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Abstract. Continuous query (CQ) is an important class of queries in Data
Stream Management Systems. While much work has been done on algorithms
for processing CQs, less attention has been paid to the issue of optimizing such
queries. In this paper, we first argue that parameters such as output rate and
main memory utilization are important cost objectives for CQ performance, than
disk I/O. We propose a novel framework, called OM to optimize the memory uti-
lization and output rate of CQs. Our technique monitors input stream and query
characteristics, and switches plans only at certain boundary conditions. Our
approach is tunable to application requirements and enables a user to make the
query performance versus optimization overhead trade-off. Experimental anal-
ysis shows that our approach has high fidelity in predicting correct plans and is
promising in terms of minimizing query scheduling overhead.

Resumo. Consulta contı́nua (CQ, Continuous query) é uma classe importante
em Sistemas de Gerenciamento de Streams. Enquanto vários trabalhos propõem
algoritmos para processar CQs, pouca atenção tem sido dada à otimização de
tais consultas. Nesse artigo, argumentamos que parâmetros tais como a taxa
de saı́da e a utilização da memória principal são métricas mais importantes
para o desempenho de CQ do que o acesso ao disco. Dessa forma, nós propo-
mos um novo framework, chamado OM, para otimizar a utilização de memória
e a taxa de saı́da de CQs. Nossa técnica monitora o stream de entrada e as
caracterı́sticas da consulta, e troca planos somente em certas condições de lim-
ite. Nossa proposta é ajustável aos requisitos da aplicação e permite que um
usuário compare os benefı́cios entre o desempenho da consulta e a sobrecarga
imposta pela otimização. A análise experimental mostra que a nossa proposta
tem alta fidelidade ao prever os planos corretos e é promissora em minimizar a
sobrecarga do agendamento de consultas.

1. Introduction

A sequence of data elements that is continuous, unbounded, and time-varying is
called a data stream [Babcock et al. 2002]. For example, data transmitted by sen-
sors, stock market data and network monitoring data. Users issue a continuous



query (CQ) [Madden et al. 2002] over such data streams and when new data ar-
rives, the Data Stream Management System (DSMS) [Chandrasekaran et al. 2003,
Carney et al. 2002, Motwani et al. 2003, Chen et al. 2000, Sullivan and Heybey 1998,
Madden and Franklin 2002, Seshadri et al. 1994, Engine 2005] executes the CQ and re-
turns the result. The same query is re-executed when new data elements arrive into
the system. This query processing model is significantly different from relational
database management systems (RDBMS). A DSMS is also likely to be used in envi-
ronments where multiple users and queries exist. For example, online bidding sys-
tems such as eBay [eBay 2003] and real-time financial search engines such as Trader-
Bot [Traderbot 2003].

We focus on the query optimization problem over data streams. While much work
has been done in processing data streams, query optimization is still an important re-
search issue. Earlier works have considered either output rate or memory utilization as
the only optimization objective. Optimizing CQs for a single objective is not reasonable
in practice, because there could be inter-play of various objectives that affect query per-
formance. Moreover, a DSMS application could have it’s own requirements to maximize
(or minimize) a particular objective. Thus, we see a need for an optimization technique
that addresses multiple cost objectives, particularly when the data stream characteristics
are not known apriori. Moreover, the technique should be general enough to be used in
practice.

1.1. Data Stream Management Systems

Figure 1 shows the schematic model of a typical DSMS. Each CQ submitted by the user
remains in the system, until it is explicitly removed by the user. The optimizer (QO)
first optimizes the query and finds a minimum cost plan. Next, the scheduler (QS) finds
a schedule for the plan and prepares it’s operators for execution. When new tuples ar-
rive, the tuple dispenser (TD) dispatches the enqueued tuples to the ready operators. We
assume there is a limited main memory ������� available for executing a CQ. Each query
execution produces a stream of tuples as output. Output rate of a query refers to the num-
ber of result tuples produced per unit time. The unprocessed and intermediate data tuples
are buffered in-memory for further processing. As we will show later, both, memory
utilization and output rate are important parameters for CQ processing.
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Figure 1. Schematic Model of a DSMS



