
On Masking Topical Intent in Keyword Search

Peng Wang and Chinya V. Ravishankar

Department of Computer Science & Engineering

University of California–Riverside, Riverside, CA 92521, USA
{wangpe, ravi}@cs.ucr.edu

Abstract—Text-based search queries reveal user intent to the
search engine, compromising privacy. Topical Intent Obfuscation
(TIO) is a promising new approach to preserving user privacy.
TIO masks topical intent by mixing real user queries with dummy
queries matching various different topics. Dummy queries are
generated using a Dummy Query Generation Algorithm (DGA).

We demonstrate various shortcomings in current TIO schemes,
and show how to correct them. Current schemes assume that
DGA details are unknown to the adversary. We argue that this
is a flawed assumption, and show how DGA details can be used
to construct efficient attacks on TIO schemes, using an iterative
DGA as an example. Our extensive experiments on real data sets
show that our attacks can flag up to 80% of dummy queries.

We also propose HDGA, a new DGA that we prove to be
immune to the attacks based on DGA semantics that we describe.

I. INTRODUCTION

Information retrieval based on text or keyword search is now

ubiquitous, thanks to its speed and convenience. Users submit

text queries to text-search providers (search engines), which

maintain massive text databases optimized for search. Search

services can be free, since providers derive value by building

profiles for users from received queries. Profiles allow search

providers to both improve search results through personaliza-

tion, as well as generate revenue via targeted advertisements.

Users, however, may have a contrary interest. Queries can

leak considerable private information to search engines, which

routinely record and use it to construct detailed user profiles.

If Alice searches for information on certain diseases, say, she

reveals something about her interests, perhaps even about her

health. Alice loses control over her profile, which may be sold

to third parties, and become widely disseminated. As [1] points

out, this may even create legal liabilities for users.

Various approaches exist to address this issue, each with its

own shortcomings. Those aiming at query indistinguishability

negate the two greatest advantages of text-based search, i.e.,

efficiency and similarity-based retrieval on imprecise key-

words. Using Private Information Retrieval [2]–[5] achieves

indistinguishability, but incurs debilitating overhead. Search-

able encryption approaches [6]–[13] gain efficiency, but make

weaker guarantees. Most significantly, they preclude imprecise

searches, a bedrock advantage of text-based search.

Keyword-Based Obfuscation (KBO) Schemes [1], [14]–[19]

are another alternative. They provide weaker guarantees still,

and try merely to obscure user intent. Such methods typically

hide the real query in a mass of dummy queries generated

using a Dummy Query Generation algorithm (DGA). The real

and dummy queries are sent as a single query group to the

User Search

Engine

� � � � � �� � � � � �� � 	 �
 � � � � �
TIO Tool

...
 � � � � � � � � � � �qn
q

1

 � � � � � � � � � �� � � � � � � � � 	 � � � � �� � � � �
 � � � � � �
q

2q
1

q
1

Fig. 1: Scheme model.

search engine. The search engine returns results for all queries

in the group. Dummy results are subsequently filtered out.

Many KBO schemes have the advantage of being purely client-

based, requiring no changes to the search engine.

For instance, TrackMeNot [17] uses this approach, but does

not satisfactorily address the generation of keywords that are

semantically consistent with the same topic for each dummy

query. It is easy to flag dummy queries by semantic exploration

[20]. The work in [14] embellishes each query with decoy

terms, but requires search engine modifications. A secure

scheme must ensure that the real and dummy queries are

indistinguishable. No current KBO scheme is known to be

fully secure [20]. Various attacks can filter out dummy queries.

A. Topical Intent Obfuscation (TIO)

The work in [1] represents a novel and promising approach,

going beyond masking keywords in user queries to obfuscating

their topics of interest. This TIO scheme, denoted TIO-1, uses

both a Semantic Classification Algorithm (SCA) and a DGA.

Its SCA uses Latent Dirichlet Allocation (LDA) to classify

documents into topics. Its DGA first finds topics matching

a real user query q, then obfuscates q by creating dummy

queries matching other topics. Given its focus on topical intent,

it ensures that keywords in each dummy query match the

same topic, avoiding the pitfalls of schemes like [17]. Such

coherence makes it hard to flag dummy queries by semantic

exploration.

To find topical relevance and ensure obfuscation, the scheme

uses thresholds ε1, ε2, with ε2 < ε1. To find the relevance of a

topic t to a query q, a prior belief Pr[t] is first formed on t’s
relevance based on the general interest patterns of all users.

Next, using information latent in q’s keywords, this prior is

updated to the posterior Pr[t|q]. Topic t is taken as relevant if

q enhances belief by at least ε1, that is, if Pr[t|q]−Pr[t] > ε1.

Obfuscation is achieved by using dummy queries to reduce

this gain to below ε2.

B. Exposing Weaknesses in TIO Schemes

TIO-1 is superior to KBO schemes in many ways. However,

it is also claimed in [1] that TIO-1 effectively obfuscates

user intention in queries, and that the (ε1, ε2) scheme creates

reasonable doubt in the adversary’s mind whether topics

relevant to a query constitute the user’s true intentions.

We show in this paper that these claims are overly broad,

and demonstrate several novel attacks that seriously undermine

TIO-1 and all similar TIO schemes. We construct effective

attacks using the semantics of DGAs in current obfuscation

schemes, which are secure only under the naive assumption

that the adversary does not know the specific DGA used.

1) Attacking TIO Schemes: The assumption that DGAs are

secret is unacceptable, given standard practice in the security

field. It is contrary to Kerckhoff’s principle, a standard security

design postulate dating as far as 1883, which dictates that

security algorithms be public. Assuming a naive adversary is

never a sound strategy.

One must assume that the adversary will know the DGA,

one way or another. Now, the following attack suggests itself.

Let q1 be a real query, and let Q = {q1, q2, . . . , qn} be the

query group generated by the the DGA G, where q2 . . . , qn are

dummy queries. The adversary knows Q. Let QG(qi) denote

the set of all query groups that G might generate, given a real

query qi. Clearly, Q ∈ QG(q1). By the same token, however,

for each q ∈ Q such that Q 6∈ QG(q), the adversary can be

certain that q is a dummy query.

That is, the adversary can filter out many, if not all dummy

queries by simply checking if the query group is consistent

with each query in the group under the DGA G. We will

demonstrate the feasibility of this attack, or variants, against

iterative DGAs like the DGA of TIO-1. Iterative DGAs are

very attractive since they permit high security goals to be

achieved efficiently. However, they are susceptible to our

attacks.

Another significant flaw in current KBO and TIO schemes

is their focus on obfuscating one real query at a time. They

do not guard against attacks that combine information across

query groups. In many schemes, including TIO-1 [1], dummy

query topics are randomly chosen. Say that a user issues many

real queries relating to some specific topic. The adversary can

gain information about this user’s topical intention by finding

topics common across the user’s query groups. This attack is

discussed in [20], but no solution is proposed. We call this an

aggregation attack, and show how to address it in this paper.

C. Our Contributions

Our contributions are as follows. First, we present a novel

class of attacks on TIOs, as we have outlined above. We will

present three instances of such attacks to break TIO-1 in [1].

We will also show that the (ε1, ε2) scheme for determining

and obfuscating topical intention is not sound, and does not

perform as claimed in [1]. We will, in fact, demonstrate attacks

that perform better when (ε1, ε2) are chosen to maximize their

supposed effectiveness.

Second, we propose a new DGA called HDGA, which we

show is free from the vulnerabilities of the TIO-1 DGA [1]. We

also show how to deal with aggregation attacks by selecting

topics using the Highest Random Weight (HRW) algorithm

[21].

We perform extensive experiments on real datasets to show

how serious these attacks are. Our results show that up to 80%

dummy queries can be flagged by our attacks.

The rest of the paper is organized as follows. Related work

appears in Sec. II. Sec. III covers preliminaries. Sec. IV gives

an overview of our scheme and the security model. Sec. V

analyzes the security of iterative DGAs, and TIO-1 in [1].

