
terie Templates: A New Quorum Construction Method*
WEE K. N G ~ CHINYA V. RAVISHANKAR

Department of Electrical Engineering and Computer Science
The University of Michigan, Ann Arbor, MI 48109-2122

E-mail: {wkn,ravi}Qeecs.umich.edu

Abstract
One approach t o distributed mutual exclusion algo-
rithms is the use of quorums. Quorum-based al-
gorithms offer the advantage of protocol symmetry,
spreading eflort and responsibility uniformly across
the distributed system. In this paper, we present
an O(1og n) algorithm t o generate coterie templates
of near-optimal O(n0.63) sire. Coterie templates are
generic quorum structures that exhibit several desir-
able properties such as fault tolerance, symmetry and
low storage cost. In addition, coteries can be instan-
tiated from the template to reflect desirable network
chara ct erist ics.

1 Introduction
Achieving mutual exclusion is a central problem in
parallel and distributed programming. Distributed
systems present additional difficulties such as sites
having no memory in common, messages lost dur-
ing communication, sites failing independently, etc.
When no coordinator process is present, sites must
implement their solution to distributed mutual ex-
clusion cooperatively. Many algorithms and proto-
cols have been proposed for distributed mutual exclu-
sion based on the notions of quorums and/or tokens
11, 3 , 4, 6, 7, 8, 10, 12, 131. Quorum-based protocols
offer a notion of symmetry, which serves to distribute
algorithm overheads equally across the system. It is
necessary to balance the extent to which each site is
involved in the enforcement of distributed mutual ex-
clusion, the extent to which each site is aware of the
status of other sites, and the extent to which a site
is required to inform other sites of its status. These
symmetry requirements are satisfied when the size of
all quorums are equal and when each site is included

*This work was supported in part by the Consortium for

tAuthor's World Wide Web home page is available at
International Earth Science Information Networking.

"http://ssw.eecs.umich.edu/Nsln".

in an equal number of quorums.
In this paper, we propose an O(1ogn) algorithm

that generates symmetric coterie templates. A coterie
template is a generic quorum structure that exhibits
several desirable properties such as fault-tolerance,
symmetry and low storage cost. A template may
be instantiated to give arbitrary quorums, which may
then be adopted by a distributed system for enforcing
distributed mutual exclusion.

This paper is organized as follows. Section 2 dis-
cusses the problem of constructing symmetric and op-
timum quorums. Section 3 presents an efficient algo-
rithm to construct fault-tolerant, symmetric and near-
optimum quorums in the form of templates. It also
reviews the algorithm and illustrates some desirable
properties of the algorithm and the template it gen-
erates. The final section concludes the paper.

2 Coteries and Their Existence

2.1 Problem formulation
Coteries were first proposed by Barbara and Garcia-
Molina [7] as a generalization of the notion of quorums
by requiring additional properties. In this section, we
examine the problem of coterie construction. We first
define a problem we call Symmetric Coterie Conslruc-
tion (SCC).

Definition2.1 (S C C) Given a finite set S =
{1,2, , . . , n) representing the sites of a network, find

IS1 subsetsQi C S,Qj # 4, such that:

(Covering) U:='=l Qi = S.
(Minimality) Qi $ Q j , 1 5 i , j 5 n, i # j .
(Equal Sire) IQi l = IC , 1 5 i 5 n.
(Equal Effort) l{Q,li E Q j } l = I E , ~ 5 i 5 n.
(Mutual Intersection) Qi n Q j # 4, 1 _< i , j
n , i # j .

The subsets Qi's are called quorums. Quorums that
satisfy the Minimality , Mutual Intersection and non-
emptiness properties form a coterie. The Equal Size

1063-6927/95 $4.00 0 1995 IEEE
92

http://wkn,ravi}Qeecs.umich.edu
http://ssw.eecs.umich.edu/Nsln

1 2 3 4 5 6 7
1 1 0 1 0 0 0 1 1
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1
1 0 0 0 1 1 0
0 1 0 0 0 1 1
1 0 1 0 0 0 1

3 1 4 2 5 7 6
1 1 0 1 0 0 0 1
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1
1 0 0 0 1 1 0
0 1 0 0 0 1 1
1 0 1 0 0 0 1

Figure 2.1: Two symmetric coteries of size 7 under the
same template.

and Equal EIfort properties define the additional no-
tion of symmetry in the coterie. Equal-sized quorums
ensure that each site sends the same number of mes-
sages to request for shared resource. Given the ran-
dom distribution of quorum accumulation requests,
the Equal Effoort property requires that each site be
included in the same number of quorums, ensuring
that all sites expend the same effort in enforcing dis-
tributed mutual exclusion. In addition it also ensures
that the failure of one site has the same impact on the
network as any other site. The last property requires
any two quorums to intersect, though it is not required
that they contain the same number of common sites.

