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ABSTRACT
We introduce a new type of query, called a real-time continuous
query (RCQ), that captures the real-time requirements of process-
ing data streams. We develop techniques to efficiently process the
RCQs in the presence of fluctuating query load and data load. We
show that Rate-Monotonic scheduling is applicable to this problem
domain, and show how to make this method adaptive to varying
load conditions. When a set of queries becomes unschedulable due
to load variations, we perform controlled input load shedding by
dropping tuples using a novel feedback-based approach to decide
which tuples to drop. Our work shows how to provide response
time guarantees for processing RCQs, and enables making theap-
propriate trade-off between penalty due to missed deadlines and
result accuracy. Our experiments show that our approach works
very well and is usable in practice.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms
Algorithms, Experimentation

Keywords
Real-time queries, Scheduling, Data streams, Load shedding

1. INTRODUCTION
A data streamis a continuous, unbounded, and time-varying se-
quence of data elements [7]. Streams arise naturally in numerous
applications. Important examples include data transmitted by sen-
sors, stock market data, and network monitoring data. It is common
for users to issuecontinuous queries(CQ) over data streams [19].
A Data Stream Management System (DSMS) holds the query and
executes it whenever new data arrives, returning the resultto the
user. Continuous queries are also calledstandingqueries.

There has been considerable recent interest in building Data Stream
Management Systems [11, 10, 20, 12, 23, 18, 21, 1]. Most such
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Figure 1: Conceptual Model of a Real-time Data Stream Man-
agement System

work addresses the issues of efficiency or memory utilization. How-
ever, very little attention has been paid in the literature to the pro-
cessing of continuous queries in real-time environments.

1.1 Real-time Data Stream Management
Real-time processing of continuous queries is essential innumer-
ous applications. For example, production management systems
may require the diagnosis of a problem within a few seconds, and
vehicular traffic management systems may require statistics to be
computed or corrective actions to be taken before the informa-
tion becomes stale. We refer to such systems as a Real-time Data
Stream Management Systems (RDSMS). Work exists on real-time
systems for relational data [16], but these techniques are mostly
unsuited for data stream environments. A survey of the literature
shows no DSMS designed to address real-time queries over data
streams.

Figure 1 shows the conceptual model of a RDSMS, where users
submit continuous queries with real-time requirements, tobe ex-
ecuted whenever a new set of stream data arrive. The volume of
data processed per query execution is called thedata load, and is
monitored and controlled by thedata load manager. The num-
ber of queries present in the RDSMS system is called thequery
load. The query load manageradmits new queries and discards
obsolete queries. Theperformance monitoris responsible for mon-
itoring the system performance, such as changes in load conditions
and frequency of missed deadlines. In our work we introduce a
new component, called theload-adaptive feedback control, whose
job is to provide timely feedback in tuning the performance of the
queries.

We now briefly review some applications requiring real-timequeries
on stream data.Real-time monitoring of sensor datais widely
used for surveillance and data acquisitions. In the TAO Project [4],



for example, data is collected by sensors deployed in the ocean
to measure parameters such as temperature, salinity, pressure, and
streamed to a nearby station for real-time analysis. Some classes of
real-time applications can have life-or-death consequences. Exam-
ples include tsunami alert systems [3], or robotic monitoring sys-
tems to identify people trapped in burning buildings, health mon-
itors, and real-time control applications for aircraft or Intelligent
Transportation Systems.Real-time monitoring of Internet-related
data is another application. With the growth of the Internet, a large
number of web application now generate online data streams.Ex-
amples include online stock monitoring portals [24], online bidding
systems [2] and pay-per-click advertisements. Users (or companies
that host these systems) query the data streams, and expect results
within real-time constraints. For example, a slight delay in placing
a buy or sell order on a stock can mean a huge gain or loss for insti-
tutional or other high-volume traders. In some cases, the users may
be able to tolerate some degree of imprecision.

1.2 Motivation and Problem Definition
The characteristics of data streams can vary dynamically. Data
rates may change, and the data values may vary erratically. The
query mix may also vary dynamically. RDSMS systems must meet
the real-time requirements of queries in the presence of changing
query load and data load, which is a challenging problem.

In the following examples, we assume that the queries are periodic,
with a period of 1 second. Unless stated, each query has a execution
time of 0.5 seconds. For ease of exposition, we assume that the
execution time for any query is directly proportional to thearrival
rate of the input stream and directly proportional to the selectivity
of the query operator.

