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Abstract 
One approach t o  distributed mutual exclusion algo- 
rithms is the use of quorums. Quorum-based al- 
gorithms offer the advantage of protocol symmetry, 
spreading eflort and responsibility uniformly across 
the distributed system. In this paper, we present 
an O(1og n )  algorithm t o  generate coterie templates 
of near-optimal O(n0.63) sire. Coterie templates are 
generic quorum structures that exhibit several desir- 
able properties such as fault tolerance, symmetry and 
low storage cost. In addition, coteries can be instan- 
tiated from the template to  reflect desirable network 
chara ct erist ics. 

1 Introduction 
Achieving mutual exclusion is a central problem in 
parallel and distributed programming. Distributed 
systems present additional difficulties such as sites 
having no memory in common, messages lost dur- 
ing communication, sites failing independently, etc. 
When no coordinator process is present, sites must 
implement their solution to distributed mutual ex- 
clusion cooperatively. Many algorithms and proto- 
cols have been proposed for distributed mutual exclu- 
sion based on the notions of quorums and/or tokens 
11, 3 ,  4, 6, 7, 8, 10, 12, 131. Quorum-based protocols 
offer a notion of symmetry, which serves to distribute 
algorithm overheads equally across the system. It is 
necessary to balance the extent to which each site is 
involved in the enforcement of distributed mutual ex- 
clusion, the extent to which each site is aware of the 
status of other sites, and the extent to which a site 
is required to inform other sites of its status. These 
symmetry requirements are satisfied when the size of 
all quorums are equal and when each site is included 
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in an equal number of quorums. 
In this paper, we propose an O(1ogn) algorithm 

that generates symmetric coterie templates. A coterie 
template is a generic quorum structure that exhibits 
several desirable properties such as fault-tolerance, 
symmetry and low storage cost. A template may 
be instantiated to give arbitrary quorums, which may 
then be adopted by a distributed system for enforcing 
distributed mutual exclusion. 

This paper is organized as follows. Section 2 dis- 
cusses the problem of constructing symmetric and op- 
timum quorums. Section 3 presents an efficient algo- 
rithm to construct fault-tolerant, symmetric and near- 
optimum quorums in the form of templates. It also 
reviews the algorithm and illustrates some desirable 
properties of the algorithm and the template it gen- 
erates. The final section concludes the paper. 

2 Coteries and Their Existence 

2.1 Problem formulation 
Coteries were first proposed by Barbara and Garcia- 
Molina [7] as a generalization of the notion of quorums 
by requiring additional properties. In this section, we 
examine the problem of coterie construction. We first 
define a problem we call Symmetric Coterie Conslruc- 
tion (SCC). 

Definition2.1 ( S C C )  Given a finite set S = 
{1,2,  , . . , n) representing the sites of a network, find 

IS1 subsetsQi C S,Qj # 4, such that: 

(Covering) U:='=l Qi = S. 
(Minimality) Qi $ Q j ,  1 5 i ,  j 5 n, i # j .  
(Equal Sire) IQi l  = IC ,  1 5 i 5 n.  
(Equal Effort)  l{Q,li E Q j } l  = I E , ~  5 i 5 n.  
(Mutual Intersection) Qi n Q j  # 4, 1 _< i ,  j 
n , i  # j .  

The subsets Qi's are called quorums. Quorums that 
satisfy the Minimality , Mutual Intersection and non- 
emptiness properties form a coterie. The Equal Size 
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1 2 3 4 5 6 7  
1 1 0 1 0 0 0 1  1 
0 1 1 0 1 0 0  
0 0 1 1 0 1 0  
0 0 0 1 1 0 1  
1 0 0 0 1 1 0  
0 1 0 0 0 1 1  
1 0 1  0 0 0 1  

3 1 4 2 5 7 6  
1 1  0 1 0  0 0 1  
0 1 1 0 1 0 0  
0 0 1 1 0 1 0  
0 0 0 1 1 0 1  
1 0 0 0 1 1 0  
0 1 0 0 0 1 1  
1 0 1 0 0 0 1  

Figure 2.1: Two symmetric coteries of size 7 under the 
same template. 

and Equal EIfort properties define the additional no- 
tion of symmetry in the coterie. Equal-sized quorums 
ensure that each site sends the same number of mes- 
sages to request for shared resource. Given the ran- 
dom distribution of quorum accumulation requests, 
the Equal Effoort property requires that each site be 
included in the same number of quorums, ensuring 
that all sites expend the same effort in enforcing dis- 
tributed mutual exclusion. In addition it also ensures 
that the failure of one site has the same impact on the 
network as any other site. The last property requires 
any two quorums to intersect, though it is not required 
that they contain the same number of common sites. 

