes plain
locking concurrency control unsuitable for neste d
transaction .

3. Optimistic concurrency control can be dangerous .
If a nested transaction is aborted, the number o f
dependent transactions that need be aborted wil l
be larger, which in turn will cause a even large r
number of transactions to abort . That is, the
fan-out of the cascading abort[1] will be greater .
Consequently, aborting a long-lived nested trans-
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action may potentially paralyze the whole system .

To avoid these problems, a concurrency control pro-
tocol for nested transaction must :

• Minimize execution times for individual neste d
transactions .

• Minimize the time a transaction has to wait for
resources held by other transactions .

• Minimize the number of cases in which a transac-
tion has to proceed on the assumption that som e
active transactions will commit .

The above objectives are interrelated . By minim-
izing transaction execution times we could also min-
imize the penalty of waiting and reduce the danger o f
optimistic assumptions . On the other hand, reducing
resource wait times naturally reduces execution times
of transactions . One obvious approach to shortening
execution times for individual nested transactions i s
to exploit intra-transaction concurrency, i .e ., to allow
subtransactions from the same parent to execute con -
currently .

In this paper, we investigate a new concurrency
control protocol for nested transactions that addresse s
these design goals . We minimize transaction executio n
times by exploiting intra-transaction concurrency . We
also introduced the concept of a request list, which is
derived from the history mechanism[7] and is merged
with the timestamp serialization protocol[4] . request
list reduces the cases in which a nested transaction ha s
to wait for resources held by others, and avoid alto-
gether the assumption that same active transactions
will commit when allowing operations to proceed . The
problem of cascading abort is avoid as a result . And
by using timestamp as the serialization protocol, dead-
locks cannot occur, either . The primary costs in this
method is paid at the time operations arrive at data
items . We believe the costs is justifiable given the hig h
chance of deadlocks and expensive cost of cascading
aborts for nested transactions .

Exploiting intra-transaction concurrency turn ou t
not to be as straightforward as we expected, due to th e
fact that existing concurrency control techniques ar e
based on the assumption that transactions are single -
leveled . Section 2 provides backgrounds for our work
and discusses issues concerning intra-transaction con -
currency. Section 3 provides a brief description of the
history mechanism. Section 4 and 5 gives and out -
line and the details of our algorithm, respectively . In
section 6, we discuss how our methods avoids dead -
lock and cascading abort, among others . Section 7
conclude this paper .

2 Background

Work on concurrency control for single-level trans -
actions has focussed mainly on inter-transaction con -
currency, in particular inter-transaction concurrenc y
between transactions from different programs . In such
systems, operations from a single-level transaction ar e
executed sequentially. Moreover, it is assumed that
a program will issue and execute its transactions se-
quentially and synchronously. That is, one transac-
tion is executed after its preceding transactions in the
program have completed. If one transaction must b e
executed after the effect of another transaction has re-
gistered into the database for the whole computatio n
to be meaningful, the programmer is responsible fo r
enforcing such a requirement .

2.1 The Objectives of Serialization for
Nested Transactions

The concept of Serializability[2, 8] was first pro-
posed in single-level transaction systems to preserv e
data consistency . Serializability ensures that the ef-
fect of executing two transactions is equivalent to that
of executing them sequentially . But data consistency
is not all we ask for . For the execution of a collec-
tion of (sub)transactions to be meaningful, it is some -
times necessary that these (sub)transactions be seri-
alized in some particular order . For example, conside r
transactions A, B, C, and D that perform financia l
computation for a company. A, B, and C calculat e
and record salaries paid to three employees in a cer-
tain month. D calculates the total amount of salaries
paid that month. A meaningful way to serialize these
transactions will be A-B-C-D . If the transactions ar e
serialized the order A-B-D-C, data consistency is stil l
preserved, but the result returned by D does not sat-
isfy its semantic requirement .

Traditional single-level transaction systems assum e
the programmer will arrange the transaction code i n
a correct order, for example, A-B-C-D . Since transac-
tions from the same program are executed synchron-
ously, semantical correctness is preserved . Moreover ,
concurrently running programs are considered se-
mantically unrelated. Enforcing specific serialization
order is not important to concurrency control proto-
cols of single-level transaction systems . It needs only
ensure that transactions be serialized and data con-
sistency preserved .

For nested transactions management systems, a
set of subtransactions from the same parent transac-
tion may have serialization ordering constraints among
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them, yet still offer opportunities for exploiting con -
currency . We need concurrency control protocols that
support concurrency between these subtransactions
while preserving the serialization constraints .

2 .2 Serialization Ordering Requirement

To make the discussions of serialization and con-
currency control in the following sections precise, we
define the following terms :

For a set of computation units(e .g . transaction s
or basic blocks) of a computation process, the logica l
ordering requirement is the minimal set of ordering re-
quirements between these computational units for the
process to bear its intended meaning . Two units of
computation may or may not have a logical orderin g
requirement between them. The requirement is min-
imal in the sense that if a unit X can either precede
or follow another unit Y without affecting the pro-
gram 's intended results, no ordering is defined between
X and Y . Using the example in section 2 .1, the logica l
ordering requirement will be {(A, D), (B, D), (C, D)} .
There is no ordering requirement between A, B, and C,
since they can be executed in arbitrary order . Imple-
mentation details of a particular system may require
B to be executed before C to guarantee correctness ,
but these issues are not relevant at this level ; the re-
quirement is purely at the logical level .

