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Abstract

Given a statistical database containing a set of summary ta-
bles, this paper examines the complexity of retrieving data
from the database in order to satisfy a query. In particu-
lar, we consider the case when the query cannot be directly
satisfied via a single summary table and requires two or
more summary tables. We show that a system of linear
equations can be constructed from a set of summary tables
whose solution(s) satisfy a query in oarying degrees. We
derive a formula for determining the degree of acceptabd-
ity of the solution as a function of the characteristics of the
summary tables which derive the algebraic system. We also
show that selecting the optimal set of summary tables from
the database that yields the best solution to the query is

NP-complete. These findings offer important insights into
the retrievabfit y of information from a statistical database
when designing a statistical query processor.

1 Introductions

A statistical database is a collection of summary tables,
each holding statistical information about some set of data
objects [8]. For instance , a census database holds various
statistics about people in the population. Summary tables

are often the only reasonable means for disseminating infor-
mation when legal or policy concerns, physical limitations
on storage capacity, or security and confidentiality issues

restrict the public availabdity of the original data. These
tables provide summary information adequate for purposes
such as high-level census data analyses, economic planning,

policy analyses and forecasting, and so on.
Queries to a statistical database generally desire an ag-

gregation of some attributes of data stored in the summary
tables. Existing query languages allow queries that aggr~
gate data stored in a single summary table. This is often
inadequate when no single summary table can be used to
satisfy the query, for instance, when the query desires more
attributes describing a statistic than are contained in each
table. In this case, a set of summary tables is joined and

aggregated together. In addition, the scope of data that i.
accessible can be widened when data from more than one
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summary tablee can be aggregated.
Extending existing query languages to handle multi-table

queries presents new difficulties. Two important issues stand
out: (1) the mechanics of performing a multi-table statistical
join and (2) the selection of summary tables for joining. The
nature of a statistical join is completely different from that
of a relational algebraic joirt, and the output of the join is
not always unique, as we shall describe in the later sections.
The set of candidate tables for the join aflects the quality of
the query output.

In this paper, we focus our attention on queries that are
satisfiable by multiple summary tables only. In particular,
we examine the complexity of satisfying such queries; we
show that the quality of the response to such a query de-

pends on the set of summary tables chosen and that the
optimal selection of summary tables that yield the best re-
sponse is NP-complete. These results are important because
they highlight additional parameters a statistical query pr-
cessor must take into account when designing a query pr~
ceasing algorithm to handle multipletable queries.

There is much ongoing research in statistical databases
[1, 4,5,6,7,8,9, 10, 11, 12, 14, 16, 17]. Of relevance to our
work are [7, 8, 9]. In [9, 8], the author used an intersection
hypergraph to establish a universal scheme in order to model
the relationship among the categories of the candidate ta-

bles and provided procedures for testing the evaluabtity of
queries and for evaluating the queries. Our primary concern

in this paper is practicality. Neither the intersection graph
nor the universal scheme approaches appear to have been
adopted for practical implementation.

The organization of this paper is as follows: We begin in

Section 2 with formalization of entities that we shall be using
throughout the paper. These include statistical databases,

summary tables and queries, etc. Section 3 demonstrates
the process of satisfying a multi-table query and points out
how the output table is not always unique. We then derive
an relationship expressing the quality of the output table to
the set of chosen summary tables. This relationship permits
us to express the optimal selection of summary tables as
art optimization problem in Section 4. We then prove that
the problem is NP-complete. The last section concludes the

paper.

2 Definitions and Terminology

Attributes in a statistical relation may be classified into cat-
egory and summary attributes. For example, in relation RI
of Figure 1, Cl and C2 are category domains, and S1 is
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a summary domain. Category attributes are generally de-
scriptive (non-numeric) and have discrete values that are
known in advance. They are used in queries as access keys

for retrieving tuples. Summary attributes tend to be nu-
meric because they are usually the observed or measured
vahres in some experiment or survey. They are used in the

computation of statistics for statistical queries. In order to
facilitate our discussions in the paper, we shall describe and
formulate a model for a statistical database in th~ section.
We also specify the conditions for a set of summary tables

for satisfying a multi-table query.