1.2. Motivation and Problem

There exist significant differences between optimizing queries over relation data versus
optimizing CQs over data streams. Since relational queries are executed over stored ra-
tions, most RDBMS optimizers [Astrahan et al. 1976] estimate the query execution cost
in terms of disk I/O. By contrast, a CQ is executed multiple times over a sequence of tu-
ples that arrive continuously. Moreover, a CQ is evaluated by directly accessing the tuples
(or their summaries) from main memory. Thus, disk I/O is not a dominant cost factor in a
DSMS, unless the DSMS supports queries over stored relations as well. In this work we
only consider CQs over data streams.

Example: Consider a CQ with operators � � and ��� . Let selectivity of � � , ��� be�����
,
���
	

, respectively. Let the processing rate (measured in tuples per sec) of operators � � ,
��� be

�����
,
���

, respectively. As shown in Figure 2 consider the two candidate plans for
the CQ. Since the memory utimization of of plan 2 is less than that of plan 1, a RDBMS
heuristic (to push down highly selective operations) would choose plan 2. By contrast, a
rate based optimization technique [Viglas and Naughton 2002] (to maximize output rate)
would choose plan 1. Thus, we observe that a DSMS optimizer has other costs to worry
about, than only disk I/O.
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Figure 2. Cost parameters associated with a CQ

Next, we discuss various parameters (cost objectives) that affect CQ performance.

C1 Input buffering: Input buffering is associated with tuples that have already ar-
rived, but not been consumed by any query. If input buffer becomes full, some
arriving tuples would have to be dropped, thus affecting result accuracy.

C2 Output rate: Output rate of a query plan refers to the number of tuples produced
by the CQ per unit time.

C3 Intermediate queue length: Every query operator produces intermediate tuples
at a certain rate. However, if these tuples are not consumed fast enough, then the
intermediate queues eventually overflow and some tuples have to be dropped.

C4 Re-computation overhead: If two or more queries perform a common opera-
tion, the DSMS can save significant processor cycles by sharing the computation.
Moreover, saving on re-computation means faster overall tuple consumption and
lower input buffer requirement.

C5 Latency of query evaluation: Latency is time between the the query submission
and the time when the output tuples are produced.



Most DSMS applications have their own requirements for query optimiza-
tion. For example, an application to monitor temperature and pressure, may
require a high result accuracy. On the contrary, a stock market application
may require a higher output rate. This represents a multi-objective optimization
problem [Fonseca and Fleming 1995] and motivates us to combine the two objec-
tives in some way. Earlier papers [Viglas and Naughton 2002, Babcock et al. 2003b,
Avnur and Hellerstein 2000] have either studied only 1 cost objective or studied each one
in isolation. We wish to address the problem of optimizing mutiple cost objectives, par-
ticularly output rate and memory utilization.

Static query plans become sub-optimal when the data stream characteristics
change as a result of newly arriving data. We identify two extremes to addressing this
problem. First, the approach presented in [Babcock et al. 2003b] has low complexity, but
assumes that operator selectivity remains static. Second, we believe that per-tuple opti-
mization proposed in [Avnur and Hellerstein 2000] suffers very high computational and
storage overhead. We propose a optimization framework that strikes a balance between
the two extremes stated above.

1.3. Approach

We propose a utility function-based technique to combine multiple cost objectives, specif-
ically output rate and memory utilization. Since frequent re-optimization of CQs is a
significant overhead, we propose spending extra time during the initial optimization step
itself. Our optimization technique generates multiple plans and switches plans only at
certain boundary conditions. Thus our technique avoids re-optimization when the query
is in-flight and is able to qucikly adapt to changing stream characteristics. Since the over-
head due updating query plans and query performance are two conflicting goals, we make
our approach tunable to the application requirements. This helps make the appropriate
trade-off between query performance and optimization overheard.