Sec. VI presents our scheme. Sec. VII presents experiments

on real-world datasets. Sec. VIII concludes the paper.

II. RELATED WORK

Many features make KBO and TIO schemes attractive. They

generally operate on the client site, and require no changes

to search engines, preserving their performance and utility.

Their communication and computation overhead is small and

tunable. If n − 1 dummy queries accompany a real query,

the communication overhead is O(n), far lower than for PIR

based schemes [2]–[4], where the communication overhead of

a single retrieval is linear in the database size [1].

Queries are not encrypted in KBO and TIO schemes,

and plaintext search is very easy, while encryption-based

schemes require expensive encryption and decryption oper-

ations. Searchable encryption schemes like predicate encryp-

tion [6] allow users to send encrypted queries to the search

engine. The search engine runs encrypted queries on encrypted

databases, and returns query results to users. However, as

pointed in [1], these schemes cannot be used in the the vector

space model of text retrieval. Moreover, they require changes

to the search engine to support searchable encryption schemes.

TrackMeNot [17], a web browser plugin was the first query

obfuscation scheme used in practice. TrackMeNot hides real

queries within a set of randomly generated dummy queries.

However, dummy queries can be filtered out by exploring

semantics [20].

In [1], Pang et al. proposed a query obfuscating scheme

that uses the LDA model [22] to retrieve topics from a

database, and an iterative DGA to generate dummy queries.

Since dummy queries use semantically coherent keywords,

they cannot be flagged by exploring semantics.

In [14], Pang et al. proposed a query embellishment scheme.

In this scheme, decoy terms are added to each user query

to hide the user intention. However, this scheme requires

that the text search engine be modified accordingly, which

is unrealistic.

In [15], Shen et al. tried to protect query privacy by adding

a trusted third party which replaces the text search engine

to perform the search service. But it makes the text search

model more complex. Even if we have a third party with

enough power to perform the search service, we still need

to consider how to protect query privacy when the third party

is not trustworthy.

In [16], Murugesan and Clifton proposed a plausible deni-

able search scheme. In this scheme, a set of canonical queries

is first generated. Each real query is first substituted with a

canonical query most similar to the real one, and forms a

query group with n−1 other canonical queries. However, this

scheme requires each real query to be replaced by a canonical

query, and only canonical queries can be sent to the search

engine. This restricts the utility of this scheme.

In [20], authors gave an excellent survey of current schemes,

such as [23]–[26]. We refer interested readers to this paper for

other related work not reviewed here.

III. PRELIMINARIES

We briefly review several ideas central to our presentation.

A. The LDA Model For TIO

The Latent Dirichlet Allocation (LDA) model views each

document as a mixture of topics distributed according to a

Dirichlet prior [22]. Given a text database and the number

of topics, we can use this model to classify documents in

the database into topics. Let D = {d1, d2, . . . , d|D|} denote

a database of |D| documents, T = {t1, t2, . . . , t|T|} denote a

topic set, and K = {w1, w2, . . . , w|K|} denote the keyword set

corresponding to D. TIO-1 uses LDA to classify documents

and obtain the following probabilities.

• Pr[w|t], ∀w ∈ K,∀t ∈ T. This conditional probability

models how a keyword w is related to a given topic t.
• Pr[t|d],∀t ∈ T,∀d ∈ D. This conditional probability

models how a topic t is related to a given document d.

As in [1], we assume that each document d ∈ D is equally

useful, so that Pr[d] = 1
|D| . We further derive the following

probabilities used in LDA model based query obfuscation:

• Pr[t]. This is prior belief of a topic t ∈ T, indicating the

coverage of topic t in D.

Pr[t] =
∑

d∈D

Pr[t|d] Pr[d] =
1

|D|

∑

d∈D

Pr[t|d]

• Pr[w]. This is the prior belief of a word w ∈ K.

Pr[w] =
∑

t∈T

Pr[w|t] Pr[t]

• Pr[t|q]. This is the probability that a user’s intention is

topic t, given query q with keywords {wq,1, . . . , wq,m}.

Pr[t|q] =
∑

w∈q

Pr[t|w] Pr[w]

where Pr[t|w] = Pr[w|t] Pr[t]
Pr[w] .

• Pr[t|Q]. This is the probability that a user’s intention is

t, given the query group Q = {q1, . . . , qn}.

Pr[t|Q] =
∑

q∈Q

Pr[t|q] Pr[q] =
1

n

∑

q∈Q

Pr[t|q]

B. The Iterative DGA of TIO-1 in [1]

Query group Q enhances the adversary’s prior for topic t
by the amount B(t, Q) = Pr[t|Q]−Pr[t]. This is the security

metric used by TIO-1’s DGA, which works as follows [1].

1) Obtain probabilities Pr[t],Pr[w|t],Pr[w], and Pr[t|d]
using LDA, and choose thresholds 1 > ε1 > ε2 > 0.

2) Given a real user query q1 with |q1| keywords, find a

topic set U ⊆ T such that B(t, q1) > ε1 if and only if

t ∈ U. Build the following sets: Q = {q1} as the initial

query group, X as the topics relevant to dummy queries,

and Y as the topics that are useless.

3) Repeat the following until B(t, Q) ≤ ε2, ∀t ∈ U.

a) Randomly pick a topic ta ∈ T \U \X \Y, and

obtain Pr[w|ta] for all w ∈ K. Randomly select

|q1| keywords from ta to form a tentative dummy

query q′. Words with higher Pr[w|ta] are selected

with higher probability.

b) Find B(t, Q ∪ {q′}),∀t ∈ U. Discard ta as useless

if maxt∈U B(t, Q ∪ {q
′}) ≥ maxt∈U B(t, Q), and

set Y = Y ∪ {ta}. Otherwise set Q = Q ∪ {q′},
and X = X ∪ {ta}.

4) Shuffle queries in Q, and submit Q to the search engine.

A query is semantically coherent [1] if its keywords describe

common or related topics. In TIO-1, keywords in each dummy

query are from the same topic, so dummy queries are semanti-

cally coherent. The adversary cannot distinguish the real query

from dummy queries in each query group generated by TIO-1

using attacks exploring semantics of queries.

C. The Highest Random Weight Algorithm

The Highest Random Weight algorithm (HRW) was intro-

duced in [21] to achieve distributed consensus on object-server

mappings. It uses a hash function h : {0, 1}∗ → Zp as follows.

Given an object name oi and N servers S = {α1, . . . , αN},
HRW first computes h(oi‖α1), . . . , h(oi‖αN) where ‖ means

concatenation, and selects n ≤ N servers αi1 , . . . , αin ⊆ S
having the highest hash values to serve the object.

HRW ensures that each server set is selected to serve a given

object with the same probability. Each object is always mapped

to the same server set, and this mapping can be computed

locally by each client. Most importantly, HRW minimizes

disruption in the event of server failure. If a single server is

to be chosen, we set n = 1.

IV. SYSTEM AND SECURITY MODEL

Our system consists of two entities: users and a text search

engine (see Fig. 1). The search engine provides users with a

text search service over a database D = {d1, d2, . . . , d|D|}
containing |D| documents. These documents contain |K|
keywords K = {w1, w2, . . . , w|K|}. The database covers |T|
topics T = {t1, t2, . . . , t|T|} in all.

Users submit queries to the search engine, each comprising

keywords from K. Privacy is protected by a trusted TIO tool,

which generates appropriate dummy queries to hide each real

query. The real and dummy queries form a query group Q,

which is submitted as a single unit to the search engine. As in

[1], we assume that the TIO provider can access D, as well

as useful probabilities like Pr[w|t] and Pr[t|d] relating to D.

The search engine finds and returns documents most relevant

to each query in Q. Dummy query results are now filtered out.

A. Security Model and Goals

We adopt a “honest but curious” model for our adversary,

the search engine. Its goal is to distinguish real queries from

dummy queries. It is scrupulous in following the public data

retrieval protocol, and always returns the right query results.

