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Abstract. We consider approximate join processing over data streams
when memory limitations cause incoming tuples to overflow the avail-
able space, precluding exact processing. Selective eviction of tuples (load-
shedding) is needed, but is challenging since data distributions and arrival
rates are unknown a priori. Also, in many real-world applications such as
for the stock market and sensor-data, different items may have different
importance levels. Current methods pay little attention to load-shedding
when tuples bear such importance semantics, and perform poorly due
to premature tuple drops and unproductive tuple retention. We propose
a novel framework, called iJoin, which overcomes these drawbacks, and
also provides tuples a fair chance in being part of the join result. Our
load-shedding scheme for iJoin maximizes the total importance of join
results, and allows reconfiguration of tuple-importance. We also show
how to trade off load-shedding overhead and approximation-error. Our
experiments show that iJoin has the best performance, and is practical.

1 Introduction

Various sources, such as news feeds[1], stock traders [2–4], sensors [5, 6], and
online bidding systems [7] generate data continuously. Recent literature [8] has
classified such data as data streams and there has been extensive research in
querying and processing data streams. Since techniques used in traditional re-
lational databases [9] are not directly applicable in the context of data streams,
there has been a significant interest in building a Data Stream Management Sys-
tem [8, 10–15]. Only recently, there have been some vendors [16, 17] who have
started developing a general-purpose DSMS.

There exist numerous challenges in storing and querying a data stream in
a DSMS. Since data stream are continuous and unbounded, it is impractical to
store the entire data during query processing. Generally, a time-based sliding
window [18] is specified over the data stream and this defines the subset of the



data stream processed by the query. A continuous query (CQ) [18] (or standing
query) is executed over successive instances of the sliding window. Though sliding
widows CQs provide a way to limit processing load, the DSMS may have to still
deal with bursty data arrival and unpredictable data distributions. Most static
techniques [19, 20] are impractical because they assume that input size, arrival
rates, or input value distributions are constant - which is rarely the case. Thus,
we need to address the dynamic nature of data streams while query processing.

Windowed Joins [20] are an important class of queries over data streams,
because they help identify important correlations across multiple data streams.
Joins are also stateful operations, which means that all tuples that arrive within
the time window need to be stored, in order to compute the exact join result. In
practice, the data stream arrival rates may fluctuate and overwhelm the available
memory. In other instances, for example in sensor devices, the available memory
itself might be very small in comparison to the volume of arriving tuples. Of
course, when the time-window slides, some tuples expire and these expired tuples
make way for future in-coming tuples. However, when the memory is already full
and a new tuples arrives, there is no recourse but to ‘drop’ tuples according to
some load-shedding policy. When the join is executed over the reduced window
(after dropping tuples), the join result is a subset of the exact join. Such a join,
with some missing output-tuples, is said to be approximate. Our work focusses
on generating the best approximation (least error) for a join, by proposing a
novel load-shedding technique to decide which tuples to drop.

Previous load-shedding schemes either focus on evicting tuples at random [21],
or at maximizing the size [22] of the result set. Moreover, none of the work con-
siders tuple-importance, which is a very important requirement in data stream
applications. We introduce tuple-importance using an example and motivate the
need to exploit tuple-importance during join processing.

Consider two sources, for example CNN and BBC, generating news-feed in-
formation. Apart from other details, each tuple consists of: HTML link, keyword,
category (such as “sports” or “politics”) and the time when the news item was
reported. It is easy to formulate a join query over CNN and BBC data streams
that does the following: “Find all news articles reported in last 2 hours,
which have the same keyword”.

Moreover, depending on the time-of-day the user might place more impor-
tance to news belonging to a certain category. For example, a user may prefer
“politics” early in the morning, but enjoy reading about “sports” later in the
evening. As evident from the example, it is rarely the case that a user perceives
each tuple as being equally important. This is an example of a value-based impor-
tance, since the value of a tuple-attribute defines its importance. As a real-world
example, iGoogle [23] (the personalized version of the Google search page) seems
to be doing a similar query while reporting (and personalizing) news from various
sources.

Other data-stream applications also require, or may benefit from tuple-level
importance. For example, in sensor network the values sensed in a certain area,
such as a disaster zone, might be more important than the ones sensed by sensors



in other regions. This is an example of a source-based importance, since the source
(or the sensor) that generated the tuple, defines its importance.

