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ABSTRACT
An important consideration in similarity-based retrieval of moving
object trajectories is the definition of a distance function. The ex-
isting distance functions are usually sensitive to noise, shifts and
scaling of data that commonly occur due to sensor failures, errors
in detection techniques, disturbance signals, and different sampling
rates. Cleaning data to eliminate these is not always possible. In
this paper, we introduce a novel distance function, Edit Distance
on Real sequence (EDR) which is robust against these data imper-
fections. Analysis and comparison of EDR with other popular dis-
tance functions, such as Euclidean distance, Dynamic Time Warp-
ing (DTW), Edit distance with Real Penalty (ERP), and Longest
Common Subsequences (LCSS), indicate that EDR is more robust
than Euclidean distance, DTW and ERP, and it is on average 50%
more accurate than LCSS. We also develop three pruning tech-
niques to improve the retrieval efficiency of EDR and show that
these techniques can be combined effectively in a search, increas-
ing the pruning power significantly. The experimental results con-
firm the superior efficiency of the combined methods.

1. INTRODUCTION
With the growth of mobile computing and the development of

computer vision techniques, it has become possible to trace the tra-
jectories of moving objects in real life and in videos. A number of
interesting applications are being developed based on the analysis
of trajectories. For example, using a remote sensing system, and by
mining the trajectories of animals in a large farming area, it is pos-
sible to determine migration patterns of certain groups of animals.
In sports videos, it is quite useful for coaches or sports researchers
to know the movement patterns of top players. In a store surveil-
lance video monitoring system, finding the customers’ movement
patterns may help in the arrangement of merchandise. The basis of
all these applications are robust and accurate methods to determine
similarity among trajectories.

The trajectory S of a moving object is defined as a sequence of
pairs, S = [(t1, s1) . . . , (tn, sn)], which show the successive po-
sitions of the moving object over a period of time [5, 6]. Here,
n, the number of sample timestamps in S, is defined as the length
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of S and si is a vector of arity d (d usually equals 2 or 3) that is
sampled at timestamp ti. Therefore, trajectories can be considered
as two (x-y plane) or three (x-y-z plane) dimensional time series
data. In terms of similarity-based retrieval, we are interested in the
movement shape of the trajectories; sequences of sampled vectors
are important in measuring the similarity between two trajectories
and time components can be ignored. This separates similarity-
based retrieval from queries in spatio-temporal databases where
time components of trajectories are important to answer time slice
or time interval queries [28]. Considerable research has been con-
ducted on similarity-based retrieval on one-dimensional time series
data, such as stock or commodity prices, sales volume, weather
data and biomedical measurements (e.g. [1, 24, 20, 23, 40]). Un-
fortunately, the distance functions and indexing methods proposed
for one-dimensional time series data can not be directly applied to
moving object trajectories due to their unique characteristics.

• Trajectories are usually two or three dimensional data se-
quences and a trajectory data set often contain trajectories
with different lengths. Most of the earlier proposals on simila-
rity-based time series data retrieval are focused on one-dimen-
sional time series data [1, 24, 23, 20, 40].

• Trajectories usually have many outliers. Unlike stock, weather,
or commodity price data, trajectories of moving objects are
captured by recording the positions of the objects from time
to time (or tracing moving objects from frame-to-frame in
videos). Thus, due to sensor failures, disturbance signals
or errors in detection techniques, many outliers may appear.
Longest Common Subsequences (LCSS) has been applied to
address this problem [36]; however, it does not consider var-
ious gap between similar subsequences, which leads to in-
accuracy. The gap refers to a sub-trajectory in between two
identified similar components of two trajectories.

• Similar movement patterns may appear in different regions
of trajectories. Different sampling rates of tracking and record-
ing devices combined with different speeds of the moving
objects may introduce local shifts into trajectories (i.e., the
trajectories follow similar paths, but certain sub-paths are
shifted in time). Even though the similarity measures, such
as Dynamic Time Warping (DTW) [41, 8, 19], and Edit dis-
tance with Real Penalty (ERP) [6], can be used to measure
the similarity between trajectories with local shifts, they are
sensitive to noise.

Since existing similarity measures can not readily be used to re-
trieve trajectories, in this paper, we introduce a novel distance func-
tion that addresses the peculiarities of trajectories, and we discuss
the retrieval efficiency issues relative to this distance function.

The major contributions of this paper are the following:



1. We introduce a novel distance function, Edit Distance on
Real sequence (EDR), to measure the similarity between two
trajectories. EDR is based on edit distance on strings, and
removes the noise effects by quantizing the distance between
a pair of elements to two values, 0 and 1. Seeking the min-
imum number of edit operations required to change one tra-
jectory to another offers EDR the ability to handle local time
shifting. Furthermore, assigning penalties to the unmatched
parts improves its accuracy. Through a set of objective tests
on benchmark data, we show that EDR is more robust than
Euclidean distance, DTW, and ERP, and and more accurate
than LCSS when it is used to measure the similarity between
trajectories that contain noise and local time shifting.

2. We develop three pruning techniques – mean value Q-grams,
near triangle inequality, and trajectory histogram – to im-
prove the retrieval efficiency of EDR. Unlike the pruning
methods proposed for LCSS [36, 37] or DTW [19], these
pruning methods do not require setting constraints on warp-
ing length (or matching region) between two trajectories, and
therefore, offer users more flexibility.

3. We show how to combine the three pruning methods to sig-
nificantly reduce the number of false candidates. Further-
more, we develop different variations of the three pruning
methods and compare their performance in terms of pruning
power and speedup ratio and we show the superior searching
efficiency of the combined methods.

The rest of the paper is arranged as follows: we give a brief
review of existing distance functions in Section 2, which motivates
the necessity of a new distance function. Section 3 presents the new
distance function EDR, as well as comparative efficacy test results
on benchmark data sets. In Section 4, we introduce three pruning
techniques and their variations that can be used to improve the re-
trieval efficiency. An optimization is also proposed by combining
three pruning methods. Experimental studies on retrieval efficiency
in terms of pruning power and speedup ratio for each pruning tech-
nique and the combination method are presented in Section 5. We
conclude by comparing our approach with related work in Section
6.