2. Related Work

[Avnur and Hellerstein 2000, Chandrasekaran et al. 2003] provides an alternative to
query optimization by introducing an adaptive query operator, called Eddy. The ticket-
based policy used for Eddy is limited to optimizing a single objective and suffers
high overhead. Work presented in [Deshpande 2004] batches tuples to reduce the
Eddy overhead, but it does not address multiple cost objectives. [Kang et al. 2003,
Viglas et al. 2002, Viglas and Naughton 2002] proposes a rate based optimization tech-
nique for CQs, but assumes that operator selectivity remains static and that stream
arrival rates are known apriori. [Babcock et al. 2003b, Babcock et al. 2003a] provides
efficient techniques to handle bursty data streams, however, this approach is lim-
ited to minimizing only memory utilization and suffers from starvation. Recent
work [Ayad and Naughton 2004] is very much applicable to our problem, however it as-
sumes that arrival rates are constant and query can be updated while it is already in-flight.



Our work is novel because it avoids frequent re-optimization of plans, addresses multiple
cost objectives, and provides a framework to address an application’s requirements for
query performance.

3. Problem Formulation

Let � be the schema for a relation with one more more attributes. Let � be the time
domain. We represent a data stream as a growing sequence of tuples, which are time-
stamped on arrival. Tuples that have already arrived can be represented as a bag � =�����	��
������
 � � � 
����	���

, where each element
�

is consistent with relational schema � , ������� ,
and ��� is the current time instant. In our work we assume that the arrival rate and data
distribution of the data stream are not known apriori.

We abstract a query using � [ � ], where � is a query composed of one or more
selection ( � ), projection (  ), join ( ! " ) and aggregation ( # ) operators. � is the window (or
the time-interval) that defines the subset of tuples to be processed per execution. During
execution, each query consumes data tuples that arrive within the time interval [ �$� - � ,
��� ]. For each successive execution of the query we slide this window over the data stream.
Let the query � be composed of a set of % operators

�
� � 
 ��� 
 � � � 
 ��& � , where each ���'�� � 
  
 ! " 
 # � . A plan ( for a query � is a directed acyclic graph consisting of % nodes

that correspond to the % operators. Let ) be the set of all possible candidate plans for
the query � . The goal of the optimizer then is to choose a plan (*�+�,) , based on a cost
function. We explain our cost functions in Section 4.1.

Some statistical information (or meta-data) is required to estimate query costs.
We define selectivity as the fraction of the number input tuples produced as output of
the operator. We define tuple processing rate as number of tuples that the operator can
process per unit time. We define the input arrival rate of an operator as the average arrival
rate of the input streams. The operator selectivity ( �.-./ ), the operator tuple processing rate
( �0(21 ) and the input arrival rate ( 3 ) are maintained as meta-data for each operator. The
optimizer uses this meta-data to estimate the cost of executing the query. The �0(21 is a
constant for each operator type. The �.-./ and 3 values are maintained online as described
in Section 4.3.

3.1. Our Query Processing Model

Let ) be the set of candidate plans for a query � . Consider a plan (4�5) chosen for
execution. Our processing model assumes that the query execution is atomic and the
operators

�
� � 
 ��� 
 � � � 
 �6& � are pipelined during execution. In such a model, the input

tuples and intermediate tuples are required to buffered in-memory.

When an operator ��� is scheduled for execution it performs the following steps.
First, it reads the input tuples (of size 1 window) waiting at the input queues. Second, it
processes the tuples by executing the operator functions (or routines). Third, it produces
the result tuples by writing them to the output queue. This read-process-produce sequence



is repeated when more data arrives into the system. A round refers to one complete
execution of the read-process-produce steps. We use the notation 1������ ��� to denote the� �	�

execution of the query. As each CQ remains in the system for a long time, the total
number of rounds for a query are expected to be high. For example, a query with � 
 �

mins will make 288 rounds in 1 day.

Example: Let � be a query consisting of a selection � = � � � ��� 	 �
and a

projection  
 � � � � , where the stream � has integer attributes (
� � ,

�
� ). Let the win-

dow � be 20 seconds. Assume that the data stream tuples arrive with the following
time-stamps, � 	 � 
 	�� � , ��� 
�� ��� , ��� 
�� � ��� , � � � 
�� � � � , � 	 � 
 ��� � � , ��� 
�� � � � , ��� 
 � �! � , � �"� 
 � �! #� ,
� 	�	 
 � �#$ � , ��� 
 	 ����$�� , � � � 
 	�	��!� � . Let the 2 operators be executed in the sequence: �&%  .
Thus, the following outputs are seen at the end of each round, 1 �'��� � � 
 � 	 � 
�� � �

,
1 �'��� � �(
 �"�)� 
 	�	 �

, 1 �'��� �  
 �"� � �
.

