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ABSTRACT Continuous
We introduce a new type of query, called a real-time contiisuo Seheduler Manager e
query (RCQ), that captures the real-time requirements afgss-
ing data streams. We develop techniques to efficiently gotee Output Tuples ~4——— | ‘
RCQs in the presence of fluctuating query load and data load. W ‘ Data Steams
show that Rate-Monotonic scheduling is applicable to thidojem

domain, and show how to make this method adaptive to varying
load conditions. When a set of queries becomes unschedudabl

to load variations, we perform controlled input load sheddby
dropping tuples using a novel feedback-based approachcidede
which tuples to drop. Our work shows how to provide response
time guarantees for processing RCQs, and enables makirapthe
propriate trade-off between penalty due to missed deaxamel
result accuracy. Our experiments show that our approachkswor
very well and is usable in practice.
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Feedback Control

Figure 1: Conceptual Model of a Real-time Data Stream Man-
agement System

work addresses the issues of efficiency or memory utilipatitow-
ever, very little attention has been paid in the literataréhe pro-
Categories and Subject Descriptors cessing of continuous queries in real-time environments.

H.4 [Information Systems Applicationg: Miscellaneous

1.1 Real-time Data Stream Management
General Terms Real-time processing of continuous queries is essentialimer-
Algorithms, Experimentation ous applications. For example, production managemenersst
may require the diagnosis of a problem within a few seconad, a
vehicular traffic management systems may require stegistide

KeyV_VordS ) ] ] computed or corrective actions to be taken before the irderm
Real-time queries, Scheduling, Data streams, Load shgddin tion becomes stale. We refer to such systems as a Real-titae Da

Stream Management Systems (RDSMS). Work exists on real-tim
1. INTRODUCTION systems for relational data [16], but these techniques arstlyn

A data streamis a continuous, unbounded, and time-varying se- Unsuited for data stream environments. A survey of theslitee

quence of data elements [7]. Streams arise naturally in rouse shows no DSMS designed to address real-time queries ovar dat

applications. Important examples include data transthitkesen- streams.

sors, stock market data, and network monitoring data. tiisraon )

for users to issueontinuous querieCQ) over data streams [19].  Figure 1 shows the conceptual model of a RDSMS, where users

A Data Stream Management System (DSMS) holds the query and Submit continuous queries with real-time requirementshecex-

executes it whenever new data arrives, returning the resutie ecuted whenever a new set of stream data arrive. The volume of

user. Continuous queries are also cabehdingqueries. data processed per query execution is callectftita load and is
monitored and controlled by thgata load manager The num-

There has been considerable recent interest in building Staeam ~ Per of queries present in the RDSMS system is calledquery

Management Systems [11, 10, 20, 12, 23, 18, 21, 1]. Most such load. The query load manageadmits new queries and discards
obsolete queries. Theerformance monitois responsible for mon-

itoring the system performance, such as changes in loadtoml
and frequency of missed deadlines. In our work we introduce a
new component, called tHead-adaptive feedback contravhose

job is to provide timely feedback in tuning the performantéhe
queries.

We now briefly review some applications requiring real-timperies
on stream dataReal-time monitoring of sensor datais widely
used for surveillance and data acquisitions. In the TAOd®td@],



for example, data is collected by sensors deployed in tharoce
to measure parameters such as temperature, salinitypupeessid
streamed to a nearby station for real-time analysis. Soasses of
real-time applications can have life-or-death consegegnExam-
ples include tsunami alert systems [3], or robotic monitgrsys-
tems to identify people trapped in burning buildings, Heafion-
itors, and real-time control applications for aircraft otdlligent
Transportation SystemReal-time monitoring of Internet-related
datais another application. With the growth of the Internet,rgéa
number of web application now generate online data stre&xs.
amples include online stock monitoring portals [24], oalbidding
systems [2] and pay-per-click advertisements. Users (oipemies
that host these systems) query the data streams, and egpalisr
within real-time constraints. For example, a slight delaplacing

a buy or sell order on a stock can mean a huge gain or loss tor ins
tutional or other high-volume traders. In some cases, thesunay
be able to tolerate some degree of imprecision.

1.2 Motivation and Problem Definition
The characteristics of data streams can vary dynamicallgta D
rates may change, and the data values may vary erraticallg. T

query mix may also vary dynamically. RDSMS systems must meet

the real-time requirements of queries in the presence afgihg
query load and data load, which is a challenging problem.

In the following examples, we assume that the queries afediey
with a period of 1 second. Unless stated, each query has ate@c
time of 0.5 seconds. For ease of exposition, we assume teat th
execution time for any query is directly proportional to reival

rate of the input stream and directly proportional to thescklity

of the query operator.