2. BACKGROUND
In this paper, for simplicity and without loss of generality, we as-

sume that objects are points that move in a two-dimensional space
(x − y plane) and that time is discrete. Thus, given a trajectory
S = [(t1, s1) . . . , (tn, sn)], si is a pair, (si,x, si,y). We refer to
(ti, si) as an element of trajectory S. All the definitions, theo-
rems, and techniques can be extended to more than two dimensions.
Given S, we can normalize its x and y position values using the cor-
responding mean (µx), (µy) and standard deviation (σx), (σy), re-
spectively [13]: Norm(S) = [(t1, (

s1,x−µx

σx
,

s1,y−µy

σy
)), . . . , (tn,

(
sn,x−µx

σx
,

sn,y−µy

σy
))]. Normalization is recommended so that the

distance between two trajectories is invariant to spatial scaling and
shifting. Throughout this paper, we use S to denote Norm(S).
Figure 1 summarizes the main symbols used in this paper and Fig-
ure 2 lists the existing distance functions that we will review in this
section.

Given two trajectories R and S of length n, the Euclidean dis-
tance between them, Eu(R, S), is defined as Formula 1 in Figure
2. Euclidean distance requires trajectories to be the same length.
Dynamic time warping distance, DTW (R, S), between two tra-
jectories R and S of length m and n, respectively, is defined as
Formula 2 in Figure 2. DTW does not require two trajectories to

Symbols Meaning

S a trajectory [(t1, s1), . . . , (tn, sn)]

si ith element vector of S
dist(ri, si) the distance between two elements (ri, si) and (ri, si)

si,x the x coordinate of ith element vector of S
Rest(S) the sub-trajectory of S without the first element: [(t2, s2), . . . , (tn, sn)]
HS a histogram of trajectory

Figure 1: Meanings of symbols used

be the same length, and it can handle the local time shifting by
duplicating the previous element. Edit distance with Real Penalty,
ERP (R, S), defined by Formula 3 in Figure 2, introduces a con-
stant value g as the gap of edit distance and uses real distance be-
tween elements as the penalty to handle local time shifting. Euclid-
ean distance and ERP are metric and they obey triangle inequal-
ity, therefore, they can be indexed by known distance access meth-
ods, while DTW is not. However, Euclidean distance, DTW, and
ERP are all sensitive to noise. To illustrate this, let us consider
the following example of four one-dimensional trajectories: Q =
[(t1, 1), (t2, 2), (t3, 3), (t4, 4)], R = [(t1, 10), (t2, 9), (t3, 8), (t4, 7)],
S = [(t1, 1), (t2, 100), (t3, 2), (t4, 3), (t5, 4)], P = [(t1, 1), (t2, 100),
(t3, 101), (t4, 2), (t5, 4)]. Assume that Q is the query trajectory,
and the second element of S as well as the second and third ele-
ments of P are noise (their values are significantly different from
the values near them). The correct ranking in terms of similarity
to Q is: S, P, R, since, except noise, the rest of the elements of S
and P match the elements of Q perfectly. Euclidean distance ranks
the three trajectories as R, S, P . DTW and ERP produce the same
rank as Euclidean distance, however, even from general movement
trends (subsequent values increase or decrease) of the two trajecto-
ries, it is obvious that S is more similar to Q than R. The example
shows that noise can cause similar trajectories to be treated as dis-
similar when noise-sensitive distance functions are used.

The LCSS score of two trajectories R and S of length m and n
is computed according to Formula 4 in Figure 2. LCSS requires a
threshold ε to be established. This threshold is used to determine
whether or not two elements match and allows LCSS to handle
noise by quantizing the distance between two elements to two val-
ues, 0 and 1, to remove the larger distance effects caused by noise.
However, it does not consider variations in gap sizes between two
similar subsequences of the trajectories. We use the same example
given above to illustrate this point. Assume ε = 1, LCSS ranks
three trajectories in terms of their similarities to Q as S = P, R
(“=” means that S and P have the same distance to Q). How-
ever, we know that the gap between common subsequences of P is
longer than that of S, and S is more similar to Q than P .

Figure 2 also compares four distance functions based on four cri-
teria: ability to handle sequences with local time shifting, ability to
handle sequences that contain noise, whether the distance function
is a metric, and computation cost. Using these distance functions to
measure the similarity between two trajectories has the following
problems:

• Euclidean distance, DTW and ERP are all sensitive to noise,
which occurs in trajectory data.

• Euclidean distance can not handle trajectories with local time
shifting and different lengths.

• LCSS can handle trajectories with noise, but it is a very “coarse”
measure, as it does not differentiate trajectories with similar
common subsequences but different sizes of gaps in between.

3. EDR: A NEW DISTANCE FUNCTION
In this section, we propose a new distance function, called Edit

Distance on Real sequence (EDR), to tackle the problems encoun-



Definition Local Time Shifting Noise Metric Computation Cost
Eu(R, S) =

pPn
i=1 dist(ri, si) dist(ri, si) = (ri,x − si,x)2 + (ri,y − si,y)2 (1) X O(n)

DTW (R, S) =

8
><
>:

0 if m = n = 0
∞ if m = 0 or n = 0
dist(r1, s1) + min{DTW (Rest(R), Rest(S)), otherwise
DTW (Rest(R), S), DTW (R, Rest(S))}

(2) X O(n2)

ERP (R, S) =

8
>>>>><
>>>>>:

Pn
1 dist(si, g) if m = 0Pm
1 dist(ri, g) if n = 0

min{ERP (Rest(R), Rest(S)) + dist(t1, s1),
ERP (Rest(R), S) + dist(r1, g), otherwise
ERP (R, Rest(S)) + dist(s1, g)}

(3) X X O(n2)

LCSS(R, S) =

8
><
>:

0 if m = 0 or n = 0
LCSS(Rest(R), Rest(S)) + 1 if |r1,x − s1,x| ≤ ε

&|r1,y − s1,y| ≤ ε
max{LCSS(Rest(R), S), LCSS(R, Rest(S))} otherwise

(4) X X O(n2)

Figure 2: Distance Functions

tered by the existing distance functions, as we reviewed in the pre-
vious section. EDR is more robust and accurate than the existing
ones in measuring the similarity between two trajectories.

3.1 Edit Distance on Real Sequences
EDR is based on Edit Distance (ED) [26], which is widely used

in bio-informatics and speech recognition to measure the similarity
between two strings. Given two strings A and B, ED(A, B) is
the number of insert, delete, or replace operations that are needed
to convert A into B. Since trajectories are not strings but numer-
ical value pair sequences, for EDR, it is crucial to properly define
matching between element pairs of different trajectories.

Definition 1. A pair of trajectory element vectors ri and sj from
two trajectories R and S, respectively, are said to match (match(ri,
sj) = true) if and only if |ri,x − sj,x| ≤ ε and |ri,y − sj,y| ≤ ε,
where ε is the matching threshold.