1.2.1 High-Volume Data Streams
The RDSMS typically has no control over the volume of incoming
data stream (data load), since streams are continuous and unpre-
dictable. Since the execution time for a query depends on data
load, it is practical to assume that the execution time of a query is
different each time it runs. In Figure 2, Q2 misses its deadline in
the 2nd iteration, because an increase in data volume causes it to
executes for an extra 0.5 seconds.
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Figure 2: Query Q2 misses deadline when arrival rate increases
from λ to 1.5λ

1.2.2 Unpredictable Data Distributions
The selectivity of a query operator depends on some predicate (say,
a selection predicate or join condition) and the distribution of input
values. However in a data stream environment, the data distribution
of tuples might vary with time due to external events which are

beyond the RDSMS control. Thus, variations in the selectivity of
the query operators may cause the query execution time to vary. In
Figure 3, Q1 misses its deadline in the4th iteration, because Q1
executes for an extra 0.25 seconds after the selectivity increases by
25%.
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Figure 3: Query Q1 misses deadline when selectivity increases
from 0.2 to 0.25

1.2.3 Dynamic Admission and Removal of Queries
In a general purpose RDSMS, the query load changes when users
submit new queries or remove old queries. When a higher priority
queries are added, some query (that met its deadline in the previous
iteration) may miss its deadline due to unavailability of the pro-
cessor time. For example, query load on a RDSMS becomes very
high when multiple users try to monitor a certain interesting event
such collapse of a stock value. As shown in Figure 4, Q2 missesits
deadline in the2nd iteration, because a higher priority query Q3 is
introduced into the system.
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Figure 4: Query Q2 misses deadline when query load increases
from 2 to 3

In this work, we will first define the semantics of real-time queries
and then address the problem of scheduling real-time queries under
the load constraints.

1.3 Approach
We treat the scheduling of queries as a real-time schedulingprob-
lem amenable to rate-monotonic scheduling [17]. Our approach is
based on sacrificing some amount of computation accuracy in order
to meet the query deadline. Initially, we perform a schedulability
test to determine if all the queries can meet their deadlines. If the
query set is not schedulable, we determine what reduction inthe
processing load (hence the execution times), which will make the
queries schedulable. The idea will be to reduce the data loadto
achieve this reduction in execution times.



This reduction in the data loads leads to imprecision in query re-
sults. We must reduce data loads in such a fashion that the over-
all error is minimized. Once we determine an appropriate sched-
ule that meets all deadlines and minimizes the error, we allow the
schedule to remain in place for a time determined by the reschedul-
ing policy. For example, one option might be to monitor the error,
and reschedule when the error exceeds a given threshold. Another
option may be to reschedule periodically, say, when each query has
executed at least once.

2. PROBLEM FORMULATION
In this section we formalize various concepts that are used later
in the presentation. We define real-time queries and describe the
query processing model. Next, we discuss the query load and data
load issues that make real-time processing very challenging. Fi-
nally, we state the problem that we wish to address.

2.1 Data Streams
We define a data stream as a sequence of data tuples that conform
to a particular schema. LetS be a schema for a relation. The data
streams is represented as the sequence of tuples〈at1 , . . . , atn〉,
where eachatj

conforms to schemaS and the subscripttj is the
time-stamp of the tuple. We assume that the tuples are partially
ordered by the time-stamps when they arrive into the system.

LetT be the current time instant. Given a time range [t1, t2], where
t1 ≤ t2 ≤ T , the sequences[t1, t2] = 〈aj1 , aj2 . . . , ajn〉, where
t1 = j1 < j2 < · · · < jn = t2 represents the subset of data stream
tuples that arrived in the range [t1, t2].

The arrival rate is the number of data tuples arriving per unit time.
We assume that the arrival rateλ is time-varying and the RDSMS
does not have a priori knowledge of the arrival rate characteristics
of the data stream. Although the tuples arrive at various times, we
assume, in line with standard practice, that arrival rate isaggregated
over discrete time intervals. Thus, arrival rate at timet is specified
aλ(t) tuples per unit time.

Let Zl(t) denote the data distribution of the values of an attribute
l, for all the tuples arriving before timet. AlthoughZl(t) can be
approximated by storing summaries of all tuples that have arrived
beforet, it need not be the case thatZl(t) = Zl(t

′) for t′ > t. That
is, we cannot predict future values in the data stream.

2.2 Real-time Continuous Queries
We define a real-time continuous query (RCQ) as a continuous
query with real-time constraints. The set of tuples over which a
query is executed is called theworking windowof that iteration.
For each successive iteration, we slide the working window by δ
time units, whereδ is thestrideof the sliding window.

Let t0 be the time when the query is admitted into the system. In
general, theith iteration of the query processes tuples in the set
Wi = {at|ts < t ≤ te}, wherets = (t0 × (i − 1) × δ) and
te = (t0 × (i − 1) × δ + Tw) represents the time-stamp range
[ts, te] of tuples in the working window.

In our work, a RCQ is specified as a tuple〈q, Tw, δ, d, g〉, where

• q is a query composed of operators that are members of the
set {select, project, join, aggregate },

• Tw is the timewindow used to define the subset of stream
tuples that are processed per execution,

• δ is thestrideof the time window,

• d is the relativedeadlinefor query execution, and

• g is theweightof the query, characterizing its importance, or
equivalently, the penalty for missing its deadline.

Thelife-timeof a query refers to the time betweenadmissionof the
query and thedeletionof the query from the system. A real-time
continuous query is executed multiple times during its life-time.
An iteration refers to the instance of execution of the query. The
query is said to be executed for theith time in iterationi.