1.2.1 High-Volume Data Streams

The RDSMS typically has no control over the volume of incognin
data stream (data load), since streams are continuous gmd-un
dictable. Since the execution time for a query depends oa dat
load, it is practical to assume that the execution time ofexryjis
different each time it runs. In Figure 2, Q2 misses its deadin

the 2" iteration, because an increase in data volume causes it to

executes for an extra 0.5 seconds.
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Figure 2: Query Q2 misses deadline when arrival rate increass
from Ato 1.5\

1.2.2 Unpredictable Data Distributions
The selectivity of a query operator depends on some prexdsay,
a selection predicate or join condition) and the distritmif input
values. However in a data stream environment, the databdigon
of tuples might vary with time due to external events which ar

beyond the RDSMS control. Thus, variations in the seldgtiof
the query operators may cause the query execution time yo var
Figure 3, Q1 misses its deadline in the iteration, because Q1
executes for an extra 0.25 seconds after the selectivitgases by
25%.
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Figure 3: Query Q1 misses deadline when selectivity increas
from 0.2 to 0.25

1.2.3 Dynamic Admission and Removal of Queries

In a general purpose RDSMS, the query load changes when users

submit new queries or remove old queries. When a higherifyrior
queries are added, some query (that met its deadline in ¢évéopis
iteration) may miss its deadline due to unavailability of tbro-

cessor time. For example, query load on a RDSMS becomes very

high when multiple users try to monitor a certain interegvent
such collapse of a stock value. As shown in Figure 4, Q2 misses
deadline in the™? iteration, because a higher priority query Q3 is
introduced into the system.
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Figure 4: Query Q2 misses deadline when query load increases
from2to 3

In this work, we will first define the semantics of real-timesges
and then address the problem of scheduling real-time cgieniéer
the load constraints.

1.3 Approach

We treat the scheduling of queries as a real-time schedpliol-
lem amenable to rate-monotonic scheduling [17]. Our aptros
based on sacrificing some amount of computation accuraayler o
to meet the query deadline. Initially, we perform a scheloilits
test to determine if all the queries can meet their deadliifetbe
query set is not schedulable, we determine what reductighen
processing load (hence the execution times), which will entle
queries schedulable. The idea will be to reduce the datattmad
achieve this reduction in execution times.



This reduction in the data loads leads to imprecision in yjuer e T, is the timewindow used to define the subset of stream
sults. We must reduce data loads in such a fashion that thre ove tuples that are processed per execution,

all error is minimized. Once we determine an appropriateedeh
ule that meets all deadlines and minimizes the error, wevehe
schedule to remain in place for a time determined by the ezhkdh e dis the relativedeadlinefor query execution, and
ing policy. For example, one option might be to monitor theer
and reschedule when the error exceeds a given thresholdhémo
option may be to reschedule periodically, say, when eactydqas
executed at least once.

¢ is thestride of the time window,

g is theweightof the query, characterizing its importance, or
equivalently, the penalty for missing its deadline.

Thelife-timeof a query refers to the time betweadmissiorof the

2. PROBLEM FORMULATION query and theleletionof the query from the system. A real-time

In this section we formalize various concepts that are uaet| ~ COntinuous query is executed multiple times during its-fifee.
in the presentation. We define real-time queries and desthi® An iteration refers to the instance of execution of the query. The

query processing model. Next, we discuss the query load ated d  9UerY is said to be executed for té time in iteration;.
load issues that make real-time processing very challgngki-

nally, we state the problem that we wish to address. 2.3 Real-time Query Processing Model
We consider executions of a RCQ to be preemptive, so thatrg que
2.1 Data Streams g in execution may be preempted by a query that has a higher pri-

We define a data stream as a sequence of data tuples thatraonfor ©'ity thang. However, our processing model requires iteration
to a particular schema. L&t be a schema for a relation. The data ©f @ny gueryq to complete before iteration+ 1 of g is ready for
streams is represented as the sequence of tugles, . . ., ar,, ), execution. We next define some terms that we will use in thie res
where eachu;, conforms to schem& and the subscript; is the of the paper.
time-stamp of the tuple. We assume that the tuples are lbartia
ordered by the time-stamps when they arrive into the system. S ) ) )

1. Theadmission timed of the query is the time at which the
Let T be the current time instant. Given a time range{.], where user submits the query to the system.
t1 < to < T, the sequence[t:,ts] = {(aj,,aj, --.,a;,), where ) ) i )
t1 = j1 < j2 < - < jn = L2 represents the subset of data stream 2. Therelease _tlme_'% of the query is the time at which all the
tuples that arrived in the range [ #2]. data tuples (in window) are available to start the next itera

of the query.

The arrival rate is the number of data tuples arriving pet timie.
We assume that the arrival raieis time-varying and the RDSMS
does not have a priori knowledge of the arrival rate charesties
of the data stream. Although the tuples arrive at variougs$imve
assume, in line with standard practice, that arrival radggregated
over discrete time intervals. Thus, arrival rate at time specified
aA(t) tuples per unit time.

3. Thebegin timeB of the query is the time when the query is
scheduled for execution.

4. Thefinish timeF of the query is time when the query com-
pletes its execution.

5. Theexecution tim&¥ of the query is the time taken to process

Let Z;(t) denote the data distribution of the values of an attribute the tuples in the window.