Definition 2. Given two trajectories R and S of lengths n and m,
respectively, the Edit Distance on Real sequence (EDR) between R
and S is the number of insert, delete, or replace operations that are
needed to change R into S. EDR(R, S) is defined as follows:

EDR(R, S) =

8
>>><
>>>:

n if m = 0
m if n = 0
min{EDR(Rest(R), Rest(S)) + subcost,

EDR(Rest(R), S) + 1, EDR(R, Rest(S)) + 1}
otherwise

where subcost = 0 if match(r1, s1) = true and subcost = 1
otherwise.

In Definition 2, we assume that the cost of a replace, insert, or
delete operation is only 1, which corresponds to the original defini-
tion of edit distance [26]. Compared to Euclidean distance, DTW,
ERP, and LCSS, EDR has following virtues:

• In EDR, the matching threshold reduces effects of noise by
quantizing the distance between a pair of elements to two
values, 0 and 1 (LCSS also performs the same quantization).
Therefore, the effect of outliers on the measured distance is
much less in EDR than that in Euclidean distance, DTW, and
ERP.

• Like ERP, seeking the minimum number of edit operations
required to change one trajectory to another offers EDR the
ability to handle local time shifting.

• Contrary to LCSS, EDR assigns penalties to the gaps be-
tween two matched sub-trajectories according to the lengths
of gaps, which makes it more accurate than LCSS.

Revisiting the previous example, the similarity ranking relative to
Q with EDR (ε = 1) is S, P, R, which is the expected result.

3.2 Evaluation of EDR
In order to compare the efficacy of different distance functions,

we apply the following objective evaluation. In the first test, we
test the efficacy of EDR using the approach in [36]. Specifically,
we perform hierarchy clustering using four distance functions on
two labelled data sets. The two labelled trajectory data sets are
the “Cameramouse” (CM) [11] and the Australian Sign Language
(ASL) data sets which were also used in [22, 36]. The “Camer-
amouse” data set contains 15 trajectories of 5 words (3 for each
word) obtained by tracking the finger tips of people as they “write”
various words. The ASL data set from UCI KDD data archive1

consists of samples of Australian Sign Language signs, and it is a
10 class data set with 5 trajectories per class2. For each data set,
we take all possible pairs of classes and use the “complete linkage”
hierarchy clustering algorithm [16], which was reported to produce
the best clustering results [36], to partition them into two clusters.
We draw the dendrogram of each clustered result to see whether it
correctly partitions the trajectories. We run the experiments with
different values of ε and find that setting the matching threshold
ε to be a quarter of the maximum standard deviation of trajecto-
ries leads to the best clustering results, which is also confirmed by
[33]. The same ε value is used for LCSS and EDR. In order to
make a fair comparison with DTW [29], we also test DTW with
different warping lengths and report the best results. Since Euclid-
ean distance requires sequences with the same length, we apply the
strategy used in [36], where the shorter of the two trajectories slides
along the longer one and the minimum distance is recorded. The
best result of each distance function is reported in Table 1.

Correct results Eu DTW ERP LCSS EDR
CM (total 10 correct) 2 10 10 10 10
ASL (total 45 correct) 4 20 21 21 21

Table 1: Clustering results of five distance functions

As shown in Table 1, EDR performs as well as DTW, ERP and
LCSS. The poor clustering results of Euclidean distance confirm
that it is very sensitive to local time shifting. In this test, DTW and
ERP perform similar to LCSS and EDR, because the two trajec-
tory data sets contain local time shifting, but very little or no noise,
which confirms results in [36]. Thus, this test shows that EDR is
as effective as DTW, ERP, and LCSS in measuring similarities of
trajectories when the trajectories contain little or no noise.

The second test uses classification of labelled data to evaluate the
efficacy of a distance function, as proposed by Keogh et al. [21].
Specifically, each trajectory is assigned a class label. Then the
“leave one out” prediction mechanism is applied to each trajectory

1University of California, Irvine: http://kdd.ics.uci.edu.
2The test data are available at http://db.uwaterloo.ca/∼l6chen/data



in turn. That is, the class label of the chosen trajectory is predicted
to be the class label of its nearest neighbor, defined based on the
given distance function. If the prediction is correct, then it is a hit;
otherwise, it is a miss. The classification error rate is defined as the
ratio of the number of misses to the total number of trajectories.
We use the same two data sets of the first test.

In order to test the ability of distance functions to handle lo-
cal time shifting and noise, we add to three data sets interpolated
Gaussian noise (about 10-20% of the length of trajectories) and lo-
cal time shifting using the program in [37]. To get average values
over a number of data sets, we use each raw data set as a seed and
generate 50 distinct data sets that include noise and time shifting.
The results are shown in Table 2. For two data sets, EDR performs
the best, showing that it is superior to the other distance functions
in handing noise and local time shifting.

Avg. Error Rate Eu DTW ERP LCSS EDR
CM 0.25 0.14 0.14 0.10 0.03
ASL 0.28 0.18 0.17 0.14 0.09

Table 2: Classification results of five distance functions

To conclude, the results of above two tests prove that EDR per-
forms as well as DTW, ERP, and LCSS when trajectories contain
little or no noise, and it is more robust than DTW and ERP, and
on average 50% more accurate than LCSS in noisy conditions. In
terms of efficiency, the computation cost of DTW, ERP, LCSS, and
EDR is the same, which are quadratic using dynamic programming.

4. EFFICIENT TRAJECTORY RETRIEVAL
USING EDR

The matching threshold ε in EDR is introduced to remove the
effect of noise. However, the introduction of the threshold causes
EDR to violate triangle inequality, making it non-metric and, thus,
non-indexable by traditional distance-based indexing methods. How-
ever, this does not mean that EDR is not a “good” distance func-
tion. As pointed out by Jacobs et. al [15], it is not the poor se-
lection of features or careless design that cause a distance func-
tion not to follow triangle inequality. Inherently, distance functions
that are robust to noisy data will usually violate triangle inequality.
Many robust distance functions have been proposed in the domain
of image retrieval, such as Hausdorff distance [14] and Dynamic
Partial Function (DPF) [12], that do not follow triangle inequality.
Furthermore, much work in psychology also suggests that human
similarity judgements do not follow triangle inequality either [32].
Therefore, given a “good”, robust but non-metric distance function,
the issue is how to improve the retrieval efficiency for similarity
search. The computation cost of EDR by dynamic programming is
O(m ∗ n), where m and n are the lengths of the two trajectories
(the cost of DTW, ERP, and LCSS are quadric as shown in Figure
2). This removes the possibility of using sequential scan when the
database size is large. We, therefore, propose three pruning meth-
ods that can reduce the number of computations between the query
trajectory and trajectories in the database. We have a strong re-
quirement that the methods cause no false dismissals while reduc-
ing false candidates. The target queries are k-NN queries, which
return k data elements from a database that have the nearest dis-
tances to the query data. The pruning techniques that we propose
in this paper can also be applied to LCSS, the details are omit-
ted due to space limitation. Extension to other non-metric distance
functions are possible, but not trivial and is left as future work.
4.1 Pruning by Mean Value Q-gram

Given a string S, a Q-gram of S is defined as a substring of size
q. Q-grams have been well studied as a solution to the approximate

string matching problem [17, 31, 10], which is defined as follows:
given a long text of length n and a pattern of length m (m ≤ n), re-
trieve all the segments of the text whose edit distance to the pattern
is at most k. If a pattern and a string are similar to each other, the
number of substrings that are common to each other is high. This
is the intuition of using Q-grams as a filter. The following theorem
can be used to remove the segments that do not satisfy the require-
ment (at most k editing operations) before computing the real edit
distance between the pattern and the segment.