2.3 Real-time Query Processing Model
We consider executions of a RCQ to be preemptive, so that a query
q in execution may be preempted by a query that has a higher pri-
ority thanq. However, our processing model requires iterationi
of any queryq to complete before iterationi + 1 of q is ready for
execution. We next define some terms that we will use in the rest
of the paper.

1. Theadmission timeA of the query is the time at which the
user submits the query to the system.

2. Therelease timeR of the query is the time at which all the
data tuples (in window) are available to start the next iteration
of the query.

3. Thebegin timeB of the query is the time when the query is
scheduled for execution.

4. Thefinish timeF of the query is time when the query com-
pletes its execution.

5. Theexecution timeE of the query is the time taken to process
the tuples in the window.

6. Theabsolute deadlineD of the query is the time by which
the query must complete its execution.

7. Therelative deadlined of the query is the absolute deadline
minus the release time.

8. A scheduleis an assignment of processor to the queries in the
system. A query is said toexecutingduring the time interval
that the processor is assigned to the query.

Consider theith iteration of a query. We say that the querymisses
the deadline ifFi > Di. A query is said to besuccessfulin meeting
the deadline ifFi ≤ Di.

A schedulable queryis one which successfully meets its deadline.
The ith iteration of the query is said to be schedulable ifFi ≤
Di. In contrast, a query istardy if it misses its deadline. Theith

iteration of the query is said to be tardy ifFi > Di.

Theoverrun timeΦi is the difference between the finish time of the
ith iteration and the absolute deadlineDi of a tardy query. Overrun
time of a schedulable query is0.



2.3.1 The Generic Model
In our work, a query tree in equivalent to atask in a real-time en-
vironment. We used a simple heuristic to push down selections
and projection, but our approach is independent of optimization
heuristics, hence we do not discuss further. Each query treeis a di-
rected acyclic graph composed of query operators (vertices), with
the output of the child operator feeding the input queue (edge) of
the parent operator. We assume that the dependencies among the
operators are maintained during query execution, which means that
the root operator is executed last. Although query execution can be
preempted, the query cannot be decomposed into logical sub-tasks
for scheduling purposes.

When an operator is scheduled for execution, it performs thefol-
lowing three steps.

1. READ the w tuples from input queue (in main memory),
wherew is the cardinality of the working window.

2. PROCESSthe w tuples by executing the operator-specific
routines.

3. WRITE the resulting tuplessel× w to the output queue (in
main memory), wheresel is the selectivity of the operator.

Given a working window, the cost (in terms of time) of READ is
fixed. The cost to PROCESS depends on the operator-type. The
cost to WRITE depends on the how many resulting tuples are pro-
duced. A highly selective operator produces less tuples as output.
Let TR, TP , andTW be the time needed to perform the READ,
PROCESS and WRITE steps, respectively. The execution time for
any operator is estimated using the generic Equation 1. The execu-
tion time for individual operators is discussed in Section 3.1.1.

Eopr = TR + TP + TW (1)

2.3.2 Query Load
The query load is characterized by the number of queries in the
system. We allow the query load to be dynamic, which means that
users may submit new queries or delete existing queries at any time.

Let Lt be the query load at timet. The query load at some time
t′ = t + ∆t is given byLt′ = Lt + βA − βD , whereβA is the
number ofnewqueries admitted andβD is the number of queries
deletedduring the time interval∆t.

2.3.3 Data Load
The data load is characterized by the number of tuples that must
be processed per iteration. LetWi be a stream’s working window
for theith iteration of the query. Given the working window range
[ts, te], the cardinality of the working window iswi =

∫ te

ts
λ(t)dt,

whereλ is the arrival rate of the stream at timet. Thus, the data
load for theith execution of a single-stream query isDi = wi.

For a query involvingm data streams, the data load for theith

iteration isDi =
∑m

j=1
wj

i , wherewj
i is cardinality of the working

window over streamj.

2.3.4 Imprecise Query Execution
Let W be the working window in some iteration of a queryQ. The
execution ofQ is preciseif it runs over all the tuples inW . The

execution isimpreciseif Q is executed over some of these tuples
only, that is, over a windowW ′ ⊂W .

Such imprecision can be quantified using various error functions.
Consider the set{Q1, Q2, . . . , Qn} of queries. Let queryQi have
weightgi, and execute forIi iterations. Letǫk

i be the error in ex-
ecuting thekth iteration ofQi. We discuss how to quantifyǫi in
Section 3.3. The total error of a schedule for thesen queries is

ǫ =
n∑

i=1

gi

(
Ii∑

k=1

ǫk
i

)
(2)

2.4 Problem Statement
We address the following problem:Given a set of RCQs{Q1, . . . , Qn}
over data streams{s1, . . . , sm}, find a schedule such that each
Qi, 1 ≤ i ≤ n meets its deadline, and the total error due the
imprecise computations is minimized.

We solve this problem under the following constraints.

• Data distribution of the stream attribute-values is not known
a priori.

• Arrival rate of a data stream is not known a priori.

• Users may submit new queries or delete existing queries.