2.1 Statistical Database

A statistical database D = {Rl, R2, . . . . Rq} is a set of q
summary tables, each of which is an instance of a particular
summary table schema. Let R = {%, $?2, . . . . Xq} be the
set of all g summary table schernas and C = {t?.l, t2z, . . . . E!P}
and S = {S1, S2, . . . . 5*} be the set of all category and sum-
marg domains for all summary tables in the database re-
spectively. We refer to C and S as the base category and
base summary domains of D respectively. We call any suh
set of C a category because it is a set of attributes describing
some data objects.

We make two assumptions concerning the database: (I)
that the database is homogeneous in the sense that all the.

category and summary attributes pertain to the same type
of object. For instance, D may be a census database con-
taining data about people as the sole object of concern, and

(2) that the summary domains are additive. That is, there
is an additive function defined on them. For instance, most
summary data are obtained using the aggregation functions
COUNT and SUM. Furthermore, most nonadditive summary
variables such as AVERAGE and RATE are defined in terms of
or are derived from additive summary variables, and there-
fore need not be stored explicitly in the database.

2.2 Summary Table Schema

A summary table schema Q. is defined by a set of cate-
gory domains C. ~ C and summary domain S. c S. Let
Cti = {E!~,,t!~,,...,(2~m} where E’~, ~ C for l<k, <p,
1< i <n. The schema % is the Cartesian product ~k, x
. . . x 6!& x Sti containing the set of ~ possible summary
tuples with respect to the stated domains. We denote ??.

as (C., S.). Although the size of the space is given by

ll~ull = ~~=1 1% I x 1S.1, the maximum number of valid
tuples is only ~~=1 I~k, I since each category subtuple in ~.
describes exactly one value of S..

2.3 Summary Table

A summary table Ru = (C., Su) from $!. is a strict sub-
set of summary tuples R% c Y?. where Sti c S and C. =
{Ck,,ck,,...,ck%} with Ck, ~ t?k, e C fOr l<k, <p,
1< i <n. The order of a summary table R. is the number
of category domains in CU, i.e., O(RU) = n.

If the category subspace of Ru, given by the projection
TC= (1?.), contains all elements of the Cartesian product of
the category domains in C., we say that R. is complete. If
IIRUII denotes the number of summary tuples in Ra, then

IIRuII = ~us, lC&l.

Example 1: We define a fictitious census database D that
will be used for illustration throughout the paper. Let ~1,
~z, &., ~q, ti~ denote the age group, race, marital status,
educational !evel and sex category domains and SI, S2, S3, S4

denote the cardinality (in thousands), income (in thousands),
hours worked per week and miles traveled per week summary
domains in the database respectively. Let the category do-
mains be exhaustively defined as: t?l = {10s, 20S, 30S, 40S,
50S, 60s}, 12z = {white, black, hispanic, asian}, t?s = {single,
married, widowed, divorced, separated}, ~4 = {diploma, col-

lege, masters, Ph.D.}, and G= {male, female}. The sum-
mary domains are subsets of integers or real numbers: S1 ~
Z,Sz~IR,Ss~R,andS4~R.

Let al = ({~1, f?.2}, &), 92 = ({~2, ~4}, S2), ~3 = ({~z,

~4}, 53) and m = ({t?3, G, es}, S4) be four summary ta-
ble schemas. Then the census database shown in Figure 1
can be described as D = {RI, Rz, R3, &}, where R1 =

({ C,, CZ},5,) C ~,, R2 = ({C2,C4},S2) C 5&, Rs =

({ C2, C4}, SS) c % and & = ({ C3, C4, G},S4) C ~. The
orders of RI, R2, Rs, & are 2,2,2, 3 respectively. I

2.4 Statistical Query

A statistical query is defined by a 4tuple Q = (A, $, S, q)
comprking a category A = {Cgl, Cg=, . . . . Cgm } with Cg, ~

~g, E C for 1 <g, <p, 1< i <m, a well-formed propositional

formula + on the category domains, a set of summary do
mains S = {Sel, &2,..., Se, ] with S,j 6 S for 1< e~ <q,
1 <j <1, and a function p : S a ii? on the summary do-

mains. This definition captures the following description of
a query: A statistical query desires some statistics SW that
can be computed by applying a function v on a set S of base
summary domains. S is described by a category A that is
in turn qualified by a well-formed propositional formula ~.
In relational algebraic terminology, A is the set of category
attributes involved in the query selection criteria @. The
output to Q is a (m+ 1)-column summary table comprising
the m category columns in A and a statistical column con-
taining values from the output of p. We label this domain
as SW. The generality of the definition is illustrated below:

Example 2: Using the database defined in Example 1, let

C!l be a statistical query that desires a tabulation of total
income for all males with masters or Ph.D. qualifications from
a population relation. In conventional SQL, this query is
expressed as:

SELECT SUM(income)

FROM population
WHERE sex = male AND

(education = masters OR education = Ph. D.)
GROUP BY sex, education

We denote the query as ({C4, C5 }, ~, {S1, S2}, PI) where
C4 ~ ~4, C5 ~ ~~, # s [C4 =male A (C5 =masters V

C5 =Ph.D.)], and WI : S1 x 52 -+ R is defined as pl(sl, 32) =
S2 x sl for all sz 6 S2, s] G S.Z. Notice that function pl re-
alizes the computation of total income. Suppose the query
desires the average income instead of the total income. In
this case, only S2 is involved and W1 : S2 + R is now defined
as the identity function: ~1 (sZ ) = S2. 9

The order of a query Q is the number of category domains
in A, i.e., O(Q) = m. The above example is an order-2
query. As in summary tables, we say that Q is complete if
its category A is such that IIAII = ~~ lc~, 1-

1In order to facilitate our discussion o the key ideas in this
paper, we shall make thefollowing two assumptions: (1) We
assume all summary tables and queries concerned are com-
plete. The assumption of query completeness implies that
there are no restrictions on the category attribute values in a
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Figure 1: Acensus database consisting of four surnrnary tables, Rl, R2, R3 and R4.
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query ’s selection criteria, i.e., ~is null. (2) We assume that
only one summary domain is involved in the query. Thus,
function pisan identitg function, i.e., p(z)=z. With this
assumption, a query is denoted as Q = (A, ~, .S., p) where
S“ is a single summary domain rather than a set of summary
domains as in the query definition above.

2.5 Candidate Tables

A prerequisite condition for a multi-table query Q to be
satisfiable is that there be candidate tables in the database.

Definition 1 (Table Candidacy): Given a complete

query Q = (A, 4, S., ~), any collection o} w > I complete

summary tables R1 = (Cl, S1), Rz = (Cz, S2), . . . . RW =
(LL, SW) is a set of candidate tables if and only if S. = Si

foralll<i<w and A= U~=l C,. a

The first condition must be true, for otherwise the candi-
date tables are irrelevant to the query. The second condition
states that the union of the table’s categories must be equal
to the set of category domains desired by Q otherwise the
tables are irrelevant. The categories in candidate tables are

assumed to cover A exactly for the following reason. If a

candidate table contains attributes not in A, these extrane-
ous attributes are first eliminated by aggregating across all
their values. Since the tables are complete, such aggregation
is equivalent to creating new summary tables that contain
only attributes in A.

3 Multi-Table Query Processing

From the foregoing sections, we now describe the process
of processing a multi-table query. Specifically, we demon-
strate how the candidate tables are statistically joined by
constructing a system of linear equations to compute the
desired statistics. The reader will note that this process is

entirely orthogonal to a relational algebraic join. In addi-
tion, we also show that this process sometimes results in
nonunique outputs to a query. We present a formulation of
this process and derive a measure for the degree of goodness

of a set of candidate tables for producing the output to a
query.

3.1 Statistical Query Join

Let Q = (A, $, S“, p) with category d = {C9,, Cgz,. ... C9. }
be a complete order-n query that is not directly satisfiable.
Let there be w >1 complete candidate tables RI = (CI, S.),

112 = (c2, &), . . . . R~ = (L, Sti) such that S“ = Sti and
A = (J~=l C,.

The output summary table T for Q is defined except for

the S“ domain: Each tuple in T is of the form (cgl, cgz,
. . ..c9.. z) where C9, eCg,, I<gi<n, is known and z c $“
is the desired (unknown) summary attribute value. Since
Q is complete, there are h = lldll = ~~=1 lC9, I unknown

summary attribute values, denoted by X = {z1, zz, . . . },~ri .
If a system of h or more linear equations can be con-

structed with ~i’s as the unknown variables, then Q may be
satisfiable. In the following, we show that an equation may
be derived from each tuple of the candidate tables. As there
are /lCi II summary tuples from the Ri’s, the total number of
derived equations is e = IIC1 II + IIC21[ + . ..+ IIGII.

We consider how an equation is derived from tuple tof

summary table Ri, 1< i <w, involving some subset of X.