Theorem 1 [17]. Let P and S be strings of length m and n. P
and S within edit distance k have at least p = max(m, n) − q +
1− kq common Q-grams.

The value p comes from two parts: first part, max(m, n)−q+1,
is the maximum number of Q-grams of size q in P or S, and the
second part, kq, is the maximum number of Q-grams that can be
affected between P and S by k edit operations.

Theorem 1 can be used in the context of EDR to remove false
candidates, but changes are required since we are not looking for
exact match in counting common Q-grams between trajectories.
Thus, what it means to “match” has to be redefined as follows.

Definition 3. Given two Q-grams r = [(r1,x, r1,y), . . . , (rq,x, rq,y)]
and s = [(s1,x, s1,y), . . . , (sq,x, sq,y)] of trajectories R and S, re-
spectively, r matches s if and only if each element of r matches its
corresponding element in s.

However, the space requirement to store Q-grams is very high,
since each Q-gram of a trajectory has to be stored. Furthermore,
Theorem 1 only applies to one-dimensional strings, and naive im-
plementation of Q-grams on multi-dimensional trajectories will not
only increase the space cost but may also suffer the dimensional-
ity curse problem [38]. Finally, Theorem 1 applies only to range
queries (searching strings with at most k edit operation to the query
string). In most cases, users may not know the range a priori. In
these situations, k-NN search is more meaningful. In the rest of
this section, we present solutions to these issues.

Compared to strings, elements of trajectories are real values;
thus, we can use the properties of real values to reduce the stor-
age requirement of Q-grams. Based on Definitions 1 and 3, we
have the following theorem:

Theorem 2. Given a matching threshold ε, if two Q-grams r =
[(r1,x, r1,y), . . . , (rq,x, rq,y)] and s = [(s1,x, s1,y), . . . , (sq,x, sq,y)]

match, their mean value pairs rmean = (
P

ri,x

q
,
P

ri,y

q
) and smean =

(
P

si,x

q
,
P

si,y

q
) also match.

Proof. Straightforward induction from Definition 1. 2

Based on Theorem 2, we need no more space to store Q-grams
than that is required to store a trajectory, regardless of the size of
the Q-gram. Most importantly, there is the possibility to index the
Q-grams of trajectories with less dimensions. For example, given a
trajectory S = [(t1, (1, 2)), (t2, (3, 4)), (t3, (5, 6)), (t4, (7, 8)), (t5,
(9, 10))], Q-Grams of size 3 for S are: [(1,2), (3, 4), (5, 6)], [(3,4),
(5,6), (7, 8)], [(5,6), (7,8), (9,10)]. We need to create a six-dimensional
R-tree to index these Q-grams and with the increasing of Q-gram
sizes, the dimensionality of the R-tree will grow (e.g. for three
dimensional trajectories, Q-grams of size 5 need a 15 dimensional
R-tree) and may cause R-tree to perform worse than sequential scan
[38]. However, the mean value Q-gram pairs of S are: (3,4), (5,6),
(7,8). Only a two dimensional R-tree is needed to index these pairs,
even for Q-grams with larger size.

Q-grams were originally proposed as a filtering technique in an-
swering range queries. We propose two algorithms to extend this
technique to answer k-NN queries. The first algorithm utilizes
indexes on Q-grams to speed up the process of finding common
Q-grams between two trajectories. Procedure Qgramk-NN-index



Procedure Qgramk-NN-index(Q, k, Tree, result) {
/* Tree ≡ a R*-tree storing mean value pairs for all Q-grams in database */
(1) for each Q-gram q of trajectory Q {
(2) qmean = mean(q)
(3) conduct a standard R*-tree search on Tree using qmean

(4) increase the Q-gram counter for the trajectory that
have a match mean value pair to qmean

}
(5) sort the Q-gram counters of trajectories in descending order.
(6) pick the first k trajectories pointed by Q-gram counters and

initialize result with the k true (sorted) EDR distances
(7) let vi, . . . , vn be the data values of Q-gram counters

starts from i = k + 1 and lQ be the length of query trajectory
(8) for each vi {
(9) bestSoFar = result[k].dist /* the k-NN distance so far */
(10) if ((vi) ≥ (max(lQ, lS)− (bestSoFar + 1) ∗ size(Q− gram))

/* need to check */
(11) for each trajectory S pointed by vi {
(12) realDist = EDR(Q, S) /* compute true distance */
(13) if (realDist < bestSoFar) { /* update result */
(14) insert S and realDist into result,

sorted in ascending order of EDR distance
(15) bestSoFar = result[k].dist

} /* end-if, line 13 */
} /* end-for, line 11 */

(16) else break /* else, line 10, skip the rest */
} /* end-for, line 8 */

(17) return result
}

Figure 3: Algorithm for applying Q-grams to answer k-NN query with
indexes

(Figure 3) lists steps of the first algorithm. The algorithm first con-
ducts a standard search for each mean value pair qmean of the Q-
grams in Q and updates the corresponding Q-gram counter for each
trajectory in the database. The Q-gram counters are then sorted in
descending order and the first k trajectories pointed by the first k
elements of the Q-gram counters are used to initialize the result ar-
ray. Finally values in the rest of the Q-gram counters are visited in
descending order. If the value satisfies the inequality stated in The-
orem 1, the true distance EDR(Q, S) is computed and updates to
the result list are made if necessary. Otherwise, the remaining data
values can be skipped entirely.

Theorem 3. Using procedure Qgramk-NN-index to answer a
k-NN query does not introduce false dismissals.