The serialization ordering requirement refers spe-
cifically to transactions . It is the order in which two
(sub)transactions must be serialized for the computa-
tion to preserve its intended meaning . If A and B are
two (sub)transactions, the serialization requirement
are formally defined as the collection of the followin g
three mutually exclusive relations :

1. NS : (A, B) E NS, if efforts need not be made to
serialize the two subtransactions . For instance ,
the two subtransaction may never access common
data items directly or indirectly .

2. AS : (A, B) E AS, if A and B must be serialized ,
but the order is immaterial .

3. SS : (A, B) E SS, if A and B must be serialize d
in some specific order to preserve the meaning of
the computation .

Note that NS and AS can hold only between sub -
transactions without any logical ordering requirements
between them, whereas SS must hold between sub-
transactions constrained by logical ordering require-
ments . We want the the relation SS to be minima l
and compatible with the logical ordering requirement .
We also need a way of specifying and communicating

Q Uncommitted Subtransactio n
(Internally) Committed Subtransactlo n

Subtransactlons A, C are Invisible

	

Subtransactlons A, C, and D are
to subtransaction B

	

visible to subtransactlon B

Figure 1 : Visibility of sub transactions

information about serialization ordering requirement s
to the serialization mechanism .

2 .3 The Visibility of Internal Commit

A subtransaction can be in one of two kinds of
committed states . If a subtransaction is committed
while its enclosing top-level transaction is not, th e
subtransaction is in the state of internal commit . If
a top-level transaction commits, the top-level trans-
action and all its descendent subtransactions are in
the state of external commit or top-level commit . The
(sub)transactions in such a state is also said to b e
committed to the top level.

In a single-level transaction system, an operation i s
either visible or invisible to all other transactions. For
nested transactions, because of their the hierarchica l
structure, the following visibility principles for com-
mitment of operations should be observed[6] :

1. Top-level commit is visible to every operation .
That is, an operation from a committed top-leve l
transaction is considered committed by all othe r
operations in the system .

2. Internal commit of an operation A is visible t o
operation B if and only if:

(a) A and B are from the same top-level trans -
action, and

(b) There is an ancestor of B which is a siblin g
of some internally committed ancestor of A .

The visibility of commit is illustrated in Figure 1 .
If the operation A is either committed to the top-level ,
or is internally committed and the internal commit is
visible to operation B, we say A is visibly committe d
with regard to B .

Root

	

Root
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Concurrency control protocols for nested transac-
tions must enforce the visibility of internal commits .
For locking methods, shadow copies can be used t o
enforce correct visibility[6] . However, this involves
the costs of copying and inheriting the shadows . The
copying cost would be quite expensive if multiple sub -
transactions from the same root transaction are to ex-
ecute concurrently .

2.4 Related Concurrency Control Models

The easiest way to schedule subtransactions in a
nested transaction system is to execute sequentiall y
all subtransactions belonging to the same root transac-
tion while interleaving subtransactions from differen t
root transactions . This approach is not satisfactor y
because the active periods of individual transaction s
becomes long and the overall performance of the sys-
tem might be poor as a result .

A slightly better method is to sequentially execute
subtransactions from the same root, but with the fol-
lowing proviso: a group of sub transactions are ex-
ecuted concurrently, if they are adjacent to each other
in program code, and it can be determined that rela-
tion NS or AS holds between each pair of them an d
that concurrent execution will not cause deadlock o r
contention . This is basically the way Argus [5] handle s
its intra-transaction concurrency control . However ,
this improvement is still unsatisfactory for the follow-
ing reasons :

1. A subtransaction sees only its immediate chil-
dren and no other descendants, hence it may not
be possible to determine whether NS, AS, or S S
holds between two of its children without viol-
ating modularity and analyzing the descendants '
code . In distributed systems where a subtrans-
action can be an invocation on a remote object ,
such analysis may be impossible .

2. Analyzing the serialization ordering requirement s
between subtransactions are difficult and error -
prone . In some systems this information may no t
be available until run-time . For example, it may
depend on the parameters of program invocation
or user input .

3. Even when the serialization ordering require-
ments are available, performance will still not b e
satisfactory if two subtransactions of relation S S
are executed sequentially.

3 History Mechanism for Single-leve l
Transactions

The abstraction of history[7] has been designe d
in the context of single-level transactions to sup-
port the implementation of atomic objects[5, 11] an d
meet the demand of systems with long transactions o r
with localized concurrency bottlenecks (hot-spots) . I t
provides the basis for our concurrency control mech-
anism for nested transactions .

The history mechanism uses application semantic s
to increase concurrency . Introducing application se-
mantics into transactions has drawbacks . Not only
writing applications becomes more complicated, i t
also becomes difficult to write an application program
without unnecessarily exposing details of the underly-
ing concurrency control algorithm . The history mech-
anism alleviates these problems by classifying the op-
erations on data types into mutators and observers ,
and hiding the serialization protocol from the applic-
ations. Classifying operations into mutators and ob-
servers provides a way of systematically and efficientl y
exploiting application semantics without exposing to o
many details . This method is particularly interestin g
in the context of nested transactions because it greatl y
reduces the number of cases in which an operation ha s
to wait for others .

3.1 Data Objects with History Abstrac-
tion

Conceptually, an atomic data object can be viewe d
as a state machine with four components : a set of
possible states, an initial state, a set of possible trans-
itions, and a set of rules that determine how the state s
of the atomic object are changed by the transitions . A
transition is an ordered pair consisting of an operatio n
invocation on the data object and its result . We wil l
use the terms operation and transition interchange-
ably when there is no ambiguity.