Example 2.1 An example of a symmetric coterie for
a network of 7 nodes is shown in the quorum matrix in
Figure 2 . l a . An n x m matrix X = {qj} is a quorum
matrix where

(2 .1)

xj,j =

In the figure, S = { 1 , 2 , 3 , 4 , 5 , 6 , 7 } , n = 7 , a =
p = 3 and the coterie is the set { { 1 , 2 , 4 } , { 2 , 3 , 5 } ,
{3 ,4 ,61, { 4 , 5 , 7 } , {5 ,6 ,11 , { 6 , 7 , 2) , {7 ,1 ,31} . Inciden-
tally, IQi n Q j l = 1 for all 1 5 i , j 5 n. However,
it is not required that IQi n Qj l = IQk n QlI in our
definition of SCC. I

Note that the quorum matrix actually defines a co-
terie template. Suppose we permutate the column la-
bels in Figure 2.1. This results in a different coterie:

{ 3 , 4 , 6 } } (Figure 2.1b). Thus, the column labels con-
stitute a permutation T , which produces an instanti-
ation of a quorum matrix.

The construction of a coterie from a set of n nodes
is closely related to the problem of block design in
combinatorics. Block designs are arrangements of ob-
jects into sets, called blocks, such that various condi-
tions on the number of occurrences of objects, or pairs

1
0 otherwise

if node j E Qi, the quorum of node i {

{ {1 ,2 ,31 , {1 ,4 ,51, {2 ,4 ,71, {2 ,5 ,61, {3 ,5 ,71 , {1 ,6 ,71,

of objects, and sometimes of other things are satisfied.
In particular, the problem of coterie construction is al-
most equivallent to the problem of constructing a bal-
anced incomplete block design, (BIBD) [II]. A BI
is specified as a (b, U , r , k , A)-configuration with A > 0,
k < v - 1 , where we are given a set of v varieties
and the problem is to design a collection of b blocks,
which are sets of varieties such that (1) each block
contains k varieties, (2) each variety appears in ex-
actly r blocks, and (3) any two blocks have exactly
A common varieties. A (U, k, A)-configuration is a re-
striction to b = v and T = k. It is unknown whether
a (b, v , r , k,)\)-configuration exists for arbitrary values
of b, o, r, k, A, and whether there are any general algo-
rithms to construct them even when they do exist.

Clearly, the construction of a coterie is similar to
the construction of a (U , k , A)-configuration. Each
block corresponds to a quorum and the set of vari-
eties corresponds to S. The only difference lies in
criterion 3 above: we do not require A to be constant
for coteries. The similarity with BIBD suggests that
the coterie construction problem is also hard.

2.2 Previous work
Several attempts have been made in the past to gem-
erate optimal symmetric quorums. Maekawa [$] made
the insightful observation that symmetric quorums
are related to finite projective planes (FPP) [2]. Quo-
rums correspond to the lines in the plane, and have
equal sizes and intersect in exactly one site. FPPs are
related to BlBDs as follows [2]:

Theorem 2.1 A finite projective plane o j order n as
equivalent to a (U , k , A)-configuration with parameters
v = n 2 + n + 1 , k = n + 1 , u n d A = I .

Given a system of n nodes, his algorithm begins
by constructiing an FPP of order n. It is known [2]
that there exists a FPP of order k if le is a power
pm, where p is prime. It is not known whether this is
also a sufficient condition. Since FPPs exist only for
some n, Maelkawa proposes two methods to construct
quorums for the non-existent cases.

The first method introduces enough dummy nodes
into the system so that its size reaches n', where n' >
n is the smalllest number larger than n for which an
FPP exists. Doing so produces optimal symmetric
quorums for a network of n' nodes. However, n' is a
lot larger thain n, and the quorums are not symmetric.