Let Z(t) = {v E T : ~c, (v) = ~c, (t)} be the set Of sum-
mary tuples from T whose C, attribute values are identical
to those of t. Since A is complete, the size of Ti (t) is the

size of the category space d — C,, i.e., b = ~CC{d-C,} ICI

Let T:(t) = {x~~ (y) : y c T,(t)] be the set of summary
attribute values of tuples in Ti (t). Let us re-write T;(t) as
{z.,, Z~2,..., z., } where Zaj ~ X. Since the summary val-
ues are additive, one may construct the following equation:
za1+za2 +... + z~~ = irs. (t). By repeating the procedure
for each tuple of the candidate tables, we derive a system of
linear equations AX* = B’ where A is the (e x h) coefficient
matrix, X = [zl m ..- zk] is the (1 x h) matrix containing
the unknown summary attribute values, and B is the (1x e)
matrix containing the constants on the RHS of the system.

We say this system of linear equations is induced by query

Q.
It is a well known result in linear algebra that the system

of linear equations AXt = B’ is solvable if and only if the
rank of A equals the rank of the augmented matrix [AIB’]
(See Appendix A). Since the solution of X completes the
output summary table T, the solvability of the induced sys-
tem implies the solvability of Q. Furthermore, if the rauk
of A is h, then the system haa a unique solution and Q is
satisfiable. We express this result formally as the following
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Figure 2: Evaluating query Qz = (A,@,S~,pz) where A is
equal to the union of category domains of the 2 candidate
tables R1, &. Tz istheoutput summary table for Q2.

theorem and provide an example for illustration:

Theorem I: Given a complete order-n query ~ =

(A,4, &,w), ifthereexistw> I complete order-m can-
didatetables R, =( C,, SV), l<i<w, then~ is

(i)

(ii)

(ii)

solvable if and only if its induced system of linear equa-

tions is solvable.

uniquely satisfiable if and only it the induced system is
solvable and the rank of the coefficient matrix is equal

to IIdll.

non-uniquely satisfiable if and only if the induced sys-

tem is solvable and not uniquely satisfiable. -

Example 3: Suppose a demographer wishes to cross tab
ulate the number of people with respect to age group, race
and marital status. We may formulate the query as: Q2 =

({ Cl, C2, C3}, y,&, p2). Let the candidate tables for Q2
be RI = ({ C1, CZ}, S1) and Rz = ({ C2, C3}, S1) as shown
in Figure 2, where the category domains are defined as
CI= {20s, 30s}, CQ = {white, black}, C3 = {married, wid-
owed}, and S1 represents frequency. The size of the category
space A is 8. Observe that T2, the output summary table
for Q2 is defined, except for the unknown summary values
X={ ZI, Z2, ..., ~ri }. There are 8 summary tuples in ~ in
the candidate tables from which we may form the following
system of 8 linear equations in 8 unknowns:

Z1+Z2=7Z3+Z4=7Z5 +Z6=5ZT+ZS=8
Z]+ Z5=6 ZZ+Z6=6 z3+z7=5 24+2s =10

The first equation ZI + Z2 = 7 comes horn the first tu-

ple of RI, (20s, white, 7). From T2, the first two tuples

(20s, white, married, z1) and (20s, white, widowed, ZZ) have the
same Cl, C2 values. The equation is obtained by adding the
unknown variables of the two tuples and eliminating C3.
The other equations are similarly obtained. The system of
linear equations thus derived is:

11000000

I 1[

xl

00110000 22
00001100 Z3

AX’ = 00000011 X4
10001000 =,
01000100 X6
00100010 27
00010001 X8

which in row echelon form is:

I

10000-100
01000100
0010000.1
00010001
00001100
00000011
00000000
00000000

7

H

7

5

8
6

= B’

6

5

10

1

[1

6
-3
10
5
8
0
0

Thus, rank[A]=rank[AIBt] and the system of linear equa-
tions is solvable. However, since rank[A] = 6<8, there is

no unique solution.

This example illustrates a case where the system of linear
equations does not yield a unique solution. Taking Zfj, Z8 as
the free variables, the general solution is given by: X =

[1+2s,6– 26,2, –3,10 –2s,5–26,26,8 –2s,2s].
From table T2 (Figure 2), 36 is described by attributes

30s, white, widowed. Assuming that each of these attributes
ia a set, ~6 = 130sl n lwhitel fI lwidowedl. Moreover, 26 <
130sI n Iwhitel = 5 and Z6 < Iwhitel n Iwidowedl = 6 from
tuples 3 and 2 of tables RI and RQ respectively. Thus, we

have 0<2.3<5 assuming z ~ O. Likewise, we have 0<28<8
for the free variable zs. Therefore, there are 5 x 8 possible
instantiations of the above general solution.