Above examples motivate us to look at schemes that exploit tuple-level im-
portance during load-shedding. We believe that the assumption that all tuples
have the same importance level is too simplistic and rarely applicable in prac-
tice. Our work focuses on developing a load-shedding scheme for tuples hav-
ing different importance levels. Moreover, we accommodate periodic changes to
tuple-importance. Our goal will be to maximize the total-importance of the join
result by exploiting tuple-level importance.

1.1 Motivation and Problem

We consider equi-joins, but our work is equally applicable to other types of join.
Let w be the size of a time-based window. An exact join [20] requires all tuples
to be in memory. If sufficient memory is available at time t, all tuples with time
stamps i such that t−w < i ≤ t, are buffered and matched with joining streams.

As we have noted, sufficient memory may not be available to store all input
tuples, due to burstiness or high arrival rates. In fact, unpredictable arrival char-
acteristics may make it impossible to estimate the optimal memory requirement.
We can only hope to provide the best approximation (least error) for the join.
We will measure the join quality in terms of the importance of the joining tuples,
and determine which tuples to evict or store that will maximize the join quality.

We present an example to show that load-shedding algorithms that do not ad-
dress tuple-importance are not likely to meet our objectives. Thus, schemes such
as first-in-first-out (FIFO), random-drop [20], and semantic approximation [22]
are sub-optimal for two reasons. First, some important tuples suffer premature
evictions and fail to match with other tuples. Second, some unproductive tuples
stay in memory too long without contributing much to the join result.
Example:

Time 1 2 3 4 5 6 7 8
R a:1 b:2 c:3 d:4 d:4 b:2 a:1 c:3
S b:2 a:1 b:2 b:2 c:3 c:3 d:4 a:1

Table 1. Arrivals

Table 1 shows streams R and S. Each
element is shown as a value:importance
pair. Consider a sliding-window equi-join
over R and S, with a window of 8 time
units. Let output tuple o have impor-
tance min{imp(r), imp(s)}, where r ∈ R
and s ∈ S are the matching tuples that
produce output tuple o. The total importance of the join result is the sum of the
importance of the output tuples.

Consider the output in the time range 2 ≤ t ≤ 8. An exact join (Table
2(a)) produces 16 output tuples with a total importance of 36. Let us now
assume that only 2 tuples per stream can be stored in memory. Thus, after
time t = 3, we must evict a tuple each time a new tuple arrives. Table 2(b)
illustrates the scheme where tuples are dropped in first-in-first-out (FIFO) order.
Table 3(a) illustrates a scheme where tuples are randomly dropped. This scheme
produces only 3 output tuples, with a total importance of 5. This example clearly



shows that choosing the right tuples to drop is difficult. Table 3(b) shows an
approach intended to maximize the output size. Clearly, even this strategy does
not significantly improve the approximation.

t R S Output Imp

2-3 a,b b,a b,a 3

3-4 a,b,c b,a,b b 2

4-5 a,b,c,d b,a,b,b b 2

5-6 a,b,c,d,d b,a,b,b,c c 3

6-7 a,b,c,d,d,b b,a,b,b,c,c b,b,b,c 9

7-8 a,b,c,d,d,b,a b,a,b,b,c,c,d a,d,d 5

8-9 a,b,c,d,d,b,a,c b,a,b,b,c,c,d,a c,c,a,a 8

(a) Exact (total importance = 36)

t R S Output Imp

2-3 a ,b b,a b,a 3

3-4 b,c a,b b 2

4-5 c,d b,b - 0

5-6 d,d b,c - 0

6-7 d,b c,c - 0

7-8 b,a c,d - 0

8-9 a,c d,a a 1

(b) FIFO (total imp. = 6)

Table 2. Exact join and approximate join under FIFO

t R tuples S tuples Out Imp

2-3 a,b b,a b,a 3

3-4 a,c a,b - 0

4-5 a,d b,b - 0

5-6 d,d b,c - 0

6-7 d,b b,c b 2

7-8 b,a b,d - 0

8-9 b,c b,a - 0

(a) RAND (total imp. = 5)

t R tuples S tuples Output Imp

2-3 a ,b b,a b,a 3

3-4 a,b a,b b 2

4-5 a,b b,b b 2

5-6 a,b b,b - 0

6-7 b,b b,b b,b 4

7-8 b,b b,d - 0

8-9 b,c b,a - 0

(b) SIZE (total imp. = 11)