Example 2.1 An example of a symmetric coterie for 
a network of 7 nodes is shown in the quorum matrix in 
Figure 2 . l a .  An n x m matrix X = {qj} is a quorum 
matrix where 

(2 .1)  

xj,j = 

In the figure, S = { 1 , 2 , 3 , 4 , 5 , 6 , 7 } ,  n = 7 ,  a = 
p = 3 and the coterie is the set { { 1 , 2 , 4 } ,  { 2 , 3 , 5 } ,  
{3 ,4 ,61,  { 4 , 5 , 7 } ,  {5 ,6 ,11 ,  { 6 , 7 , 2 ) ,  {7 ,1 ,31} .  Inciden- 
tally, IQi n Q j l  = 1 for all 1 5 i , j  5 n. However, 
it is not required that IQi n Qj l  = IQk n QlI in our 
definition of SCC. I 

Note that the quorum matrix actually defines a co- 
terie template. Suppose we permutate the column la- 
bels in Figure 2.1. This results in a different coterie: 

{ 3 , 4 , 6 } }  (Figure 2.1b). Thus, the column labels con- 
stitute a permutation T ,  which produces an instanti- 
ation of a quorum matrix. 

The construction of a coterie from a set of n nodes 
is closely related to the problem of block design in 
combinatorics. Block designs are arrangements of ob- 
jects into sets, called blocks, such that various condi- 
tions on the number of occurrences of objects, or pairs 

1 
0 otherwise 

if node j E Qi, the quorum of node i { 

{ {1 ,2 ,31 ,  {1 ,4 ,51,  {2 ,4 ,71,  {2 ,5 ,61,  {3 ,5 ,71 ,  {1 ,6 ,71,  

of objects, and sometimes of other things are satisfied. 
In particular, the problem of coterie construction is al- 
most equivallent to the problem of constructing a bal- 
anced incomplete block design, (BIBD) [II]. A BI 
is specified as a (b, U ,  r ,  k ,  A)-configuration with A > 0, 
k < v - 1 ,  where we are given a set of v varieties 
and the problem is to design a collection of b blocks, 
which are sets of varieties such that ( 1 )  each block 
contains k varieties, (2) each variety appears in ex- 
actly r blocks, and ( 3 )  any two blocks have exactly 
A common varieties. A (U, k, A)-configuration is a re- 
striction to b = v and T = k. It is unknown whether 
a (b, v ,  r ,  k, )\)-configuration exists for arbitrary values 
of b, o, r, k, A, and whether there are any general algo- 
rithms to construct them even when they do exist. 

Clearly, the construction of a coterie is similar to 
the construction of a ( U ,  k ,  A)-configuration. Each 
block corresponds to a quorum and the set of vari- 
eties corresponds to S. The only difference lies in 
criterion 3 above: we do not require A to be constant 
for coteries. The similarity with BIBD suggests that 
the coterie construction problem is also hard. 

2.2 Previous work 
Several attempts have been made in the past to gem- 
erate optimal symmetric quorums. Maekawa [$] made 
the insightful observation that symmetric quorums 
are related to finite projective planes (FPP) [2]. Quo- 
rums correspond to the lines in the plane, and have 
equal sizes and intersect in exactly one site. FPPs are 
related to BlBDs as follows [2]: 

Theorem 2.1 A finite projective plane o j  order n as 
equivalent to  a ( U ,  k ,  A)-configuration with parameters 
v = n 2 + n + 1 , k = n + 1 ,  u n d A = I .  

Given a system of n nodes, his algorithm begins 
by constructiing an FPP of order n. It is known [2] 
that there exists a FPP of order k if le is a power 
pm, where p is prime. It is not known whether this is 
also a sufficient condition. Since FPPs exist only for 
some n, Maelkawa proposes two methods to construct 
quorums for the non-existent cases. 

The first method introduces enough dummy nodes 
into the system so that its size reaches n', where n' > 
n is the smalllest number larger than n for which an 
FPP exists. Doing so produces optimal symmetric 
quorums for a network of n' nodes. However, n' is a 
lot larger thain n, and the quorums are not symmetric. 