The adversary is given no information beyond query groups

and the target TIO scheme. Dummy queries are semantically

coherent, so the adversary cannot identify dummy queries by

exploring query semantics. We will show how even such a

weak adversary can filter a large portion of dummy queries

using attacks on TIOs. When mounting aggregation attacks,

the adversary has access to all query groups sent by a user.

We focus on the following attacks.

1) Closure-Based Attacks:

Definition 1: Let QG(qi) denote the set of all query groups

that a DGA G might generate, given a real query qi. A query

group Q is closed under G iff Q ∈ QG(qi) for all qi ∈ Q.

A query qi ∈ Q can be flagged as dummy if Q 6∈ QG(qi).
This attack fails on closed query groups, but no TIO has been

shown to consistently generate closed query groups.

2) Aggregation Attacks: A user interested in a topic t will

likely send many real queries relating to t. Aggregation attacks

[20] work as follows. Topic t will occur frequently in the user’s

queries, but dummy queries will reference random topics. If a

user interested in birds sends query groups {pigeon, airport,

car}, {eagle, computer, pizza}, {owl, dictionary, tiger}, the

adversary can infer bird as the real topic, since it is common to

the user’s query groups. We show how to deal with aggregation

attacks using HRW [21].

3) Attacks Exploring Semantics: The adversary uses a

semantic classification algorithm (SCA) to analyze queries.

A dummy query can be filtered out if its keywords are not

semantically coherent. Such attacks are well-addressed in [1]

by selecting keywords from the same topic for each dummy

query. In our scheme, we also adopt LDA for topic modeling,

and ensure that dummy queries are all semantically coherent.

Different SCAs may assign different topics to the same

query, but as noted in [20], current schemes assume that

the adversary only has the same SCA as the target TIO. In

practice, we do not know which SCA the adversary may use,

so we must consider all possible SCAs, which is unrealistic.

Addressing such attacks is still an open problem [20], and we

defer this to future work. Whether such attacks are practical

is also an open problem. No work exists showing such attacks

truly help the adversary filter out dummy queries.

V. ATTACKS ON ITERATIVE DGAS

We now present three attacks on iterative DGAs. Clo, the

first attack is an exhaustive search that elaborates the strategy

outlined in Section I-B1 to break any iterative DGAs that do

Algorithm 1: Iterative DGAs

input : q1,P // P.γ is the security goal

output: Q

1 Q = {q1}
2 while σ(Q) does not meet the security goal P.γ do

3 Generate a new dummy query q′

4 Calcuate the new security metric σ(Q ∪ {q′})
5 if σ(Q ∪ {q′}) > σ(Q) then

6 Q← Q ∪ {q′}
7 end

8 end

not generate closed query groups. We then present Dom and

Sec, two very practical attacks based on distinct heuristics.

Our experiments in Section VII show that these attacks are

devastating to the security of TIO schemes.

A. The Structure of Iterative DGAs

Iterative DGAs are attractive since their security goals can

be reached efficiently. An iterative DGA G takes as input a real

query q1 and a parameter set P. It outputs a query group Q =
G(q1,P), including q1 and n − 1 dummy queries q2, . . . , qn
used to hide q1. P includes the probabilities obtained by the

semantic classification algorithm, and the security goal of the

DGA.

Algorithm 1 illustrates the structure of iterative DGAs. Q
starts out with only the real query q1. Let σ(Q) denote the

security metric attained by query group Q. In each iteration,

G generates a new dummy query, adding it to Q if and only

if doing so improves the security metric σ(Q). This process

continues until the security goal is met.

Iterative DGAs can meet very high security goals, but cur-

rent iterative DGAs like the DGA of TIO-1 are not guaranteed

to generate closed query groups.

B. Clo: An Exhaustive Search Using the Closure Heuristic

We start with Clo, an exhaustive-search method guaranteed

to break iterative DGAs whose query groups are not closed.

We present Clo mainly as prelude and foundation for more

efficient attacks, but our experiments show it is very effective,

even when given limited run time. Most important, HDGA,

the DGA we propose in Section VI, is immune to this attack.

Let 〈Q〉 = 〈q1, q2, . . . , qn〉 denote the order in which queries

are added to Q by Algorithm 1. Let Qi = {q1, q2, . . . , qi}, 1 ≤
i ≤ n be the sets of queries forming prefixes of 〈Q〉. Since a

dummy query qi+1 can be added to Qi to get Qi+1 if and only

if σ(Qi+1) > σ(Qi), Q’s evolution history influences whether

a given dummy query is acceptable at any step.

〈Q〉 is unknown to the adversary. Let 〈O〉 = 〈q(1), . . . q(n)〉
be any ordering of queries in Q. Again, let Oi be the sets

of queries forming prefixes of 〈O〉. Now, define ordering 〈O〉
feasible if successive Oi cause a monotonic improvement in

the security metric, that is, if σ(Oi+1) > σ(Oi), 1 ≤ i ≤ n−1.

Clearly, a query q is dummy if no order taking q as the first

query is feasible. The attack Clo is as follows:

1) Pick a qi ∈ Q to be tested.

2) Generate all orders starting with qi, and check for

feasibility. If there is no feasible order, qi is dummy.

In practice, we would not generate each permutation starting

with qi in its entirety. Instead, we would generate permutation

prefixes, extending only prefixes found feasible.

C. Dom: A Heuristic Attack Based on Topical Dominance

Dom is an attack based on the following insight. TIO-1

uses metric B(t, Q) = Pr[t|Q]− Pr[t] to measure how much

new information Q yields about the relevance of any topic t.
However, every query q has a dominant topic δq such that

Pr[δq|q] − Pr[δq] ≥ Pr[t|q] − Pr[t], t ∈ T \ {δq}. If q is

a real query, TIO-1 tries to hide topics in U, especially δq .

In this case, TIO-1 is hardly likely to add dummy queries

whose dominant topic is also δq , an action that would increase

Pr[δq|Q]. However, TIO-1 does not do the same for dummy

queries. There is in fact a strong likelihood of finding pairs

(q, q′) of dummy queries, both with the same dominant topic.

In lines 2–4, Dom (see Algorithm 2) first finds the domi-

nant topic δq for each q ∈ Q. In lines 5–11, it checks whether

there is another query q′ sharing the same dominant topic with

q. If such a q′ is found, it flags both q, q′ as dummies. Dom

is efficient, with time complexity just O(n|T|).
1) Analysis of Dom: When might two queries have the

same dominant topic? For simplicity, consider queries contain-

ing only one keyword. TIO-1 creates a dummy query w by

first selecting a topic t and then selecting keyword w. We refer

to t as w’s original topic. The probability that w is selected is

proportional to the normalized value Pr[w]t =
Pr[w|t]∑

w∈K
Pr[w|t] .

From Bayes Rule, Pr[t|w] = Pr[w|t] Pr[t]
Pr[w] , so we have for topics

t and t′

Pr[t′|w]

Pr[t|w]
=

Pr[w|t′] Pr[t′]

Pr[w|t] Pr[t]

The ratio
Pr[t′|w]
Pr[t|w] is the relative probability of seeing t′ or

t as the more relevant topic, given query w. This relative

probability depends not merely on whether Pr[w]t′ > Pr[w]t,
but really on whether Pr[w|t′] Pr[t′] > Pr[w|t] Pr[t], that is,

also on the relative values of Pr[t] and Pr[t′]. Paradoxically,

although TIO-1 chose w to match the original topic t on the

basis of a maximized normalized probability Pr[w]t, another

topic t′ may be perceived as w’s dominant topic.

Definition 1: If qi, qj ∈ Q have the same dominant topic,

a dominance collision occurs.

We say a query q is errant if its original topic is different

from its dominant topic. Topics being independent in the LDA

model, we can assume that an errant query q’s dominant topic

will be a random selection from the |T| − 1 topics remaining

after we exclude q’s original topic. We can also assume that no

dummy query has the same dominant topic as the real query,

an assumption supported by our experiments in Sec. VII-C.

We analyze dominance collisions among dummy queries.