Proof. We prove by contradiction. Assume that Qgramk-NN-
index introduces false dismissals; then the following two state-
ments are valid: (1) vi is the Q-gram counter value of trajectory
S (length n) and vi < max(m, n) + 1 − (bestSoFar + 1) ∗
size(Qgram), and (2) EDR(Q, S) < bestSoFar. It is suffi-
cient to show one of them to be wrong. According to Theorem 1,
we get vi ≥ max(m, n)+1−(EDR(Q, S)+1)∗size(Qgram).
Based on statement (2), we know that vi ≥ max(m, n) + 1 −
(bestSoFar + 1) ∗ size(Qgram), which contradicts (1). 2

Furthermore, in line 7 of the Procedure Qgramk-NN-index, the
Q-gram counters are visited in descending order,which also guar-
antees that skipping the rest of the elements in line 16 will not
introduce false dismissals. This is because, if vi ≥ vi+1, and
vi < max(m, n) + 1 − (bestSoFar + 1) ∗ size(Qgram), then
vi+1 < max(m, n) + 1− (bestSoFar + 1) ∗ size(Qgram).

Procedure Qgramk-NN-index utilizes an index on mean values
of Q-grams to find common Q-grams between the query trajectory
and each data trajectory in the database. The computation cost of
this pruning step (not including sorting) is O(l ∗ log(N ∗ lmax)),
where N is the size of the database, l is the length of the query tra-
jectory, and lmax is the maximum length of trajectories in the data-
base. However, when the database size N increases, the index on
Q-grams grows and the search operation on the index becomes ex-
pensive, which may increase the total execution time of each query
as a consequence.

The second algorithm applies merge join on sorted Q-grams of
trajectories to find the common Q-grams between them without any
indexes. The full algorithm is given in [7]. The computation cost
of this pruning step is only O(l + lmax).

The above two algorithms apply mean value Q-gram filters di-
rectly on trajectories to reduce the number of EDR calculations.
Another possibility is to take the projection of the trajectory on each
dimension, which produces a single dimensional data sequence,
and apply Q-gram filters to them. Of course, care needs to be taken
to ensure that no false dismissals will occur.

Theorem 4. Let R and S be trajectories of length m and n. If
EDR(R, S) ≤ k, the number of common Q-grams between two
single dimensional data sequences Rx, Sx (or Ry , Sy) obtained by
projecting R and S over dimension x (or y) is at least max(m, n)−
q + 1− kq.

Proof. We only need to prove that the claim holds for one of
the dimensions and we prove for x dimension. From Definition
3, if two Q-grams r = [(r1,x, r1,y), . . . , (rq,x, rq,y)] and s =
[(s1,x, s1,y), . . . , (sq,x, sq,y)] of trajectories R and S match, each
element of ri matches its corresponding element in si. As a con-
sequence, each ri,x matches si,x. Therefore, px ≥ p, where px

and p are the number of common Q-grams between x dimensional
data sequence and trajectories, respectively. From Theorem 1, p ≥
max(m, n)− q +1− kq, thus px ≥ max(m, n)− q +1− kq. 2

Theorem 4 can be used to remove false candidates (as we did
using Theorem 1) without introducing false dismissals. Mean value
Q-gram filters can be applied on projected single dimensional data
sequences and the false candidates can be removed.

Based on Theorems 2 and 4, we only need to store the mean
value of each Q-gram of one-dimensional data sequence. This has
the advantage that we can use a simple B+-tree to index mean values
of Q-grams or apply merge join algorithm on single dimensional
data sequences of trajectories. Compared to indexing Q-grams
of trajectories using R-tree or merge join on two dimensional se-
quences, we save both space and disk access time. However, since
only information from one-dimension is used, the pruning power is
reduced.

4.2 Pruning by Near Triangle Inequality
As we mentioned before, EDR does not follow the triangle in-

equality. However, the following property holds.
Theorem 5 (Near Triangle Inequality). Given three trajecto-

ries Q, S, and R, we have EDR(Q, S) + EDR(S, R) + |S| ≥
EDR(Q, R), where |S| is the length of S.

Proof. The first part of left hand side of the inequality, EDR(Q,
S) + EDR(S, R), can be viewed as the number of edit operations
needed to convert trajectory Q to S and then to convert S to R.
EDR(Q, S) + EDR(S, R) may be less than EDR(Q, R), since
an element si of S may match elements qi and ri of Q and R, re-
spectively, but qi and ri may not match. In this case, EDR(Q, R)
has one more edit operation than that of EDR(Q, S)+EDR(S, R).
The extreme case is that all the elements of S match the elements
of Q and R, however those matched elements of Q and R do not
match each other, thus EDR(Q, R) is larger than EDR(Q, S) +
EDR(S, R) by at most |S|, which is the second part of the left
hand side of the inequality. 2

By rewriting the near triangle inequality (Theorem 5), we get
EDR(Q, S) ≥ EDR(Q, R)−EDR(S, R)−|S|. If EDR(Q, R)
and EDR(S, R) are known, EDR(Q, R)−EDR(S, R)−|S| can
be treated as a lower bound distance of EDR(Q, S). Therefore,
near triangle inequality can be used to prune out false candidates.
Procedure NearTrianglePruning (Figure 4) gives the algorithm for
the application of near triangle inequality to answer a k-NN query.



Procedure NearTrianglePruning(S, procArray, pmatrix, result, Q, k) {
/* S ≡ the current trajectory; procArray ≡ the array of
trajectory with computed true distance to Q; pmatrix ≡
precomputed pairwise distance matrix; result ≡ the k-NN
trajectory */
(1) maxPruneDist = 0
(2) for each trajectory R in procArray {
(3) if ( (procArray[R].dist− pmatrix[R, S]− |S|) > maxPruneDist)
(4) maxPruneDist = procArray[R].dist− pmatrix[R, S]− |S|

} /* end-for, line 2 */
(5) bestSoFar = result[k].dist /* the k-NN distance so far */
(6) if (maxPruneDist ≤ bestSoFar) { /* cannot be pruned */
(7) realDist = EDR(Q, S) /* compute true distance */
(8) insert S and realDist into procArray
(9) if (realDist < bestSoFar) /* update result */
(10) insert S and realDist into result,

sorted in ascending order of EDR distance
} /* end-if, line 6 */

}
Figure 4: Algorithm for near triangle inequality pruning

The matrix pmatrix holds the precomputed pairwise EDR dis-
tances of the trajectory database. The array procArray stores the
true EDR distances computed so far. That is, if {R1, . . . , Ru} is
the set of trajectories for which EDR(Q, Ri) has been computed,
the distance EDR(Q, Ri) is recorded in procArray. Thus, for
trajectory S currently being evaluated, the near triangle inequality
ensures that EDR(Q, S) ≥ EDR(Q, Ri)−EDR(Ri, S)− |S|,
for all 1 ≤ i ≤ u. Thus, it is necessary that EDR(Q, S) ≥
(max1≤i≤u{EDR(Q, Ri)−EDR(Ri, S)− |S|}) (lines 2 to 4).
If distance maxPruneDist is larger than the current k-NN dis-
tance stored in result, then S can be skipped. Otherwise, the true
distance EDR(Q, S) is computed, and procArray is updated to
include S. Finally, the result array is updated to reflect the current
k-NN neighbours and distances in sorted order. The computation
cost of pruning step in NearTrianglePruning is constant, which is
the size of procArray.