3.2. Our Cost Model

We address 2 cost objectives, namely the output rate ( *,+ ) and the memory utilization
( *.- ). The query execution cost is a function of */+ and *.- . We measure the query cost
(in terms of utils) using a utility function [Neumann and Morgenstern 1944]. This utility
function, written as * � � �0��*1+ 
 *.- � is the weighted cost of the utility of the output rate and
memory utilization of the query. Thus,
* � � �0��*.+ 
 *.- � 
�21+,3 �4�5.6 21-738*.- , where 21+ , 2/- are user-specified weights.

Our cost model is based on the policy: the query performance improves when
the output rate is higher and when the memory utilization is lower. From an application
perspective, a higher 2,+ helps in choosing a plan with higher output rate and a higher 29-
helps in choosing a plan with lower memory utilization. Once the weights are specified,
the goal of our optimizer is to choose a plan with minimum * � � �0��*,+ 
 *.- � . For brevity,
we use * � � �;: , to denote the weighted cost of plan ( .

Example: We use the query in Figure 2 and show that different weight assign-
ments can infuence the choice of plans. We first find the individual costs for output rate
and memory utilization. For ( � , we have *1+<
 � � �

and *.-=
>��� � . For ( � , we have
*.+(
 � � �

and *.-?
 � � � . Consider two weight assignments as shown below.
Assign 1:

� 2/+(
 ��� 	 
 21-&
 ��� � � , Assign 2:
� 21+(
 � ������� 
 21-@
 � �

The weighted query cost for the two assignment are as follows.
Assign 1: * � � ��:  
 � ��� � � � , * � � �;:BAC
 � 	 � ��� �
Assign 2: * � � ��:  
 �������

, * � ���;:BAC
D� 	�� �
Thus, The optimizer chooses plan 2 in assignment 1. On the contrary, the optimizer
chooses plan 1 in assignment 2.

3.3. Problem Statement

Given a continuous query � over a set of data streams E , find the query plan ( from it’s
set of candidate plans ) , such that * � � ��: is minimum.



4. Our Approach

We first describe our technique to generate plans. Next, we present our approach to mon-
itor and switch plans in an enviroment where the data stream charactertics are dynamic.

4.1. Cost Functions for Output Rate and Memory Utilization

A selection operation selects all the tuples that satisfy the given condition. Projections
throw away the unwanted attributes and retain the attributes which appear in the projec-
tion list. Since we do not use any special access methods, the selection, projection and
aggregate operations require 1 sequential scan of tuples in the current window. We con-
sider only 2-way joins and use � and � to indicate the left and right input streams of
a join. The cost of processing a sliding window join is determined in two parts, namely
joining the new incoming tuples in left window ��� with all the tuples in the right window
��� , and vice-versa. Thus, the join requires 1 scan of the tuples in ��� and ��� window.

Based on the above processing model, we derive the cost functions. Let *�� and
*�� be the time needed to do selection and projection operation, respectively. Let *
	 ! " be
the time needed for joining 1 tuple with left window, *���!" be the time needed for joining
1 tuple with right window. Let *� be the time needed for aggregating 1 tuples.

The output rate of the various operators can be estimated as follows. For selec-
tion, �.-./ 3 3 . For Projection, 3 . For Aggregates,

�4�������� � . For Join,
����� ������������� �� 4 �! " ��� ��#%$ � 4 �& " ��� �'# .

While an operator is processing the current window, the number of tuples that
get buffered at input buffer is ( � � : 
 3 3 � ��� �� :�+ �

. The number of tuple buffered at the
intermediate queue (output of operator) is calculated as ( � � � 
)(�+ 3 � . Since both, input
buffering and the intermediate queue buffering contribute toward the operator’s memory
utilization (�- , we have (�- 
*(�� ��: 6 (�� � � .