Let query group Q = {q1, q2, . . . , qn} contain n queries. Let

Algorithm 2: Dom

input : Q, P
output: C // Set of queries found to be dummy

1 C = ∅
2 foreach q ∈ Q do

3 Obtain δq , the dominant topic of q
4 end

5 foreach q ∈ Q do

6 foreach q′ ∈ Q \ {q} do

7 if δq = δq′ then

8 C ← C ∪ {q, q′}
9 end

10 end

11 end

12 return C

q1 be the real query. Denoting qi’s dominant topic by δqi , we

can form
(

n−1
2

)

dominant topic pairs (δqi , δqj) from Q\{q1}.
Let these pairs be denoted by X1, X2, . . . , X(n−1

2). Now, let

Ya ∈ {0, 1} be an indicator random variable such that Ya = 1
iff the dominant topics forming pair Xa are identical. Since the

pairs Xa are indistinguishable in this formulation, Pr[Ya = 1]
is identical for all a, so we will abbreviate it to Pr[Y]. Let p̂
be the probability that a dummy query in Q is errant. Now,

Pr[Y] = 2p̂(1− p̂)
1

|T| − 2
+ p̂2

|T| − 3

|T| − 2
·

1

|T| − 2
(1)

To obtain this equation, consider the pair (qi, qj). The proba-

bility that exactly one of qi, qj is errant is 2p̂(1− p̂), and the

probability that qi, qj are both errant is p̂2. The probability that

δqi = δqj is 1
|T|−2 under the first condition, and

|T|−3
|T|−2 ·

1
|T|−2

under the second condition.

We can model the number of dominance collisions in Q as

the number of successes in a series of
(

n−1
2

)

Bernoulli trials

over the pairs Xa, each with success probability Pr[Y]. Since

Pr[Y] will be small enough and
(

n−1
2

)

large enough, we can

use the Poisson approximation to the Binomial distribution to

estimate χQ, the number of dominance collisions in Q as

Pr[χQ = z] =
λze−λ

z!
, λ =

(

n− 1

2

)

Pr[Y] (2)

The probability that Dom will not find any collisions is thus

e−λ, and the expected number of collisions is λ.

We can estimate the number of queries flagged as dummy

by Dom as follows. Let Zq ∈ {0, 1} be an indicator random

variable such that Zq = 1 iff a dummy query q shares the

same dominant topic with at least one another dummy query

in Q. Again, symmetry consideration suggest that Pr[Zq = 1]
is independent of q, so we abbreviate it to Pr[Z]. Now,

Pr[Z] = 1− Pr[Z = 0] = 1− (1− Pr[Y])n−2 (3)

Since Dom filters out queries having dominance collisions,

the expected Dummy query Filter Rate (DFR) of Dom is

DFR = Pr[Z]. (4)

The expected number of dummy queries filtered by Dom due

to collisions is hence (n− 1)Pr[Z].

Pr[Y] and Pr[Z] depend on the value of p̂, which varies

with many factors, including T, D, and K. In Section VII-C,

we estimate p̂ experimentally and show that our theoretical

predictions for DFR agree well with experiments.

D. Sec: An Attack Exploiting the Security Metric

We now discuss some other vulnerabilities of TIO-1, which

future DGA designs would do well to avoid. TIO-1 uses the

metric B(t, Q) = Pr[t|Q] − Pr[t] to evaluate the security of

query groups, and tunes this metric using thresholds ε1, ε2.

TIO-1 claims that security is higher when ε1, ε2 are smaller.

We show this claim to be invalid. Indeed, our attack Sec

performs better for smaller ε1, ε2 in our experiments.

Sec is a heuristic based on the observation that TIO-1 hides

only topics relevant to the real query. For such topics, it tries

to reduce B(t, Q) = Pr[t|Q]− Pr[t]. Since it does not bother

to hide topics relevant to dummy queries, B(t, Q) may still

be very large for topics relevant to dummy queries. If the

adversary sorts topics by B(t, Q), it is more likely that topics

with larger values are relevant to dummy queries.

Sec takes as input a query group Q, a parameter set P,

and an integer l ∈ [1, |T|−1]. It outputs C containing dummy

queries. The attack is shown in Algorithm 3.

Sec collects into set L the l topics with the highest value of

B(t, Q) = Pr[t|Q]−Pr[t]. This set is deemed to contain topics

relevant to dummy queries. The parameter l is used to control

the number of topics selected, and may be set to a value such

as bn/2c or bn/4c. For each topic t ∈ L, Sec finds the query

q ∈ Q having the highest Pr[t|q], and flags q as a dummy

query. q is the query most relevant to t. Sec. VII-D shows

the performance of Sec for different l. Sec shows that DGAs

must prove that their security metrics are truly security-related.

E. Keeping ε1, ε2 secret

Another vulnerability of TIO-1 is that it assumes that

the two thresholds ε1 and ε2 are secrets, and unknown to

the adversary. We argue that parameters that do not control

randomness in dummy query generation should not be secrets

in DGA design. ε1 and ε2 do not play the same roles as secrets

such as keys or passwords. These are usually random values,

while ε1 and ε2 are not. The adversary may infer ε1 and ε2
from query groups generated by TIO-1.

Let us review the roles of ε1, ε2 in TIO-1. ε1 determines

topical relevance. Topic t is relevant to the real query iff

Pr[t|q]−Pr[t] > ε1. Similarly, ε2 determines TIO-1’s security

goal. TIO-1 adds dummy queries to ensure that all relevant

topics t satisfy Pr[t|Q] − Pr[t] ≤ ε2. If ε1 or ε2 is too big,

TIO-1 may not hide topics relevant to the real query. If they

are too low, then no number of dummy queries may suffice.

It is dangerous to assume that ε1 and ε2 are secrets. First, the

size of query groups is closely related to these two thresholds.

The smaller ε1 and ε2, the larger the size of query groups. Our

experiments in Section VII-F show correlations between the

Algorithm 3: Attack Sec

input : Q, P, l
output: C // Set of queries found to be dummy

1 C ← ∅
2 Let B(t, Q) = Pr[t|Q]− Pr[t]
3 V = { B(ti, Q), ti ∈ T }
4 L← { l topics t1, . . . , tl ∈ T with highest B(t, Q) }
5 foreach t ∈ L do

6 find the query q ∈ Q with the highest Pr[t|q]
C ← C ∪ {q}

7 end

8 return C

size of query groups and ε1, ε2. The adversary may be able to

infer ε1 and ε2 from the size of query groups.

Second, ε1 and ε2 are closely related to the performance

and security of TIO-1, and must be carefully tuned. This is

beyond the ability of regular users presenting keyword queries,

who will simply use the default thresholds in the TIO tool or

plugin. All such users are at high risk of privacy loss.

In Sec. VII-F we expose the correlations between ε1, ε2
and the size of query groups. In practice, adversaries may be

able to infer the values of ε1 and ε2 using more sophisticated

attacks.

F. Agg: An Aggregation Attack Across Query Groups

As we argued in Section IV-A2, an adversary can infer user

intent by aggregating across query groups. Let a user querying

for a topic ta submit query groups Q1, Q2, · · · , QN . Each Qi

includes a real query whose dominant topic is ta, and n − 1
dummies for random topics in T \ {ta}, where n < |T|. We

assume any two queries in a query group do not have the

same dominant topic. To analyze aggregation attacks, form

the null hypothesis that dominant topics for queries in Qi are

all randomly chosen. Since |Qi| = n, the probability that t is

the dominant topic for one query in any Qi is n/|T|. Let ct
be the number of Qi in which t is represented as a dominant

topic. Clearly,

Pr[ct = j] =

(

N

j

)(

n

|T|

)j

·

(

1−
n

|T|

)(N−j)

,

with µ = Nn
|T| being the expected number of occurrences of

t. Now say that t occurs x > µ times across Q1, . . . , QN .

If topics in the query groups were randomly chosen, the

probability of t occurring with at least this frequency is

Pr[ct ≥ x] =

N
∑

j=x

(

N

j

)(

n

|T|

)j

·

(

1−
n

|T|

)(N−j)

.