3. APPROACH
We treat the scheduling of queries as a real-time schedulingprob-
lem amenable to rate-monotonic scheduling. Our approach isout-
lined in Figure 5. Initially, we perform a schedulability test to de-
termine if all the queries can meet their deadlines. If the query set
is not schedulable, we determine what reduction in the processing
load (hence the execution times) will make the queries schedulable.
The idea will be to reduce the data load to achieve this reduction in
execution times.

This reduction in the data loads leads to imprecision in query re-
sults. We must reduce data loads in such a fashion that the overall
error (see Equation 2) is minimized. Once we determine an appro-
priate schedule that meets all deadlines and minimizes the error, we
allow the schedule to remain in place for a time determined bythe
rescheduling policy. For example, one option might be to monitor
the error, and reschedule when the error exceeds a given threshold.
Another option may be to reschedule periodically, say, wheneach
query has executed at least once.

3.1 Estimating the Execution Time of Query
We abstract the query execution time in terms of the cost variables
described in Table 1. Further, we define selectivity (sel) as the ratio
of number of tuples that are generated as output, to the number of
tuples that are processed by the operator. For selection, projection
and aggregate operations the selectivity is in the range[0, 1]. Selec-
tivity of a join operation in the range[0, (wlwr)/(wl+wr)], where
wl andwr are the cardinalities of left and right working windows,
respectively.

3.1.1 Operator Execution Time
Let w be the cardinality of the working window for the selection,
projection and aggregate operations. These operations require one
scan of all tuples over the working window. The execution times
for a select, project and aggregate are show in Equation 3, 4,and 5,
respectively.
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Table 1: Cost variables
Name Description Value used in Experi-

ments (millisecond)

CR Time taken to READ a
tuple from input queue

1× 10−3

CW Time taken to WRITE a
tuple to output queue

1× 10−3

Cσ Time taken to perform
one comparison opera-
tion, such asval = 10

2.5× 10−3

Cπ Time taken to identify the
attribute to project

2.0× 10−3

CΩ Time taken to perform
a arithmetic operation,
such asval1 + val1

3.0× 10−3

C1 Time taken to perform 1
probe of the hash table

3.0× 10−3

Ch Time taken to hash a tu-
ple into hash table

2.5× 10−3

Eselect = {wCR}+ {wCσ}+ {swCW } (3)

Eproject = {wCR}+ {wCπ}+ {wCW } (4)

Eaggregate = {wCR}+ {wCΩ}+ {CW } (5)

For equi-joins we use a symmetric probe technique [14]. Letwl

andwr be the cardinalities of the right and left working windows
for a 2-way join. The join is performed in 2 stages. First, we hash
the tuples in the left window as they arrive at the input. Second,
we probe the right hash table, using each tuple in the left window
as the key. The same steps are applied for the tuples in the right
window. Hence, the execution time for a 2-way join is as shownin
Equation 6.

Ejoin = (wl + wr)CR +(wl + wr)(C1 + Ch) + s(wl + wr)CW

(6)

select select

selectjoin

join

project

project
1

4

6

2

7

5

3

λ1

λ2
λ3

(w1)

(s1 w1)

(s3 w3)(s4 s1 w1) (s2 w2)

(s6 ((s4 s1 w1) + (s2 w2))) (s5 s3 w3)

( s7((s6((s4 s1 w1) + (s2 w2))) + (s5 s3 w3)))

Input data streams

Output Tuples

(w2)
(w3)

Figure 6: Example showing how to estimate the number of tu-
ples processed by a join query over 3 data streams

3.1.2 Query Execution Time
Given a query specification, the query optimizer is responsible for
generating a query plan (also called the query tree) to execute the
query. We estimate the execution time of a query tree as follows.

A query tree is a directed-acyclic graph ofv vertexes (operators)
and e edges (input streams). When the output of a certain oper-
ator (parent) serves as an input for a next operator (child) in the
query tree, the processing load of the child operator is calculated as
wchild = s × wparent, wherewparent is the cardinality of work-
ing window of parent operator, ands is the selectivity of the parent
operator.

Example: Consider a join query over 3 data streams, with arrival
rateλ1, λ2, λ3. The input edges in Figure 6 show the number of
tuples processed by each operator in query tree, wheresi is the
selectivity of operatori. Thetotal data loadis given by

∑v

j=1
wj ,

wherewj is the number of tuples processed by operatorj. Let Ej

be the execution time of operatorj. The total execution timethe
query is given by

E =
v∑

j=1

Ej (7)

3.2 Load-adaptive RM Scheduling
We first show that real-time processing of continuous queries can
be achieved using rate monotonic (RM) scheduling. RM algo-
rithm [17] assigns static priorities to tasks, so that taskswith shorter
periods are given higher priorities. As noted in earlier literature [17],
a set of tasks can be scheduled under RM scheduling if the tasks are
preemptive, each task has a relative deadline equal to its period, and
there is no exclusive sharing of resources. A schedule for executing
a set queries is said to beRM-feasibleif all queries complete before
their deadlines. A query is said to beRM-schedulableif it can be
executed using some RM-feasible schedule.

In our model, a query will process a new working window after ev-
ery stride interval. In the standard terminology of scheduling, we
would say that a new iteration of the query is released (for execu-
tion) at each stride interval. RM scheduling is applicable in our
case because of the following properties of the continuous queries.