The state of an atomic object is represented as a
list, or history of previously executed transitions . The
execution of an operation is implemented as an ad-
dition to this history of transitions . Formally, th e
knowledge possessed by an atomic object with the his-
tory abstraction can be expressed as a triple (T, C, 0) ,
where :

• T is the set of operations from all transactions
that have arrived at the data object .

• C is the set of operations from committed trans -
actions . C C T.
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• O is a relation between elements of T . (1 1 ,1 2 ) E
0, if the object knows t i is serialized before t 2 .

How the serialization ordering becomes known t o
the object depends on the serialization protocol . If
timestamp ordering is used, the data object discov-
ers the ordering of two operations by comparing their
timestamps . If the serialization order is determine d
by the order of commitment, as is usually the cas e
when locking is used for concurrency control, the data
object obtain more information on ordering when it i s
informed of the completion of some subtransactions .

The notion of possible serialized sequences [7] is a
central idea used in the history mechanism to syn-
chronize operations performed on the same data ob-
ject . A possible serialized sequence of an object can b e
viewed as a possible development of the history of that
object . Each possible serialized sequence represent s
a possible state of the object in the future when al l
operations in the sequence are committed in the de-
scribed order, and all other transitions in the histor y
are aborted .

Formally, given a history (T, C, O), a sequence S o f
operations is a possible serialized sequence i f

1. S includes all committed operations, i .e ., S J C .

2. S preserves known ordering of operations, i .e ., fo r
11, t2 E S, if (1 1 ,1 2 ) E 0, then t i is ordered before
1 2 in S .

There may be several possible serialized sequence s
for with a given history. For instance, consider the fol -
lowing history, produced possibly under commit-orde r
serialization protocol :

T = {t1 i t2,13} ,
C = {tl} ,
and 0 = {(t l , t2), (tl t3)} .

All possible serialized sequences for this history are :

(11, 1 2, 1 3), (11, 13, t2), (t1, 12), ( t 1, t3), (1 1 )

If timestamp ordering is used, the ordering between
any two transitions are known, and 0 might becom e
{(t 1 ) t 2 ), (t l , t 3 ), (1 2i t 3 )} . The possible serialized se-
quences in this case are :

( t 1, t2) t3),( t 1) 1 2),( t1) 13),(t l )

3.2 Mutators and Observers

The history mechanism classifies operations on a
data object into mutators and observers . A mutator is
an operation that changes the object state . A mutator

differs from a write in that its may change the object s
state relative the object's previous state, whereas a
write determines new object state based solely on it s
parameters . An observer is an operation that deduces
information from the object state . Conceptually, an
observer derives its result by observing the possible
serialized sequences, if there are more than one suc h
sequences, information deduced may be inconsistent .
The observer fails in this case . An operation is both
an observer and a mutator when it both deduces in-
formation from and changes the object state .

With the above definitions, the algorithm to syn-
chronize operations arriving at a data object can b e
summarized as follows :

1. Before adding a new observer into the history ,
determine whether it observes different result s
in different possible serialized sequences. If so ,
either the new observer are delayed or aborted ,
or some action needs be taken to make the obser-
vations, such as aborting some active mutators .

2. Before adding a new mutator, we should determ-
ine whether some observers serialized after th e
new mutator would observe inconsistent result i f
it is inserted into the history. The mutator is
inserted only when no such observers exist . Oth-
erwise, the it is aborted .

3. When a transaction commits, all operations it is -
sued are marked as committed, i .e . included into
the set C . If a transaction aborts, the records of
the operations it issued are erased from the his-
tory .

3 .3 Advantages of the History Mechan-
ism

The history mechanism potentially allows more
concurrency in a single-level transaction system tha n
its counterparts using read/write locking or timestam p
concurrency control[7] .

For instance, suppose transaction A accesses dat a
object X, and then B accesses X . With read/write
locking, unless both A and B are reads, B would b e
blocked until A completes . In the history mechanism ,
B would be only if A is a mutator, B is an observe ,
and B observe inconsistent result .

With single version timestamp concurrency con-
trol, if A read X and then B write X with a smalle r
timestamp, we would either have to abort A or B . In
the corresponding situation for a history mechanism, i f
A issues an observer to X and then B issues a mutator
with smaller timestamp, we need not abort either A
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or B unless an observer would be invalidated if B is
inserted into the history .

The history mechanism is comparable to multi -
version timestamp protocols[10] . However, it does no t
have the problem of cascaded abort . When a mutator
is about to be insert into the history, we make sure n o
existing observers would observe differently because of
the new inserting . Similarly, an observer is allowe d
into the history only when no abortion of existin g
mutators can affect the information it derived . When
a mutator needs be aborted, it can simply be delet e
from the record, affecting no other operations .

4 The Algorithm for Nested Transac-
tion Currency Contro l

In this section, we described a concurrency contro l
protocol for nested transaction that is derived from th e
history mechanism and is merged with the timestamp
serialization protocol . The concept of a request list i s
introduced to support the protocol .

4.1 The Data Object Model

In our model, a data object knows (1) all operations
invoked upon the object, (2) the ordering among these
operations, (2) the originating transactions of these
operations, and (3) the commit status of the origin-
ating transactions . This knowledge is recorded in th e
request list . When an operation try to deduce inform-
ation from a data object, an object state is derived for
it from the request list depending on its serialization
ordering with respect to other operations .

Timestamps are used to order all top-level trans -
actions. A precedence number, unique with the en -
closing top-level transaction, is associated with eac h
subtransaction and used to order the subtransactions .
The precedence number must be compatible with th e
logical ordering requirement, i .e . if subtransaction A is
logically required to be ordered before subtransactio n
B, A will be assigned a smaller precedence number .
Precedence numbers can be assigned either by examin-
ing the location of subtransactions in the transaction
code or by specification by the programmer .