If we define ε = x−µ
N

, it can be shown that [27]

Pr[ct ≥ x] ≤ e−N(2ε2+ 4

9
ε4+ 2

9
ε6) (5)

This probability drops rapidly with N and x, so the chances

of a topic appearing by chance in a large number of query

groups is extremely small. Clearly, a topic whose occurrence

is frequent will likely represent user interest.

VI. OUR SCHEME

We now present our scheme, called HDGA, which over-

comes TIO-1’s vulnerabilities via systematic improvements.

First, HDGA generates a set of semantically coherent

dummy queries all at once, rather than iteratively, as in TIO-

1. HDGA also ensures that each dummy query matches a

different topic, and that its dominant topic is the same as

its original topic. Each dummy query is generated completely

independently of other dummy queries in the group.

Second, HDGA treats all queries in a query group equally.

Unlike TIO-1, HDGA does not preferentially hide topics rele-

vant to real queries. From Sec, we can see that privileging real

queries in this manner actually makes them more vulnerable.

Third, HDGA eschews the use of security metrics, other

than the number of dummy topics. Even carefully-chosen

security metrics can actually decrease security, as our Dom

and Sec attacks against TIO-1 clearly demonstrate. Unless

it can be conclusively proved that a security metric under

consideration is secure, it may be better not to use it at all.

Fourth, HDGA addresses aggregation attacks through a

novel use of the Highest Random Weight (HRW) algorithm

[21] in topic selection.

1) HDGA: HDGA takes as input a real query q1, an integer

n − 1 indicating the number of dummy query topics, a user

secret s, and a parameter set P. It outputs a query group Q
that covers n topics. HDGA works as follows:

1) Given a real query q1 with |q1| keywords, first determine

probabilities Pr[t|q1] for each topic t ∈ T, and find the

dominant topic δq1 of q1.

2) Use HRW to select dummy topics: Calculate the hash

value ei = h(δq1‖t‖s) for each t ∈ T \ {δq1}, and

select the n − 1 topics TD = {t1q1 , t
2
q1
, . . . , tn−1

q1
} with

the largest hash values as dummy query topics.

3) For each topic t ∈ TD, randomly select |q1| keywords

for t based on Pr[w|t], to form a dummy query q′. Words

with higher Pr[w|t] are selected with higher probability.

If t is not the dominant topic of q′, repeatedly generate

a new q′ until its dominant topic is t. Add q′ to Q.

4) Shuffle queries in Q, and Q is ready to be submitted to

the search engine.

In line with Kerckhoff’s principle, this algorithm is published.

However, we keep the user secret s hidden, as we would do

with any password.

A. Resilience of HDGA to Attacks

We analyze the security of HDGA. We prove HDGA is

immune to the attacks on TIOs in this paper. We begin by

considering the exhaustive search attack Clo.

Theorem 1: HDGA is immune to attack Clo.

Proof. Let r(q) denote the event that a query q is a real query,

and Q|r(q) denote the event that a query group Q can be

generated when q is the real query. Proving Theorem 1 is the

same as proving Pr[Q|r(q)] > 0 for any query q ∈ Q.

Let q1 be the real query of Q, and δq1 be q1’s dominant

topic. Let d(t) denote the event that topic t is selected as a

dummy topic. Pr[d(t)] = n−1
|T|−1 for any topic t ∈ T \ {δq1}.

Let qa∈Q denote the event that a query qa is selected as

a dummy query, so that Pr[qa∈Q|d(δqa
), r(q)] denotes the

probability that qa is selected as a dummy query when a query

q ∈ Q \ {qa} is the real query and qa’s dominant topic δqa is

selected as a topic for dummy queries. Let A(δqa , |qa|) denote

the set of all possible queries taking δqa as their dominant topic

and having the same number of keywords as qa. We have:

Pr [qa∈Q|d(δqa
), r(q)] =

Pr[qa|δqa]
∑

q∈A(δqa ,|qa|)
Pr[q|δqa]

> 0

(6)

Let TQ = TD

⋃

{δq1} denote the set of dominant topics of

all queries in Q. |TQ| = n. For any query q ∈ Q, we have

Pr[Q|r(q)] = Pr





⋂

t∈TQ\{δq}

d(t)



×

∏

qa∈Q\{q}

Pr[qa∈Q|d(δqa
), r(q)]

=
1

(

|T|−1
n−1

)
×

∏

qa∈Q\{q}

Pr[qa∈Q|d(δqa
), r(q)]

From Equation 6, the product on the right is always positive,

so that Pr[Q|r(q)] > 0 for any query q ∈ Q. We have

thereby shown that query groups generated by HDGA are

always closed, and HDGA is immune to Clo. �

We now prove that HDGA is also immune to the Dom

and Sec attacks.

Theorem 2: HDGA is immune to the attack Dom.

Proof. In each query group generated by HDGA, it is

guaranteed no two queries have the same dominant topic. �

Theorem 3: HDGA is immune to attack Sec.

Proof. HDGA does not preferentially treat real queries over

dummy queries, based on some security metric σ. No metric or

other means are available to the adversary for sorting queries

as in Sec. �

B. HDGA Resilience Against Aggregation Attacks

HDGA is immune to attack Agg, since it uses HRW [21] to

select dummy topics. For a real query q1, HDGA obtains the

dominant topic δq1 , calculates hash values for the T \ {δq1},
and picks the n − 1 topics yielding the highest hash values.

The same topics will be picked for every Qi.

Using the notation of Section IV-A2, Pr[ct = j] = 1, ∀j
if t is the real topic δq1 , or one of the n − 1 dummy topics

chosen by HRW. Pr[ct = j] = 0 for all other topics. Equation

5 no longer holds. The adversary can determine the dominant

topics in the Qi, but is utterly unable to distinguish between

the real and dummy topics.

Since HRW’s generation of hash values h(δq1‖t‖s) for

topics t ∈ T \ {δq1} incorporates the secret value s, only the

user is able to distinguish the real and dummy topics. A well-

chosen hash function preserves randomness in topic selection,

as well as consistently choosing the same dummy topics for

the same real topic. The adversary is able to guess the dummy

topics only with probability 1

(|T|−1

n−1)
.

VII. EXPERIMENTS

We now present experiments showing the performance of

Clo, Dom, and Sec against TIO-1. We also show the corre-

lation between the two thresholds ε1, ε2 and the size of query

groups generated by TIO-1. At last, we show the performance

of HDGA. Our code is implemented using Matlab, and all

experiments are performed on a Linux server with eight 2GHz

cpus and 8GB memory.

A. Datasets Used and Parameter Setting

We used real-world text datasets in our experiments. The

two datasets we used are KOS blog entries (KOS) and Enron

emails (ERN) retrieved from the UCI machine learning repos-

itory [28]. Table I shows the number of documents and the

number of keywords of each dataset.

We used the lda-c library [22] for topic modeling on these

two datasets, setting the number of topics to 50 and 100. We

used two (ε1, ε2) settings for TIO-1 in the experiments. The

first setting is (ε1 = 0.1, ε2 = 0.05) and the second setting is

(ε1 = 0.05, ε2 = 0.01). Setting two is claimed to have better

security than setting one in [1].

TABLE I: Datasets

Dataset Number of documents Number of keywords

KOS 3430 6906

ERN 39861 28102

B. Effectiveness of the Brute-Force Attack Clo on TIO-1

Clo is surprisingly effective. Our performance metrics are

the Dummy Query Filter Rate (DFR), i.e., the fraction of

dummy queries flagged by the attack, and the False Positive

Rate (FPR), i.e., the fraction of real queries misclassified as

dummies.

Running Clo to completion can be expensive, since it entails

exhaustive search. We therefore give Clo just 5 seconds to

determine whether each query q is dummy. After 5 seconds,

we flag q as real if q is not flagged as dummy. Hence, the

DFRs in Figure 2 are lower bounds on what Clo can achieve,

given more resources.

Let m denote the number keywords per query. Figures

2a and 2b show the DFRs for Clo on the KOS and ERN

datasets when queries contain m = {1, 3, 5, 10} keywords.