• All queries are periodic, with the period equal to the strideof
the working window.

• All queries are preemptive, and the cost of preemption is neg-
ligible.

• All queries are independent, with no precedence constraint.

• All queries have relative deadlines equal to the stride.

• All queries compete for CPU time and the memory available
is large enough for query execution.

We propose a preemptive static priority scheme (like RM schedul-
ing), in which the priority of the query is inversely proportional to
its period. The query with the highest priority is scheduledand it
is executed until it either completes, or it is preempted by the ar-
rival (release) of a higher priority query. The focus of our work,
however, is to adapt the schedule to changing load conditions.

3.2.1 Conditions for RM-schedulability
We assume that there is a query setζ = {Q1, . . . , Qn} of n real-
time continuous queries with execution timesE1, E2, . . . , En, and
periodsP1, P2, . . . , Pn, such thatP1 ≤ P2 ≤ . . . ≤ Pn. We
will now determine conditions for RM-schedulability (a detailed
discussion can be found in [17]).

Since the query periods in the relative orderP1 ≤ P2 ≤ . . . ≤ Pn,
the only condition to be met for ensuring thatQ1 can be feasibly
scheduled isE1 ≤ P1. The first iteration of queryQ2 will meet
its deadline if it can find enough time to finish over[0, P2]. Let Q2

finish at timet. SinceQ1 is a higher priority task,⌈ t
P1

⌉ iterations
of Q1 are completely executed in time range[0, t]. Thus, forQ2 to
complete, in addition to multiple iterations ofQ1, there must be at
leastE2 time available. That is, the following condition must hold:

t =

⌈
t

P1

⌉
E1 + E2 (8)

This means thatQ2 can meet its deadline if there exists somet ∈
[0, P2] that satisfies this condition. Next, we generalize this condi-
tion for the entire query setζ and show that each queryQi ∈ ζ is
RM-schedulable iff conditions C1 and C2 hold. We use the follow-
ing notations:

Vi(t) =
i∑

j=1

Ej

⌈
t

Pj

⌉
(9)

Li(t) =
Vi(t)

t
(10)

Li = min {Li(t)}, 0 < t < Pi (11)

L = max {Li} (12)

QueryQi is schedulable if there exists somet ∈ [0, Pi], such that
t = Vi(t). We observe thatVi(t) is a constant in Equation 9, except
at a finite number of points when the queries are released for the
next iteration. Thus, we need to computeVi(t) at the times

τ =

{
lPj | 1 ≤ j ≤ i, 1 ≤ l ≤

⌊
Pi

Pj

⌋}
(13)

From this result, we can say that the queries are RM-schedulable
under the conditionsC1 andC2 below. Under these conditions,
each RM-schedulable query completes at a timet′, such thatVi(t

′) =
t′.

C1: If mint∈τi
{Vi(t)} ≤ t, thenQi is RM-schedulable

C2: If max1≤i≤n{mint∈τi
Vi(t)/t} ≤ 1 for 1 ≤ i ≤ n, and

t ∈ τi, then query setζ is RM-schedulable.

3.2.2 Reducing the Execution Time to Satisfy RM-
schedulability

If a query that is not RM-schedulable misses its deadline andis al-
lowed to execute after the deadline, it will finish at timet > Pi.
We now outline our method to reduce the execution time of queries
through load shedding, such that all queries meet the deadlines at
the cost of some imprecision. Our technique is outlined in Algo-
rithm 1

We focus our discussion on a queryQk which fails the RM-schedulability
conditions stated in Section 3.2.1, such that allQj , 1 < j < k are
RM-schedulable. We also observe thatQk is also the highest prior-
ity query in the query set that does not meet its deadline in the first
iteration.

Next, we defineoverrun timeas amount of execution time remain-
ing when it deadline is passed. Clearly, the overrun time of RM-
schedulable queries is 0. The time available for query to execute
before its deadlinet = Pk is

Êk = Pk −

k−1∑

j=1

Ej

⌈
Pk

Pj

⌉
(14)

Thus, the overrun time of a query that may misses its deadlinewill
be

Φk = max [0, Ek − Êk] (15)

We propose a technique of transforming this non-feasible schedule
into a feasible one. We first note that, makingQk RM-schedulable
means reducing the execution time of some queries that complete
at a timet ≤ Pk. Let the reduction in the execution times be
e1, . . . , ek. Next, we show how to derive these values.

We want to distributeΦk over
⌈

Pk

E1

⌉
instances ofQ1 and

⌈
Pk

P2

⌉

instances ofQ2, and so on, and finally over a single instance of
Qk. We will distributeΦk in inverse proportion both to the weight
and the selectivity of the query.