The second method arranges sites into a square grid
so that each site takes as its quorum all sites in the
row and column passing through itself. This produces
symmetric quorums of size 2 f i . The limitations of

93

this method is that n must be a perfect square, and
the quorum size is non-optimal. Again, the quorums
are not symmetric.

The association of quorums with finite projective
planes provides some theoretical insights into the ex-
istence of symmetric quorums. However, it does not
produce a general method to generate symmetric and
optimal quorums for all n. As FPPs are subsumed as
a special case of SCC and because the construction of
FPPs is open [5], SCC is an open problem.

3 Template Construction
As fully symmetric coteries (with constant A) do not
exist for all n, we relax the constraint that X be con-
stant, and present an algorithm QGEN that generates
symmetric quorums of size close to the optimum.

3.1 Algorithm QGEN
Algorithm QGEN generates quorum sets for a com-
plete, undirected graph. The method starts with a
trivially constructed coterie and reduces the size of
the quorums iteratively while preserving the proper-
ties of a coterie. This section illustrates the operation
of algorithm QGEN on a graph of size n = 22 (Fig-
ure 3.1). Given a complete graph, we represent its
coterie as an n x n quorum matrix X = {xi,j } as de-
fined in Equation 2.1. Upon termination of the algo-
rithm, each quorum is a union of disjoint runs, where
a run is a set of consecutively numbered nodes within
a row. The objective is to find n symmetric quorums
for this graph. The following presents some notations
that we use in our discussions. As the algorithm is
iterative, many of our symbols will be decorated with
the iteration number, €or which we use the symbol e.
Qi denotes the quorum of node i at the eth iteration,

0 5 i 5 n - 1, 1 5 5 Llog3nJ. We shall
sometimes omit the superscript and use Qt when
referring to the quorum of an arbitrary node.

Ri,r denotes the rth run in quorum Qj. Since the
number of runs doubles at each iteration, at the
eth iteration, we will have Qi = Ri,r. The
matrix initially has a single run in each row, so

use Rt,r when no confusion arises.
kt denotes the size of a quorum at the fth iteration,

so kf = IQtI. The initial quorum size is defined
as follows:

k o = { x + l i f x m o d 3 = 1 (3.1)

&' - - Rb,,. . As in the above notation, we shall

z + 2 i f x m o d 3 = O

if x mod3 = 2 X

where z = Ln/2J + 1. The definition ensures that
IC0 is the smallest integer between Ln/2J + 1 and
n such that ko + 1 is divisible by 3. The reason
why 3 is chosen will be explained later.

xl denotes the size of a run at the t th iteration, i.e.
xt = Initially, xo = ko. Since a quorum is
a union of runs, kt = 2' . x t .

The algorithm begins with an initial non-optimal
coterie by associating with each node i a quorum 96 of
more than half of the total nodes in the graph. Since
IQ61 2 n/2 the mutual intersection property is satis-
fied, and a coterie is formed. A systematic way of such
an initialization is to assign QL = { [i],, , [i+l],, , . . . , [i+
ko - lln} where [jIn denotes j modulo n (Figure 3.la)
where ko = 14. The first iteration reduces the quo-
rum sizes by partitioning a quorum into disjoint runs,
and the new quorum is a union of a subset of these
runs. As 1961 + 1 = IC0 + 1 = 15 is divisible by 3, the
quorum Qh may be partitioned into 3 runs. For exam-
ple, {0,1,2,3,4}, {5,6,7,8} and {9,10,11,12,13} are
the 3 runs for the quorum of node 0. The algorithm
discards the middle run and forms a new quorum
QY = RY,l U RY,z = {0,1,2,3,4} U {9,10,11,12,13}.
The matrix after this iteration X1 still forms a co-
terie (Figure 3.lb). The formal proof of this claim is
given in Section 3.2. Note that the size of the mid-
dle discarded run is 1 less than the outer 2 runs, so
that the size of the original run is 32 - 1 for some
positive integer x. Another iteration is possible since
IRY,ll = IRY,21 is large enough to be partitioned fur-
ther, giving an even smaller quorum and yielding the
matrixX2 (Figure 3 .1~) . The process is repeated until
the smallest quorum size is reached. In this case, the
optimal coterie is found after two iterations. The final
quorum size is 8 (m It is formally presented
in Algorithm QGEN (Figure 3.2).