Application of the NearTrianglePruning procedure encounters
two issues: (i) the size of the pairwise distance matrix pmatrix;
and (ii) the size of procArray, i.e., the maximum number of tra-
jectories whose true EDR distances are kept for near triangle in-
equality pruning. We use the dynamic strategies proposed in [6]
to resolve these issues and make the procedure practical for large
databases and for situations where buffer space is limited.

Let maxTriangle denote the maximum number of trajecto-
ries whose true EDR distances are kept for near triangle inequal-
ity pruning. Hereafter we call these trajectories the reference tra-
jectories. The value of maxTriangle should be determined at
query time by the query engine based on the buffer size. The
larger maxTriangle is, the more pruning power can be achieved.
Dynamic strategies pick these reference trajectories as NearTrian-
glePruning runs, therefore, the entire pmatrix is not needed. As
the reference trajectories are picked and kept, the appropriate col-
umn of the distance matrix is read into the buffer space. The buffer
space requirement is maxTriangle columns, each of size N (N is
the trajectory database size). Thus, the total buffer space required
is N ∗ maxTriangle. Given a database that contains 1,000,000
trajectories and maxTriangle = 400, the buffer space require-
ment is only around 400M, which is acceptable based on the current
hardware configuration of PC. The selection of reference trajecto-
ries is query dependent. In our implementation, we simply pick the
first maxTriangle trajectories that fill up procArray.

We should note that the near triangle inequality is a “weak” ver-
sion of triangle inequality, as it filters only when trajectories have
different lengths (both query and data trajectories). If all the trajec-
tories have the same length, applying near triangle inequality will
not remove any false candidates.

We also investigate a general approach, called Constant Shift
Embedding (CSE) [30], to convert a distance function that does
not follow triangle inequality to another one that follows. The idea
is as follows.

Given a distance function dist that is defined on data space D
and does not follow triangle inequality, there exist three data ele-
ments x, y, z ∈ D, such that dist(x, y) + dist(y, z) < dist(x, z).
dist can be converted to another distance function, dist′, by adding
a positive value c to each distance value calculated by dist. For
example, dist′(x, y) = dist(x, y) + c. If c is large enough, we
may have dist′(x, y) + dist′(y, z) ≥ dist′(x, z) (which equals
dist(x, y) + dist(y, z) + c ≥ dist(x, z)), thus, triangle inequity
can be hold on dist′.

However, we do not apply CSE approach to improve trajectory
retrieval efficiency due to the following reasons:

1. All the pairwise distances in the data set have to be investi-
gated to find c. In [30], the c is set to the minimum eigenvalue
of pairwise distance matrix. We tested this minimum eigen-
value with some trajectory data sets, such as ASL, Kungfu,
and Slip (the details of these data sets are explained in the ex-
periment section), and we found that very few distance com-
putations can be saved. An analysis of the converted pair-
wise distance matrix showed that this minimum eigenvalue
is quite large and makes the pruning by triangle inequality
meaningless, since the lower bound of dist(x, y), (dist(x,
z)−dist(y, z)−c) is too small to prune anything. Reducing
the minimum eigenvalue may increase pruning ability, but it
may cause some distances not to follow triangle inequality
and introduce false dismissals.

2. Usually, for similarity search, query data are not inside the
database. The constant value c derived by only investigating
the data in the database may not be large enough to make the
distances between query data to any data in the database fol-
low triangle inequality. Using the CSE approach to compute
the distances between query data and all the data in the data-
base does not make senses, since it is precisely these distance
computations that we want to save.

4.3 Pruning by Histograms
Embedding methods have been used to improve the efficiency

of k-NN queries on strings under edit distance. The basic idea is
to embed strings into a vector space and define a distance func-
tion in the embedded vector space. To avoid false dismissals, the
distance in the embedded space is required to be the lower bound
of the edit distance on strings. A number of embedding methods
have been proposed for strings [2, 3, 9, 18]; however, only two
of these [18, 2] avoid introducing false dismissals. Both of these
take a similar approach in that they transform strings into a mul-
tidimensional integer space by mapping strings to their frequency
vectors (FV). A frequency vector of a string over an an alphabet
records the frequency of occurrence of each character of the al-
phabet in that string. It is proven that the frequency distance (FD)
between the FVs of two strings is the lower bound of the actual
edit distance. FD of two points u and v in s-dimensional space,
FD(u, v), is defined as the minimum number of steps (insertion,
deletion, replacement operations) that is required to go from u to v
(or equivalently from v to u).

In fact, frequency vectors are one-dimensional histograms over
strings, where each bin is a character in the alphabet. Therefore, we
propose an embedding technique which transforms trajectories into
trajectory histograms and uses histograms to remove false candi-
dates. We first develop two dimensional histograms of trajectories
in the following way. Given the maximum (maxx) and minimum



Procedure CompHisDist(HR, HS ) {
/* HR and HS ≡ histograms of trajectories

result ≡ histogram distance */
(1) posDist = 0, negDist = 0
(2) for each histogram bin of HR {
(3) HR,i = HR,i −HS,i

} /* end-for, line 2 */
(4) for each histogram bin of HR {
(5) for each approximately match bin HR,j of HR,i {
(6) if the value of HR,j or HR,i have opposite signs {
(7) reduce the values of HR,j or HR,i

/* elements in the approximately match bins
should treated as from the same bin */

} /*end-if line 6 */
}/*end-for line */

} /* end-for, line 4 */
(8) for each histogram bin of HR{
(9) if HS,i > 0 posDist+ = HR,i

(10) else negDist+ = 0−HR,i

} /* end-for, line 8 */
(11) return result = max(posDist, negDist)

}
Figure 5: Algorithm for Computing Histogram Distances

(minx) x dimensional values of trajectories, we divide the range
[minx, maxx] into τx disjoint equal size subranges and the size
of each subrange is ε. We do the same on the y dimension to get
τy disjoint equal size subranges. Any distinct combination of these
two subranges is called a histogram bin. Given a trajectory S, we
can compute its histogram HS by counting the number of elements
hi (1 ≤ i ≤ τx ∗ τy) that are located in each histogram bin i:
H = [h1, . . . , hτx∗τy ].

Based on this embedding, we define a histogram distance DH
on histograms of trajectories.