Let the reduction ratiori of query i be (si × gi)
−1, wheresi is

the selectivity, andgi is the weight of the queryi. Note that the
weights are user (or application) specified, hence our approach is
very general. if an application decided to make some queriesvery
importance (high weight), we make sure that it is penalized less,
that others that are less important. We explain this flexibility further
as follows. We divideΦk into k parts in the ratior1 : . . . : rk. The
fraction ofΦk distributed to each queryQi is called the cumulative
reductionêi and is given by

êi = Φk
ri∑k

j=1
ri

(16)

Since
⌈

Pk

Pi

⌉
iterations ofQi complete beforePk, the per-iteration

reduction in the execution time is given by

ei =
êi⌈
Pk

Pi

⌉ (17)



Algorithm 1 Load Reduction Technique

Require: Query setζ of sizen, such thatQi ∈ ζ has periodPi,
deadlineδi, weightgi.
Let the periods be in the orderP1 ≤ . . . ≤ Pn

for i = 1 to n do
Estimate the execution timeEi as described in Section 3.1
Check ifQi is RM schedulable by applying conditions stated
in Section 3.2.1
if Qi is not RM schedulablethen

Find the overrun timeΦi using Equation 15
Find the execution time reductionei using Equation 17
E′

i ← Ei − ei {Qi with the new execution timeE′
i is now

RM schedulable}
Find the data load reduction using Equation 20

end if
end for

The reduced execution time, after the applying above technique is
given by

E′
i = Ei − ei (18)

With the new execution times, each query finishes at timet =
V ′

i (t) given by

V ′
i (t) =

i∑

j=1

E′
j

⌈
t

Pj

⌉
(19)

3.2.3 Determining the Reduction in Data Load
Given the reduced execution timeE′ of the RM-schedulable query,
we must determine the number of tuples to drop so that execution
time drops toE′. From Equations 3–7, we know that the execution
time is a function of the cardinality of the working windoww and
operator selectivity. Assuming that the selectivity is constant dur-
ing the iteration, we can represent the execution time of a query as
F (w), wherew is the cardinality of the working window.

We want to determine thew′, such thatF (w′) = E′. Assuming
the load reduction is shared equally among the participating data
streams, we first substitutew′

i = kwi, 1 ≤ i ≤ m, wherem is the
number of streams participating in the query and0 < k < 1. Next,
we solve the equationF (w′) = E′ to determinek.

Let w be the size of the original working window. Once we de-
termine the size of the reduced working window for streami as
w′

i = k × wi, the number of tuples to be dropped is given by

ŵi = wi −w′
i (20)

Once we know the number of tuple to be droppedŵi, we sample the
working window and uniformly drop tuples over the range of the
working window. Uniformly dropping the tuples is a simple policy
which does not lead to extra processing. Semantically choosing
tuples to drop is also another alternative, however, it is likely to
consume precision CPU every-time a new LRM schedule has to be
determined

3.2.4 The LRM-schedule
We call our methodload-adaptive rate-monotonic(LRM) schedul-
ing because any LRM schedule ensures RM-schedulability of queries
through load shedding. Algorithm 2 shows how the queries are
scheduled under LRM scheduling.

Algorithm 2 LRM Schedule
Require: Query setζ of sizen, such thatQi ∈ ζ has execution

timeE′
i and periodPi.

Let the periods be in the orderP1 ≤ . . . ≤ Pn

for t = 0 to∞ do
Pi = min(Pj) ∀1 ≤ j ≤ n
repeat

Qi is executed for 1 time unit
t← t + 1

until (t′ − t 6= E′
i) OR (t′=release time of a queryQk, such

thatPk < Pi)
if (t′ − t) = E′

i then
Finish timeFi ← t′

else
Begin timeBk ← t′

end if
end for

3.3 Error Function
Dropping input tuples causes imprecise query execution. Wecan
quantify the error in two ways.

Theprocessing errorǫ′i of a queryQi is the number of tuples that
are not processed before the deadline. LetQi be a query that is
schedulable under LRM. Let̂wi be the reduction in the data load,
which is obtained as stated in Section 3.2.3. The processingerror
is given by

ǫ′i = ŵi (21)

Theoutput error ǫi of a queryQi is the number of tuples that do
not appear in the output of the query computation. LetQi have a
selectivity ofseli. The output error of executing queryQi under
LRM scheduling is given by

ǫi = seli × ŵi (22)

3.4 Run-time Adaptations of Schedules
An LRM schedule for a set of queries may become sub-optimal
if kept unchanged for a long time. Since most continuous queries
run for a long time, rescheduling periodically is useful in further
adapting the schedule. We outline three approaches to do perform
such schedule management during run-time.

3.4.1 Pessimistic Rescheduling
In this model, we re-examine all the load conditions and testfor
RM schedulability as soon as each query finishes. If the data and
load conditions at this time are such that the same LRM schedule
cannot be re-used, we apply the load reduction techniques stated in
Section 3.2.3 and determine a new LRM schedule adapted to the
new load.

This technique has high overhead, because a schedulabilitytest
must be performed everyP1 time units, which is the smallest period
among the queries in the given query set. Thus, at a given timet the
overhead is proportional to⌊ t

P1

⌋. The advantage of this method is
that we have finer control over the schedule. It is particularly useful
if the load conditions are highly dynamic, and the performance of



a static schedule is likely to degrade very quickly.