The function QGEN (line 29) accepts the size of
the graph as a parameter and returns a quorum ar-
ray Quorum, corresponding to the quorum of node 0.
The quorums of other nodes may be determined by
right-shifting this quorum, as shown by the quorum
matrices in Figure 3.1. There are three routines in
Figure 3.2. Function ADJUST increments the size of
a run I&,,. I if necessary, so that IRt,, I + 1 is divisible
by 3. Procedure PARTITION performs the subdivi-
sion process as described earlier. It first computes the
run size (line 13) and determine if further partition-
ing is possible (line 14). A run can be partitioned if
and only if its size plus 1 is divisible by 3 and is more
than 7 (line 15-20). Otherwise the terminal cases for
the iteration are handled explicitly as shown in pro-
cedure PARTITION (line 21-27) when the sizes have
reached 4, 5, 6 or 7. Function QGEN, the main func-

94

0

1
a
3
4
6

6
7
8

9

10

17

19
ao

Figure 3.1: Quorum matrices after the initial, first and
second iterations respectively. T h e zero entries have
been replaced with dots for clarity.

o 1 a 3 4 s 6 7 a 9 i o 11 i a 13 14 15 16 17 18 19 ao ai
1 1 1 1 1 1 1 1 1 1 1 1 1 1
. 1 1 1 1 1 1 1 1 1 1 1 1 1 1
. . i i i i i i i i ~ 1 1 1 1 1
. . . 1 1 1 1 1 1 1 1 1 1 1 1 1 1
. . . . 1 . 1 1 1 1 1 1 1 1 1 1 1 1 1
. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 . . .
. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 . .
. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 .
. 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 , 1 1 1 1 1 1 1 1 1 1 1

1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 4 1 1 P 1 1 1 1 1 1 1 1 1 1 1

i a i i r i 1 1 1 1 1 1 1 1 1 1

i s i i n i i i i 1 1 1 1 1 1 1
1 6 i i n i i i i i 1 1 1 1 1 1

1 1 P 1 1 1 1 1 1 1 1 1 1 1
1 a 1 1 1 1 1 1 1 1 1 1 l l l l

1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1

a i i i i i i i i i i i i i i I

tion, initializes the Quorum array (line 32-37) and
calls procedure PARTITION (line 38) to modify the
array so that the final array corresponds to the first
row of a quorum matrix.

In this a.lgorithm, we partition a quorum at each
iteration into 3 partitions and discard the middle par-
tition. In fact, we may partition a quorum into p
runs, where p is a prime number p 2 3, and remove
the k/2J interleaving partitions alternately. This is
the generalized version of QGEN. However we show
in Section 3.3 that the smallest quorum is generated
with p = 3.

1
a
3
4
5
6
7
a

11
11
13
1 4 .

3.2 Pralof of correctness

0 1 3 3 4 5 6 7 8 B 10 11 13 13 14 15 16 17 18 19 20 2
o l l l l l l . . . , 1 1 1 1 1

. . i i i i i 1 1 1 1 1 ,

. 1 1 1 1 1 l l l l l

. . . 1 1 1 1 1 l l l l l

. . . , 1 1 1 1 1 l l l l l

. 1 1 1 1 1 1 1 1 1 1 . . .

. 1 1 1 1 1 1 1 1 1 1 . .

. 1 1 1 1 1 1 1 1 1 1 .

. 1 1 1 1 1 1 1 1 1 1
9 1 1 1 1 1 1 . . . , 1 1 1 1
1 0 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 l
1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 . . .
1 6 . . 1 1 1 1 1 1 1 1 1 1 . .
1 6 . . . 1 1 1 1 1 1 1 1 1 1 .
1 7 1 1 1 1 1 1 1 1 1 1
1 8 1 1 1 1 1 1 1 1 1 1
1 9 1 1 1 1 1 1 1 , 1 1 1

8 1 1 1 1 1 1 1 1 1 1 1
a o i i i 1 1 1 1 1 1 1

The correct#ness of the above construction is estab-
lished by th.e following theorem.

a
3
4
5
6

7

17

Theorem :3.1 Quorums generated by QGEN form a
symmetric coterie.