The second method arranges sites into a square grid 
so that each site takes as its quorum all sites in the 
row and column passing through itself. This produces 
symmetric quorums of size 2 f i .  The limitations of 
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this method is that n must be a perfect square, and 
the quorum size is non-optimal. Again, the quorums 
are not symmetric. 

The association of quorums with finite projective 
planes provides some theoretical insights into the ex- 
istence of symmetric quorums. However, it does not 
produce a general method to generate symmetric and 
optimal quorums for all n. As FPPs are subsumed as 
a special case of SCC and because the construction of 
FPPs is open [5], SCC is an open problem. 

3 Template Construction 
As fully symmetric coteries (with constant A) do not 
exist for all n, we relax the constraint that X be con- 
stant, and present an algorithm QGEN that generates 
symmetric quorums of size close to the optimum. 

3.1 Algorithm QGEN 
Algorithm QGEN generates quorum sets for a com- 
plete, undirected graph. The method starts with a 
trivially constructed coterie and reduces the size of 
the quorums iteratively while preserving the proper- 
ties of a coterie. This section illustrates the operation 
of algorithm QGEN on a graph of size n = 22 (Fig- 
ure 3.1). Given a complete graph, we represent its 
coterie as an n x n quorum matrix X = {xi,j } as de- 
fined in Equation 2.1. Upon termination of the algo- 
rithm, each quorum is a union of disjoint runs, where 
a run is a set of consecutively numbered nodes within 
a row. The objective is to find n symmetric quorums 
for this graph. The following presents some notations 
that we use in our discussions. As the algorithm is 
iterative, many of our symbols will be decorated with 
the iteration number, €or which we use the symbol e. 
Qi denotes the quorum of node i at the eth iteration, 

0 5 i 5 n - 1, 1 5 5 Llog3nJ. We shall 
sometimes omit the superscript and use Qt when 
referring to the quorum of an arbitrary node. 

Ri,r denotes the rth run in quorum Qj. Since the 
number of runs doubles at each iteration, at the 
eth iteration, we will have Qi = Ri,r. The 
matrix initially has a single run in each row, so 

use Rt,r when no confusion arises. 
kt denotes the size of a quorum at the fth iteration, 

so kf = IQtI. The initial quorum size is defined 
as follows: 

k o = {  x + l  i f x m o d 3 = 1  (3.1) 

&' - - Rb,,. . As in the above notation, we shall 

z + 2  i f x m o d 3 = O  

if x mod3 = 2 X 

where z = Ln/2J + 1. The definition ensures that 
IC0 is the smallest integer between Ln/2J + 1 and 
n such that ko + 1 is divisible by 3. The reason 
why 3 is chosen will be explained later. 

xl denotes the size of a run at the t th  iteration, i.e. 
xt = Initially, xo = ko. Since a quorum is 
a union of runs, kt = 2' . x t .  

The algorithm begins with an initial non-optimal 
coterie by associating with each node i a quorum 96 of 
more than half of the total nodes in the graph. Since 
IQ61 2 n/2 the mutual intersection property is satis- 
fied, and a coterie is formed. A systematic way of such 
an initialization is to assign QL = { [i],, , [i+l],, , . . . , [i+ 
ko - lln} where [jIn denotes j modulo n (Figure 3.la) 
where ko = 14. The first iteration reduces the quo- 
rum sizes by partitioning a quorum into disjoint runs, 
and the new quorum is a union of a subset of these 
runs. As 1961 + 1 = IC0 + 1 = 15 is divisible by 3, the 
quorum Qh may be partitioned into 3 runs. For exam- 
ple, {0,1,2,3,4}, {5,6,7,8} and {9,10,11,12,13} are 
the 3 runs for the quorum of node 0. The algorithm 
discards the middle run and forms a new quorum 
QY = RY,l U RY,z = {0,1,2,3,4} U {9,10,11,12,13}. 
The matrix after this iteration X1 still forms a co- 
terie (Figure 3.lb). The formal proof of this claim is 
given in Section 3.2. Note that the size of the mid- 
dle discarded run is 1 less than the outer 2 runs, so 
that the size of the original run is 32 - 1 for some 
positive integer x. Another iteration is possible since 
IRY,ll = IRY,21 is large enough to be partitioned fur- 
ther, giving an even smaller quorum and yielding the 
matrixX2 (Figure 3 .1~) .  The process is repeated until 
the smallest quorum size is reached. In this case, the 
optimal coterie is found after two iterations. The final 
quorum size is 8 (m It is formally presented 
in Algorithm QGEN (Figure 3.2). 