Surprisingly, about 40% dummy queries are filtered out when

m = 1. DFRs drop as m increases, due to the 5-second limit.

False positive rates (FPR) for Clo are always 0 because there

always exists a feasible order for the real query.

Queries containing as many as 20 keywords are used in [1].

However, we do not generate such long queries since 95.21%

queries sent by American users contain only 1-5 words [29].

C. Effectiveness of Attack Dom Against TIO-1

We first perform experiments to obtain E[p̂], the expectation

that a dummy query is errant. The experiments are performed

as follows:

1) Set the number of keywords m = {1, 3, 5}, and |T| =
{50, 100}.

2) For each combination of m and |T|, use TIO-1 to

generate 1000 queries. Find Ne, the number of errant

queries, and estimate E[p̂] ≈ Ne × 10−3.

Figures 3a and 3b show our results on the KOS and

ERN datasets respectively. E[p̂] decreases as m increases, and

increases as |T| increases. E[p̂] is about 60% when m = 1,

which is promising, since 42.10% user queries contain just one

keyword [29]. E[p̂] is about 10% to 20% even when m = 5.

We perform further experiments to show the effectiveness

of Dom on the KOS and ERN datasets. We generate query

groups as follows.

1) Set m={1, 3, 5}, |T|={50, 100}, {(ε1=0.1, ε2=0.05),
(ε1=0.05, ε2=0.01)}.

2) For each combination of m and |T|, generate 1000 real

queries, uniformly covering all |T| topics. Each real

query q contains m keywords randomly selected for the

same dominant topic δq , based on Pr[w|δq].
3) For each combination of a real query q and (ε1, ε2), use

TIO-1 to generate a query group.

4) Use Dom to filter out dummy queries.

Figures 4 and 5 show how Dom performs on KOS and

ERN. About 40% dummy queries are filtered out for m = 1.

DFR decreases as m increases, reflecting the behavior of

E[p̂], which is as expected. DFR is much higher when (ε1 =
0.05, ε2 = 0.01), which means lower ε1 and ε2 cannot provide

better security. FPR is nearly 0 for all settings, which means

that each real query rarely has the same dominant topic as

dummy queries.

Figures 4 and 5 also show that the experimental DFRs match

our theoretical values very well. Given a query group from

the KOS dataset or the ERN dataset, we first obtain n, the

number of queries per query group, |T|, the number of topics,

and m, the number of keywords in each query. We then obtain

corresponding E[p̂] from Figure 3a or 3b. We now calculate

the expected DFR of the query group from Equation 4 given

n, |T| and E[p̂].
The run time of Dom is very small. It takes less than 0.1s

to find out dummy queries in a query group.

D. Effectiveness of Sec Against TIO-1

To test the performance of Sec against TIO-1, we use the

following parameters:

1) m={1, 3, 5, 10}, |T|={50, 100}, {(ε1=0.1, ε2=0.05),
(ε1=0.05, ε2=0.01)}, l={b0.125nc, b0.25nc,
b0.5nc,b0.75nc}.

2) For each combination of m, |T|, (ε1, ε2), l, use TIO-1

to generate 1000 query groups for 1000 real queries.

3) Use Sec to filter out dummy queries.

 1 3 5 10
 0%

 20%

 40%

 60%

 80%

100%

D
F
R

Number of keywords

|T| = 50ε1 = 0.1ε2 = 0.05
|T| = 50ε1 = 0.05ε2 = 0.01
|T| = 100ε1 = 0.1ε2 = 0.05
|T| = 100ε1 = 0.05ε2 = 0.01

(a) KOS

 1 3 5 10
 0%

 20%

 40%

 60%

 80%

100%

D
F
R

Number of keywords

|T| = 50ε1 = 0.1ε2 = 0.05
|T| = 50ε1 = 0.05ε2 = 0.01
|T| = 100ε1 = 0.1ε2 = 0.05
|T| = 100ε1 = 0.05ε2 = 0.01

(b) ERN

Fig. 2: Performance of Clo.

1 2 3 4 5
 0%

 20%

 40%

 60%

 80%

100%

E
[p̂

]

Number of keywords

KOS |T| = 50
KOS |T| = 100

(a) KOS

1 2 3 4 5
 0%

 20%

 40%

 60%

 80%

100%

E
[p̂

]
Number of keywords

ERN |T| = 50
ERN |T| = 100

(b) ERN

Fig. 3: E[p̂].

1 2 3 4 5
 0%

 20%

 40%

 60%

 80%

100%

D
F
R

Number of keywords

KOS|T| = 50ε1 = 0.1ε2 = 0.05
KOS|T| = 50ε1 = 0.05ε2 = 0.01
Theory |T| = 50ε1 = 0.1ε2 = 0.05
Theory |T| = 50ε1 = 0.05ε2 = 0.01

(a) DFR |T| = 50

1 2 3 4 5
 0%

 20%

 40%

 60%

 80%

100%

F
P

R

Number of keywords

KOS|T| = 50ε1 = 0.1ε2 = 0.05
KOS|T| = 50ε1 = 0.05ε2 = 0.01

(b) FPR |T| = 50

1 2 3 4 5
 0%

 20%

 40%

 60%

 80%

100%

D
F
R

Number of keywords

KOS|T| = 100ε1 = 0.1ε2 = 0.05
KOS|T| = 100ε1 = 0.05ε2 = 0.01
Theory |T| = 100ε1 = 0.1ε2 = 0.05
Theory |T| = 100ε1 = 0.05ε2 = 0.01

(c) DFR |T| = 100

1 2 3 4 5
 0%

 20%

 40%

 60%

 80%

100%

F
P

R

Number of keywords

KOS|T| = 100ε1 = 0.1ε2 = 0.05
KOS|T| = 100ε1 = 0.05ε2 = 0.01

(d) FPR |T| = 100

Fig. 4: Performance of Dom on KOS dataset.

1 2 3 4 5
 0%

 20%

 40%

 60%

 80%

100%

D
F
R

Number of keywords

ERN|T| = 50ε1 = 0.1ε2 = 0.05
ERN|T| = 50ε1 = 0.05ε2 = 0.01
Theory |T| = 50ε1 = 0.1ε2 = 0.05
Theory |T| = 50ε1 = 0.05ε2 = 0.01

(a) DFR |T| = 50

1 2 3 4 5
 0%

 20%

 40%

 60%

 80%

100%

F
P

R

Number of keywords

ERN|T| = 50ε1 = 0.1ε2 = 0.05
ERN|T| = 50ε1 = 0.05ε2 = 0.01

(b) FPR |T| = 50

1 2 3 4 5
 0%

 20%

 40%

 60%

 80%

100%

D
F
R

Number of keywords

ERN|T| = 100ε1 = 0.1ε2 = 0.05
ERN|T| = 100ε1 = 0.05ε2 = 0.01
Theory |T| = 100ε1 = 0.1ε2 = 0.05
Theory |T| = 100ε1 = 0.05ε2 = 0.01

(c) DFR |T| = 100

1 2 3 4 5
 0%

 20%

 40%

 60%

 80%

100%

F
P

R

Number of keywords

ERN|T| = 100ε1 = 0.1ε2 = 0.05
ERN|T| = 100ε1 = 0.05ε2 = 0.01

(d) FPR |T| = 100

Fig. 5: Performance of Dom on ERN dataset.

 1 3 5 10
 0%

 20%

 40%

 60%

 80%

100%

D
F
R

Number of keywords

l = b0.125nc
l = b0.25nc
l = b0.5nc
l = b0.75nc

(a) DFR |T| = 50

 1 3 5 10
 0%

 20%

 40%

 60%

 80%

100%

F
P

R

Number of keywords

l = b0.125nc
l = b0.25nc
l = b0.5nc
l = b0.75nc

(b) FPR |T| = 50

 1 3 5 10
 0%

 20%

 40%

 60%

 80%

100%

D
F
R

Number of keywords

l = b0.125nc
l = b0.25nc
l = b0.5nc
l = b0.75nc

(c) DFR |T| = 100

 1 3 5 10
 0%

 20%

 40%

 60%

 80%

100%

F
P

R

Number of keywords

l = b0.125nc
l = b0.25nc
l = b0.5nc
l = b0.75nc

(d) FPR |T| = 100

Fig. 6: Performance of Sec on KOS dataset when ε1 = 0.05, ε2 = 0.01.