Table 3. Approximate join processing using RAND and SIZE

Let Str(v, t) denote a tuple with value v arriving in stream Str at time t. The
total output importance suffers for two reasons. First, tuple R(c, 3) is dropped
prematurely, though it would have matched S(c, 5) at t = 6. Second, R(a, 1)
produces no output tuple after t = 2, but occupies memory until t = 5, forcing
the dropping of other tuples, which may have contributed more to the join.
Without a priori knowledge of stream characteristics, it is difficult to determine
if dropped tuples will result in future output tuples. We call R(c, 3) a premature
tuple and R(a, 1) an unproductive tuple.

None of the previous schemes exploit tuple-level importance or correlations
among tuple values. Our scheme both limits premature tuple drops and elimi-



nates unproductive tuples. Our work deals with the question of which tuples to
drop, to minimize the error during join approximation.

1.2 Approach

We present iJoin, a novel join-approximation technique, which tries to maxi-
mize join quality by dynamically adjusting tuple priorities, and performing load-
shedding in a controlled manner. We assign each tuple a residence priority RP ,
using some novel techniques to estimate a tuple’s worth.

When a tuple arrives, it is assigned an initial RP based on a user-specified
function (say, the value of a certain attribute). The tuple’s RP value is kept
updated, based on its importance, the number of tuples it has matched, and its
residence time in memory. Eviction is based on RP values.

We limit premature drops by requiring that tuples mature in memory for
a threshold duration before becoming candidates for eviction. We also apply
a penalty to unproductive tuples that have remained in memory for too long,
without contributing towards output, and eventually evict them. We present
three schemes for recomputing RPs: conservative, adaptive, and aggressive. Our
approach also ensures that fairness is a used as metric in comparing join-
approximation methods. Our work is 80%-85% fair in presence of limited mem-
ory, and gives the best join-approximation. We believe that our work is first to
provide such a balance and yet very applicable in practice.

2 Related Work

Load-shedding [24] is generally used to evict tuples under memory size limita-
tions, and has been studied in the context of sliding window versions of join
queries [25, 20, 26, 22], aggregate queries [27], as well as in distributed environ-
ments [28]. Our work fits in the context of load-shedding and is aimed at ap-
proximate results.

Approximate join processing has been studied from different perspectives.
When memory is full, [29–31,20] propose randomly evicting a tuple from the
join-memory. [22] argues that this scheme is likely to produce sub-optimal results,
and proposes various heuristics to maximize the output size. Neither random-
drop [20] nor semantic load-shedding [22] consider tuple-level importance, and
hence perform poorly when applied for maximizing the total importance of the re-
sult. Load-shedding in Aurora [21] aims at reflecting the input tuple-distribution
in the join output. However, none of the QoS-driven schemes in [21] consider
user-specified importance in computing the approximate join.

Continuous queries are well-studied, but most work [32–34] relates to mini-
mizing the memory utilization or improving the query latency. Eddy [35] provides
a very general framework that performs a per-tuple optimization, but does not
address load-shedding, or approximate joins when tuples bear user-specified im-
portance. In contrast, our work does not focus on minimizing query latency, but
on memory limitations during query execution.



Stream summarization is another alternative to addressing the case of lim-
ited memory. These schemes are orthogonal to our work and have been studied
for approximating results when all tuples do not fit in memory. XJoin [29] and
MJoin [30] produce exact results. In XJoin, some tuples are flushed to the disk
when the data stream overwhelm the main memory. The flushed tuples (or back-
log of tuples) are processed at a later time, when the arrival rates drop, and CPU
is available to process this backlog. MJoin improves this scheme by decomposing
multiple join operators. Our work deals only with the FastCPU [22] case, where
all incoming tuples can processed. The problem is only when all the tuples can-
not be buffered for processing to complete. Moreover, we are not interested in
allowing evicted tuples to re-enter the system. Our work focuses on developing a
on-line scheme that can dynamically adapt to the stream arrival characteristics.