The function QGEN (line 29) accepts the size of 
the graph as a parameter and returns a quorum ar- 
ray Quorum, corresponding to the quorum of node 0. 
The quorums of other nodes may be determined by 
right-shifting this quorum, as shown by the quorum 
matrices in Figure 3.1. There are three routines in 
Figure 3.2.  Function ADJUST increments the size of 
a run I&,,. I if necessary, so that IRt,, I + 1 is divisible 
by 3. Procedure PARTITION performs the subdivi- 
sion process as described earlier. It first computes the 
run size (line 13) and determine if further partition- 
ing is possible (line 14). A run can be partitioned if 
and only if its size plus 1 is divisible by 3 and is more 
than 7 (line 15-20). Otherwise the terminal cases for 
the iteration are handled explicitly as shown in pro- 
cedure PARTITION (line 21-27) when the sizes have 
reached 4, 5, 6 or 7. Function QGEN, the main func- 
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0 

1 
a 
3 
4 
6 

6 
7 
8 

9 

10 

17 

19 
ao 

Figure 3.1: Quorum matrices after the initial, first and 
second iterations respectively. T h e  zero entries have 
been replaced with dots for clarity. 

o 1 a 3 4 s 6 7 a 9 i o  11 i a  13 14 15 16 17  18 19 ao ai 
1 1 1 1 1 1 1 1 1 1 1  1 1 1 . .  . . . . . .  
. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 . .  . . . . .  
. . i i i i i i i i ~  1 1 1  1 1 . .  . . . .  
. .  . 1 1 1 1 1 1 1 1 1 1 1 1 1 1 . .  . . .  
. .  . . 1 . 1 1 1 1 1 1 1 1 1 1 1 1 1 . .  . .  
. . . . .  1 1 1 1 1 1 1 1 1 1 1 1 1 1 .  . .  
. . . .  . . 1 1 1 1 1  1 1 1  1 1 1 1  1 1 . .  
. . . . . .  . 1 1 1 1 1 1 1 1 1 1 1 1 1 1 .  
. . . . . . . .  1 1 1 1 1 1 1 1 1 1 1 1 1 1  

1 . .  . . . .  . . 1 1 1 1 1 1 1 1 1 1 1 1 1  
1 1 .  . . . . . . .  1 1 1 1 1 1 1 1 1 1 1 1  

1 1 1 1 1 .  . . . . . .  , 1 1 1  1 1 1  1 1 1  1 1  

1 3 1 1 1 1 1 1 . .  . . . . . .  1 1  1 1  1 1 1  1 1  
1 4 1 1 P 1 1 1 . .  . . . . . .  1 1  1 1  1 1  1 1  

i a i i r i . .  . . . . . .  1 1  1 1  1 1  1 1  1 1  

i s i i n i i i i . .  . . . . . .  1 1  1 1 1  1 1  
1 6 i i n i i i i i . .  . . . . . .  1 1 1 1  1 1  

1 1  P 1 1  1 1  1 1 .  . . . . . .  1 1  1 1  1 
1 a 1 1 1 1 1 1 1 1 1 1 . .  . . . . .  . l l l l  

1 1  1 1  1 1  1 1  1 1  1 . . . . . . . .  1 1  1 
1 1  1 1  1 1  1 1  1 1  1 1  . . . . . . . .  1 1  

a i i i i i i i i i i i i i i . .  . . . . .  . I  

tion, initializes the Quorum array (line 32-37) and 
calls procedure PARTITION (line 38) to modify the 
array so that the final array corresponds to the first 
row of a quorum matrix. 

In this a.lgorithm, we partition a quorum at each 
iteration into 3 partitions and discard the middle par- 
tition. In fact, we may partition a quorum into p 
runs, where p is a prime number p 2 3, and remove 
the k/2J interleaving partitions alternately. This is 
the generalized version of QGEN. However we show 
in Section 3.3 that the smallest quorum is generated 
with p = 3. 

1 
a 
3 
4 
5 
6 
7 
a 

11 
11 
13 
1 4 .  