Let � be a query composed of % operators
�
� � 
 ��� 
 � � � 
 �6& � . We assume that the

operators in the plan are labeled in increasing order from 1 to % , using a breadth-first
traversal of the query tree. Hence, the root operator is labeled � � . Let (�+,+ �.�.- and (�-/+ �.�.-
be the output rate and memory utilization of � � , respectively. Since the query output
rate is same output rate of the root operator, we have *,+@
 (�+,+ � � - . Since the query
memory utilization is the sum of the memory utilization of it’s operators, we have *9- 
0 &�21 � (�-
+ �.�3- . The weighted cost of the query is determined by substituting for *9+ and
*.- in the function * � � �0��*1+ 
 *.- � , described in section 3.2.

4.2. Optimization Heuristics

Given a query � , we apply steps 1-4 for generating the query plan.
(1) Group selections: We group all selections in � that have predicates over the same
stream. For example, E � �54 �

OR E � �56 	 �
, is grouped as

� 6 E � �76 	 �
.

(2) Push down projections and selections: We push down the  and � operators to the
bottom of the query plan after examining the cost of the two sub-plans, namely  % �
and �8%  .



(3) Left-deep join ordering: We perform a local search to generate a left-deep ordering
of the joining streams. For example, if the query joins � � , � � , �  , we first choose 2 streams
to be joined, say � 	�� � � � ! " � � � . The output of � 	

is considered as left input for the
next join � � � ��� 	 ! " �  B� . The output of sub-plans generated for � � , � � and �  in step 2,
serve is inputs to the � 	

and � � . The cost of the join query is the total cost of performing
� � � � ! " � � � ! " �  B� .
(4) Aggregate last: We apply the aggregate operations at the top of the query tree.

4.3. Maintaining Online Statistics

Since the arrival rate and selectivity of operators are not known apriori, we estimate them
by finding their weighted sample mean. Consider selection operator’s selectivity. First,
we record the previous

�
values of the operator selectivity as samples. These can be

observed at the end of each round of query execution. Next, we estimate the selectivity

at some round � as �.-./3� � � � 
 ��� 5�� �
	�� �� +���� � +��� � 5�� � � � +�� , where � � 1 � is the observed selectivity at

round 1 and � � 1 � 
 - ��!+ is a decay function used to weight the sample values.

Join selectivity is determined using a histogram based approach [Poosala 1997].
We monitor the join selectivity at each round and re-estimate the selectivity only when
observed and estimated values differ by a certain threshold.

Similarly, we estimate arrival rate as 3&� � � � 
 ��� 5�� � 	�� �� +���� � +��� � 5�� � � � +�� , where � � 1 � is

the the observed arrival rate of the stream at round 1 . Next section describes how these
estimations are useful in scheduling the query plans.

4.4. Generating and Indexing Plans using Charts

Frequent re-optimization of a query is cost prohibitive, especially, if the data stream statis-
tics change very often. We propose a technique that spends extra time during the initial
optimization step, rather than worrying about re-optimization when the query is in-flight.
We first divide the space defined by the optimization parameters into regions. Next, we
generate 1 optimal plan (2� per region � � , which represents the minimum cost plan in that
region. As long as the data stream statistics lie within the region ��� , we schedule plan (2�
for execution. If the system state moves to a new region ��� due to a change in the stream
statistics, we schedule plan ( � , where ( � is the plan determined to be optimal within region
��� . As the plans in each region are generated apriori, the complexity of switching plans
and scheduling them is very low.