I, for all the tuples arriving before time Although Z;(¢) can be 6
approximated by storing summaries of all tuples that havigest
beforet, it need not be the case thét(t) = Z;(¢) fort’ > ¢. That
is, we cannot predict future values in the data stream. 7

. Theabsolute deadlinéd of the query is the time by which
the query must complete its execution.

. Therelative deadlinel of the query is the absolute deadline
minus the release time.

2.2 Real-time Continuous Queries

We define a real-time continuous query (RCQ) as a continuous 8- Aschedulds an assignment of processor to the queries in the
query with real-time constraints. The set of tuples overchti system. A query is said texecutingduring the time interval
query is executed is called tiveorking windowof that iteration. that the processor is assigned to the query.

For each successive iteration, we slide the working windgw b

time units, wheré is thestride of the sliding window. ) . ) .
Consider the'" iteration of a query. We say that the quenysses

Let to be the time when the query is admitted into the system. In the deadline i; > D;. A query is said to beuccessfuh meeting
general, thei’” iteration of the query processes tuples in the set the deadline ift; < D;.

Wi = {a¢]ts < t < tc}, wherets = (to x (¢ — 1) x §) and ] ) ] )

te = (to x (i — 1) x & + T,) represents the time-stamp range A schedulable queris one which successfully meets its deadline.

[ts, t.] of tuples in the working window. The i*" iteration of the query is said to be schedulableFjf <
D;. In contrast, a query ifardy if it misses its deadline. Thé"
In our work, a RCQ is specified as a tugdlg 7., 8, d, g), where iteration of the query is said to be tardyfif > D;.

Theoverrun timed; is the difference between the finish time of the
e ¢ is a query composed of operators that are members of the :*" iteration and the absolute deadlif®e of a tardy query. Overrun
set{sel ect,project,join,aggregate}, time of a schedulable query (s



2.3.1 The Generic Model

In our work, a query tree in equivalent taaskin a real-time en-
vironment. We used a simple heuristic to push down selestion
and projection, but our approach is independent of optiticima
heuristics, hence we do not discuss further. Each querysiedi-
rected acyclic graph composed of query operators (vejtioath

the output of the child operator feeding the input queue €gdd
the parent operator. We assume that the dependencies ah®ng t
operators are maintained during query execution, whicmsdzat
the root operator is executed last. Although query exenutan be
preempted, the query cannot be decomposed into logicatlasis-
for scheduling purposes.

When an operator is scheduled for execution, it performddhe
lowing three steps.

1. READ the w tuples from input queue (in main memory),
wherew is the cardinality of the working window.

2. PROCESSthe w tuples by executing the operator-specific
routines.

3. WRITE the resulting tuplesel x w to the output queue (in
main memory), whereel is the selectivity of the operator.

Given a working window, the cost (in terms of time) of READ is

execution ismpreciseif @ is executed over some of these tuples
only, that is, over a windowV’ ¢ W.

Such imprecision can be quantified using various error fanst
Consider the sefQ1, Q2, ..., Q»} of queries. Let query); have
weight g;, and execute fof; iterations. Let" be the error in ex-
ecuting thek'" iteration of Q;. We discuss how to quantify; in
Section 3.3. The total error of a schedule for thespieries is

n I;
=3 (z ) @
i=1 k=1
2.4 Problem Statement
We address the following probler@iven a set of RCQEQ1, ..., Qn}

over data streamgsi,...,sm}, find a schedule such that each
Q:, 1 < i < n meets its deadline, and the total error due the
imprecise computations is minimized.

We solve this problem under the following constraints.

e Data distribution of the stream attribute-values is notvkno
a priori.

e Arrival rate of a data stream is not known a priori.

e Users may submit new queries or delete existing queries.

fixed. The cost to PROCESS depends on the operator-type. The
cost to WRITE depends on the how many resulting tuples are pro 3. APPROACH

duced. A highly selective operator produces less tuplesigmib
Let Tr, Tp, andTw be the time needed to perform the READ,
PROCESS and WRITE steps, respectively. The execution tme f
any operator is estimated using the generic Equation 1. Xéeue
tion time for individual operators is discussed in Sectidh B

Eopr = TR + TP + TW (1)

2.3.2 Query Load
The query load is characterized by the number of queriesan th

system. We allow the query load to be dynamic, which mearts tha

users may submit new queries or delete existing querieyairae.

Let L; be the query load at time The query load at some time
"=t+ Atisgiven byL,, = L; + B4 — Bp, wheref, is the
number ofnewqueries admitted andp is the number of queries

deletedduring the time interval\t.

2.3.3 Data Load

The data load is characterized by the number of tuples that mu
be processed per iteration. L8f; be a stream’s working window
for thei'" iteration of the query. Given the working window range
[ts, te], the cardinality of the working window i&; = j: At)dt,
where\ is the arrival rate of the stream at tinhe Thus, the data
load for thei'" execution of a single-stream querylis = w;.