In the absence of other information, the user will have
to make a choice among a subset (possibly one) of the set of
possible solutions. Thus, the smaller the size of the solution
set, the fewer the choices a user must make. As the number
of free variables is equal to the total number of variables
less the rank of the augmented matrix, one would prefer
a set of candidate tables that yield fewer (preferably no)
free variables. That is, we can make use of the rank of the
augmented matrix as a measure of the degree of goodness of
a set of candidate tables. For this measure to be practical,
we need to be able to comDute the rank triven anv arbltrarv

set of tables without solving the system of linear equations
it induces.

3.2 A Goodness Measure for Candidate Tables

In this section, we derive an expression relating the rank of
the augmented matrix to the set of candidate tables inducing
the algebraic system. Specitica.lly, we show that the ranks
of both the coefficient matrix A and the augmented matrix
[AI B’] are bounded above by e–ro+l, where e is the number
of linear equations and w is the number of candidate tables.
Note that e is a function of the number of tuples in each
candidate table. In order to derive this inequality, we first
investigate some properties of the coefficient and augmented
matrices induced by the candidate tables.

Let summary table R; contribute e; = IIC, II rows to A.
We may partition A into w submatrices AI, A2, . . . . AW
corresponding to the w summary tables, so that A,, 1< i <w,
consists of rows derived from R, only. We say that sum-
mary table R, induces the submatrix A, of size (e, x h).
Let A, (j, k) be the k-th element in the j-th row in A,.

Let X,,j be the set of summary variables in the equation
derived from the j-th tuple of R,, 1 <j < ei. We show that
X,,3 partition X. .

Lemmal: Forl<i<w, l<j, k<e,, j#k,

(i) IX;,JI>O,

(ii) IX*,, I = Ix,,kl,

(iii) x,,) I_txt,k ~ @j ad

(iv) UX,,j =X.

:,3

Proof: (i) By the definition of T, (tj ), y g T, (t,) if xc, (v) =
~c, (tJ) for t, G R,, y c T. Thus, lTi (tj )1 is just the number
(n-m)-ary tuples in A - c;, i.e., l~(tj)l = ~C6{A_ci} ICI

for 1 <j < ei, 1< i <w. By Condition (ii) of Definition I,
IC,I<IAI, l<i<w, since w>l, i.e., A–C, # 0. Therefore,
IT, (tJ)l >0. Since each y introduces one unknown variable
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ZS. (v) = X, the number of unknown variables in the equa-
tion derived from t, is IX,,J I = IT, (tj)l >0.

(ii) Since all tuples of R, have the same category dm
mains, [T$(tj)l = lT,(tk)lfor I<j, k<e,, j # k. Thus,

Ixwl = !~t(~j)l= lTi(h)l = Ix,,kl.

(iii) Given any t, ● R,, tk C Rk and for d Vj C T,(tJ),

?4k ~ ~:(tk), ~C,(Yj) # TCt(yk). Thus, ~i(~j) f_I ~i(~k) = 0.

Since each y E T, (t, ) introduces an unknown variable in the
equation derived from t,, X,,j n X,,~ = I?I for 1 <j, k < e,,
j$k.

h

iv) Since R, is complete, the number of tuples in R,

is CCC, ICI, i.e., all combinations of attribute values from

the category domains in C, appear in the category subtu-
ples in R,. Since lT, (tJ)[ = ~Ce{A_c,) ICI for 1 <j<ei,

the total number of unknown variables in all the equations
derived from R, is ~C=~ ICI = IT[, since T is complete.
Together with the preceding three results, we conclude that

u
Xi,, = X. n

*+
w+,

We next show that the vector sum of all the rows in any
induced submatrix is equal to the (1 x h) vector [1 1 ..- I].
Consider the coefficient matrix in Example 3, which consists
of two induced submatrices:

The vector sum of the 4 rows in any of the two submatrices
is equal to [1 1 1 1 1 1 1 1]. We shall state the fact formally
as the following corollary:

Corollary 1: For- l<i<w, l<k<h , ~Ai(j,k) = I

,=1

Prooj: The mapping from a system of linear equations to
the matrices A and Bt follows the rule:

A,(j, k) =

{

1 if Zk C Xi,J
O otherwise

(1)

[AIB’],(ih + 1) = m.(t, c R,) (2)

with l<i<w, l<j<e, and l<k<h. This coupled with

Lemma 1 proves the corollary. B
Finally, we show that the sum of the elements in the last

column of any induced submatrix of the augmented matrix
is equal to the sum of all the unknown summary values of
the output table. Consider submatnx [A IB’]l in Example 3,

which is equivalent to the following system of linear equa-
tions: ZI+ZZ =7, z3+z4 = 7, ~5+Z6= 5, ~7+Z8 =8. Ob-
serve that the RHS’S form the lastcolumn of [A113:]l. Since
the LHS’S contain the entire set of unknown summary values

of T, the last column sum of [AIBt]I is equal to ~~=1 z,.
We shall state the fact formally as the lemma below:

Lemma 2: Forl<i, k<w,
e.

~[4@]Jih + 1) = ~Tsv(i)
,=1 tET

Proof: From the proof of Lemma 1, we noted that a sum.
mary tuple t,G R, introduces a set of unknown variables
x J~J,. The sum of XSV(tJ ) for all t~ c R, yields

~,=,[4~tlt(j, h + l). BY property (iii) of Lemma 1, the

sum of all unknown variables from all Xi ,J’s is equal to

~ZE~ z = &“s” (t). Hence, the lemma follows. ~

As the last column sum of any induced submatrix is equal
to the sum of all the unknown summary values of the output
table, the sums of the elements in the last columns of any
two induced submatrices of the augmented matrix are the
same. That is,

Corollary 2: For 1 <i, k < w,

~[AIB’],(j,h + 1) = ~[AIB’]k(j,h + 1)

,=1 ,=1

We can now show that the ranks of both coefficient ma-

trix A and the augmented matrix [Al Bt] are no more than
e — w + 1, where e is the number of linear equations and w
is the number of candidate tables. That is,

Theorem 2: rank[A] < e - w + 1, rank[AIBt] < e – w + 1

Proof: From Corollary 1, each induced submatrix Ai may
be row-reduced so that it contains one row of 1‘s. Thus, since
A contains w induced submatrices, it may be row reduced to
a matrix that exhibits w rows of all 1‘S using ~~= ei —1 row

boperations. Clearly, w —1 of these rows of 1‘s can e reduced
to rows of O’s by w – 1 row operations. Thus, rank[A] is
no more than e – w + 1. From Corollary 2, [AIBt] may
likewise be reduced to a matrix whose rank is no more than
e—w+l.

We conclude thw section with an example to illustrate
the foregoing concepts.

Example 4: Suppose a demographer would like to know
the distribution of the number of whites and blacks who
are in their 20’s or 30’s and who are either single or mar-

ried. This query may be formulated as Q1 = (A, ~, S1, p)
where A = {Cl, C2, C3, r3!5} and Cl = {2os, 30s} c (21, C2 =
{white, black} C 6!2, Cs = {single, married} C (?3 and (35 =
{male, female}. The number of unknown variables in T, is

lldll =2x2x2x2=16.
Suppose two sets of candidate tables EI = {7LI, 732, ?23},

Ez = {7Z4, ?&,} are available with 7?1 = ({CZ, C3}, S1), RO =
({C,,C3},S,), 7?3= ({ C3,G},S,), Z4 = ({c,, c,, e.}, s,)
and Z5 = ({Cl, C2, C3}, S1). The sizes of the algebraic sys-

tems induced by El, E2 are: ~~=1 IR,I = (2x2)+(2x 2)+

(2x2) =12and~~=417?il =(2x2x2)+(2x2x2)=16

respectively. By Theorem 2, the ranks of the augmented
matrices in the algebraic systems induced by El, E2 are
bounded by 12 – 3 + 1 = 10 and 16 -2+1 = 15 respectively.
Thus, EI results in more free variables than Ez making it
less attractive as the set of candidate tables for satisfyin

Q. i

4 Optimal Selection of Candidate Tables

Given the rank of the augmented matrix as a measure of the
goodness of a set of candidate tables, we formulate the selec-
tion of an optimal setof cand:date tables as an optimization
problem and prove that it is NP-complete.