3.4.2 Optimistic Rescheduling
In this approach, we allow to keep the LRM schedule in place until
each query has run at least once. Hence, we test for schedulability
once everyPn time units. The technique suffers a much lower over-
head than the pessimistic approach. At any given timet the number
of re-scheduling decisions made is upper-bounded by⌊ t

Pn
⌋.

SincePi < Pn,∀i < n, this technique works very well if the
load conditions do not change frequently. Consider a queryk, with
periodPk < Pn. Using this technique, the queryQk completes⌈

t
Pk

⌉
iterations, without having to switch to a new schedule.

3.4.3 Permissive Rescheduling
The optimistic and the pessimistic approaches performperiodic
rescheduling. The period is upper-bounded by the periodP1 for
pessimistic rescheduling, and byPn for the optimistic technique.

We now describe an aperiodic technique in the section, called per-
missive schedule management. In this approach, we determine a
new LRM schedule if at timet the total error exceeds a threshold
τ . Thus, the same schedule is re-used as long as the total error
remains below the thresholdτ .

This technique is more adaptive than the periodic techniques. It
suffers lower overhead when the load fluctuations are infrequent
and a high overhead only when the load conditions are highly dy-
namic. Moreover, this technique allows the user to upper bound the
imprecision of the LRM schedule.

4. EXPERIMENTAL ANALYSIS
We used a synthetic, as well as a real-world dataset to test our tech-
niques. Figure 7 shows the arrival rates of the stream used inthe
datasets.

We used the DEC-PKT dataset [5] as real-world dataset. For single
stream queries we worked with the TCP trace and for join queries
we used the TCP, UDP and SF traces, with suitable equi-join con-
ditions. The arrival rate of packets is very random, hence, we refer
to it as RANDOM in our experimental setup.

We generated two types of workloads for our synthetic dataset. The
STEADY dataset consists of 3 streams that have arrival rates, such
that thedemandfor the CPU utilization is always more that 100 %.
This ensures that queries are not RM-schedulable during theen-
tire run of the experiment. The STEP dataset consists of a stream,
whose arrival rate increases as time progresses. We use a step func-
tion, that increases the arrival rate by a fraction of 0.1, ateach step.

A query load of 10 queries was used in most of the experiments.
We used a decent mix of selection, projection and join queries to
reflect a real-world scenario. The queries and their weights, dead-
lines and periods are listed in Table 2. For sake of brevity weomit
the SQL specifications for the queries. The processing time for the
various query operators shown in Table 1 were collected offline,
by multiple executions of the operators (in isolation) and then av-
eraging their execution times. All the simulations were runfor 20
seconds, using a prototype we built for our work. Unless specified,
optimistic schedule management was used as rescheduling policy.
The per execution overhead of rescheduling was between 0.1-0.2
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Figure 7: Types of data workloads used in the experiments

milliseconds, which can easily be accounted for while determining
a LRM schedule.

Table 2: Queries used
id Type Period Weight

Q1 select 1 5
Q2 select 2 6
Q3 select-project 2 3
Q4 select-project 3 2
Q5 2-way join 4 1
Q6 2-way join 5 7
Q7 3-way join 5 8
Q8 2-way join-project 6 9
Q9 project-2 way join 6 10
Q10 avg 6 4

We compared our approachLRM with two alternative approaches.
First, the traditional rate-monotonic approach, calledRM , in which
a tardy query was allowed to run to completion even after it misses
its deadline. Second, the non-preemptive scheduling [17] approach
calledHPF in which the highest priority (lower period) query is
scheduled first and allowed to run until completion. Our goalwas
to measure the performance of these 3 scheduling techniquesin
terms of the following.

1. Miss rate: The fraction of queries that miss their deadline at
any given timet.

2. Completion rate: The fraction of queries that finished by
time t. This includes the queries that may have missed dead-
lines.

3. Total error: The total error due to the imprecise computa-
tion, for all the iterations of a query.

4.1 Performance of a Static Schedule
A cyclerefers to 1 complete iteration of the least frequent query in
the given query task. For example, in our setup, a cycle is said to
be complete when query Q10 (with period 6 seconds) finishes its
first iteration. We applied our LRM scheduling at the start ofthe
cycle (at t=0) and allowed to schedule to run until Q10 finished.
The STEADY dataset was used for this experiment. We did not
apply any of the rescheduling heuristics in this experiment, hence
we consider the schedule to bestatic.

Figure 10 shows the results of this experiment. As expected,LRM
misses no deadline in this cycle. The RM and HPF suffer because



the execution time of some queries may be high, and there is nopro-
vision to cut-down on the execution time. The number of queries
completed by LRM as are also much higher than both the alterna-
tives. Since, the total error is weighted, we see that our policy to
distribute the load leads to smaller total error in the output.

4.2 Performance under Steady Load
Figure 9 shows that when the load is steady, our policy suffers lower
missed rates than either alternatives. In fact, before the completion
of 1 cycle (t=6000) we do not miss any deadline. A small fraction
of deadlines are missed later in the run because of the rescheduling
policy is initiated only later. Since we only periodically reschedule
the LRM schedule, we are able to only tune the miss rates only at
the rescheduling instances.