3.2 Pralof of correctness 

0 1 3 3 4 5 6 7 8 B 10 11 13  13  14 15 16 17 18 19 20 2 
o l l l l l l . .  . , 1 1 1 1  1 . .  . . . . . .  

. . i i i i i . .  . .  1 1 1  1 1 , .  . . . .  

. 1 1 1 1 1 . .  . . l l l l l . .  . . . . .  

. .  . 1 1 1 1 1 . .  . . l l l l l . .  . . .  

. . .  , 1 1 1 1 1 . .  . . l l l l l . .  . .  

. . . . .  1 1 1 1 1 . .  . . 1 1 1 1 1 .  . .  

. . . . . .  1 1 1 1 1 . .  . . 1 1 1 1 1 . .  

. . . . . . .  1 1 1 1 1 . .  . . 1 1 1 1 1 .  

. . . . . . . .  1 1 1 1 1 .  . .  . 1 1 1 1 1  
9 1  . . . . . . . .  1 1 1 1 1 . .  . , 1 1 1 1  
1 0 1 1  . . . . . . . .  1 1 1 1 1  . . . .  1 1 1  

1 1  1 . .  . . . . . .  1 1  1 1  1 .  . . .  1 1  
1 1  1 1 . .  . . . . . .  1 1  1 1  1 . . .  . l  
1 1  1 1  1 . .  . . . . . .  1 1  1 1  1 . .  . .  

1 1  1 1  1 . .  . . . . . .  1 1  1 1  1 . . .  
1 6 . .  1 1  1 1  1 . .  . . . . . .  1 1  1 1  1 . .  
1 6 . .  . 1 1  1 1  1 . .  . . . . . .  1 1  1 1  1 .  
1 7 . .  . .  1 1  1 1  1 .  . . . . . . .  1 1  1 1  1 
1 8 1 . .  . .  1 1  1 1  1 .  . . . . . . .  1 1  1 1  
1 9 1 1  . . . .  1 1 1 1 1 . .  . . . . .  , 1 1 1  

8 1 1 1 1 1  . . . .  1 1 1 1 1 . .  . . . . .  . 1  
a o i i i  . . . .  1 1 1 1 1 . .  . . . . . .  1 1  

The correct#ness of the above construction is estab- 
lished by th.e following theorem. 

a 
3 
4 
5 
6 

7 

17 

Theorem :3.1 Quorums generated by QGEN form a 
symmetric coterie. 

Proof: We must show that the five properties of 
a symmetric coterie exist in the quorums generated 
by QGEN. The Non-emptiness property is trivially 
true. At each iteration, all quorums are of the same 
size, therefore the Minimalzty property holds. Ad- 
ditionally, they are reduced by the same number of 
nodes, therefore the Equal Site property also holds. 
The number of quorums that each node is included 
in determinles the Equal Effod property. Due to the 
symmetry of the reduction process, all nodes are ex- 
cluded from the same number of quorums at each it- 
eration. Thus the Equal Effort property holds. We 
next show the Mutual Intersection property holds 
by inductioin on the number of iterations 0 5 .t < 
[log, n]. At iteration e = 0, each quorum contains 
&b = { [i],,, [i + l],,, . . . .  [i + IC0 - l],,} where b],, de- 
notes j moldulo n. For any 0 < i < j < n - l, 
Qb nQ; = {L]n, [ j  + I],,,. .. , [i+ ko - l]n} U {[iln, [i + 
l],,, . . .  , b -t LO - l],,} # 4. Hence iteration .t = 0 
holds. 

We claim that if quorums at the Nh iteration, 
1 < .t <  IO,^, n] ,  mutually intersect, then so do the 
quorums at  the (e+ 1)th iteration. Consider the ways 
in which two runs a, Rj of quorums Q;, Q j  respec- 
tively intersect. At the next iteration, both runs are 
partitioned into three segments A, B and C as shown 
in Figure 3.3. Figure 3.3a shows the three ways in 
which Rj still intersect with Ri as long as it is still 
within the boundaries of Ri. When Rj is just out of 
the right-hand boundary of Ri (Figure 3.3b), the fact 
that the middle segment that is discarded is always 
one element less that the remaining segments ensures 
that Rj inteirsect with the next consecutive run of Ri. 

o i a 3 4 s 6 7 8 9 i o  11 i a  13 14 is 16 17 ie ie  ao ai 
0 1 1 . 1 1  . . . .  1 1 . 1 1 . .  . . . . . .  
1 . 1 1 . 1 1  . . . .  1 1 . 1 1 . .  . . . . .  

