Intrusion Detection
via Static Analysis

IEEE Symposium on Security & Privacy 01’

David Wagner
Drew Dean

Presented by Yongjian Hu

Outline

® |ntroduction
® Motivation

® Models
® Trivial model
e Callgraph model
® Abstract stack model
® Digraph model

®* |[mplementation

® Evaluation

Introduction

® |PS: Intrusion Prevention System
® Find buffer overflows and remove them
o Use firewall to filter out malicious network traffic

® |DS: Intrusion Detection System
® |s what you do after prevention has failed

® Detect attack in progress
* Network traffic patterns, suspicious system calls, etc

Introduction

® Host-based IDS
® Monitor activity on a single host

® Advantage: better visibility into behavior of individual
applications running on the host

® Network-based IDS
e (Often placed on a router or firewall
® Monitor traffic, examine packet headers and payloads
® Advantage: can protect many hosts

Problem

® Prevalent security problems
® Abnormal behavior: Buffer Overflows

® Current Methodology
® Define a model of the normal behavior of a program
® Raise an alarm if the program behaves abnormally

® The Problem
® False alarm rate is high!!!

Motivation

e System Call Interposition

® Observation: all sensitive system resources are
accessed via OS system call interface

e Files, Network, etc.

® |dea: Monitor all system calls and block those that
violate security policy

Model Creation

® Training-based:
® Use machine learning and data mining techniques

® | og system activities for a while, then “train” IDS to
recognize normal and abnormal patterns

® Fasy but may miss some of the behavior

e Static analysis:
® Extracted the model from source or binary
e NO false positives!!!

A Trivial Model

Create a set of system calls that the application
can ever make

If a system call outside the set is executed,
terminate the application

Pros: easy to implement

Cons: miss many attacks & too coarse-grained

Callgraph Model

¢ Build a control flow graph of the program by static
analysis of its source or binary code

® Result: non-deterministic finite-state automaton
(NDFA) over the set of system calls

® Fach vertex executes at most one system call
® Fdges are system calls or empty transitions

® |mplicit transition to special “Wrong” state for all
system calls other than the ones in original code

® All other states are accepting

Callgraph Example
grap o P

f(int x) {
x 7 getuid() : geteuid();
X++;

} /[Entry point] getuid()
gO {

open("foo", O_RDONLY);
close(fd); £(1);

geteuid()

Epsilon edges

Function call site is split into two

nodes

Imprecision in Callgraph

f(int x) { , The return address in f can be
x 7 getuid() : geteuid(); .
. overridden.
X++;
}
gO) {

fd = open("foo", O_RDONLY);
£(0); close(fd); f(1);
exit (0);

}

/Impossible Path.

Yet the model will not
be able to detect it
since all transitions
are valid.

.

Valid Path

NDFA: Model Tradeoffs

® A good model should be...
® Accurate: closely models expected execution
® Need context sensitivity!
® Fast: runtime verification is cheap

Inaccurate Accurate

Slow

Fast NDFA

Abstract Stack Model

® NDFA is not precise, loses stack information

® Alternative: model application as a context-free
language over the set of system calls

® Build non-deterministic pushdown automaton
(NDPDA)

® Fach symbol on the NDPDA stack corresponds to
single stack frame in the actual call stack

e All valid call sequences accepted by NDPDA; enter
“Wrong” state when an impossible call is made

NDPDA Example

while (true)
case pop() of

f(int %) { Entry(f) = getuid() Exit(f) Entry(f) = push(Exit(f)); push(getuid())
x 7 getuid() : geteuid(); | geteuid() Exit(f) Entry(f) = push(Exit(f)): push(geteuid())
x++; Exit(f) =€ Exit(f) = no-op