3 Problem Formulation

We distinguish between join attributes and importance attributes. A join-attribute
jattr is an attribute over which the join condition is specified. An importance-
attribute iattr is an attribute whose values define the importance of the tuples.
In the example presented in Section 1, the jattr=keyword and iattr=category.
Join- and importance-attributes may overlap, but we use the distinction to high-
light the purpose of value-based importance specification we described in Sec-
tion 1.1. Our work is also applicable to source-based importance, but henceforth
in the discussion we only consider value-based importance.

3.1 Tuple Importance

Various importance functions can be defined over the importance attributes.
Since joins are ultimately at the user’s (or application’s) behest, we argue that
it is best to allow the user (or application) to define tuple-importance semantics.
For ordered attributes, for example, the user may provide a histogram of impor-
tance values. For categorical attributes, the user may specify a lookup table of
categories, and their respective importance values.

Formally, importance-function Fi returns the importance of the tuple as a
function of the importance-attributes of the tuple. As Equation 1 shows, a tuple
r(t) has importance r(t).imp, where Fi is the importance-function stated above
and a1, a2, . . . are the importance-attribute.

r(t).imp = Fi(r(t).a1, r(t).a2, . . .) (1)

3.2 Join Processing Model

We consider sliding-window joins. Let the window size be w. At time t, the
stream window consists of tuples r(i) ∈ R and s(i) ∈ S with time-stamps such
that t−w+1 < i ≤ t. When a new tuple r(j) arrives at time i, it is matched with
all tuples s(i) in the window with i ≤ j. If possible, r(i) is buffered. Similarly,
when new S tuples arrives, they are joined with the tuples in R’s window.



After the join is executed over a particular window, we slide the time-window
by ∆t time units. Tuples that fall outside the new window are said to be expired,
and are hence flushed out of memory. This join processing model is popularly
known as a sliding-window join [20] and used in most recent literature.

3.3 Join Output Quality

When a tuple r(j) joins with a tuple s(i), the output tuple o(j) acquires impor-
tance based on r(j).imp and s(i).imp. Various assignments are possible, but for
simplicity we define importance of an output tuple as shown in Equation 2. The
output tuple also bears user-specified importance, as it is derived from impor-
tance of input-tuples, whose importance is defined by as in Equation 1.

o(j).imp = min{r(j).imp, s(i).imp} (2)

Let Ωq = {o(i1), . . . , o(in)} be the output tuples of a join query q. We define join
output quality as in Equation 3. This is called the total importance IMP(q)
of outputs produced by query q.

IMP(q) =
∑

o(i)∈Ω

o(i).imp (3)

3.4 The Case of Limited Memory

Let M be the total amount of buffer memory available, and for simplicity, let it
be equally divided between R and S. If each tuple occupies one unit of memory,
a maximum of M/2 tuples from each stream can be buffered. Let the tuple r(t)
arrive when R’s buffer is full. If any of the M/2 buffered R tuples were to expire
due to shifting of the sliding window, then r(t) can occupy the vacated memory.
Otherwise, the DSMS has to make either of the following two decisions.

– The DSMS can drop r(t) and process the tuples already in the join buffer.
This method is unfair to r(t), since it is summarily and prematurely dropped.

– The DSMS can evict a buffered tuple, clearing space for r(t). This requires
some load-shedding policy.

Load-shedding is challenging in stream environments, because there is no fore-
knowledge of arrival characteristics. Any estimation is likely to be sub-optimal
if the data streams are erratic. In our work, we present a load-shedding scheme
to maximize the quality of an approximate join.

3.5 Dealing with Fairness

Fairness is a measure of how ‘fair’ the algorithm performed with respect to
retaining (or evicting) tuples from join memory. When memory is unlimited,
none of the tuples face eviction and hence fairness is irrelevant. However, when
memory is a constraint, tuple eviction needs to be guided by fairness due to



several reasons. For example, premature tuple eviction is unfair as these tuples
do not get enough time to prove their ‘worth’. Likewise, fairness is also affected
when unproductive tuples enjoy long time in residence.