For a query involvingm data streams, the data load for tHé
iterationisD; = > 7" | w], wherew] is cardinality of the working
window over streamn.

2.3.4 Imprecise Query Execution
Let W be the working window in some iteration of a qué&py The
execution of@Q is preciseif it runs over all the tuples if¥. The

We treat the scheduling of queries as a real-time schedpliol-

lem amenable to rate-monotonic scheduling. Our approachtis
lined in Figure 5. Initially, we perform a schedulabilitystedo de-
termine if all the queries can meet their deadlines. If thergset
is not schedulable, we determine what reduction in the [s<ing
load (hence the execution times) will make the queries sdhbte.

The idea will be to reduce the data load to achieve this réntuat

execution times.

This reduction in the data loads leads to imprecision in yjuer
sults. We must reduce data loads in such a fashion that thralbve
error (see Equation 2) is minimized. Once we determine amapp
priate schedule that meets all deadlines and minimizegtbe we
allow the schedule to remain in place for a time determinethby
rescheduling policy. For example, one option might be to itoon
the error, and reschedule when the error exceeds a giveshtide
Another option may be to reschedule periodically, say, wach
query has executed at least once.

3.1 Estimating the Execution Time of Query
We abstract the query execution time in terms of the costles
described in Table 1. Further, we define selectivigf)(as the ratio
of number of tuples that are generated as output, to the nuafibe
tuples that are processed by the operator. For selectiojggion
and aggregate operations the selectivity is in the rginge. Selec-
tivity of a join operation in the rang@®, (w,w,)/(w; +w.)], where
w; andw, are the cardinalities of left and right working windows,
respectively.

3.1.1 Operator Execution Time

Let w be the cardinality of the working window for the selection,
projection and aggregate operations. These operationgesme
scan of all tuples over the working window. The executionesm
for a select, project and aggregate are show in EquationaByd45,
respectively.
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Figure 5: Our Framework for Scheduling Real-time Continu-
ous Queries

Table 1: Cost variables

Name | Description Value used in Experi-
ments (millisecond)
Cr | Time taken to READ & 1 x 1077
tuple from input queue
Cw | Time taken to WRITE & 1 x 107°
tuple to output queue
Co Time taken to perform 2.5 x 1073
one comparison operg-
tion, such agal = 10
C. | Time taken toidentify thel 2.0 x 103
attribute to project
Co Time taken to perform 3.0 x 1073
a arithmetic operation
such awall + vall
Cw | Time taken to perform 1 3.0 x 10~°
probe of the hash table
C;, | Time taken to hash a tuf 2.5 x 107
ple into hash table

Eselect = {'LUOR} + {U)Co—} + {SU)CW} (3)
Eproject = {wCr} + {wCr} + {wCw} (4)
Eaggregate = {wCr}+{wCa}+ {Cw} (5)

For equi-joins we use a symmetric probe technique [14]. et
andw, be the cardinalities of the right and left working windows
for a 2-way join. The join is performed in 2 stages. First, vastn
the tuples in the left window as they arrive at the input. ®eco
we probe the right hash table, using each tuple in the leftloin
as the key. The same steps are applied for the tuples in the rig
window. Hence, the execution time for a 2-way join is as shawn
Equation 6.

Ejoin = (wl + w'r)OR + (wl + wr)(cbd + Oh) + S(wl + wr)CW
(6)

Output Tuples

(S7((s6((s4 s1 wl) + (s2 w2))) + (s5 s3 w3)))

(s5s3 w3)

5
select

3
project

Input data streams

Figure 6: Example showing how to estimate the number of tu-
ples processed by a join query over 3 data streams

3.1.2 Query Execution Time

Given a query specification, the query optimizer is resgaador
generating a query plan (also called the query tree) to ¢xe¢be
query. We estimate the execution time of a query tree asisllo

A query tree is a directed-acyclic graph oivertexes (operators)
and e edges (input streams). When the output of a certain oper-
ator (parent) serves as an input for a next operator (childhé
query tree, the processing load of the child operator isutatied as
Wehild = S X Wparent, WNEr€wparen: is the cardinality of work-

ing window of parent operator, ands the selectivity of the parent
operator.

Example: Consider a join query over 3 data streams, with arrival
rate \1, A2, A3. The input edges in Figure 6 show the number of
tuples processed by each operator in query tree, where the
selectivity of operatot. Thetotal data loadis given by} ", w;,
wherew; is the number of tuples processed by opergtdret E;

be the execution time of operatgr Thetotal execution timehe
query is given by

E:iEj )

3.2 Load-adaptive RM Scheduling

We first show that real-time processing of continuous gsecan
be achieved using rate monotonic (RM) scheduling. RM algo-
rithm [17] assigns static priorities to tasks, so that tagikis shorter
periods are given higher priorities. As noted in earli@rkture [17],
a set of tasks can be scheduled under RM scheduling if the &ask
preemptive, each task has a relative deadline equal toritahand
there is no exclusive sharing of resources. A schedule frwging
a set queries is said to IBRM-feasiblef all queries complete before
their deadlines. A query is said to BM-schedulabléf it can be
executed using some RM-feasible schedule.