} Entry(g) ::= open() v Entry(g) = push(v); push(open())

gO) { v = Entry(f) o' v = push(v"): push(Entry(f))
fd = open("foo", O0_RDONLY); v’ = close() w v’ = push(w); push(close())
£(0); close(fd); £(1); w = Entry(f) w' w = push(w"); push(Entry(f))
exit (0); w' = exit() Exit(g) w' = push(Exit(g)); push(exit())

} Exit(g) == ¢ Exit(g) = no-op

a €% = read and consume a from the input
otherwise = enter the error state, WWrong

Solve Impossible Path

Consider the previous example of an impossible

path. @ openl)

close()

exit()

« The Abstract Stack model will detect the attack since
It stores stack information. When returning from

state Exit(7), the stack will have the return address
V}

« State v’ does not have a transition on system call
exit() hence the attack will be detected.

NDPDA: Model Tradeoftfs

® Non-deterministic PDA has high cost
® Forward reachability algorithm is cubic in automaton
Size
e Unusable for online checking

Inaccurate Accurate

Slow NDPDA
Fast NDNFA

Digraph Model

Combines some of the advantages of the callgraph
model in a simpler formulation

Model consists of a list of possible k-sequences of
consecutive system calls (k=2 for simplicity)

Monitor the application by checking the executed
system calls vs. a precomputed list of the allowed
K-sequences

+: much more efficient than NDFA & NDPDA

-: less precise than NDFA & NDPDA

Implementation Issues

® Non-standard control
® Function pointers
® Signals
®* Add extra edge to each handler + pre-/post-guard
* Setimp()
* Modify stack, not suitable for NDPDA
e Extend runtime monitor to handle

® Other modeling challenges
® | ibraries

® Dynamic linking

® Threads

% o

Optimizations

® |[rrelevant systems calls

® Not monitoring harmless but frequently executed
system calls such as brk()

e System call arguments

® Monitoring the arguments at runtime improves both
precision and performance

Evaluation: Performance

42 min. > 1 hour

70

M Stack
60 @ Callgraph
B Digraphs

50

40

30

20

10

monitoring overhead per transaction, in seconds

0-

finger gpopper procmail sendmail

Evaluation: Precision

20 W Stack
@ Callgraph
M Digraphs

-
(&

average branching factor
=)

($)

oL

finger gpopper procmail ' sendmail

Precision of each of the models, as characterized
, by the average branching factor. Small numbers
t better precision.

Unsolved Issues

* Mimicry Attack

® Require high precision model to detect (poor
performance)

® Runtime Overhead

® Use more advanced static analysis to get more
precise models

e | ater work such as VtPath, Dyck and VPStatic try to
solve this problem

Backup

Push-down automata

As in FSA, PDA have a set of states and a transition function.
They differ from FSA by also having a stack. They accept context-free languages.
At every transition, a symbol can be pushed or popped from the stack.

They can accept either by state or by stack (if stack is empty), which are equivalent
in terms of computational power.

PDA is stronger than FSA. It can accept regular languages and also some irregular
ones such as O"1"

push 0 pop 0

Once you see a 1, switch to the End state.
ontains as many 0 as seen in the input.

Dyck Model

® Idea: make stack updates (i.e., function calls) explicit
symbols in the automaton alphabet

® Result: stack-deterministic PDA

® At each moment, the monitor knows where the monitored
application is in its call stack

® Only one valid stack configuration at any given time

® How does monitor learn about function calls?

® Use binary rewriting to instrument the code to issue special
“null” system calls to notify the monitor

® Potential high cost of introducing many new system calls
~Can’ trely on instrumentation if applicati ‘

System Call Processing
Complexity

Time & Space
Model Complexity
NFA O(n)
PDA O(nm?2)
Dyck O(n)

n is state count

m is transition count

Reference

® cseweb.ucsd.edu/classes/sp02/cse231/
eugene.ppt

® www.cs.utexas.edu/~shmat/courses/
cs380s fall09/08hostids.ppt

® Moss.csc.ncsu.edu/~mueller/seminar/spring05/
sezer.ppt