Proof: We must show that the five properties of
a symmetric coterie exist in the quorums generated
by QGEN. The Non-emptiness property is trivially
true. At each iteration, all quorums are of the same
size, therefore the Minimalzty property holds. Ad-
ditionally, they are reduced by the same number of
nodes, therefore the Equal Site property also holds.
The number of quorums that each node is included
in determinles the Equal Effod property. Due to the
symmetry of the reduction process, all nodes are ex-
cluded from the same number of quorums at each it-
eration. Thus the Equal Effort property holds. We
next show the Mutual Intersection property holds
by inductioin on the number of iterations 0 5 .t <
[log, n]. At iteration e = 0, each quorum contains
&b = { [i],,, [i + l],,, [i + IC0 - l],,} where b],, de-
notes j moldulo n. For any 0 < i < j < n - l,
Qb nQ; = {L]n, [j + I],,,. .. , [i+ ko - l]n} U {[iln, [i +
l],,, . . . , b -t LO - l],,} # 4. Hence iteration .t = 0
holds.

We claim that if quorums at the Nh iteration,
1 < .t < IO,^, n] , mutually intersect, then so do the
quorums at the (e+ 1)th iteration. Consider the ways
in which two runs a, Rj of quorums Q;, Q j respec-
tively intersect. At the next iteration, both runs are
partitioned into three segments A, B and C as shown
in Figure 3.3. Figure 3.3a shows the three ways in
which Rj still intersect with Ri as long as it is still
within the boundaries of Ri. When Rj is just out of
the right-hand boundary of Ri (Figure 3.3b), the fact
that the middle segment that is discarded is always
one element less that the remaining segments ensures
that Rj inteirsect with the next consecutive run of Ri.

o i a 3 4 s 6 7 8 9 i o 11 i a 13 14 is 16 17 ie ie ao ai
0 1 1 . 1 1 1 1 . 1 1
1 . 1 1 . 1 1 1 1 . 1 1

. . 1 1 . 1 1 1 1 . 1 1

. . . 1 1 . 1 1 1 1 . 1 1

. . . . 1 1 . 1 1 l l . l l

. 1 1 . 1 1 l l . 1 1 . . .

. 1 1 . 1 1 l l . 1 1 . .

. 1 1 . 1 1 1 1 . 1 1 .
8 1 1 . 1 1 1 1 . 1 1
9 1 1 1 . 1 1 1 1 . 1
1 0 1 1 1 1 . 1 1 1 1 .
1 1 . 1 1 1 1 . 1 1 l l
i a i . 1 1 1 1 . 1 1 1
1 3 1 1 . 1 1 1 1 . 1 1
1 4 . 1 1 . 1 1 1 1 . 1 1 . . .
1 5 . . 1 1 . 1 1 1 1 . 1 1 . .
1 6 . . . 1 1 . 1 1 1 1 . 1 1 .

. . . . 1 1 . 1 1 1 1 . 1 1
1 1 1 1 l l . 1 1 1 1 . 1
1 9 1 1 1 1 . 1 1 1 1 .
2 0 . 1 1 1 1 . 1 1 1 1
a i i . i i i i . 1 1 i

95

1

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
2
21
22
23
24
25
26
27
28

29
30
31
32
33
34
35
36
37
38
39
$0

boolean Quorum : array[O.. . a - 11;

funetion AD JUST(r) ;
begin

ease (T mod 3) of
0 : return T + 2;
1 : return T + 1;
2 : return r ;

endcase;
end;

rocedure PARTITION(s, T) ;

egin
size t T - s + I;
if (size > 7) then

size +- ADJUST(size);
2 t- (size + 1)/3;
for i = z to (22 - 2) do

endfor;
Quorum[i] +- 0 ;

PARTITION S , s + 2 - 1); + 22 - 1, r) ;
else

case (s i t e) of

endcase ;
endif;

end;

function QGEN(n);
egin

end;

ko + ADJUST(Ln/2J + 1);
for i = 0 to n - 1 do

if(; 6 ko) then

else
Quorum[i] c 1 ;

Quorum[;] t 0 ;
endfor;

return Quorum;
PARTITION(0, ko - 1) ;

Again f i j is witnin tne Dounaary 01 tnis run. nence
intersection preserves through the next iteration.