4.1 Problem Formulation

From Theorem 2, ~RcM IRI-IMI+l is an upper bound on

the ranks of the coefficient and augmented matrices. Since
IIAII is the number of unknown variables, IIAI[ -~~e~ IRI+

IMI – 1 is a lower bound on the number of free variables.
Therefore, we can define the Candidate Table Selection prob
lem (CTS) as:
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Definition 2: Given a complete order-n query Q=

{A, @, S,, p} and a database D = {Rl, R,, . . . . R,} of

complete summary tables, find an optimal subset M s D of

candidate tabie.s such that Ildll – ~~c~ [Rl + ]Ml – 1> () IS

minimized. I

This definition can be simplified as follows: We note that
the summary tables in M must satisfy the two candidacy
criteria in Definition 1. However, restricting the database
to summary tables whose summary domains are all identi-
cal to that desired by the query will not make the problem
harder. Thus, we can omit the first condition. In addition,
by condition (ii) of Definition 1, we can discard those Ri’s

that have category domains that are not in d.
Next, it is possible to abstract Definition 2 to contain

only essential parameters. Specifically, only A in the query
definition and the categories in the R,’s are essential to the
definition. In addition, as the number of tuples in each table
is required in the expression Ildll – ~~e~ IRl + IA41 – I,

we may incorporate a weight function p’ for each category
domain C in C, where C is the union of all the categories
in all the summary tables in D, so that the expression is
expressed as a function of P’(R). That is, llA1l–&eM IRI+

IMI-1 = Ildll-1- (~~c~ ~cec~ /.J(C) - IMI) = 1141-

1- ~RGM ~CGCR P(C) where CR is the category of g and

M(R) = P’(R) – 1. Generally, the weight function counts the
size of the category domain. With these simplifications, we
derive the following definition of CTS:

Definition 3 (CTS): Given a finite set A, a collection
D = {R1, R2,..., Rq} of subsets of ~, a positive integer

weight P(C) for each element of A, and a positive integer

A, does there ezist a subset M ~ V such that A = URe~ R

and Idl >~~~~ ~~~Rp(C)~A? B

Note that A is now simply a set of elements (category do-
mains) and R is a subset of A because the essential con-
stituents of the problem are the category domains. This
definition expresses CTS as an optimization problem.

4.2 NP-Completeness Proof

In order to show that CTS is NP-complete, we first define
a restriction CTS’ of CTS and show that it is N P-complete.
We then reduce CTS’ to CTS so that CTS is also NP-
complete. The restricted problem CTS’ is defined as:

Definition 4 (CTS’): Given a finite s-et A, a collection

D = {Rl, R2, . . . . Rg} of subsets of d, a positive integer
weight K(C) for each e~ement of A, and a positive integer
A, does there exist a subset M ~ D such that A = u~e~ R

nand ~l?~~ ~C~R~(C) = ‘?

In order to prove that CTS’ is NP-complete, we reduce
the Minimum Cover (MC) problem to it in the following
theorem. Let U be a collection of subsets of a finite set S
and K be a positive integer. The MC problem asks if there

exist a subset U’ ~ U with IU’I < K such that S = (JRcu, R.

The MC problem is known to be NP-complete [3]. Note that
the condition IU’I < h’ can be changed to IU’1 = h’ without
changing the complexity of the problem (see Appendix B).
This will be the version of MC we use below:

Theorem 3: CTS’ is NP-complete.

Proof: It is easy to verify that CTS’ is in NP since a nonde-
terministic algorithm need only guess a subset M of D and
check in polynomial time that M is a solution for CTS’.

We will transform MC to CTS’. Let an arbkrary in-

stance of MC be defined by U, a collection of subsets of
a finite set S, and K, a positive integer. Let the derived
instance of CTS’ be defined by A = S, D = U, A = K
and K(C) = 1 for all C c A. Since all the weights are 1,
the product of the elements of any subset R of A will be
1. Thus, ~ ReM ~CeR AC) w~ sirndy be the number of
subsets in M.

If the MC instance has a solution U’ $ U where IU’I = K
and S = UReu, R, thenU’ is also a solutlon for the CTS’ ilI-

stance since U’ ~ D, d = UReu, R and ~Reu, ~ce~ p(C)

=IU’I = K = X Likewise, if the CTS’ instance has a solu-
tion, it will also work for the MC instance. s

We can now reduce CTS’ to CTS and show that CTS is
indeed NP-complete:

Theorem 4: CTS is NP-compiete.