Addressing tuple-importance and fairness simultaneously is challenging. Gen-
erally, since tuple characteristics are not know apriori, we cannot accurately pre-
dict tuple correlations which help estimate the tuple ‘worth’. The best we can
do is to give all tuples near equal time to reside in memory. None of the previ-
ous work addresses fairness during load-shedding, so our contribution is novel.
We aim at developing a load-shedding policy that not only addresses fairness,
but also provides a means to trade-off approximation quality with the level of
fairness.

As shown in Equation 4, we will use Jain’s fairness index [36] as a measure of
fairness, where tuple lifetime Li is the difference between time that tuple i gets
evicted, and it’s arrival time. Fairness ranges from 1/n (worst case) to 1 (best
case), where n is the total number of incoming tuples. As we will see through
our experiments, a relatively fair heuristic is likely to have better join quality,
than an approach that retains a baised set of tuples.

fairness =
(
∑

Li)
2

(n ×
∑

L2
i )

(4)

3.6 Problem Statement

Given the available memory M and a sliding-window join query 〈α, c, w〉, where
α = {S1, . . . , Sn} is the set of streams (with importance semantics), c is the join
condition, and w is the time-window, compute the approximate join such that
total importance of the join output is maximized.

4 Approach

Time R S O Imp

2-3 a,b b,a b,a 3
3-4 b,c b,b b 2
4-5 c,d b,b - 0
5-6 d,d b,c - 0
6-7 d,d c,c - 0
7-8 d,d c,d d,d 8
8-9 d,d c,d - 0

Table 4. Approx Join
using GREEDY (Total
imp=13)

In this section, we present our approach to perform
approximate join processing. As a prelude to iJoin,
we study a simple static join approximation scheme
that tries to exploit tuple importance. If the memory
is full when a new tuple arrives, the tuple with the
lowest importance is dropped. Tuples with the highest
importance are greedily retained. Table 4 shows how
this greedy scheme would perform for the scenario in
Section 1.1.

As with any static scheme, this scheme causes pre-
mature drops when a tuple arrives with importance
lower than those of currently buffered tuples. For ex-
ample, R(b, 6) is dropped on arrival at t = 6. In con-
trast, some high-importance tuples remain in memory
for disproportionately long duration, but make no (or



Fig. 1. Flow diagram for iJoin approximation

little) contribution to join results. For example, tuples with value d (impor-
tance=4) occupy R’s buffer for all duration after t > 5. Next we present our
dynamic scheme, called iJoin, that addresses the above drawbacks.

4.1 iJoin Overview

Our framework is outlined in Figure 1. When a tuple r(i) ∈ R arrives at time i,
it is buffered if there is room, and joined with tuples in the window for stream
S. As shown in Algorithm 1, various tuple-related information (or metadata)
is also updated during join operation. We discuss how this metadata is used in
determining tuple priorities in Section 4.3. If the buffer is full, we drop some
tuples based on the load-shedding strategy discussed in Section 4.7. Once the
unwanted tuples are dropped, we accommodate r(i) and proceed with the join as
in Algorithm 1. Since dropped tuples never return, we must use existing statistics
to determine which tuples to hold on to.

4.2 Tuple Metadata

We maintain some metadata with each tuple to help estimate the join statistics.
We use these statistics to determine a tuples ‘worth’ and hence which tuple to
drop from set of candidates tuples already in join memory.

The following metadata is stored with each tuple.

– ta: The arrival time of the tuple, which is set on tuple arrival.



Algorithm 1 Join operation

Require: window size w, join condition c, r(i), γ = {s(j)} such that i −w ≤ j ≤ i, w

Ensure: the output set Ω

1: for all s(j) ∈ γ do

2: if isMatch(s(j), r(i), c) = TRUE then

3: o(i) = {s(j), r(i)}
4: o(i).imp = min {s(j).imp, r(i).imp}
5: Ω ← Ω ∪ {o(i)}
6: s(j).matches← s(j).matches + 1
7: s(j).prevmatch← i

8: end if

9: end for

10: if Ω 6= ∅ then

11: r(i).matches← |Ω|
12: r(i).prevmatch← i

13: end if

– imp: This is the tuple importance determined according to Equation 1. It
is updated only if the user redefines the importance function.

– matches: The number of tuples that have joined with the tuple, so far. This
value is updated each time the tuple matches another tuple.