However there are four special terminal cases when
the pre-final run size is less than 8, i.e. 4, 5, 6 and
7. We prove that subdivision in these cases also pre-
serves the intersection property. Again we shall show
that Qj intersects with Qi for all j # i after the fi-
nal partition. In particular, we show how two runs
of Q j ' s still intersect with the two runs of Qi. Fig-
ure 3.4 illustrates the final partitions when the pre-
final run sizes are 4, 5, 6 and 7. Consider a run size
of 4. We have divided the set of Qj's into two: those
whose two runs still intersect with Qi, i.e. Qj for
j E { [i + kIn I 1 5 k 5 lo}, and those whose runs
do not. For the latter case, we may consider the two
runs and the middle partition as a single large run, in
which case the size is more than 7. By the induction
above, the intersection property holds. In the figure,
those nodes of Qj that do not intersect with the two
runs of Qj are left out. Those that do are shown in
bold. It is obvious by inspection that Qj and Qj still
intersect after the final partitioning for all j # i . The
same argument holds for cases 5, 6 and 7. Hence we
may conclude that the algorithm generates a symmet-
ric coterie. E

3.3 Analysis of algorithm

3.3.1 Size complexity

At the l th iteration, the size of a quorum, kt = 2' . xt
where ZL = (zL-I+ 1)/3, zo = ko. Expanding the re-
currence relation gives kt = (2/3)' (2k0 + 3' - 1) / 2 .
Since the subdivision process is iterated [log, ko]
times and ko w n/2,

k~l , ,~ , k o j =
=

(2/3)'"g3 k' (2ko + 31°g3 k o - 1) / 2

kp3(2'3) (3ko - 1) /2
Figure 3.2: Algorithm QGEN.

= 1 / 2 (,kbog, - k?3('f3))

112 (3 (430.~~ -
w 0.97n0.63 - (0 .65 / r~O.~7)

< 0.97n0.63 (3.2)

Therefore the final quorum size is O(n0.63). In any
generalized version of this algorithm where p 2 3 is
the unit of partitioning, it can be similarly shown that
the optimal quorum size generated by the-algorithm is
O(n'"gpb/'J). Since l0gPb,/2J is minimum at p = 3 ,
our algorithm achieves the smallest quorum size of

Figure 3.3: Runs of different quorums preserve intersec-
tion after partitioning.

0 (~ 0 3 - 3) .

96

1 1 . 1 . . .
1 1 . 1 . .

I 1 1
1

1 1 1 . . 1 1 1 1 . . 1
1 1 1

1 1 1 . . 1 1 1 1 .
1 1 1 . . l 1 1 1

1 1 1 . . 1 1 1
1 1 1 . . 1 1

1 1 1 . . 1
1 1 1 . . i : : 1 :

1 1 1 . . 1 . . .
1 1 1 . . 1 . .

1 1 1 . . 1 .
1 1 1 . . 1

1 1 1 . .
1 1 1 .

1 1 1
1 1

1

. l l

1 1 1 . . l l 1 1 1 . . 1 1
1 1 1 . . 1 1 1 1 1 . . 1

1 1 1 . . 1 1 1 1 1 . .
I 1 1 . . 1 1 1 1 1 .

i i a . . 1 1 1 1 1
i a i . . i i 1 1

1 1 1 . . 1 1 1
1 1 1 . . 1 1 I

1 1 1 . . 1 1
i l l . . 1 1

1 1 1 . . 1 1 . . .
1 1 1 . . 1 1 . .

1 1 1 . . 1 1 .
1 1 1 . . 1 1

1 1 1 . . 1
1 1 1 . .

1 1 1
1 1 1 . /

1 1 1

Figure 3.4: Final partitions for the special terminal cases when the pre-final run sizes are 4, 5, 6 or 7.

Figure 3.5: Ternary tree as the search space of QGEN.

3.3.2 Time complexity

The algorithm QGEN constructs a ternary tree during
computation, as shown in Figure 3.5, where each node
represents a run. Each node is one of the three sub-
runs of its parent node (except the root), and in turn,
produces three subruns. The middle run is always dis-
carded, as represented by white circles in the figure.
The length of the middle run is always one less than
the length of the other two sibling runs. The black
circles are runs that the algorithm partitions further.
As the algorithm is recursively called with each node
as the parameter, its running time is proportional to
the size of the tree (less the discarded nodes). Since
the height of the tree is [log, k0J , the time complexity
of the version presented in Figure 3.2 is approximately
2Lhs koJ = nlogs 2.