Proof: Clearly, CTS is also in NP. Now consider an arbitrary
instance of CTS’ with parameters A, D, p and A as defined
in Definition 4. We must now construct an instance of CTS
with parameters A’, V’, p’ and A’ as defined in Definition 3.

Suppose ~ > IAI = n. Then let .4’ = A u {C~, Cj,...,
Cjt1_7} and D’ = {R;, R;,..., R~} where R; = R, u

{c,, c2,..., cj+1_n ,} l<i<g. Letp(C) =lforall CeA’
and~’=~–n.

If the CTS’ instance has a solution M C D, then let
M’ = {R’ : R c M}. Since A’ = UR,EM, ~ and Id’1 =

A + 1> ~R/~&fl &R, P’(C) = WI= A>A -n = A’, M’
is a solution for CTS. Likewise, we can construct a solution
M = {R : R’ c M’} for the CTS’ instance if CTS has
solution M’.

For J<n, let A’ = d, D’ = D, A’ = A and P’(C) = I for
all C E d’. Clearly M is a solution of the CTS’ instance if
and only if M is a solution for the CTS instance since A’ =

u~eMR and Id’1 > ~ RCM ~CeRP’(C) = IMI = ~ = A’. i

4.3 Practical Implications

While we have shown that the problem of optimal table

selection is difficult in principle, we do not anticipate that
it will be too hard to handle in practice. For one thing, the
number of query category domains in A is likely to small,
perhaps less than 5 or 10. Thus, an exhaustive enumeration
is really quite practical.

In addition, optimal table selection is quite similar to
the Minimal Set Covering problem, for which there are good
approximation algorithms. For example, it is known [2] that
a greedy approximation algorithm for the MC problem has a
ratio bound of (ln ISI + 1) where S is the finite set of elements
to be covered (corresponding to A in CTS). Since A is likely

to be small, th~ is really a very satisfactory ratio bound.
We therefore anticipate that the CTS problem may be

reasonably solved in practice.

5 Conclusions

In this paper, we addressed the issue of information synthesis
in statistical databases. We first illustrated the differences
between conventional joins and statistical joins and showed
that the output of a statistical join may not be unique. We
then examined the problem of satisfying a query using sev-
eral summary tables, and derived a goodness measure for
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selecting a set of candidate tables for satisfying a query. We
also showed that optimal selection of these tables is NP-
cornplete.

We are currently designing a statistical query processing
algorithm at the conceptual level for a statistical database
holding 1990 census data from the U.S. Census Bureau. This

algorithm extends conventional statistical query processors
by looking for multiple candidate tables when no single ta-
ble can be found to satisfy a query. The results in this
paper define the general principles governing the design of
this algorithm, though we have made some simplifying as-
sumptions such as the completeness of queries and summary
tables in our discussion of this paper.

A Augmented Matrix

Given an m x n matrix A and an m x p matrix B, we may
join the i-th row of A with the corresponding row of 13 to
form a larger m x (n +p) matrix denoted as [Al13]. We refer
to [AIL?] as the augmented matriz. The following example
illustrates the augmentation:

Example 5: Given two matrices:

rllooooool rll

The augmented matrix of A and B is:

[

11000000 1

[AIB] = 00110000 2100001100 3=
00000011 4

110000001
001100002
000011003
000000114 1

B Reformtdationof Minimum Cover

Given a collection Uofsubsets ofafinite set Sand apositive
integer K<IUI, the MC problem asks if there exist a subset

U’ C U with lU’l<lC such that S= URCU, R. We define
a reformulation of MC which has the same parameters but
asks if there exist a subset U’ ~ U with [U’1 = K such that

S = &u, R. For clarity, we refer to these problems as

MC< and MC=.
We show that MC= is NP-complete by reducing MC< to

MC=. Let an arbitrary instance of MC< be defined by the
parameters U, S and K as above. We construct an instance
of MC. defined by U=, S= and h“.. Let U = Us, S = S=

and K= K=.
If a solution to MC< exists, then we have a covering

subset U of U with IUI = g for some g < K. Since g is
less than If (and hence Kc), we can always add K. – g
additional sets from U to the cover ~ to get a covering of
size exactly Km. Therefore, ~ is also a covering for MC=.

Suppose a solution does not_exist to MC<. Then there
is no class of covering subsets U such that IU I < K. Since
K = h’=, there is no covering of size exactly K either.
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