Since subtransactions may be invoked dynamicall y
and in a hierarchical fashion, we do not assume pre-
cedence numbers to be either consecutive or integer .
Figure 2 shows one way of assigning precedence num-
bers, with precedence determined by lexicographical
order . For example, precedence number 1 .1 is smal-
ler than 2, and 2 .1 .2 is greater than 1 .2 .2 .

0 (Sub)transaction

Root

Figure 2 : Example of precedence number assignment
for subtransaction s

Formally, the request list of an data object D i s
defined as a tuple (T, C) where :

• T is a sequence constituted of all operations in-
voked on the data object . The ordering of the
operations within the sequence reflects their seri -
alization order . Operation x appears before op-
eration y in T if and only if x should be serialize d
before y.

• C is the set of all committed operations in T .

As in the history mechanism[7] operations are clas -
sified into observers and mutators . An operation bot h
changes and derives information from the object' s
state will assume the roles of both a mutator and an
observer .

An epoch is defined as the interval between two ad-
jacent mutators, or the interval from the start to the
first mutator in the request list . An epoch whose be-
ginning and end mutators are M; and M1 is denoted
(M;, M.O . An observer 01 in the request list is con-
sidered to be in the epoch (M;, M, ), if the ordering of
the operations is M; < 0 1 < M1 . An operation before
an epoch (M;, MM ) is either an operation serialized be-
fore M; or M; itself. An operation after (M;, M1 ) is
either an operation serialized after M3 or M, itself.

There is a set of candidate states associated wit h
each epoch, which represents the set of possible states
the data object could assume if and only if all oper-
ations before that epoch have completed, i .e ., either
committed or aborted. The candidate states associ-
ated with epoch (M;, Mi ) are the set of object states
an observer located in the epoch could possibly see .
Figure 3 gives examples of candidate states . When a
mutator is committed or aborted, all epoch serialized
after this mutator must adjust their candidate state s

0
1 .1 .1

	

1 .1 .2

	

2 .1 .1

	

2 .1 .2
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accordingly. If all mutators before an epoch have com-
mitted, the set of candidate states associated with thi s
epoch is a singleton .

A main
difference between the history mechanism[7] and re-
quest list is that the ordering between two operation s
in a history may be unknown, while that of two oper-
ation in a request list is always known. History avoi d
this requirement because it tries to separate the seri-
alizing protocol from its concurrency control protoco l
and support both timestamp ordering and commit or-
der ordering .

4.2 The Basic Algorithm

According to criteria described below, an operation
Pi that arrives at a data object can be rejected or in-
serted into the request list . If it is inserted, it will be
inserted into an epoch (M=, M,) where M; < Pi < M1 .
If the new operation is a mutator, the epoch is spli t
into two epochs : (M=, Pi ) and (PI , Mi ) . When we need
abort an operation from an internally committed sub -
transaction, we have to abort the youngest uncommit-
ted ancestor . So simplicity, we sometime also refer t o
such a scenario as aborting the operation .

The concurrency control algorithm using the re-
quest list is as follows :

1 . Operation ordering .

(a) Each top-level transaction is associated with
a timestamp . Each subtransaction is as-
signed a precedence number, unique within
its enclosing top-level transaction .

(b) The data object determines the precedenc e
of operations according to the following cri-
teria:

• Two op-
erations with different timestamps, i .e .
two operation comes from different root
transactions, are ordered by comparing
their timestamps .

• Two operations
with the same timestamp are ordered
by comparing the precedence number s
of the subtransactions they come from .

2 . Processing of observers . When a new observe r
arrives at a data object, the observer derives it s
observation from the set of candidate states asso-
ciated with its enclosing epoch as follows :

• If the observer derives the same result fro m
all candidate states in the period, the ob-
server is inserted into the request list .

• If the observer derives different results from
different candidate states, the observer is
blocked and retried later when it can observ e
a consistent result from all candidate states .
The issue of retry will be discussed in th e
next section .

3 . Processing of mutators . When a new mutator ar-
rives at a data object, we must decide whethe r
or not to insert the mutator into the request list .
If the mutator is inserted, the candidate states
for the all epochs located after the new mutato r
might be changed . An observer which previousl y
saw consistent results in one of these epoch may
now see inconsistent results . If this happens, th e
observer is said to be invalidated by the mutator .
The issue of checking invalidation is discussed fur -
ther in the next section . The criterion for decidin g
whether to insert the mutator is as follows :

(a) If no observer in the request list is invalid-
ated, the mutator is inserted into the reques t
list .

(b) If some observers are invalidated, then :

• If some of the invalidated observer s
are from different top-level transactions ,
then :

If any of the invalidated observer s
has committed to the top level, th e
mutator is aborted .
Otherwise ,
we call an algorithm ChooseAbort

to determine whether to abort th e
offending mutator or the invalidated
observers . ChooseAbort can be de -
signed according to the number an d
commit status of invalidated observ-
ers (uncommitted or internally com-
mitted), the relative cost of abor t
mutators and observers, etc . It
can be tuned to optimize system
throughput, or simple heuristic can
be used. When an internally com-
mitted observer needs to be aborted ,
we have to abort the youngest un-
committed ancestor of the observer .