. .  1 1 . 1 1 . . . .  1 1 . 1 1 . .  . . . .  

. . .  1 1 . 1 1  . . . .  1 1 . 1 1  . . . . .  

. . . .  1 1 . 1 1 . .  . . l l . l l . .  . .  

. . . .  . 1 1 . 1 1 . .  . . l l .  1 1 . .  . 

. . . . . .  1 1 . 1 1 . .  . . l l  . 1 1 . .  

. . . . . . .  1 1 . 1 1  . . . .  1 1 . 1 1 .  
8 .  . . . . . . .  1 1 . 1 1  . . . .  1 1 . 1 1  
9 1  . . . . . . . .  1 1 . 1 1 . .  . . 1 1 . 1  
1 0 1 1  . . . . . . . .  1 1 . 1 1  . . . .  1 1 .  
1 1 . 1 1  . . . . . . .  . 1 1 . 1 1 . .  . . l l  
i a i . 1 1  . . . . . . . .  1 1 . 1 1  . . . .  1 
1 3 1 1 . 1 1  . . . . . .  . . 1 1 . 1 1 . .  . .  
1 4 . 1 1 . 1 1  . . . . . . . .  1 1 . 1 1 . . .  
1 5 . .  1 1 .  1 1 . .  . . . . . .  1 1 .  1 1 . .  
1 6 . . . 1 1 . 1 1  . . . . . . . .  1 1 . 1 1 .  

. . . .  1 1 . 1 1 . .  . . . . . .  1 1 .  1 1  
1 1 1 1 . .  . . l l .  1 1 .  . . . . . . .  1 1 . 1  
1 9 1 1  . . . .  1 1 . 1 1  . . . . . . . .  1 1 .  
2 0 . 1 1  . . . .  1 1 . 1 1  . . . . . . . .  1 1  
a i i . i i . . .  . i i .  1 1 . .  . . . . .  . i  
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39 
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boolean Quorum : array[O.. . a - 11; 

funetion AD JUST( r ) ; 
begin 

ease (T mod 3) of 
0 : return T + 2; 
1 : return T + 1; 
2 : return r ;  

endcase; 
end; 

rocedure PARTITION(s, T) ;  

egin 
size  t T - s + I; 
if (size > 7) then 

size +- ADJUST(size); 
2 t- (size + 1)/3; 
for i = z to (22 - 2) do 

endfor; 
Quorum[i] +- 0 ; 

PARTITION S ,  s + 2 - 1); + 22 - 1, r) ; 
else 

case ( s i t e )  of 

endcase ; 
endif; 

end; 

function QGEN(n); 
egin 

end; 

ko + ADJUST( Ln/2J + 1); 
for i = 0 to n - 1 do 

if(; 6 ko) then 

else 
Quorum[i] c 1 ; 

Quorum[;] t 0 ; 
endfor; 

return Quorum; 
PARTITION(0, ko - 1) ; 

Again f i j  is witnin tne Dounaary 01 tnis run. nence 
intersection preserves through the next iteration. 

However there are four special terminal cases when 
the pre-final run size is less than 8, i.e. 4, 5, 6 and 
7. We prove that subdivision in these cases also pre- 
serves the intersection property. Again we shall show 
that Qj intersects with Qi for all j # i after the fi- 
nal partition. In particular, we show how two runs 
of Q j ' s  still intersect with the two runs of Qi. Fig- 
ure 3.4 illustrates the final partitions when the pre- 
final run sizes are 4, 5, 6 and 7. Consider a run size 
of 4. We have divided the set of Qj's  into two: those 
whose two runs still intersect with Qi, i.e. Qj for 
j E { [ i  + kIn I 1 5 k 5 lo}, and those whose runs 
do not. For the latter case, we may consider the two 
runs and the middle partition as a single large run, in 
which case the size is more than 7.  By the induction 
above, the intersection property holds. In the figure, 
those nodes of Qj that do not intersect with the two 
runs of Qj are left out. Those that do are shown in 
bold. It is obvious by inspection that Qj and Qj still 
intersect after the final partitioning for all j # i .  The 
same argument holds for cases 5, 6 and 7. Hence we 
may conclude that the algorithm generates a symmet- 
ric coterie. E 