However the symmetry of QGEN permits the
O(1ogn) version shown in Figure 3.6 and by the ar-
rows in Figure 3.5. In the new version, a run is de-
noted by an interval (s, r) which indicates the con-
secutive numbers s, s + 1 , ... , r - 1 , r representing the
run. A quoirum is a set of such runs, as declared at line
4. For instmce the quorum in Figure 3.1 is given by
{(0,1),(3,4),(9,10),(12,13)}. Anew variableisused:
TerminalCme , which indicates those final run sizes:
4,5,6 and 7, that requires special treatment. At line
19, procedure PARTITION only traverses the left-
most branch of the ternary tree and computes the final
leftmost ruin. It stores the run at lines 24, 26 or 28.
This requires O(1og n) time, proportional to the height
of the tree. In the older version (see Figure 3.2), pro-
cedure PAFLTITION is called upon both the left and
right branclies, discarding the middle. The final left-
most run, .now contained in Quorum, is then used
to re-construct the entire quorum in O(1og n) time,
as shown in lines 36-49 after procedure PARTITION
returns in function QGEN. Therefore the time com-
plexity of the implementation is O(1og n).

3.4

The optimum quorum size of O(n0.5) (see Section 2)
assumes thist A , the number of common nodes be-
tween any two quorums, is l. Algorithm QGEN is an
approximation algorithm where the constraint that A
be constant is relaxed. We shall derive a bound for

Uplper bound for common nodes

97

1
2
3
4
5

6
7
8
9

10
11
12
13

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

integer FinalStartRun;
integer Terminalcase;
integer RunSize;
integer StartRun : arrayEl.. . [log, koj];
boolean Quorum : set of run;

function ADJUST(7);
begin

case (T mod 3) of
0 : return T + 2;
1 : return r + 1;
2 : return T ;

endcase;
end;

procedure PARTITION(s, T , k);
begin

size t T - s + 1;
if (s i ze > 7) then

size + AD JUST(size);
3: t (size + 1)/3;
StartRun[k] t 22 - 1;
PARTITION(3, s + z - 1, k - 1);

else
Terminalcase i- size;
case (size) of

4 , 5 : Quorum t ((0, I)};
6 ,7 : Quorum t { (0,1,2)};
else: Quorum +- ((0 , sa te - 1));

RunSize t size;
endcase;

endif;
end;

{smdest run size}
{find run size cases}
{final run size}
(starting run indicator)

{adjust run size so}
{that partitioning is possible}

{partition one run only}

{special terminal cases for}
{small run size}

function QGEN();
begin

ko +- ADJUST([n/2] + 1);

case (Terminalcase) of

{initial quorum size}
PARTITION(0, ko - 1, [log, ko]);

4:
5:
6:
7:
else: Quorum t Quorum U {(StattRun[l], RunSite - 1 + StartRun[l])};

Quorum t Quorum U ((3,s));
Quorum +- Quorum U ((3 ,4)};
Quorum + Quorum U {(5,5)};
Quorum t Quorum U {(5,6)};

endcase;
for k = 2 to [log, ko] do

for each (a la) E Quorum do

endfor;

{reconstruct quorum}
Quorum t Quorum U ((a + StartRun[k], b + StartRun[k])};

endfor;
return Quorum;

end;

Figure 3.6: An O(n0.6310g3 n) implementation of QGEM.

98

the maximum value of A in quorums generated by the
algorithm.

Theorem 3.2 The n u d e r of common nodes aetween
any two qvorums produced by QGEN i s no more than
a third ofthe quorum size.

Proof: Q', the quorum of node i , has the maxi-
mum number of nodes in common with Qi-' and
9"'. We shall consider Q' and Q'+l only since
the other case is identical. If the size of each run
in Qi is x, then Q' and Qi+' intersect in exactly
2 - 1 nodes at each run. Therefore the maximum
number of common nodes is the difference between
the size of a quorum and the number of runs, i.e.
M 3 / 2 k F - 'jj1Og3 ko = 3/2(./2)'"g3 - (n/2)log3 =
l/2(n/2)'"g3 M O.32n1"g3 '. Since the quorum size is
approximately n'0g32 as given by Equation 3.2 and
since we have ignored the 0.65/n0.37 term, the max-
imum number of common nodes is no more than a

I third of the quorum size.