• If the mutator and all invalidated ob -
servers come from the same top-leve l
transaction as the mutator, i .e ., they
have a common ancestor, then the ob -
servers must be aborted regardless of
whether any of them has internally com -
mitted, since these observers must hav e
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C Uncommitted mutator

	

Committed mutator

	

Set of candidate state s
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set (10)

	

sub (20)

	

add (15)

	

add (20)

	

sub (50)

Figure 3 : Examples of candidate states

been ordered after the mutator within
the top-level transaction and some of
them might logically depend on the res-
ult of the mutator . None of the observ-
ers in this case could have committed to
the top-level, since there is at least one
operation, the mutator still uncommit-
ted in this top-level transaction .

4. Commit order constraint . Subtransactions unde r
the same parent must commit in the order of thei r
precedence number . That is, a subtransaction can
commit only when all subtransactions under the
same root with smaller precedence numbers ar e
committed . A top-level transaction can commi t
when all its children have internally committed .

5. Processing commits and aborts. When a
(sub)transaction aborts, the operations issue d
from this (sub)transaction are simply deleted
from the request list . If a deleted operation is a
mutator, conceptually the immediate epochs be -
fore and after the mutator will be merged int o
one. The sets of candidate states associated wit h
the epochs after the aborted mutator may change
as a result . When a (sub)transaction commits ,
the candidate states of the epochs after its mutat-
ors may also need be updated . In both cases, the
cardinalities of the changed candidate state set s
are likely to become smaller .

The model above is interesting in two ways . First ,
the serialization protocols for top-level transaction s
and for subtransactions are decoupled . Timestamp s
are different from precedence numbers in that whe n
a top-level transaction is aborted and retried it has a
new timestamp, whereas if only an operation within
a transaction is retried, its precedence number is stil l
the same. This subtle difference allow us to exploi t
intra-transaction concurrency with minimal overhead .
Potentially other serialization protocol can be used
for top-level transaction or subtransactions to explor e
other possibilities . Second, the issuing and commit-

ment of subtransactions are decoupled . In the above
discussion, we made no assumptions about the way
we issue the subtransactions . In principle, all of the
subtransactions under the same parent can be issued
and executed concurrently, as long as we force thei r
commit order to conform to the serialization orderin g
requirement .

4.3 Commit and Abort Issues

When a subtransaction is aborted, its parent coul d
either proceed without the child, re-issue and retr y
the child, or abort itself. In our method, the con -
currency control algorithm will initiate an abort only
when a mutator newly arrived at a data object invalid-
ates some existing observers in the request list . In this
case, either the offending mutator or the invalidated
observers may be aborted .

If the offending mutator Mi is aborted, there is no
point for its parent Pj to retry it again, because Mi
will come with the same time-stamp and the sam e
precedence number, be inserted into the same place ,
and invalidate the same and newer observers . If Pj is
programmed in such a way that it keeps retrying Mi ,
eventually Pi 's parent will see it as time-out and abort
it . Therefore, when an offending mutator is aborted ,
we abort it with the hint N0 REINSTANTIATE . The par-
ent Pi could use this hint to make an appropriate de-
cision . If this mutator is essential for the whole nested
transaction, the nested transaction will have to abor t
itself eventually and a new nested transaction may b e
started with a new timestamp .

An observer to be aborted could be either totall y
uncommitted or internally committed but not extern -
ally committed . Suppose an uncommitted observer
O; is aborted . Since new nested transactions will
be assigned new timestamps, and old transaction s
will keep completing, the number of transactions wit h
timestamps smaller than Oi will decrease with time .
Eventually there will be no mutator that could pos-
sibly invalidate Oi. Therefore, an uncommitted ob-
server is aborted with the hint REINSTANTIATE to in-
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dicate that if Oi is retried, it will have a better chanc e
to succeed. On the other hand, it is dis-advantageous
for 0i 's parent to abort itself in this case . Aborting
0 i ' s parent would waste system resources and intro -
duce the possibility of infinite retires if the abortion
leads to the abortion of the whole nested transaction .
When a new nested transaction is instantiated with a
larger timestamp, it faces an increased risk of being
invalidated by mutators in the systems .

When an internally committed observer O i must
be aborted, we cannot simply abort the observer itself ,
since the (Vs parent have already see it as committed .
Instead, we must abort the youngest ancestor A, o f
0 i which has not committed internally . A2 has not
promised its parent anything yet .

Re-instantiating A j in this case can be either useles s
or helpful . If many of A3 's descendants are mutators ,
retrying Aj may be useless, because these mutator s
may be invoked with different parameters dependin g
on the new result of 0 i , and thus invalidate other ob-
servers in the system . On the other hand, if nearl y
all descendants of Al are observers, then the retry i s
very likely to succeed . Heuristics can be devised to re -
turn the right hint to the program to improve system
performance .

When a newly arrived mutator invalidates existin g
observers, and none of the invalidated observers have
committed to the top level, we use ChooseAbort to de-
cide whether to abort the observers or the mutator, as
described before . The idea is to choose whichever sid e
will result in less overhead . If we abort the mutator ,
it is very likely the whole top-level transaction will b e
aborted and everything done so far would be wasted .
If the observers are aborted, we also need to abor t
all subtransactions that depend directly or indirectly
on the result of these observers . There are ways t o
associate the costs or predicted costs of algorithm-
initiated abort with each mutator and observer, and
ChooseAbort may decide which side to abort by com-
paring these costs of the observer and the mutator .
On the other hand, we can of course always choose t o
abort the mutator or the observer, and avoid overhead
in ChooseAbort .

5 Details of the Algorithm

The primary costs characteristic to this algorith m
can be divided into three main categories : (1) the cos t
of deciding what a newly arrived observer will see, (2 )
the cost of deciding whether a newly arrived mutator
will invalidate some existing observers, and (3) the

cost of retries . In this section, we discuss the details
in our algorithm that minimize these costs .