– prevmatch: The timestamp of most recent matching tuple. This is updated
every time a tuple matches (or joins) with a tuple.

Algorithm 1 shows how the metadata is updated when r(i) finds a match to
produce the output tuple o(i). The isMatch() function in Algorithm 1 returns
either TRUE or FALSE depending on the join condition c ∈ {<,≤, =, 6=, >,≥}.

4.3 Tuple Priority

A tuple’s residence priority (RP) indicates how valuable the tuple is to the join
process, relative to other tuples in memory. As we will see later, tuples with
the lowest RP get dropped from memory. On arrival, each tuple r(i) is assigned
a default RP, called RPinit(i). This value can either be specified by the user,
or be system parameter configured on a per-tuple basis. We must construct a
function Fp to determine the tuple priority at some time t′ > ta. Since we want
to maximize the total importance of a query output, Fp (see Equation 5) is a
function of the tuple importance, the number of matches, as well as the age of
the tuple in memory. Residence priority at time t′ is computed using Equation 6.

Fp(imp, matches, age) =
imp× matches

age
(5)

P(r(i), t′) = Fp(r(i).imp, r(i).matches, (t
′ − r(i).ta)) (6)



4.4 Local Priority

The matches value used in Equation 5 is a global indication of how many tuples
matched it during its lifetime. We have found that this can bias the estimation
of tuple’s worth. The local priority of a tuple, defined below, works better. We
estimate the number of matches using Equation 7, where d is a constant used
in an exponential decay function [37], match[t1,t2] is the number of tuples that
matched in the time range [t1, t2], and t′ is the current time. We use this in
Equation 5 to obtain the local priority of the tuple.

matches′ =

t
′∑

t=ta

{match[t,t−1] × e−d(t′
−t)} (7)

4.5 Establishing Tuple Maturity

To reduce premature drops, we place a residence threshold on the tuples before
they are candidates for load shedding. We consider a tuple to be mature if it’s
age is greater than a certain threshold τ , which is a tunable system parameter,
whose value can be set higher (or lower), in accordance with greater (or lower)
memory availability. We will only drop mature tuples, so residence times are
longer. We will see the benefits of this policy in the Section 5

4.6 Penalizing Unproductive Tuples

A tuple is unproductive if it does not produce a join output for a long time. Our
goal is to identify such tuples, and penalize it for occupying memory, without
producing output tuples. When such unproductive tuples are penalized, they
will quickly lose their residence priority and will be eventually evicted.

We first record the timestamp of the most recent match. For example, if a
output tuple was produced at time t, which means when a arriving tuple s(t)
matched with r(i), we record this time by assigning r(i).prevmatch = t and
s(t).prevmatch = t. When we recompute the tuple priorities, as in Algorithm 2,
we do the following. First, we identify which tuples are unproductive. A tuple
is considered unproductive at time t′ if t′ − r(i).prevmatch≥ ∆, where ∆ is a
tunable parameter. If a tuple is identified as being unproductive, we reduce its
priority by a penalty δ computed using Equation 8, where c is some constant.

Penalty(δ) = c× (t′ − r(i).prevmatch) (8)

A tuple suffers a penalty in proportion to the time it is unproductive. An un-
productive tuple can redeem itself if there is a match before it is evicted.

4.7 Load-shedding Scheme for iJoin

We perform load shedding based on residence priority, as shown in Algorithm 2,
using the tuple’s age, matches, imp, and prevmatch information. We first



Algorithm 2 Load-shedding invoked at time (t)

Require: β={r(i)} such that t-w ≤ i ≤ t, Maturity threshold τ , Unproductivity
threshold ∆, Penalty δ, k .

1: for all r(i) ∈ β do

2: Apply Condition Maturity (τ ) to determine if r(i) is MATURE
3: if r(i) is NOT MATURE then

4: β ← β - {r(i)}
5: end if

6: end for

7: for all r(i) ∈ β do

8: Determine the tuple-priority P(r(i),t)
9: Apply Condition Unproductivity (∆) to determine if r(i) is UNPRODUCTIVE

10: if r(i) is UNPRODUCTIVE then

11: P(r(i), t) ← P(r(i),t) - δ

12: end if

13: end for

14: for all r(i) ∈ β do

15: Sort tuple by tuple priority P(r(i), t)
16: end for

17: Drop r(j) such that P(r(j),t) = min (P(r,t)) ∀ r ∈ β

identify mature tuples as eviction candidates. Next, we examine the prevmatch

timestamp to check for unproductive tuples, apply a penalty, and compute all
new residence priorities. We then sort the tuples in descending order of their
priority, and drop the tuples with the lowest tuple priority. Well-known data
structures such as priority queues can be used here for implementation.