3.3 Analysis of algorithm 

3.3.1 Size complexity 

At the l th  iteration, the size of a quorum, kt = 2' . xt 
where ZL = (zL-I+ 1)/3, zo = ko. Expanding the re- 
currence relation gives kt = (2/3)' (2k0 + 3' - 1)  / 2 .  
Since the subdivision process is iterated [log, ko] 
times and ko w n/2, 

k~l , ,~ ,  k o j  = 
= 

(2/3)'"g3 k' (2ko + 31°g3 k o  - 1) / 2  

kp3(2'3) (3ko - 1) /2 
Figure 3.2: Algorithm QGEN. 

= 1 / 2  (,kbog, - k?3('f3)) 

112 (3 (430.~~ - 
w 0.97n0.63 - (0 .65 / r~O.~7)  

< 0.97n0.63 (3.2) 

Therefore the final quorum size is O(n0.63). In any 
generalized version of this algorithm where p 2 3 is 
the unit of partitioning, it can be similarly shown that 
the optimal quorum size generated by the-algorithm is 
O(n'"gpb/'J). Since l0gPb,/2J is minimum at p = 3 ,  
our algorithm achieves the smallest quorum size of 

Figure 3.3: Runs of different quorums preserve intersec- 
tion after partitioning. 

0 ( ~ 0 3 - 3 ) .  
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1 1 1 .  . 1 1 . .  . . .  
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1 1 1 . . 1  
1 1 1 . .  

1 1 1  
1 1  1 . /  

1 1 1  

Figure 3.4: Final partitions for the special terminal cases when the pre-final run sizes are 4, 5, 6 or 7. 

Figure 3.5: Ternary tree as the search space of QGEN. 

3.3.2 Time complexity 

The algorithm QGEN constructs a ternary tree during 
computation, as shown in Figure 3.5, where each node 
represents a run. Each node is one of the three sub- 
runs of its parent node (except the root), and in turn, 
produces three subruns. The middle run is always dis- 
carded, as represented by white circles in the figure. 
The length of the middle run is always one less than 
the length of the other two sibling runs. The black 
circles are runs that the algorithm partitions further. 
As the algorithm is recursively called with each node 
as the parameter, its running time is proportional to 
the size of the tree (less the discarded nodes). Since 
the height of the tree is [log, k0J , the time complexity 
of the version presented in Figure 3.2 is approximately 
2Lhs koJ = nlogs 2. 

However the symmetry of QGEN permits the 
O(1ogn) version shown in Figure 3.6 and by the ar- 
rows in Figure 3.5. In the new version, a run is de- 
noted by an interval (s, r )  which indicates the con- 
secutive numbers s, s + 1 , ... , r - 1 , r representing the 
run. A quoirum is a set of such runs, as declared at  line 
4. For instmce the quorum in Figure 3.1 is given by 
{(0,1),(3,4),(9,10),(12,13)}. Anew variableisused: 
TerminalCme , which indicates those final run sizes: 
4,5,6 and 7, that requires special treatment. At line 
19, procedure PARTITION only traverses the left- 
most branch of the ternary tree and computes the final 
leftmost ruin. It stores the run at  lines 24, 26 or 28. 
This requires O(1og n) time, proportional to the height 
of the tree. In the older version (see Figure 3.2), pro- 
cedure PAFLTITION is called upon both the left and 
right branclies, discarding the middle. The final left- 
most run, .now contained in Quorum, is then used 
to re-construct the entire quorum in O(1og n) time, 
as shown in lines 36-49 after procedure PARTITION 
returns in function QGEN. Therefore the time com- 
plexity of the implementation is O(1og n). 