5 .1 Classification of Operators

In order to use operator characteristics to improv e
performance, we further classify operations as follows :

• Relative mutators and absolute mutators : A rel-
ative mutator changes the data object to a new
state relative to the original object state . Adding
an amount to an account object and withdrawing
an amount from an account object are examples
of relative mutators . Absolute mutators chang e
the states of data objects without referencing th e
original states . That is, the new states depend s
on the parameters of these mutators only . Ex-
amples are : resetting an integer to zero or settin g
an integer to 100 .

• Value observer and criterion observer. A value
observer reports the value or part of the valu e
of the data object . Criterion observers ask yes-
or-no questions and return boolean values as an-
swers . Examples are : asking whether an account
is greater than zero or less than a certain amount .

5 .2 Handling Observers

To simplify the discussion below, we assume all dat a
objects involved are scalar objects . We have extended
these methods to composite objects .

Value Observers

Suppose O„ is a newly arrived value observer and 0„
will be inserted into epoch (M2, M3 ) if accepted . 0„
is handled according to the following principle :

Let Ml be the last visibly committed abso-
lute mutator with respect to 0,, . If all mutat-
ors between Ml and M2 including M2 are vis-
ibly committed with respect to the 0,,, then
the observer can observe a consistent resul t
and is inserted into the request list . Other-
wise 0,, is blocked and retried .

In an implementation, the above condition can b e
checked by a backward linear scan of the request lis t
from M2 . The scan stops at the first uncommitted
mutator, in which case 0,, fail . If no uncommitted
mutator has been encounter and a visibly committe d
absolute mutator is met, au is successful .
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Criterion Observer s

The handling of criterion observers can be optimize d
significantly. For each kind of criterion observers we
define a worst possible value and a best possible valu e
(BP and WP values hereafter) . Each epoch has a BP
and a WP value, each of which is en element of the se t
of candidate states . The question of whether a newly
arrived criterion observer can succeed and the inform-
ation the observer need can be answered by consultin g
the BP and WP values of the epoch enclosing the ob-
server .

For example, Figure 4 shows a data object export-
ing the observer IsGreaterThanZero . For each epoch ,
we keep WP value pmin, which is the smallest possible
value for all candidate states at that epoch, and a B P
value pmax, which is the greatest possible value . When
an instance of IsGreaterThanZero arrives at the dat a
object, we know it must return YES if both pmin and
pmax are greater than zero . No matter which active
mutators are finally committed or aborted, the candid-
ate states in the epoch would always give the answe r
YES . If both pmin and pmax are less than zero, the ob-
server must return NO. If pmin is less than zero whil e
pmax is greater than zero, we infer that the observe r
observes inconsistent results, and should be blocke d
and retried .

To summarize, we define a BP value and a W P
value for each criterion observer type. When an in-
stance of that observer type arrives at the data ob-
ject, if both BP and WP values satisfy the criterion ,
then the observer succeeds with answer YES . If both
BP and WP values don't satisfy the criterion, the ob-
server succeeds with the answer NO. When BP satisfies
the criterion and WP value doesn ' t, the observer could
observe inconsistent results, and therefore should b e
blocked and retried .

Denote the BP value at a epoch h as BPh , the nth
mutator in the request list as M,,, and the result of ex-
ecuting M„ on a possible value BP," _ 1 as M,,(BPr,_I) .
Then BP," is obtained in the following way :

1. BPo is the initial state of the data object .

2. If M„ is externally committed, then BP,, =
On(BPr

3. If Mn is not externally committed yet, then com-
pare the value BPn_ 1 and On(BPn_ 1 ), whichever
is better is chosen as BPn.

The WP values can be obtained in a similar fashion ,
except that we choose whatever is worse when the op-
eration in consideration is an uncommitted mutator .

Figure 4 gives examples of calculating BP and WP
values .

When a new mutator arrives at a data object, i t
may be serialized at the end or in the middle of th e
request list . In either case, the structure of the reques t
list will change . If the mutator is appended to the en d
of the request list, only the BP and WP values in the
new epoch need be calculated . If it is inserted in th e
middle of the request list, all of the BP and WP value s
associated with the epochs positioned after the new
mutator will change . Similarly, when an operatio n
commits or aborts, the BP and WP values associated
with the epochs after the operation also change .

The BP and WP values can be shared among differ-
ent types of criterion observers . For example, if there
is another criterion observer IsGreaterThanFifty ,

the BP and WP values will be the same as those of
IsGreaterThanZero. If there is a criterion observer
IslessThanZero, then pmin becomes the BP valu e
and pmax becomes the WP value .

Value observers can also be handled using BP an d
WP. A value observer derives a consistent result from
an epoch if and only if the set of candidate states o f
the epoch is a singleton set, in which case the B P
and WP of the epoch would be the same, and thei r
value is the answer to the values observer . In actual
implementation, if we can define BP and WP values
for all criterion observers, we need not maintain the
set of candidate states at all .

The key issue in this discussion is : what is the defin-
ition of better or worse? If the criterion observer is
based on numerical number comparison such as the
one in the above example, the definition of better or
worse can easily be given without ambiguity . However ,
we are unable to exhaust all categories of criterion ob-
servers that may be used, and are unable to give a
formal definition of being better or worse . Our con-
tention is that in most practical cases, there are a n
unambiguous ways of obtaining the BP and WP val-
ues. If a clear definition of BP and WP values is im-
possible, we can simply reclassify the observer as a
value observer .