In our model, a query will process a new working window after e
ery stride interval. In the standard terminology of schadylwe
would say that a new iteration of the query is released (fecex
tion) at each stride interval. RM scheduling is applicableour
case because of the following properties of the continuoesies.



e All queries are periodic, with the period equal to the stofle
the working window.

e All queries are preemptive, and the cost of preemption is neg
ligible.

e All queries are independent, with no precedence constraint
e All queries have relative deadlines equal to the stride.

e All queries compete for CPU time and the memory available
is large enough for query execution.

We propose a preemptive static priority scheme (like RM dahe
ing), in which the priority of the query is inversely proporial to
its period. The query with the highest priority is scheduded it
is executed until it either completes, or it is preempted hey dr-
rival (release) of a higher priority query. The focus of ounrly
however, is to adapt the schedule to changing load condition

3.2.1 Conditions for RM-schedulability

We assume that there is a query ¢et {Q1,...,Q,} of n real-
time continuous queries with execution timés, Es, . . ., E,, and
periodsPi, Ps, ..., P,, such thatP, < P, < ... < P,. We

will now determine conditions for RM-schedulability (a di¢d
discussion can be found in [17]).

Since the query periods in the relative ordgr< P, < ... < P,,
the only condition to be met for ensuring th@i can be feasibly
scheduled isF; < P;. The first iteration of query). will meet
its deadline if it can find enough time to finish ojer P]. Let Q-
finish at timet. SinceQ) is a higher priority task[Pill iterations
of @, are completely executed in time ran@et]. Thus, forQ- to
complete, in addition to multiple iterations @f;, there must be at
leastFE time available. That is, the following condition must hold:

o= | 5| B+ e ®
This means thaf)> can meet its deadline if there exists sote

[0, P>] that satisfies this condition. Next, we generalize this ¢ond
tion for the entire query se€t and show that each que€y; € Cis
RM-schedulable iff conditions C1 and C2 hold. We use thefwll
ing notations:

v = Y B L.H ©
L = W0 (10)
L; = min {Li(t)}70<t<PL' (11)
L = max{L;} (12)

QueryQ; is schedulable if there exists some [0, P;], such that
t = Vi(t). We observe thal; (t) is a constant in Equation 9, except
at a finite number of points when the queries are releasecéor t
next iteration. Thus, we need to compulfgt) at the times

. P

T:{ZP]‘|1§]§Z,1SZS\\—J} (13)
P;

From this result, we can say that the queries are RM-schieléula
under the condition€'l and C'2 below. Under these conditions,
each RM-schedulable query completes at a timsuch thal/; (¢') =
.

CL: If minger {Vi(t)} < t,thenQ; is RM-schedulable

C2: If maxi<;<p{minier, Vi(t)/t} < 1forl < ¢ < n, and
t € 7;, then query sef is RM-schedulable.

3.2.2 Reducing the Execution Time to Satisfy RM-

schedulability
If a query that is not RM-schedulable misses its deadlineiqat
lowed to execute after the deadline, it will finish at time> P;.
We now outline our method to reduce the execution time ofigaer
through load shedding, such that all queries meet the desdit
the cost of some imprecision. Our technique is outlined igoAl
rithm 1

We focus our discussion on a qué&py. which fails the RM-schedulability
conditions stated in Section 3.2.1, such thatall1 < j < k are
RM-schedulable. We also observe tliat is also the highest prior-

ity query in the query set that does not meet its deadlinedritht
iteration.

Next, we defineoverrun timeas amount of execution time remain-
ing when it deadline is passed. Clearly, the overrun time Mf R
schedulable queries is 0. The time available for query t@@ee
before its deadline = Py is

k—1 P
-~ k
Ey =Py, — Z o {E} (14)
Jj=1
Thus, the overrun time of a query that may misses its deadlithe
be
&), = max [0, By, — Ex] (15)

We propose a technique of transforming this non-feasiliteduale
into a feasible one. We first note that, makig RM-schedulable
means reducing the execution time of some queries that etenpl
at a timet < P,. Let the reduction in the execution times be

e1,...,er. Next, we show how to derive these values.
We want to distributeb; over g—ﬂ instances of; and [%ﬂ

instances ofY2, and so on, and finally over a single instance of
Q. We will distribute®,, in inverse proportion both to the weight
and the selectivity of the query.