 1 3 5 10
 0%

 20%

 40%

 60%

 80%

100%

D
F
R

Number of keywords

l = b0.125nc
l = b0.25nc
l = b0.5nc
l = b0.75nc

(a) DFR |T| = 50

 1 3 5 10
 0%

 20%

 40%

 60%

 80%

100%

F
P

R

Number of keywords

l = b0.125nc
l = b0.25nc
l = b0.5nc
l = b0.75nc

(b) FPR |T| = 50

 1 3 5 10
 0%

 20%

 40%

 60%

 80%

100%

D
F
R

Number of keywords

l = b0.125nc
l = b0.25nc
l = b0.5nc
l = b0.75nc

(c) DFR |T| = 100

 1 3 5 10
 0%

 20%

 40%

 60%

 80%

100%

F
P

R

Number of keywords

l = b0.125nc
l = b0.25nc
l = b0.5nc
l = b0.75nc

(d) FPR |T| = 100

Fig. 7: Performance of Sec on ERN dataset when ε1 = 0.05, ε2 = 0.01.

 1 3 5 10
 0%

 20%

 40%

 60%

 80%

100%

D
F
R

Number of keywords

l = b0.125nc
l = b0.25nc
l = b0.5nc
l = b0.75nc

(a) DFR |T| = 50

 1 3 5 10
 0%

 20%

 40%

 60%

 80%

100%

F
P

R

Number of keywords

l = b0.125nc
l = b0.25nc
l = b0.5nc
l = b0.75nc

(b) FPR |T| = 50

 1 3 5 10
 0%

 20%

 40%

 60%

 80%

100%

D
F
R

Number of keywords

l = b0.125nc
l = b0.25nc
l = b0.5nc
l = b0.75nc

(c) DFR |T| = 100

 1 3 5 10
 0%

 20%

 40%

 60%

 80%

100%

F
P

R

Number of keywords

l = b0.125nc
l = b0.25nc
l = b0.5nc
l = b0.75nc

(d) FPR |T| = 100

Fig. 8: Performance of Sec on KOS dataset when ε1 = 0.1, ε2 = 0.05.

 1 3 5 10
 0%

 20%

 40%

 60%

 80%

100%

D
F
R

Number of keywords

l = b0.125nc
l = b0.25nc
l = b0.5nc
l = b0.75nc

(a) DFR |T| = 50

 1 3 5 10
 0%

 20%

 40%

 60%

 80%

100%

F
P

R

Number of keywords

l = b0.125nc
l = b0.25nc
l = b0.5nc
l = b0.75nc

(b) FPR |T| = 50

 1 3 5 10
 0%

 20%

 40%

 60%

 80%

100%

D
F
R

Number of keywords

l = b0.125nc
l = b0.25nc
l = b0.5nc
l = b0.75nc

(c) DFR |T| = 100

 1 3 5 10
 0%

 20%

 40%

 60%

 80%

100%

F
P

R

Number of keywords

l = b0.125nc
l = b0.25nc
l = b0.5nc
l = b0.75nc

(d) FPR |T| = 100

Fig. 9: Performance of Sec on ERN dataset when ε1 = 0.1, ε2 = 0.05.

 1 3 5 10
 0%

 20%

 40%

 60%

 80%

100%
D

F
R

Number of keywords

l = b0.125nc
l = b0.25nc
l = b0.5nc
l = b0.75nc

(a) KOS |T| = 50

 1 3 5 10
 0%

 20%

 40%

 60%

 80%

100%

D
F
R

Number of keywords

l = b0.125nc
l = b0.25nc
l = b0.5nc
l = b0.75nc

(b) KOS |T| = 100

 1 3 5 10
 0%

 20%

 40%

 60%

 80%

100%

D
F
R

Number of keywords

l = b0.125nc
l = b0.25nc
l = b0.5nc
l = b0.75nc

(c) ERN |T| = 50

 1 3 5 10
 0%

 20%

 40%

 60%

 80%

100%

D
F
R

Number of keywords

l = b0.125nc
l = b0.25nc
l = b0.5nc
l = b0.75nc

(d) ERN |T| = 100

Fig. 10: Performance of the combined attack on KOS and ERN dataset when ε1 = 0.05, ε2 = 0.01.

 0 0.01 0.02 0.03 0.04 0.05
0

10

20

30

40

M
ea

n
o
f
g
ro

u
p

si
ze

ε2

KOS|T| = 50ε1 = 0.05
ERN|T| = 50ε1 = 0.05

(a) Mean of group size

 0 0.01 0.02 0.03 0.04 0.05
0

1

2

3

4

5

S
ta

n
d
a
rd

d
ev

ia
ti

o
n

ε2

KOS|T| = 50ε1 = 0.05
ERN|T| = 50ε1 = 0.05

(b) Standard derivation

Fig. 11: Group size when ε1 = 0.05 and ε2 = 0.04 to 0.02.

 0 0.02 0.04 0.06 0.08 0.1
0

10

20

30

40

M
ea

n
o
f
g
ro

u
p

si
ze

ε2

KOS|T| = 50ε1 = 0.1
ERN|T| = 50ε1 = 0.1

(a) Mean of group size

 0 0.02 0.04 0.06 0.08 0.1
0

1

2

3

4

5

S
ta

n
d
a
rd

d
ev

ia
ti

o
n

ε2

KOS|T| = 50ε1 = 0.1
ERN|T| = 50ε1 = 0.1

(b) Standard derivation

Fig. 12: Group size when ε1 = 0.1 and ε2 = 0.08 to 0.02.

20 40 60 80 100
0

0.01

0.02

0.03

0.04

0.05

0.06

R
u
n

ti
m

e(
s)

Group size

m=1
m=3
m=5
m=10

(a) KOS

20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

R
u
n

ti
m

e(
s)

Group size

m=1
m=3
m=5
m=10

(b) ERN

Fig. 13: Time used in query group generation.

If randomly flagging l of n queries in a group as dummy

queries, the upper bound for the DFR is l
n−1 . and the expected

FPR is l
n

.

Figures 6 and 7 show the DFRs and FPRs for Sec on KOS

and ERN, respectively, when ε1 = 0.05, ε2 = 0.01 and |T| =
50, 100. Clearly, both DFAs and FPRs grow as l increases.

DFRs are close to their upper bound of l
n−1 , and FPRs are

close to 0 when l < b0.75nc, which is excellent.

Figures 8 and 9 show the DFRs and FPRs of Sec on KOS

and ERN, when ε1 = 0.1, ε2 = 0.05 and |T| = 50, 100. Again,

DFRs and FPRs grow with l. DFRs are close to their upper

bound, and FPRs are close to the predicted values based on

random selection, which means Sec is not very effective in

this setting.

Our experiments reveal an important truth, namely that

smaller ε1 and ε2 do not make TIO-1 more secure. TIO-1 with

ε1 = 0.05 and ε2 = 0.01 has worse resilience against Sec. We

also find Sec is not sensitive to the number of keywords in

each query, so Sec remains effective for larger queries.

The run time of Sec is very small. It takes less than 0.1s

to find out dummy queries in a query group.

E. Combining Dom with Sec

Dom and Sec are complementary in the following aspects.

Dom is sensitive to the number of keywords in queries,

while Sec is not. Sec is more suitable for queries with more

keywords. Second, Sec is more aggressive than Dom. Sec

can filter out more dummy queries than Dom, but may

introduce more false positives.