Compensation for the Visibility of Internal
Commit

One might notice that we did not take into account the
visibility of internal commit in the above calculatio n
of the BP and WP . That is, we treat as uncommitte d
all mutators has not committed to the top level . The
result is that we are overly pessimistic .

Consider the example in Figure 5 . The observe r
in question is IsGreaterThanZero . Let add(15), de-
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0 Uncommitted mutator

	

committed mutato r

IsGtThanZero
= YES

IsGtThanZero

	

IsGtThanZero

	

IsGtThanZero
= ??

	

_ ??

	

= YES
IsGtThanZer o

=NO

BP=10 BP= 10 BP= 25 BP = 45 BP = -5
WP=10 WP=-10 WP=-10 WP 10 WP=-40

set (10)

	

sub (20)

	

add (15)

	

add (20)

	

sub (50)

Figure 4 : Maintaining best and worst possible values for IsGreaterThanZero

noted as M3, be the mutator that divide epoch 2 an d
3. The BP and WP values in the epoch 2, i .e ., BP2
and WP2 , are 10 and -10, respectively. According
to the rules described above, BP3 and WP3 are 25

and -10 . Therefore, a newly arrived observer O, seri-
alized into epoch 3 would not be able to derive any
conclusion and would be blocked . However, if the new
observers is from the same top-level transaction as M3
and M3 is visibly committed with respect to O,, the n
the worse possible value O, can see is 5 and O, should
in fact return the answer YES .

We need to compensate the effects of internal com-
mit :

When a new observer arrives, if it canno t
succeed with current BP and WP values, we
check to see if there are mutators whose in-
ternal commits are visible to the observer . If
such mutators exist, we calculate a tempor-
ary set of BP and WP values with the mutat-
ors regarded as committed . If both WP an d
BP values in the temporary set satisfy or fai l
the criterion, the observer succeeds . Other-
wise, the observer is blocked .

We choose not to consider internal commits whe n
deriving BP and WP values but compensate for them
later, because considering internal commits when de -
riving BP and WP values will result in one set o f
BP and WP values for operations from each differen t
top-level transaction . The cases in which compensa-
tion for internal commit is necessary are expected t o
be few. We need to compensate for internal commi t
only when an observer and a mutator from the sam e
top-level transaction access the same data object, and
the observer is serialize before the mutator in the top -
level transaction . In other word, we use the simpler
concept of one set of BP and WP values and com-
pensate for internal commit when necessary so tha t
normal processing will not be burdened by infrequen t
special cases .

Such compensation is not necessarily expensive . If
the mutator is a commutative operation, the tempor-
ary set of BP and WP values can be obtained by ap-
plying the mutator on one of the old BP or WP values .

5.3 Handling Mutators

When a mutator M arrives at a data object, we
need decide whether M will invalidate any existin g
observer . The following test answers this question fo r
value observers :

If there is a value observer O„ serialized afte r
M and there is no externally committed ab-
solute mutator serialized between them, the n
O„ is invalidated by M. Otherwise no valu e
observers are invalidated .

To decide if a new mutator M invalidates any exist-
ing criterion observer, we need to calculate new W P
and BP values for each epoch that is located afte r
M and contains criterion observers . Then we conduct
the following test on criterion observers located within
epochs whose BP and WP values have changed :

Is there is a criterion observer which returne d
YES but now fails to satisfy the criterion ?
Is there is a criterion observer which returne d
NO but now satisfies the criterion ?

If the new mutator invalidate some existing cri-
terion observers, it is processed as described in sec-
tion 4. Otherwise, no observers are invalidated an d
the candidate states in each epoch located after th e
new mutators should be updated .

Note that we were not concerned about the visib-
ility problem of internal commits when handling th e
new mutators . A mutator cannot arrive already in-
ternally committed .

We also did not consider the possibility that a pre-
viously blocked observer becomes able to observe a
consistent result because of the newly arrived mutator .
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0 Uncommitted mutator ® Internally commited mutator

	

Externally committed mutator

YES, if add(15) is visibly committe d
IeOreaterThanZero

NO, if add(15) is not visibly committed

Epoch 1

	

Epoch 2 Epoch 3

	

Epoch 4

	

Epoch 5

BP=10 BP= 10 BP = 25 BP=45 BP=-5
WP=10 WP=-10 WP = -10 WP=10 WP=-65

set (10)

	

sub (20)

	

add (15)

	

add (20) .

	

sub (50 )

Figure 5 : Compensation for visibility of internal commi t

Inserting an uncommitted mutator can only make th e
request list more uncertain and reduce the chance that
a consistent state can be observed .

5.4 The Handling of Retries

Another cost in our protocols is that cost of re-
tries . This cost also exists in the history mechanism
for single-level transactions . In the original model ,
when a new observer derives inconsistent results fro m
different possible serialized sequences, the observer i s
rejected and will be retried later by the issuing trans -
action . The delay time before the next try is decide d
by the transaction . The transaction may also choose
to abort the observer after some number of retries .

Retry is a serious problem for the original history
mechanism, as stated in [7] . First, since retries are ini-
tiated by the issuing transactions, there are additional
communication costs between the transaction softwar e
and the data object manager, both when an observer
is rejected by the data object and when it is retrie d
by the transaction later . The cost is even higher if
they reside in different sites . Second, the transaction
retries by guessing a suitable delay . It is possible that
the operation still cannot proceed on the next try, o r
that it could have been successfully tried earlier .

For these reasons, we choose to block the operations
at the data object sites and have the objects initiat e
the retries. A data object knows more about wha t
happened inside itself and what is the best time t o
retry . Communication costs will be saved, and trans -
action code will be easier to write . The transaction
may choose to abort the observer if it does not retur n
after some period of time .