Definition 4. Let HR and HS be histograms of two trajectories
R and S, respectively. The histogram distance, HD(HR, HS), is
defined as the minimum number of steps required to go from HR

to HS (or equivalently from HS to HR) by moving to a neighbor
point at each step. HR and HS are neighbors if R can be obtained
from S (or vice versa) using a single edit operation of EDR.

Since EDR is defined based on a matching threshold ε, neighbor
points of histograms are different from those of FVs. For exam-
ple, two FVs v1 =< 1, 0 > and v2 =< 0, 1 > are neighbors
according to the definition of string edit distance, and frequency
distance between them is 1. Given two one-dimensional trajecto-
ries R = [(t1, 0.9)] and S = [(t1, 1.2)] and ε = 1, the histograms
of R and S are exactly the same vectors as v1 and v2. However,
they are not neighbors according to Definition 4. The transforma-
tion from R to S does not need any edit operations because 0.9 and
1.2 are treated as matched elements under EDR. Consequently, the
corresponding histogram distance is also 0. Therefore, to overcome
the problem that elements located near the boundary of two differ-
ent histogram bins may match each other under EDR, we treat the
elements from two different histogram bins as if they were from the
same bin if these two histogram bins approximately match.

Definition 5. Given two histograms HR and HS , histogram bin
hR,i of HR approximately matches histogram bin hS,j of HS , if
hR,i and hS,j are the same bin or they are adjacent bins.

For example, given two histograms of HR = [hR,1, hR,2, hR,3]
and HS = [hS,1, hS,2, hS,3] of two one-dimensional trajectory
data, hR,1 approximately matches hS,1 as well as hS,2, and hR,2

approximately matches hS,1, hS,2, and hS,3. Figure 5 shows the
algorithm for computing HD between two histograms HR and HS .
In procedure CompHisDist, the first for loop is used to compute
the difference between two histograms, the second loop (line 4-7)
is used to find the elements in the histogram bins that approximately
match each other, and the third loop is used to count the minimum
number of steps that is required to transfer HR to HS .

Theorem 6. Let R and S be two trajectories, ε be a matching
threshold and HR and HS be the histograms of R and S, respec-
tively. We have HD(HR, HS) ≤ EDR(R, S).

Proof. Any single edit operation on R to convert it to S corre-
sponds to a change in its histogram HR: deletion of one element
from R corresponds to subtracting one from the value of some his-
togram bin; insertion of one element to R corresponds to adding
one to the value of some histogram bin; replacement of an element
in R corresponds to adding one in some bin and subtracting one
in the other bin. Furthermore, each movement step that is used
to transform HR to HS moves HR to its neighbor point, and the
change of HR made by each movement step is same as that caused
by a single edit operation. Thus, the number of steps used in the
transformation of the histograms is the lower bound of the number
of edit operations in EDR. 2

With Theorem 6, to answer k-NN queries, we can compute HDs
to prune out false candidates from the trajectory database. Most
importantly, the computation cost of HD is linear. The nested for
loops in CompHisDis may suggest that the computation time of
HD is non-linear. However, as the number of bins that approx-
imately match each other in the histogram space is limited to a
small constant, the computation time of CompHisDist is still lin-
ear. The algorithm that uses HD as lower bound distance to prune
false candidates can be achieved by modifying procedure NearTri-
anglePruning (Figure 4) as follows:

• Delete lines (2) to (4) and line (8), as it is no longer necessary
to keep the array procArray.

• Change line (1) to: maxPruneDist = HD(HQ, HS).

This modified algorithm searches trajectory histograms one after
another and it does not utilize previously computed histogram dis-
tances. We call it Histogram SEquential scan (HSE). We propose
another algorithm, Histogram SoRted scan (HSR), to answer k-NN
queries. HSR first computes all the histogram distances between
query and data trajectories. Then it sorts the histogram distances
in ascending order. Finally, the trajectories are accessed according
to the histogram distance order and EDR is computed if necessary.
It is obvious that the pruning power of HSR is better than that of
HSE since the trajectories are accessed in an ascending order of
lower bound distances (histogram distances) of EDR. However, to
achieve this improvement, HSR requires an additional sorting step.
Their relative efficiency is compared in the experiment section.

When we construct histograms, we use ε as the histogram bin
size. If the matching threshold ε is small, we may get trajectory
histograms with a lot of bins. The storage and computation cost
will increase as a consequence. To address this issue, we propose
two solutions to reduce the number of bins:

1. Create histograms with a larger histogram bin size, which is
δ (δ ≥ 2) times the matching threshold ε.

2. Create individual histograms for each one-dimensional data
sequence of trajectories using ε as the histogram bin size.

Assume that the number of bins for trajectory histograms with
bin size ε is τx ∗ τy , where τx, τy are the number of histogram bins
in each dimension. The two methods above reduce the number of
bins by a factor of δ ∗ δ and τx∗τy

τx+τy
, respectively. Most importantly,

they do not introduce false dismissals based on the following.
Theorem 7. Given two trajectories R, S, and a matching thresh-

old ε, we have EDRδ∗ε(R, S) ≤ EDRε(R, S) where δ ≥ 2,
where EDRδ∗ε stands for EDR computed with δ ∗ ε as a matching
threshold.

Proof. It is clear that if an element of S matches an element of R
within ε, they must match each other within δ∗ε. Thus, the number



Procedure EDRCombineK-NN(Q, procArray, pmatrix, result, Q, k) {
(1) pick the first k trajectories and

initialize result with the k true (sorted) EDR distances
(2) bestSoFar = result[k].dist and i = k + 1
(3) for each trajectory Si in the database {
(4) maxPruneDist = HD(HQ, HSi

) /* trajectory histogram distance*/
(5) if (maxPruneDist ≤ bestSoFar) {

/* cannot be pruned by trajectory histogram*/
(6) vi =merge-join(mean-value-pairs(Q), mean-value-pairs(Si))

/* applying merge join to compute common mean value pairs */
(7) if ((vi) ≥ (max(lQ, lSi

)− (bestSoFar + 1) ∗ size(Q− gram))) {
/* cannot be pruned by mean value Q-grams*/

invoke procedure NearTrianglePruning() in Figure 4
} /* end-if, line 7 */

} /* end-if, line 5 */
} /* end-for, line 3 */

}
Figure 6: Combination Algorithm for Applying Histogram Pruning
followed by Mean Value Q-gram and Triangle Inequality Pruning

of matching elements will not be reduced if the matching threshold
is increased from ε to δ ∗ ε. As a consequence, the number of edit
operations needed to convert R to S within δ ∗ ε is not higher than
that of converting within ε. 2.