3.4 

The optimum quorum size of O(n0.5) (see Section 2) 
assumes thist A ,  the number of common nodes be- 
tween any two quorums, is l. Algorithm QGEN is an 
approximation algorithm where the constraint that A 
be constant is relaxed. We shall derive a bound for 

Uplper bound for common nodes 
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integer FinalStartRun; 
integer Terminalcase; 
integer RunSize; 
integer StartRun : arrayEl.. . [log, koj]; 
boolean Quorum : set of run; 

function ADJUST(7); 
begin 

case ( T  mod 3) of 
0 : return T + 2; 
1 : return r + 1; 
2 : return T ;  

endcase; 
end; 

procedure PARTITION(s, T ,  k); 
begin 

size t T - s + 1; 
if (s i ze  > 7) then 

size + AD JUST(size); 
3: t (size + 1)/3;  
StartRun[k] t 22 - 1; 
PARTITION(3, s + z - 1, k - 1); 

else 
Terminalcase i- size; 
case (size) of 

4 , 5  : Quorum t ((0, I)}; 
6 ,7  : Quorum t { (0,1,2)}; 
else: Quorum +- ( ( 0 ,  sa te  - 1)); 

RunSize t size; 
endcase; 

endif; 
end; 

{smdest run size} 
{find run size cases} 
{final run size} 
(starting run indicator) 

{adjust run size so} 
{that partitioning is possible} 

{partition one run only} 

{special terminal cases for} 
{small run size} 

function QGEN(); 
begin 

ko +- ADJUST([n/2] + 1); 

case (Terminalcase) of 

{initial quorum size} 
PARTITION(0, ko - 1, [log, ko]); 

4: 
5: 
6: 
7: 
else: Quorum t Quorum U {(StattRun[l], RunSite  - 1 + StartRun[l])}; 

Quorum t Quorum U ((3,s));  
Quorum +- Quorum U ( (3 ,4)};  
Quorum + Quorum U {(5,5)};  
Quorum t Quorum U {(5,6)}; 

endcase; 
for k = 2 to [log, ko] do 

for each (a la)  E Quorum do 

endfor; 

{reconstruct quorum} 
Quorum t Quorum U ( ( a  + StartRun[k], b + StartRun[k])}; 

endfor; 
return Quorum; 

end; 

Figure 3.6: An O(n0.6310g3 n)  implementation of QGEM. 
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the maximum value of A in quorums generated by the 
algorithm. 

Theorem 3.2 The n u d e r  of common nodes aetween 
any two qvorums produced by QGEN i s  no more than 
a third ofthe quorum size. 

Proof: Q', the quorum of node i ,  has the maxi- 
mum number of nodes in common with Qi-' and 
9"'. We shall consider Q' and Q'+l only since 
the other case is identical. If the size of each run 
in Qi is x, then Q' and Qi+' intersect in exactly 
2 - 1 nodes at each run. Therefore the maximum 
number of common nodes is the difference between 
the size of a quorum and the number of runs, i.e. 
M 3 / 2 k F  - 'jj1Og3 ko = 3/2(./2)'"g3 - (n/2)log3 = 
l/2(n/2)'"g3 M O.32n1"g3 '. Since the quorum size is 
approximately n'0g32 as given by Equation 3.2 and 
since we have ignored the 0.65/n0.37 term, the max- 
imum number of common nodes is no more than a 

I third of the quorum size. 

3.5 Global knowledge and storage cost 

Sites must maintain information about the member- 
ship of their quorums. This requires at most log, n 
bits for the quorums generated by QGEN where the 
ith bit is 1 if and only ifsite i is in the quorum. Thus 
the storage cost is low. Also, the symmetry of the 
quorums generated by QGEN permits the storage of 
global coterie information at no extra cost. To know 
the quorums of other sites, each site need only know 
the site numbers of these other sites. The quorums 
can then be computed easily and need not be stored 
explicitly. For two sites i and j, if Q' = {i, i+l, . . . , i+ 
m}, then Qj = ( [ i + k ] , ,  [ i + l + k ] , ,  . . . , [ i+m+k],}  if 
i < j and $ j  = { [i - k]  , , [i + 1 - k], . . . [i + m - k] , 1 
if i > j where k. = li - j l .  

4 Conclusions 
Achieving distributed mutual exclusion is a funda- 
mental problem in distributed systems. All process 
interactions in distributed systems involve coordina- 
tion and synchronization to  some degree. Many p ro te  
cols and algorithms have been proposed in the past to  
achieve mutual exclusion in distributed system. How- 
ever, no algorithms exist to  date that construct sym- 
metric and optimum quorums. In this paper, we have 
defined a generalized form of the problem of quorum 
construction, SCC. Our contribution is the proposal 
of an efficient algorithm QGEN to generate symmet- 
ric and near-optimum coteries in the form of generic 
coterie templates. Coterie template not only allows 

multiple quorums to be instantiated, it also permits 
these quorums to  reflect important network charac- 
teristics. 
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