Retrying Value Observer s

Ideally, a blocked observer Ob should be retried whe n
the request list of the data object has changed in suc h
a way that O b can now observe a consistent result .
However, such condition is expensive to detect .

Our solution is to avoid testing for this condition ,
and have the data object choose a time when it i s
highly possible that the retry will succeed .

The following is a sufficient condition for the success
of observers :

Suppose the blocked observer Ob is serialized
in epoch (M2 , W . Let M1 be the last logged
absolute mutator . O b will be able to observ e
a consistent result if that M1 becomes visibly
committed and all mutators between M1 and
M2 in the request list including M2 become
either visibly committed or aborted .

If M1 is aborted instead of being visibly committed ,
by definition, the last logged absolute mutator will
become the M1 in the test .

The condition described above depends on a se-
quence of consecutive mutators rather than a set of
possible serialized sequences as in single-level history
mechanism, and is therefore easier to evaluate .

In real implementations, we can implement heur-
istics for the test and pay even less price . An good
heuristic would be to retry Ob when M2 becomes vis-
ibly committed or aborted. The reason is that because
M2 is the mutator with the largest timestamp befor e
0, it is highly probable that when 0 is aborted or
visibly committed all mutators between M 1 and M2
would have done so, too . Other good choices includ e
retrying 0 when both M1 and M2 are completed, or
retrying 0 when the last two mutators before 0 ar e
completed .
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Retrying Criterion Observers

Since it is easier for criterion observers to mak e
consistent observations than for value observers, th e
above condition may be too conservative for criterio n
observers . As noted earlier, when a mutator commits ,
we have to update the possible values for all epochs
located after it . When updating possible values fo r
these epochs, we can also decide whether a blocke d
criterion observer can now succeed .

When an observer is blocked, it is blocke d
on a BP/WP type and an epoch . The ob-
server is retried when the BP/WP values i n
the epoch has changed .

The test above is optimistic . In real implementa-
tion, heuristic attempting fewer tries can be used . For
example, we can use the test for value observer to-
gether with a background process retrying observer s
that have blocked for too long .

5 .5 Remarks

The discussion in this section has relied on the clas-
sification of operations, such as classifying observers
into value and criterion ones . One might suggest tha t
the operations on data objects do not always allo w
such classifications, or that it is not always possible
to define the WP value and BP value for a criterio n
observer . However, the classification and the WP an d
BP values only serve to optimize performance . If we
found that a clear classification or or a definition W P
or BP values is not possible for an observer, we ca n
simply classify the observer as a value observer, and
the algorithm can proceed without any difficulty. Sim-
ilarly, if there is any ambiguity, we can classify th e
mutator as a relative mutator .

The concepts discussed in these sections, such a s
sets of candidate states, need not correspond to phys-
ical entities . We have provided methods to simplify
the protocol at the conceptual level, but various im-
plementation issues still remain to be investigated .

6 Performance Failures

We use timestamps to order top-level transaction s
in our model . As timestamp ordering is free from
deadlock[3, 9], deadlocks cannot occur across two top-
level transactions. Subtransactions are assigned pre-
cedence numbers which are unique within a top-leve l
transaction . For similar reason, deadlock cannot oc-
cur between subtransactions within the same top-leve l
transaction .

Cascading abort, or the domino effect cannot oc-
cur, either. Suppose operations A and B are both
active and access the same data object ; B is serial-
ized after A . Aborting A can affect B only when A
is a mutator and B is an observer. Since the set of
candidate states in B's epoch has included all possibl e
object states in which A can be aborted or committed ,
if B was allowed into the request list in the first place ,
it means B can derive a consistent result whether A
commits or not . Aborting A would not change B's ob-
servation . Therefore, not only cascading abort canno t
occur, aborting a top-level transaction will not affec t
other top-level transactions at all .

Infinite retry cannot occur within a nested trans -
action because the structure of any transaction is as-
sumed to be finite, and in conflict we always resolve
in favor of the operation with a smaller timestamp .
Therefore, a subtransaction cannot be preempted by
other subtransactions from the same root indefinitely .

Infinite retry between the top-level transactions ,
however, is a problem . It is possible that a top-leve l
transaction might be aborted and retried indefinitely ,
each time failing because some new operation with a
larger timestamp has show up in the data objects i t
accesses . This problem is intrinsic to any timestamp-
based protocol, and is not aggravated in our case .
Most timestamp-based systems assume it to be neg-
ligible . How serious this problem is for our metho d
can only be measured in a real implementation, an d
is remained for further investigation .

7 Conclusions

In this paper, we propose a new concurrency con-
trol protocol for nested transactions . Our method try
to address three design goals : to minimize executio n
times of individual transactions, the time a transac-
tion has to spend on resource waiting, and the num-
ber of cases in which a transaction proceeds based on
the assumption that some other transaction will com-
mit . These goals will improve both program response
times and system throughput . We meet these goals
by exploiting intra-transaction concurrency, and usin g
the concept of request lists, which is derived from the
history mechanism for single-level transactions an d
merged with a timestamp serialization protocol . It
preserve the benefits or both methods . Problems in
locking and timestamp concurrency control protocols ,
such as deadlocks and cascading aborts, are avoid alto-
gether . Most notably, our method decouples the seri-
alization protocol for top-level transaction from tha t
for subtransaction within the root, and decouples the
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issuing of subtransactions from the synchronization o f
commitment . That is, we need not be concerned wit h
how subtransactions are issued as long as they are
committed in the required order .
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