Let thereduction ratior; of queryi be (s; x g;) ', wheres; is
the selectivity, andy; is the weight of the query. Note that the
weights are user (or application) specified, hence our @upris
very general. if an application decided to make some quesss
importance (high weight), we make sure that it is penaliz=s,|
that others that are less important. We explain this flexytfilirther
as follows. We divided,, into k parts inthe ratio; : ... : r. The
fraction of &, distributed to each quei§; is called the cumulative
reductione; and is given by

T

k
ijl T

e = Py,

(16)

Since [%w iterations of@); complete before,, the per-iteration

reduction in the execution time is given by

|#]

o

€; =

7

)



Algorithm 1 Load Reduction Technique

Algorithm 2 LRM Schedule

Require: Query set( of sizen, such that); € ¢ has periodP;,
deadlined;, weightg;.
Let the periods be inthe ordét < ... < P,
for i = 1ton do
Estimate the execution time; as described in Section 3.1
Check ifQ; is RM schedulable by applying conditions stated
in Section 3.2.1
if Q; is not RM schedulabléhen
Find the overrun time; using Equation 15
Find the execution time reductien using Equation 17
E! — E; — e; {Q; with the new execution timé&; is now
RM schedulable}
Find the data load reduction using Equation 20
end if
end for

The reduced execution time, after the applying above tejcienis
given by

Ei=Ei—ei (18)

With the new execution times, each query finishes at time
V/ (t) given by

(19)

Vi (t) = ZE L.H

3.2.3 Determining the Reduction in Data Load
Given the reduced execution tini of the RM-schedulable query,
we must determine the number of tuples to drop so that exacuti
time drops toE’. From Equations 3—7, we know that the execution
time is a function of the cardinality of the working windawand
operator selectivity. Assuming that the selectivity is stamt dur-
ing the iteration, we can represent the execution time ofemyqas
F(w), wherew is the cardinality of the working window.

We want to determine the’, such thatF'(w’) = E’. Assuming
the load reduction is shared equally among the participadiata
streams, we first substitute, = kw;, 1 < i < m, wherem is the
number of streams participating in the query &nd k& < 1. Next,
we solve the equatiof’(w’) = E’ to determinek.

Let w be the size of the original working window. Once we de-
termine the size of the reduced working window for streaas
w; = k x w;, the number of tuples to be dropped is given by

(20)

o~ !
wW; = Wy — Wy

Once we know the number of tuple to be dropp&dwe sample the
working window and uniformly drop tuples over the range dof th
working window. Uniformly dropping the tuples is a simpldipg
which does not lead to extra processing. Semantically ¢hgos
tuples to drop is also another alternative, however, itkslyi to

Require: Query set of sizen, such thatQ; € ¢ has execution
time £/ and periodP;.
Let the periods be inthe ordét < ... < P,
for ¢t = 0to oo do
P, =min(P;)V1<j<n
repeat
Q) is executed for 1 time unit
t—t+1
until (' —t # E!) OR (t'=release time of a querg;, such
thath < PL')
if (' —t) = E;then
Finish timeF; — ¢’
else
Begin timeBy, « t’
end if
end for

3.3 Error Function
Dropping input tuples causes imprecise query execution.ca&ve
quantify the error in two ways.

Theprocessing errore, of a queryQ; is the number of tuples that
are not processed before the deadline. Qetbe a query that is
schedulable under LRM. Let; be the reduction in the data load,
which is obtained as stated in Section 3.2.3. The processiog
is given by

€ =W (21)

Theoutput error ¢; of a queryQ); is the number of tuples that do
not appear in the output of the query computation. Qethave a
selectivity of sel;. The output error of executing que€y; under
LRM scheduling is given by

€; = S@li X ’l/U\Z (22)
3.4 Run-time Adaptations of Schedules

An LRM schedule for a set of queries may become sub-optimal
if kept unchanged for a long time. Since most continuousigser
run for a long time, rescheduling periodically is useful umther
adapting the schedule. We outline three approaches to darper
such schedule management during run-time.

3.4.1 Pessimistic Rescheduling

In this model, we re-examine all the load conditions and fiest

RM schedulability as soon as each query finishes. If the dada a
load conditions at this time are such that the same LRM sdbhedu
cannot be re-used, we apply the load reduction technigagsdsn
Section 3.2.3 and determine a new LRM schedule adapted to the

consume precision CPU every-time a new LRM schedule has to be new load.

determined

3.2.4 The LRM-schedule
We call our methodbad-adaptive rate-monotoni¢.RM) schedul-
ing because any LRM schedule ensures RM-schedulabilityefigs

This technigue has high overhead, because a schedulatgiity
must be performed every; time units, which is the smallest period
among the queries in the given query set. Thus, at a given/titree
overhead is proportional to£-]. The advantage of this method is

through load shedding. Algorithm 2 shows how the queries are that we have finer control over the schedule. Itis parti¢ylaseful

scheduled under LRM scheduling.

if the load conditions are highly dynamic, and the perforoeaaf



a static schedule is likely to degrade very quickly.

3.4.2 Optimistic Rescheduling

In this approach, we allow to keep the LRM schedule in pladé un
each query has run at least once. Hence, we test for schditylab
once everyP, time units. The technique suffers a much lower over-
head than the pessimistic approach. At any given tithe number

of re-scheduling decisions made is upper—bounde@@yj.