We therefore explore an attack which combines Dom and

Sec. We will use Dom and Sec separately to filter out

dummy queries, then return the union of the dummy queries

sets identified by each attack. Fig. 10 shows the DFRs of the

attack on KOS and ERN datasets. We can see that the DFRs of

the combined attack is superior to the DFRs of Sec, especially

when m is small. Up to 80% dummy queries can be filtered

out. This means dummy queries filtered out by Dom is not

a subset of those filtered out by Sec. We can filter out more

dummy queries combining Dom and Sec. We do not show

FPRs here because Dom rarely introduces false positive, so

FRPs of the combined attack are the same as FPRs of Sec.

F. Correlation Between Query Group Size and ε1, ε2

Our experiments show a clear correlation between the two

thresholds ε1, ε2 and the size of queries groups in TIO-1. This

correlation indicates that attacks can be composed to precisely

infer the exact values of ε1, ε2.

Figures 11a and 11b show the mean and standard deviation

of the group size when ε1 = 0.05 and ε2 = 0.04 to 0.02.

Figures 12a and 12b show the mean and standard deviation of

the group size when ε1 = 0.1 and ε2 = 0.08 to 0.02. From

these figures, we can see that when ε1 is constant, reducing ε2
increases the size of query groups, and when ε2 is constant,

reducing ε1 increases the size of query groups.

These results shows that ε1 and ε2 are related to the size of

query groups. This leaves the possibility of developing more

sophisticated attacks using parameters such as query group

size to precisely infer ε1 and ε2.

G. Run time of HDGA

We performed experiments to measure the average time re-

quired for query group generation in HDGA. Figures 13a and

13b show the average time used for query group generation for

various n, m, for the KOS and ERN datasets respectively, with

|T| = 100, n = {20, 40, 60, 80, 100}, and m = {1, 3, 5, 10}.
The run time is very small, but increases with n, as expected.

VIII. CONCLUSION

Topical intent obfuscation (TIO) is a new and promising

approach to preserving user privacy in text-based search. TIO

obscures a user’s topical intent by embedding the user’s query

within a sufficiently large set of dummy queries. We reviewed

current approaches to TIO, and identified numerous shortcom-

ings. We presented several attacks that are highly effective

against current methods, and showed that the assumptions they

are based on, while seemingly sound, are flawed.

We presented several attacks on current schemes, supported

by theoretical analysis and experiments. Our experiments

show that our attacks are very effective in practice. Even

an exhaustive search using our closure heuristic attack is

surprisingly effective, even when given very limited resources.

Other attacks, which we proposed based on other heuristics,

are even more devastating against current schemes.

Finally, we proposed a new dummy query generation

method called HDGA, which we proved to always generate

closed groups, and immune to the attacks we describe. Our

experiments show that HDGA is effective and efficient.

IX. ACKNOWLEDGEMENT

This work was supported in part by contract number

N00014-07-C-0311 with the Office of Naval Research.

REFERENCES

[1] H. H. Pang, X. Xiao, and J. Shen, “Obfuscating the topical intention in
enterprise text search,” in ICDE, 2012, pp. 1168–1179.

[2] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan, “Private informa-
tion retrieval,” J. ACM, vol. 45, no. 6, pp. 965–981, Nov. 1998.

[3] A. S. Josep Domingo-Ferrer and J. Castellà-Roca., “h(k)-private infor-
mation retrieval from privacyuncooperative queryable databases,” Online

Information Review, vol. 33, no. 4, p. 720C744, 2009.
[4] D. Rebollo-Monedero and J. Forné, “Optimized query forgery for

private information retrieval,” IEEE Transactions on Information Theory,
vol. 56, no. 9, pp. 4631–4642, 2010.

[5] J. Castellà-Roca, A. Viejo, and J. Herrera-Joancomartı́, “Preserving
user’s privacy in web search engines,” Computer Communications,
vol. 32, no. 13-14, pp. 1541–1551, 2009.

[6] J. Katz, A. Sahai, and B. Waters, “Predicate encryption supporting dis-
junctions, polynomial equations, and inner products,” in EUROCRYPT,
2008, pp. 146–162.

[7] Y. Lu, “Privacy-preserving logarithmic-time search on encrypted data in
cloud,” in NDSS. The Internet Society, 2012.

[8] P. Wang and C. V. Ravishankar, “Secure and efficient range queries on
outsourced databases using rp-trees,” in ICDE, 2013, pp. 314–325.

[9] A. Boldyreva, N. Chenette, Y. Lee, and A. O’Neill, “Order-preserving
symmetric encryption,” in EUROCRYPT, 2009, pp. 224–241.

[10] D. Boneh and B. Waters, “Conjunctive, subset, and range queries on
encrypted data,” in TCC, 2007, pp. 535–554.

[11] D. X. Song, D. Wagner, and A. Perrig, “Practical techniques for searches
on encrypted data,” in S&P, 2000, pp. 44–55.

[12] A. Boldyreva, N. Chenette, and A. O’Neill, “Order-preserving encryp-
tion revisited: Improved security analysis and alternative solutions,” in
CRYPTO, 2011, pp. 578–595.

[13] M. L. Yiu, G. Ghinita, C. S. Jensen, and P. Kalnis, “Outsourcing search
services on private spatial data,” in ICDE, 2009, pp. 1140–1143.

[14] H. Pang, X. Ding, and X. Xiao, “Embellishing text search queries to
protect user privacy,” PVLDB, vol. 3, no. 1, pp. 598–607, 2010.

[15] X. Shen, B. Tan, and C. Zhai, “Privacy protection in personalized
search,” SIGIR Forum, vol. 41, no. 1, pp. 4–17, 2007.

[16] M. Murugesan and C. Clifton, “Providing privacy through plausibly
deniable search,” in SDM, 2009, pp. 768–779.

[17] D. C. Howe and H. Nissenbaum, “Trackmenot: Resisting surveillance
in web search,” in Lessons from the Identity Trail: Anonymity, Privacy,

and Identity in a Networked Society, 2009, pp. 417–436.
[18] H. Pang, J. Shen, and R. Krishnan, “Privacy-preserving similarity-based

text retrieval,” ACM Trans. Internet Technol., vol. 10, no. 1, pp. 4:1–4:39,
Feb. 2010.

[19] Y. Xu, K. Wang, B. Zhang, and Z. Chen, “Privacy-enhancing personal-
ized web search,” in WWW, 2007, pp. 591–600.

[20] E. Balsa, C. Troncoso, and C. Dı́az, “Ob-pws: Obfuscation-based private
web search,” in IEEE Symposium on Security and Privacy, 2012, pp.
491–505.

[21] D. G. Thaler and C. V. Ravishankar, “Using name-based mappings to
increase hit rates,” IEEE/ACM Trans. Netw., vol. 6, no. 1, pp. 1–14, Feb.
1998.

[22] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,” J.

Mach. Learn. Res., vol. 3, pp. 993–1022, Mar. 2003.
[23] T. Kuflik, B. Shapira, Y. Elovici, and A. Maschiach, “Privacy preserva-

tion improvement by learning optimal profile generation rate,” in UM,
2003, pp. 168–177.

[24] B. Shapira, Y. Elovici, A. Meshiach, and T. Kuflik, “Prawła privacy
model for the web: Research articles,” J. Am. Soc. Inf. Sci. Technol.,
vol. 56, no. 2, pp. 159–172, Jan. 2005.

[25] R. Chow and P. Golle, “Faking contextual data for fun, profit, and
privacy,” in Proceedings of the 8th ACM workshop on Privacy in the

electronic society, ser. WPES ’09, 2009, pp. 105–108.
[26] S. T. Peddinti and N. Saxena, “On the privacy of web search based on

query obfuscation: A case study of trackmenot,” in Privacy Enhancing

Technologies, 2010, pp. 19–37.
[27] O. Krafft and N. Schmitz, “A note on hoeffding’s inequality,” Journal

of the American Statistical Association, vol. 64, pp. 907–912, 1969.
[28] “Uci machine learning repository.” [Online]. Available: http://archive.

ics.uci.edu/ml/datasets/Bag+of+Words
[29] “Keyword and search engines statistics.” [Online]. Available: http:

//www.keyworddiscovery.com/keyword-stats.html