4.4.1. sel- � chart

A sel- 3 chart is a 2 dimensional chart, with dimensions selectivity �.-./ and arrival rate
3 . We build the chart by first performing a % -regular partitioning in each dimension.
The space enclosed by consecutive partitions is called a region and is denoted by � � � 
 � � ,



where indexes � 
 � refer to the �
�	�

and
� �	�

partitions in the space defined by �6-./ , 3 , respec-
tively. The centroid * ��� 
 � � of region � � � 
 � � represents the mean value of the �.-./ and
3 within region � � � 
 � � . The ( �.-./ � , 3 � ) values at point * � � 
 � � are used as the parameter
values when determining the cost of the plans in region � ��� 
 � � . Let the set ) be set of
candidate plans for the query. The plan ( � � 
 � � � ) denotes the plan that is optimal within
region � ��� 
 � � . The algorithm to construct the sel- 3 chart is shown in Algorithm 1. We
maintain 1 chart per stream, hence the storage overhead is of the order � ��� % � � , where %
is the number of partitions and � is the number of streams.

Algorithm 1 Create sel- 3 chart
Require: + �.-./ - � � 
 �.-./ - ��� - 
 + 3 - � � 
 3 - ��� - 
 % 
 )
Ensure: ( ��� 
 � � 
�� 	�� ��� 
 � ��� %

1: Perform % regular partition of dimensions �.-./ and 3 , with partitions in each dimension
at ��� 3&� �.-./ - ���	�,�6-./ - � � ��
 % � , and � � 3 � 3 - �����,3 - � � �
 % � , where

	�� � 
 ��� % .
2: Let � ��� 
 � � be the region enclosed by �

�	�
, � ��� 	�� �	�

partition in dimension �.-./ and
� �	�

,
� � � 	�� �	�

partition in dimension 3 .
3: for all � 
 � such that

	�� � � 
 � ��� % do
4: Let * ��� 
 � � be the centroid of region � � � 
 � � , with the coordinates ( �.-./ - , 3 - ).
5: Using �.-./ - and 3 - determine the * � � ��: of each candidate plan ( � ) .
6: ( ��� 
 � � �

Minimum cost plan ( � ) .
7: end for

4.4.2. � - � chart

For join queries, we construct a / dimensional 3 - 3 , where / is the number of joining
streams. The �

�	�
dimension refers to the space defined by arrival rate 3*� of stream ��� .

The procedure to create this chart is similar to the algorithm presented for the sel- 3 chart,
except the fact that the centroid represents a point in / dimensional space. Thus, a plan
( � � � 
 � � � 
 ��� � denotes the plan that is optimal in the region � � � � 
 � � � 
 ��� � . Here we assume
that the selectivity remains constant within each region.

4.5. Dynamic Query Scheduling using Charts

The charts are constructed during the initial optimization of the query and used during
query scheduling. At the beginning of each round 16� the optimizer refers to the charts and
determines which plan to schedule. Let �.-./ +� and 3 + � be the estimated values for selectivity
and arrival rate at round 1 . Let the sets ��� E +  �

� , ��� E +  �� represents an ordered set of� � 	
observed values of selectivity and arrival rate. The values �.-./�� and 3�� refer to the

observed values in round 1��  � . The Algorithm 2 shows how a a plan is picked based on
the region that bounds the point ( �.-./ +� , 3 + � ). After plan ( is scheduled and executed, the

�
observed values are used to estimate the selectivity and 3 for round 16� $ � . The � � ����� � � - � �
function in the algorithm follows the procedure described in Section 4.1. It is easy to see



that, if the stream statistics remain within the region � � � 
 � � , the same plan ( can be
scheduled for the successive execution of the query.

Algorithm 2 Schedule Plan for Execution

Require: Q[W], �6-./ - 3 chart, 3 - 3 chart, �.-./ +� , 3 + � , d, ��� E +  �
� , ��� E +  ��

Ensure: Results of executing � , �.-./ + $ �� , 3 + $ ��
1: Using � = ( �.-./ +� , 3 + � ) find the region � � � 
 � � that forms a bounding box for the point � .
2: Let * ��� 
 � � be the centroid of the region � � � 
 � � .
3: Let ( � ( � � 
 � � the plan indexed at centroid * � � 
 � �
4: Schedule and execute ( for one round, over [W] tuples.
5: � �.-./ +� 
 3 + � � �

Observed values of selectivity and arrival rate at the end of the executing
plan ( .

