
Intrusion Detection
via Static Analysis

IEEE Symposium on Security & Privacy 01’

David Wagner
Drew Dean

Presented by Yongjian Hu

Outline
�  Introduction

�  Motivation

�  Models
�  Trivial model
�  Callgraph model
�  Abstract stack model
�  Digraph model

�  Implementation

�  Evaluation

Introduction
�  IPS: Intrusion Prevention System

�  Find buffer overflows and remove them

�  Use firewall to filter out malicious network traffic

�  IDS: Intrusion Detection System
�  Is what you do after prevention has failed
�  Detect attack in progress

�  Network traffic patterns, suspicious system calls, etc

Introduction
�  Host-based IDS

�  Monitor activity on a single host

�  Advantage: better visibility into behavior of individual
applications running on the host

�  Network-based IDS
�  Often placed on a router or firewall

�  Monitor traffic, examine packet headers and payloads
�  Advantage: can protect many hosts

Problem
�  Prevalent security problems

�  Abnormal behavior: Buffer Overflows

�  Current Methodology
�  Define a model of the normal behavior of a program
�  Raise an alarm if the program behaves abnormally

�  The Problem
�  False alarm rate is high!!!

Motivation
�  System Call Interposition

�  Observation: all sensitive system resources are
accessed via OS system call interface
�  Files, Network, etc.

�  Idea: Monitor all system calls and block those that
violate security policy

Model Creation
�  Training-based:

�  Use machine learning and data mining techniques
�  Log system activities for a while, then “train” IDS to

recognize normal and abnormal patterns

�  Easy but may miss some of the behavior

�  Static analysis:
�  Extracted the model from source or binary
�  NO false positives!!!

A Trivial Model
�  Create a set of system calls that the application

can ever make

�  If a system call outside the set is executed,
terminate the application

�  Pros: easy to implement

�  Cons: miss many attacks & too coarse-grained

Callgraph Model
�  Build a control flow graph of the program by static

analysis of its source or binary code

�  Result: non-deterministic finite-state automaton
(NDFA) over the set of system calls
�  Each vertex executes at most one system call
�  Edges are system calls or empty transitions
�  Implicit transition to special “Wrong” state for all

system calls other than the ones in original code
�  All other states are accepting

Callgraph Example

Entry point

Function call site is split into two
nodes

Epsilon edges

Entry(g)

v

w

Exit(g)

open()

close()

exit()

Entry(f)

Exit(f)

getuid()

geteuid()

Imprecision in Callgraph

Valid Path

Impossible Path.
Yet the model will not
be able to detect it
since all transitions
are valid.

The return address in f can be
overridden.

NDFA: Model Tradeoffs
�  A good model should be…

�  Accurate: closely models expected execution
�  Need context sensitivity!

�  Fast: runtime verification is cheap

NDFA Fast

Slow

Accurate Inaccurate

Abstract Stack Model
�  NDFA is not precise, loses stack information

�  Alternative: model application as a context-free
language over the set of system calls
�  Build non-deterministic pushdown automaton

(NDPDA)

�  Each symbol on the NDPDA stack corresponds to
single stack frame in the actual call stack

�  All valid call sequences accepted by NDPDA; enter
“Wrong” state when an impossible call is made

NDPDA Example

Solve Impossible Path
�  Consider the previous example of an impossible

path.

•  The Abstract Stack model will detect the attack since
it stores stack information. When returning from
state Exit(f), the stack will have the return address
v’.

•  State v’ does not have a transition on system call
exit() hence the attack will be detected.

NDPDA: Model Tradeoffs
�  Non-deterministic PDA has high cost

�  Forward reachability algorithm is cubic in automaton
size

�  Unusable for online checking

NDNFA Fast

Slow

Accurate Inaccurate

NDPDA

Digraph Model
�  Combines some of the advantages of the callgraph

model in a simpler formulation

�  Model consists of a list of possible k-sequences of
consecutive system calls (k=2 for simplicity)

�  Monitor the application by checking the executed
system calls vs. a precomputed list of the allowed
k-sequences

�  +: much more efficient than NDFA & NDPDA

�  -: less precise than NDFA & NDPDA

Implementation Issues
�  Non-standard control

�  Function pointers
�  Signals

�  Add extra edge to each handler + pre-/post-guard

�  Setjmp()
�  Modify stack, not suitable for NDPDA
�  Extend runtime monitor to handle

�  Other modeling challenges
�  Libraries
�  Dynamic linking
�  Threads

Optimizations
�  Irrelevant systems calls

�  Not monitoring harmless but frequently executed
system calls such as brk()

�  System call arguments
�  Monitoring the arguments at runtime improves both

precision and performance

Evaluation: Performance

Evaluation: Precision

Precision of each of the models, as characterized
by the average branching factor. Small numbers
represent better precision.

Unsolved Issues
�  Mimicry Attack

�  Require high precision model to detect (poor
performance)

�  Runtime Overhead
�  Use more advanced static analysis to get more

precise models

�  Later work such as VtPath, Dyck and VPStatic try to
solve this problem

Backup

Push-down automata
�  As in FSA, PDA have a set of states and a transition function.

�  They differ from FSA by also having a stack. They accept context-free languages.

�  At every transition, a symbol can be pushed or popped from the stack.

�  They can accept either by state or by stack (if stack is empty), which are equivalent
in terms of computational power.

�  PDA is stronger than FSA. It can accept regular languages and also some irregular
ones such as 0n1n.

Start End
1

push 0

0 1

pop 0

Once you see a 1, switch to the End state.
The stack contains as many 0 as seen in the input.
If the stack is empty at the end of the input, accept.

Stack

Dyck Model

�  Idea: make stack updates (i.e., function calls) explicit
symbols in the automaton alphabet
�  Result: stack-deterministic PDA

�  At each moment, the monitor knows where the monitored
application is in its call stack
�  Only one valid stack configuration at any given time

�  How does monitor learn about function calls?
�  Use binary rewriting to instrument the code to issue special

“null” system calls to notify the monitor
�  Potential high cost of introducing many new system calls

�  Can’t rely on instrumentation if application is corrupted

[Giffin et al.]

slide 26

System Call Processing
Complexity

 n is state count

 m is transition count

Model
Time & Space
 Complexity

NFA O(n)

PDA O(nm2)

Dyck O(n)

Reference
�  cseweb.ucsd.edu/classes/sp02/cse231/

eugene.ppt

�  www.cs.utexas.edu/~shmat/courses/
cs380s_fall09/08hostids.ppt

�  Moss.csc.ncsu.edu/~mueller/seminar/spring05/
sezer.ppt