3.5 Global knowledge and storage cost

Sites must maintain information about the member-
ship of their quorums. This requires at most log, n
bits for the quorums generated by QGEN where the
ith bit is 1 if and only ifsite i is in the quorum. Thus
the storage cost is low. Also, the symmetry of the
quorums generated by QGEN permits the storage of
global coterie information at no extra cost. To know
the quorums of other sites, each site need only know
the site numbers of these other sites. The quorums
can then be computed easily and need not be stored
explicitly. For two sites i and j, if Q' = {i, i+l, . . . , i+
m}, then Qj = ([i + k] , , [i + l + k] , , . . . , [i+m+k],} if
i < j and $ j = { [i - k] , , [i + 1 - k], . . . [i + m - k] , 1
if i > j where k. = li - j l .

4 Conclusions
Achieving distributed mutual exclusion is a funda-
mental problem in distributed systems. All process
interactions in distributed systems involve coordina-
tion and synchronization to some degree. Many p ro te
cols and algorithms have been proposed in the past to
achieve mutual exclusion in distributed system. How-
ever, no algorithms exist to date that construct sym-
metric and optimum quorums. In this paper, we have
defined a generalized form of the problem of quorum
construction, SCC. Our contribution is the proposal
of an efficient algorithm QGEN to generate symmet-
ric and near-optimum coteries in the form of generic
coterie templates. Coterie template not only allows

multiple quorums to be instantiated, it also permits
these quorums to reflect important network charac-
teristics.

Referemces
D. AGRAWAL, A. ABBADI. An Efficient and Fault-
Tolerant Solution for Distributed Mutual Exclusion.
ACM Transactions on Computer Systems, Vol. 9, No.
1, pp. 11-20, Feb. 1991.

A. ALBERT: R. SANDLER. An Introduction to Finite
Projective P h e s , Holt, Rinehart & Winston. New
York, 1968.

D. BARBARA, B. GARCIA-MOLINA. Mutual Exclu-
sion in Partitioned Distributed Systems. Distributed
Computing, No. 1, pp. 119-132, 1986.

0. CAIWALHO, 6 . ROUCAIROL. On Mutual Exclu-
sion in Computer Networks. Communications of the
A C M , Vol. 26, NO. 2, pp. 146-147, 1983.

C. J. COLBOURN, P. 6. VAN OORSCHOT. Applica-
tions of Combinatorial Designs in Computer Science.
ACM Computing Surveys, Vol. 21, No. 2, pp. 223-50,
1989.

Y. I. CHANG, M. SINGHAL, M. T. LIW. A Fault Tol-
erant Algorithm for Distributed Mutual Exclusion.
Proceedings of the 9th Symposium on Reliable Dis-
tributed Systems, pp. 146-154, Oct. 1990.

H. GARCIA-MOLINA, K. BARBARA. Bow to Assign
Votes in a Distributed System. Journal of the A C M ,
Vol. 32, NO. 4, pp. 841-860, Oct. 1985.

M. MAEKAWA. A I/% Algorithm for Mutual Exclu-
sion in IDecentrdized Systems. ACM Transactions on
Computer Systems, Vol. 3, No. 2, pp. 145-159, 1985.

M. RAYNAL. A Simple Taxonomy for Distributed
Mutual Exclusion Algorithms. Technical Report 560
INRIA, 78153 Le Chesnay Cedex, France, 1990.

G. RICART, A. AGRAWALA. An Optimal Algorithm
for Mutual Exclusion in Computer Networks. Com-
municaitions of the AGM, Vol. 24, No. 1, pp. 9-17,
Jan. 19131.

H. J. RYSER. Combinatorial Mathematics, Carus
Mathematical Monographs, No. 14, Mathematical
Association of America, Washington, D.C., 1963.

B. A. SANDERS. The Information Structure of Dis-
tributed Mutual Exclusions Algorithms. ACM Trans-
actions on Computer Systems, Vol. 5, No. 3, pp. 284-
299, Aug. 1987.

M. SINGHAL. A Heuristically-Aided Algorithm for
Mutual Exclusion in Distributed Systems. IEEE
Transactions on Computers, Vol. 38, No. 5, pp. 651-
662, May 1989.

99