6: �.-./ + $ �� �
Estimate ( �.-./ +� , ��� E +  �

� ).
7: 3 + $ �� �

Estimate ( 3 + � , ��� E +  �� ).
8: Update #moves, #switches and fidelity (%hits) for round 1

5. Experimental Analysis

Table 1 compares the features of our work OM with some recent techniques; Eddy
refers to the work described in [Avnur and Hellerstein 2000], Rate is the approach pre-
sented in [Viglas and Naughton 2002], and Chain is scheduling algorithm described
in [Babcock et al. 2003b]. Our work is able to maintain fairness, because we do not prior-
itize the query schedule based on memory requirements. Our approach is starvation-free
because we process multiple queries in a round-robin fashion. Moreover, our approach
is tunable because it enables the user to choose the granularity (of regions in chart) used
during scheduling algorithm.

Table 1. Comparison with recent work
OM Eddy Chain Rate

Optimization technique Dynamic Dynamic Dynamic Static
Optimization granularity Query Tuple Operator Query

Addresses Memory utilization Yes Yes Yes No
Addresses Output rate Yes No No Yes

Tunable to user-requirement Yes No No No
Fairness in query scheduling Yes Yes No n/a
Addresses starvation problem Yes Yes No n/a

5.1. Setup

We used the DEC-PKT dataset [Archive 2005] as real-world dataset. For single stream
queries we worked with the TCP trace and for join queries we used the TCP, UDP and SF



traces, with suitable equi-join conditions. As the DEC-PKT data is quite erratic, we ap-
plied a filtering step to generate a series of datasets called REAL, each having a different
coefficient of variation (for the arrival rate). The synthetic dataset URND is the uncorre-
lated random data, which was generated using functions available in GNU compilers.

The experiments were conducted using the OM prototype that is developed as
part of our work. Currently, we can optimize queries and maintain various query and data
statistics. The queries were executed as per the processing model described in section 3.1.

Our main focus was to study fidelity, defined as the fraction of times we correctly
predict the optimal plan. We consider it a hit if the plan ( -6��� ( / � � ) chosen by our op-
timizer is same as the optimal plan ( ��( � ( / � � ) determined in an offline procedure. We
consider it a move whenever the data stream characteristics change and the stream statis-
tics crosses a region boundary (defined for the charts discussed earlier). A move does not
necessarily imply scheduling a new query plan, because two adjacent regions may index
the same plan. We consider it a switch, if the plan executed in 1������ � � if different from
the plan executed in 1 �'��� � � $ � .

We executed the common query operators in isolation and found the tuple process-
ing rates (measured in tuples per sec) to be the following: Selection Equality=

� ��� 3 	 �  
tps, Selection Range=

� ��� 3 	 �  
tps, Projection=

� ��� 3 	 �  
tps, Join Equi=

� 3 	 �  
tps. We

use the following default values, unless stated otherwise. Weights ( 2 +1
 ��� � 
 21-?
 ��� �
),

number partitions in each dimension % 
 	 �
. Each continuous query is run for 10 mins.

Table 2. Queries Used in our Experiments

Single-stream query Q1
SELECT TCP.src host, TCP.dest host
FROM TCP
WHERE TCP.dest host=2
WINDOW [1]

Multi-stream query Q2
SELECT *
FROM TCP, UDP, SF
WHERE TCP.src host=UDP.dest host

and UDP.dest host=SF.dest host
WINDOW [1]

5.2. Single Stream Queries

We used the query � 	
shown in Table 2 to model single stream experiments. Since this

plan has one selection and one projection operation, there are only 2 possible candidate
plans. Next, we describe the results for single stream queries.

Comparison with Optimal plans: We ran � 	
over the DEC-PKT dataset and

monitored the number of times we were able to choose the correct plan. Figure 3(a)
shows the fidelity, averaged per 100 seconds. Our estimations worked very well, except
when there was a sudden burst of inputs. During such a burst (for example between 500-
600 seconds), the optimizer scored wrong hits ( ��( � ( / � ���
 -6� � ( / � � ). Our optimizer
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Figure 3. Experimental Results for Single-stream Queries

performed with an average fidelity of 80% in this experiment, in which there were 84
moves and 23 switches.