Since P, < P,,Vi < n, this technique works very well if the
load conditions do not change frequently. Consider a gkewith
period P, < P,. Using this technique, the quety; completes

[ ! W iterations, without having to switch to a new schedule.

Py

3.4.3 Permissive Rescheduling
The optimistic and the pessimistic approaches perfpariodic
rescheduling. The period is upper-bounded by the peRpdor
pessimistic rescheduling, and I8, for the optimistic technique.

We now describe an aperiodic technique in the section,cpbe-
missive schedule managemeth this approach, we determine a
new LRM schedule if at time the total error exceeds a threshold
7. Thus, the same schedule is re-used as long as the total erro
remains below the threshotd

This technique is more adaptive than the periodic techsigue
suffers lower overhead when the load fluctuations are infag
and a high overhead only when the load conditions are higity d
namic. Moreover, this technique allows the user to uppentidhe
imprecision of the LRM schedule.

4. EXPERIMENTAL ANALYSIS

We used a synthetic, as well as a real-world dataset to testclor
niques. Figure 7 shows the arrival rates of the stream usé#tein
datasets.

We used the DEC-PKT dataset [5] as real-world dataset. Rglesi
stream queries we worked with the TCP trace and for join ggeri
we used the TCP, UDP and SF traces, with suitable equi-jain co
ditions. The arrival rate of packets is very random, henaerafer

to it as RANDOM in our experimental setup.

We generated two types of workloads for our synthetic datdses
STEADY dataset consists of 3 streams that have arrival rateh
that thedemandor the CPU utilization is always more that 100 %.
This ensures that queries are not RM-schedulable duringrihe
tire run of the experiment. The STEP dataset consists okarstr
whose arrival rate increases as time progresses. We ugefarste
tion, that increases the arrival rate by a fraction of 0. aath step.

A query load of 10 queries was used in most of the experiments.
We used a decent mix of selection, projection and join qedoe
reflect a real-world scenario. The queries and their wejglead-
lines and periods are listed in Table 2. For sake of brevityomé
the SQL specifications for the queries. The processing tonthe
various query operators shown in Table 1 were collectedneffli
by multiple executions of the operators (in isolation) ahneint av-
eraging their execution times. All the simulations were fon20
seconds, using a prototype we built for our work. Unless i§ipelc
optimistic schedule management was used as rescheduliieg. po
The per execution overhead of rescheduling was betweef.2.1-

80
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RANDOM -
o 60
S
§ 50 -
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Figure 7: Types of data workloads used in the experiments

milliseconds, which can easily be accounted for while deteing
a LRM schedule.

Table 2: Queries used

[ id | Type | Period | Weight ]
Q1 | select 1 5
Q2 | select 2 6
Q3 | select-project 2 3
Q4 | select-project 3 2
Q5 [ 2-way join 4 1
Q6 | 2-way join 5 7
Q7 | 3-way join 5 8
Q8 [ 2-way join-project 6 9
Q9 | project-2 way join 6 10
Q10 | avg 6 4

We compared our approatikRM with two alternative approaches.
First, the traditional rate-monotonic approach, caRdd, in which

a tardy query was allowed to run to completion even after #ses
its deadline. Second, the non-preemptive scheduling [ijFijaach
called HPF in which the highest priority (lower period) query is
scheduled first and allowed to run until completion. Our geas

to measure the performance of these 3 scheduling techniques
terms of the following.

1. Miss rate: The fraction of queries that miss their deadline at
any given time.

2. Completion rate: The fraction of queries that finished by
timet. This includes the queries that may have missed dead-
lines.

3. Total error: The total error due to the imprecise computa-
tion, for all the iterations of a query.

4.1 Performance of a Static Schedule

A cyclerefers to 1 complete iteration of the least frequent query in
the given query task. For example, in our setup, a cycle ttsai
be complete when query Q10 (with period 6 seconds) finisises it
first iteration. We applied our LRM scheduling at the startha
cycle (at t=0) and allowed to schedule to run until Q10 finishe
The STEADY dataset was used for this experiment. We did not
apply any of the rescheduling heuristics in this experimeance

we consider the schedule to bttic

Figure 10 shows the results of this experiment. As expettied)
misses no deadline in this cycle. The RM and HPF suffer becaus



the execution time of some queries may be high, and therepgsmo
vision to cut-down on the execution time. The number of qgeri
completed by LRM as are also much higher than both the akerna
tives. Since, the total error is weighted, we see that oucydbd
distribute the load leads to smaller total error in the otutpu

4.2 Performance under Steady Load

Figure 9 shows that when the load is steady, our policy suftever
missed rates than either alternatives. In fact, before ahgtetion

of 1 cycle (t=6000) we do not miss any deadline. A small fiatti

of deadlines are missed later in the run because of the résling
policy is initiated only later. Since we only periodicallyschedule
the LRM schedule, we are able to only tune the miss rates dnly a
the rescheduling instances.