4.3 Performance under Step Load
Figure?? shows our results under step workload. In this experi-
ment, the CPU demand is increasing with time. Hence, as expected
the RM scheduling misses more deadlines as time progresses.LRM
also suffers more miss rate than in the case of a STEADY work-
load, but the miss rates are considerably lower than RM or HPF.
Moreover, LRM consistently completes more queries than both the
alternatives.

4.4 Performance under Random Load
Figure 11 shows the performance of our scheme under a more dy-
namic workload. Again, the LRM schedule completes far more
queries in a given time and is able to limit the miss rate to around 2
%. After the1st cycle completes, the total % error is also stable in
case of the LRM schedule. For both, RM and HPF techniques, the
total error is much higher than LRM.

4.5 Performance under Varying Query Load
In this experiment we vary the number of queries from 4 to 20. The
performance of all schedules is expected to degrade as new queries
are added. However, Figure 12 shows that the LRM policy is able
to adapt to the query load much better than the simple RM policy.
In such cases, a permissive policy to rescheduling is likelyto be
more beneficial.

5. RELATED WORK
Work exists in the area of real-time database systems [16]. How-
ever, all work in this area assumes that the data is static andhence,
most of the data-related properties, such as the cardinalities of the
relations, data distribution etc are known a priori. Thus, we be-
lieve that the techniques studied for relation-data are notdirectly
applicable to streaming data.

Recently there has been numerous works on optimizing continuous
queries over data streams. However, the bulk of the work is related
to minimizing the memory utilization [20, 8, 9, 6] during query
execution. A novel technique to maximize the output rate is pro-
posed in [25]. However, very little has been done in the context of
real-time application of these techniques.

The load shedding [25] approach has some overlap with our work,
but the authors do not study this in the context of real-time queries.
Moreover, the quality of service metric used in the semanticap-
proach does not consider performance measures for real-time sys-
tems, such as miss ratios or latency of query execution.

Imprecise computation of real-time tasks was first proposedin [13].
This and other extensions to this work [22], however, assumethat
the task can be logically divided into 2 parts, namely the manda-
tory and the optional part. Moreover, they study the performance
of schedule under static load conditions. We make no such as-
sumptions and we are interested in quantifying the imprecision in
the context of data streams.

The authors in [15] address how to handle over-running tasksand
propose a techniques to run the optional part of the task on anape-
riodic server. We make no such assumptions about the query, and
treat each query as an indivisible task that cannot be run separately.

[26] is the only work we have come across in the context of real-
time queries over data streams. However, this work is still pre-
liminary and the paper does not provide any theoretical results of
how to tune the query performance. The paper only outlines an
approach to drop tuples when the arrival rates are high. The pa-
rameters that define the tuple drop rate are chosen experimentally,
which is largely impractical for dynamic data stream environment.
Moreover, the scheduling scheme is not discussed in detail.We ad-
dress the problem of meeting deadline in a much broader context,
by considering the fluctuations in the query load, data load,as well
as selectivity of the queries.

A straight-forward approach to our problem is to run a overrunning
query until it passes its deadline, and then stop its execution. This
approach is similar to the one studied in [15], and is not suitable
in our context because of various reasons. First, a query with very
high frequency (small period), but a high execution time (≥ the
period) will hog the processor at all times and hence starve other
queries in the system. Moreover, in a hard real-time systemsthe
penalty due to unprocessed data is likely to become unacceptable.

Our goal is the address the problem in the context of a weakly hard
DSMS, the goal being to meet all the deadlines of the queries –at
the cost of some imprecision in the computation. When the queries
are have a long life-time, this advantage of meeting deadlines easily
outweighs the approximation error.

6. CONCLUSION
We have proposed a novel approach to schedule real-time queries
over data streams. We have focussed on the problem of overrunning
queries in a weakly hard real-time systems, where a small degree
of missed deadlines and imprecision can be tolerated. Our work
is novel because, we make no assumptions about data arrival rates,
query load or the data distribution. Meeting query deadlinein such
setting is challenging. Our approach of meeting the query deadline
by reduction the execution time of queries is very practical, and is
based on well-known properties of rate-monotonic scheduling. Our
load adaptive rate-monotonic (LRM) scheduling policy is dynamic
and quickly adapts to the changing load conditions. LRM is able
to minimize the total error caused to reduction in the processing
load. Moreover, experimental results show that LRM works for
various workloads and consistently out-performs the simple rate-
monotonic policy and a non preemptive priority schedule. Since
most continuous queries are long-running, rescheduling may be re-
quired. For dynamic settings, permissive rescheduling seems more
suitable. For a workload where the arrival rate or query loadcan be
estimated a priori, periodic rescheduling is sufficient.

As part of future work, we wish to explore how our scheduling can
be applied in Aurora/Borealis [10].
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Figure 8: Experimental results for a single cycle
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Figure 9: Experimental results for STEADY workload
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Figure 10: Experimental results for STEP workload
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Figure 11: Experimental results for RANDOM workload
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Figure 12: Experimental results for varying query load
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