4.8 Recomputing Tuple Priorities

Recomputing residence priorities can be expensive. In Algorithm 2, for example,
we recalculate the priorities each time load shedding is triggered. We propose
three schemes to control how often we recompute residence priorities, which
represent different tradeoffs between maintaining accurate priority estimates and
join approximation error.

(1) Successive: In this scheme, we compute tuple priority each time we need
to evict a tuple from memory. This scheme has high overhead, but provides the
best estimates of the ‘worth’ of tuples currently in memory.

(2) k-Successive: In this scheme, we compute tuple priorities after every k
load shedding decisions, reducing overhead by a factor of k, over the successive
scheme. If tuples have relatively stable distributions, k could be set to a higher
value. If the stream is expected to be erratic, it is better to use a lower k.

(3) Adaptive: In this scheme, we monitor the relative difference between con-
secutive join-approximation executions. We recompute residence priorities only
if the difference in join quality falls below a certain threshold ε. The choice of ε
depends on how much overhead is acceptable. Lowering ε increases overhead.



Parameter Value

arrival rate 100–200 tuples per sec

tuple domain 1–100 categorical values

imp domain 1–100 decimal values

join memory M 10 tuples

window size w 25 secs

maturity threshold τ 2 secs

unproductivity threshold ∆ 3 secs

recomputation policy successive
Table 5. Default parameter settings

5 Experiments

We studied the performance of our scheme using various experiments. Since
no real data sets were available with importance specified, we used a synthetic
dataset closely resembling real-world settings. The tuples had categorical at-
tributes, and arrived at the rates between 100–200 tuples per second. Unless
specified, we used the default values shown in Table 5, where domain size is the
number of distinct values in the join attribute and the importance attribute.
The importance of each tuple was mapped to the range 1–100. We allowed the
importance function to be redefined no more than twice during execution.

Other parameters were kept configurable, to study their influences on iJoin
performance. We were specifically interested in how the available-memory M ,
window size w and the data distribution affected the query output. Unless speci-
fied, we set the maturity threshold τ = 2 secs, and the unproductivity threshold
∆ = 5 secs. For obvious reasons, we always maintained τ ≥ ∆ ≥ M ≥ w.

We used an equi-join query over 2 streams as a test query. We allowed the
query to run for 100 seconds on a Quad Xeon 550MHz. Note that our work
addresses the FastCPU [22] case, and hence the simulations are consistent across
various other processors as well. Unless specified, we used the successive scheme
for recomputing the residence priority. We measured the following:

– total importance: This is join-output quality measure (Equation 3).

– output size: The number of output tuples generated by the query.

– fairness: A measure of fairness as stated in 4.

We compared our work with the following load-shedding schemes.

– EXACT: The optimal scheme where memory is unlimited.

– FIFO: A FIFO scheme, with queue size M .

– RAND: Random load-shedding scheme used in [20].

– SIZE: A scheme similar to [22], that maximizes output size.

– GREEDY: The greedy version of IJOIN we described in Section 4.



5.1 Effect of Memory Size

We varied the available join memory from 5 to 20 tuples. Figure 2 shows that
IJOIN has the best performance in meeting our approximation objective of max-
imizing total importance. EXACT, of course out-performs all schemes due to
availability of unlimited memory. Though the SIZE scheme is designed to max-
imize the output-set, we noticed that our heuristics did better, and also showed
higher join quality. This might be due to the SIZE’s limited ability to detect
correlation among joining streams in our dataset. IJOIN also does the best with
respect to fairness. Our scheme is developed to provide equal, or almost equal
opportunity to each tuple to find a matching tuple, and our experiments show
that IJOIN was more than 80% fair in doing so. FIFO obviously is 100% fair,
but has the lowest join-output quality.
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Fig. 2. Performance when available memory is varied from 5 to 20