4.3 Performance under Step Load

Figure ?? shows our results under step workload. In this experi-
ment, the CPU demand is increasing with time. Hence, as &gbec
the RM scheduling misses more deadlines as time progrdslés.
also suffers more miss rate than in the case of a STEADY work-
load, but the miss rates are considerably lower than RM or. HPF
Moreover, LRM consistently completes more queries thah b
alternatives.

4.4 Performance under Random Load

Imprecise computation of real-time tasks was first propas€¢i3].

This and other extensions to this work [22], however, asstirae

the task can be logically divided into 2 parts, hamely the adaan
tory and the optional part. Moreover, they study the pertoroe

of schedule under static load conditions. We make no such as-
sumptions and we are interested in quantifying the impi@tis

the context of data streams.

The authors in [15] address how to handle over-running taskis
propose a techniques to run the optional part of the task @pan
riodic server. We make no such assumptions about the quedy, a
treat each query as an indivisible task that cannot be ruaraggly.

[26] is the only work we have come across in the context ofreal
time queries over data streams. However, this work is stédt p
liminary and the paper does not provide any theoreticalliesf
how to tune the query performance. The paper only outlines an
approach to drop tuples when the arrival rates are high. Bhe p
rameters that define the tuple drop rate are chosen expesittyen
which is largely impractical for dynamic data stream erminznt.
Moreover, the scheduling scheme is not discussed in deétaibd-
dress the problem of meeting deadline in a much broader xpnte
by considering the fluctuations in the query load, data laadyell
as selectivity of the queries.

A straight-forward approach to our problem is to run a ovening
query until it passes its deadline, and then stop its exacufl his

Figure 11 shows the performance of our scheme under a more dy-approach is similar to the one studied in [15], and is notadlét

namic workload. Again, the LRM schedule completes far more
queries in a given time and is able to limit the miss rate taiada?
%. After thel®* cycle completes, the total % error is also stable in

in our context because of various reasons. First, a quetyveity
high frequency (small period), but a high execution timrethe
period) will hog the processor at all times and hence statliero

case of the LRM schedule. For both, RM and HPF techniques, the queries in the system. Moreover, in a hard real-time systéms

total error is much higher than LRM.

4.5 Performance under Varying Query Load

In this experiment we vary the number of queries from 4 to 2@ T
performance of all schedules is expected to degrade as renegu
are added. However, Figure 12 shows that the LRM policy is abl
to adapt to the query load much better than the simple RM yolic
In such cases, a permissive policy to rescheduling is likelipe
more beneficial.

5. RELATED WORK

Work exists in the area of real-time database systems [16yv-H
ever, all work in this area assumes that the data is statibiande,
most of the data-related properties, such as the cardasabf the
relations, data distribution etc are known a priori. Thug, be-
lieve that the techniques studied for relation-data aredirectly
applicable to streaming data.

Recently there has been numerous works on optimizing acmiis
queries over data streams. However, the bulk of the worlkases
to minimizing the memory utilization [20, 8, 9, 6] during qye
execution. A novel technique to maximize the output raterés p
posed in [25]. However, very little has been done in the cdraé
real-time application of these techniques.

The load shedding [25] approach has some overlap with ouk,wor
but the authors do not study this in the context of real-timerigs.
Moreover, the quality of service metric used in the semaaypic
proach does not consider performance measures for realstysy
tems, such as miss ratios or latency of query execution.

penalty due to unprocessed data is likely to become unaaidept

Our goal is the address the problem in the context of a weaddg h
DSMS, the goal being to meet all the deadlines of the querigs —
the cost of some imprecision in the computation. When theigsie
are have along life-time, this advantage of meeting deasliéasily
outweighs the approximation error.

6. CONCLUSION

We have proposed a novel approach to schedule real-timgeguer
over data streams. We have focussed on the problem of ownéngin
queries in a weakly hard real-time systems, where a smaikdeg
of missed deadlines and imprecision can be tolerated. Odk wo
is novel because, we make no assumptions about data aaigal r
query load or the data distribution. Meeting query deadlinguch
setting is challenging. Our approach of meeting the queaylliige

by reduction the execution time of queries is very practiaat is
based on well-known properties of rate-monotonic schadul®ur
load adaptive rate-monotonic (LRM) scheduling policy isidmic
and quickly adapts to the changing load conditions. LRM ig ab
to minimize the total error caused to reduction in the prsices
load. Moreover, experimental results show that LRM works fo
various workloads and consistently out-performs the séinmpte-
monotonic policy and a non preemptive priority schedulenc8i
most continuous queries are long-running, reschedulingbmae-
quired. For dynamic settings, permissive reschedulingiseeore
suitable. For a workload where the arrival rate or query lcaalbe
estimated a priori, periodic rescheduling is sufficient.

As part of future work, we wish to explore how our scheduliag ¢
be applied in Aurora/Borealis [10].
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