Querying Erratic Data Streams: We ran the query � 	
over data streams that

had coefficient of variation (for 3 ) ranging from 0.26 to 0.09. As shown in Figure 3(b),
the fidelity is slightly lower for data streams that are more erratic. The fidelity is in the
range [76 %, 81 %], with most experiments having a fidelity of 80%. In the random
approach (RAND), a random plan is picked from the set of possible candidate plans, in
this case just 2 plans. As expected, the RAND approach cannot do better than 50% for
single stream queries. The RATE approach uses static values for selectivity and arrival
rate, hence does not switch plans when required. In fact, the RATE approach has a lower
fidelity, because it suffers a wrong hit every-time there is a switch.

Performance v/s Optimization Overhead: We measure the optimization (stor-
age) overhead in terms of number of plans generated while constructing the charts. The
parameter % abstracts our notion of overhead, because a chart has % 3 % partitions, hence
% � plans are indexed in the chart. As shown in Figure 3(c), the fidelity increase as we
go from % =10 to 40, and then stabilizes. The observation is that, when we have more
partitions, we have better control over when to switch between query plans. For lower
% , multiple plans could be optimal within the same region, hence the optimizer might
miss some plans. The fidelity saturates around 95 %, which implies that the performance
gain is negligible after this point. Since we check for optimal plans only at the end of
each round, we make only 600 optimization decisions. Since the average the arrival rate
is 500 tuple/sec, the per-tuple EDDY approach would make 300000 decisions, and the
modified EDDY approach [Deshpande 2004] would make 1500 decisions, both of which
are significantly higher than our approach.

5.3. Multi-Stream Queries

We used the join query � � shown in Table 2 for the multiple stream experiments. The 3
streams in � � can be joined in 6 ways. However, we consider only left-deep ordering, so
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we have to deal with only 3 candidate plans.

Querying Erratic Data Streams: As shown in Figure 4(a), we do very well with
99 % fidelity when the data is not very erratic. This is also intuitively correct, because
as the data becomes smoother we should be able to predict the stream properties (and
hence the plans) more accurately. In fact, even when the data is erratic we are not below
80% fidelity. This shows that our estimation and optimization approach is consistent and
always does better than the RAND approach. The RATE approach is not dynamic, hence
the initial plan quickly becomes sub-optimal. The RAND plans perform close to 30%
fidelity, because 1 plan is randomly picked from 3 candidate plans.

Performance v/s Optimization Overhead: We use DEC and URND dataset in
this experiment. We vary % from 2 to 10. In case of the 3 - 3 there are 3 dimensions and
hence the optimization overhead is of the order � � %  � . As shown in figure 4(b), we always
get a higher fidelity for the DEC dataset than the URND dataset. This is mostly because
the tuples in URND are completely uncorrelated. The fidelity stabilizes at a saturation
point (for DEC: % =5 and for URND: % =8) beyond which we are not likely to see much
performance benefit. Since both datasets had arrival rate � �����

tuples per second, we
see that the per-tuple EDDY approach would make at least

����� 3 � � 3 	 �
optimization

decisions in the query lifetime of 10 mins.

5.4. Scheduling Multiple Queries

Let ��� be the number of queries registered with the DSMS. We maintain a queue of
ready CQs and process them in a round-robin fashion. The scheduling is fair because the
queue is not sorted after each round. Moreover, this approach is starvation-free because
each query is serviced in FIFO fashion and reinserted at the back of the queue. The
query has to wait in the queue till the next round of execution. We experimented with
10 queries, with a mix of single stream and join queries. We ran the simulation over the
REAL dataset and found that our approach showed consistent performance. Single stream
queries experienced a fidelity of 95 % and the join queries had a fidelity of 90 %.



6. Conclusions

We have provided a novel framework to perform continuous query (CQ) optimization in
data stream environments. We have shown that CQ performance is influenced by param-
eters such as output rate and memory utilization of queries, rather than just disk I/O. Our
important contribution has been to propose a cost model that is tunable to the application
requirements. Moreover, our technique to generate multiple plans and schedule them us-
ing charts is quick and low in complexity. A chart with higher granularity provides better
query performance, because the optimizer can monitor and switch plans more frequently.
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