5.2 Effect of Window Size

Figure 3 shows the performance of various schemes when the window size var-
ied from 10 to 25 seconds. Intuitively, a larger window places higher memory
constraints on the join operation, as the available join memory was constant in
this experiment. Only the IJOIN and GREEDY schemes seem to improve join
quality when the window size grows. This is due to IJOIN’s ability to find better
correlations, and use recent estimates to determine the more valuable tuples. A
larger window-size provides IJOIN a larger set for tuples to find correlations, and
hence, the residence priorities. For this dataset, the output size hardly seems to
increase for any scheme. IJOIN is between 80%-85% fair in retaining tuples in
memory. In contrast, SIZE experiences a drop from 90% to 42%.

5.3 Effect of Domain Size of Join Attribute

In this set of experiments, we varied the domain from 10–20 distinct values. Since
we wanted to see the effect of domain-size on the output quality, we let all tuples
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Fig. 3. Performance when query window is varied from 10 to 25

have the same importance. We noticed that domain size has large impact on our
quality measure. Intuitively, when the domain size increases, the probability of
the same value appearing in the window decreases. As shown in Figure 4, this
affects the number of matching tuples, so we see a linear drop in the output size
and total importance. IJOIN still outperforms all other approximation schemes,
and is consistently fair between 80%-85%. Interestingly, GREEDY has the worst
performance in this setting, because all tuples have the same importance-level.
Moreover, this leads to only a selected few tuples occupying the memory. For
example, we say that GREEDY is only 20% fair when domain size is 20.
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Fig. 4. Performance when domain-size is varied from 10 to 20

5.4 Effect of Thresholds

We studied how join approximation is affected by the unproductivity threshold
∆. Since this parameter is specific to IJOIN, other schemes show no change
when the threshold is increased from 2 to 5 seconds. As shown in Figure 5
when the threshold is more coarse (higher value) IJOIN quality drops. This
is because when the threshold is coarse, a tuple a can remain longer without



contributing to any result. We recommend that the scheme use a finer threshold
(low value) or apply higher penalty δ (see Algorithm 2) when tuples are identified
as unproductive. Though we used threshold ranging between 2-5, IJOIN had
better performance than all other schemes.
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Fig. 5. Performance when unproductivity threshold is increased from 2 to 5 seconds

5.5 Performance of Re-computation Schemes

In this experiment we study how we can trade-off computational overhead with
approximation quality. As shown in Table 6, the successive provides the best
approximation. The successive scheme is also the most ’fair’ heuristics at about
80%. It is worth noting however that the adaptive scheme has a lower overhead
than successive, with only 600 instances when tuple priorities needed to be re-
computed. The k-successive scheme is a balance between the two schemes, with
a low overhead and is about 75% fair. We propose that that successive scheme
be used in erratic environments, where data distribution and tuple correlations
are likely to be volatile. Adaptive scheme performs best when data distributions
are relatively stable.

Successive k-Successive Adaptive

Total importance 1400 1200 1300

Output size (#tuples) 80 75 80

Fairness 81% 75% 80%

Overhead (#invocations) high (1000) low (100) medium (600)
Table 6. Performance of re-computation schemes



6 Conclusions

We have presented a novel join-approximation framework, called iJoin, that
addresses tuple-importance. Our load-shedding policy in iJoin is based on various
tuple properties, such as recent value-correlations, time spent in memory, and
tuple-importance. We determine which tuples are too early to drop, as well as
tuples that have spent too much unproductive time in memory. Our techniques
show that limiting premature drops, and penalizing unproductive tuples is an
effective strategy in maximizing quality of join-result. Compared to previous
work, our approach not only suffers least approximation error, but also is fair
with respect to retaining tuples in memory. We believe that addressing fairness
is important goal when memory is limited, because there is no foreknowledge of
the ‘worth’ of future incoming tuples. We have also outlined 3 schemes that help
recompute tuple-priorities. The successive scheme is the best to use if data is
erratic, or tuple-priority are likely to fluctuate frequently. The adaptive scheme
has lower overhead, and provides the best trade-off between join quality and the
overhead of load-shedding.
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