Theorem 8. Given two trajectories R and S, and a matching
threshold ε, we have EDRx,y

ε (R, S) ≤ EDRε(R, S) where
EDRx,y

ε (R, S) is EDR on projected one-dimensional data sequence
(x or y) of trajectories.

Proof. Similar to the proof of Theorem 7. If an element of S
matches an element of R within ε, the individual values of each
dimension between two elements must match each other within
threshold ε. Thus, the number of matching elements is not re-
duced for each single dimensional data sequence compared to that
of whole trajectories. 2.

Corollary 1. Let R and S be two trajectories, H(R,δ∗ε) and
H(S,δ∗ε) be the histograms created with bin size δ ∗ ε, and Hx

(R,ε)

and Hx
(S,ε) be the histograms on x dimensional data sequence. We

have HD(H(R,δ∗ε), H(S,δ∗ε)) ≤ EDRε(R, S) and HD(Hx
(R,ε),

Hx
(S,ε)) ≤ EDRε(R, S).
Using Corollary 1, we can use either histograms with larger bin

size or histograms on one-dimensional data sequence of trajecto-
ries to prune false candidates. In the following experiments, we
also compare efficiency of these two methods with those of using
trajectory histograms with ε as bin size.

4.4 Combination of three pruning methods
Because the three pruning techniques introduced earlier are or-

thogonal, it is possible to combine three methods – use one pruning
method to save the computation of the true distance EDR(Q, S)
after another. An example of combination skeleton is shown in Fig-
ure 6. In the example procedure EDRCombineK-NN, histogram
pruning is applied first, then, mean value Q-gram filters are applied.
Finally, the procedure NearTrianglePruning is invoked to remove
more false candidates based on computed real EDR distances. In
our experiments, we also tried other combinations, such as apply-
ing mean value Q-gram filtering before trajectory histograms and
near triangle inequality pruning or applying near triangle inequal-
ity pruning before the other two. The results are discussed in the
experimental section.

5. EXPERIMENTS
We present experimental results regarding the efficiency of each

pruning technique as well as the combination of methods. Our ex-
periments measure both speedup ratio and pruning power. Speedup
ratio is defined as the ratio between the average total time (includ-
ing both CPU and I/O measured in seconds) required for a sequen-
tial scan and the average total time needed with a pruning technique

in answer a k-NN query. Given a k-NN query Q, the pruning power
is defined to be the fraction of the trajectories S in the data set for
which the true distance EDR(Q, S) is not computed (without in-
troducing false dismissals). Moreover, we vary k from 1 to 20 and
the results of k = 20 are reported. Since the matching threshold is
application dependent [36], we run several probing k-NN queries
on each data set with different matching thresholds and choose the
one that ranks the results close to human observations. All ex-
periments were run on a Sun-Blade-1000 workstation with 1GB
memory under Solaris 2.8.

5.1 Efficiency of Pruning by Q-gram Mean
Values

In this experiment, we use ASL data set from UCI KDD archive3,
Kungfu and Slip data sets from [5]. The ASL data set contains 710
trajectories with lengths varying from 60 to 140. The Kungfu data
set contains 495 trajectories that record positions of body joints of
a person playing kung fu and the length of each trajectory is 640.
The Slip data set also has 495 trajectories which record positions
of body joints of a person slipping down and trying to stand up and
the length of each trajectory is 400. This experiment is designed to
compare the pruning efficiency of (1) Q-grams with different sizes,
(2) indexed Q-grams versus merge join, and (3) two dimensional
Q-grams versus one-dimensional Q-grams.

Figure 7 shows the pruning power comparison of 4 different im-
plementations of pruning by mean values of Q-grams with vari-
ous sizes (from 1 to 4): pruning with a R-tree on two dimensional
Q-grams (PR), pruning with B+-tree on one-dimensional Q-grams
(PB), and pruning with merge join on sorted two dimensional Q-
grams (PS2) and one-dimensional Q-grams (PS1).

The results of the three data sets show that, in terms of pruning
power, PR is better than PB and PS2 is better than PS1, which con-
firms our previous claim that two dimensional Q-grams perform
better than one-dimensional Q-grams. The results also show that
with the increasing in size of Q-gram, the pruning power drops, es-
pecially for Slip data where the pruning power drops to 0 when the
Q-gram size is greater than 1. Thus, Q-grams of size 1 are the most
effective ones in removing false candidates. This is because that
the larger the size of Q-gram is, the more the number of matching
mean value Q-grams, which leads to less pruning power. The re-
sults also show that PR is always better than PS2 which indicates
pruning with indexed Q-grams is better than pruning with merge
join. However, we can not conclude that PR on Q-grams of size
1 is the best pruning method, since the higher pruning power may
be more expensive in terms of space and computation cost. Thus,
we also compare the speedup ratio of four methods. The results are
shown in Figure 8.

The results in Figure 8 seem to contradict the pruning power re-
sults in Figure 7, since the speedup ratios of PR and PB are less than
those of PS2 and PS1. This is due to the additional index search
time and the time for counting the number of matching Q-grams.
Even though PR and PB can remove more false candidates, this
does not compensate the cost of index traversal. This also explains
why PR or PB perform worse than a sequential scan (speedup ra-
tio is less than 1) in some cases shown in Figure 8. The speedup
ratio results also show that PR and PB perform worse on data sets
with shorter length, such as ASL data (Figure 8(a)), than they do on
trajectories with longer length, such as Kungfu data (Figure 8(c)).
The reason is that the time required to compute EDR of short tra-
jectories is less than that of longer trajectories; as a consequence,
the total time saved from computing EDR of short trajectories is
3This data set combines all the trajectories of ten word classes into
one data set.



(a) ASL data (b) Slip data (c) Kungfu data
Figure 7: Pruning power comparisons of mean value Q-Grams on three data sets

(a) ASL data (b) Slip data (c) Kungfu data
Figure 8: Speedup ratio comparisons of mean value Q-Grams on three data sets

less than that of longer trajectories. We find that PS2 needs less
time than PS1 with Q-grams of size 1, which reflects the fact that
the total time spent on finding common Q-grams of two trajectories
can be compensated by the time saved from removing more false
candidates. However, as shown in Figure 8, when PS2 prunes lit-
tle, such as Q-grams of size greater than 1, it performs worse than
PS1 because the saved time can not cover the cost of finding com-
mon Q-grams on trajectories. From two test results, we conclude
that PS2 on Q-gram of size 1 is the best method to remove false
candidates with mean value Q-grams.

5.2 Efficiency of Pruning by Near Triangle In-
equality

If trajectories in a database have the same size, the near triangle
inequality can not remove false candidates. Kungfu and Slip data
sets contain trajectories of the same length and are not used in this
experiment. Instead, we generated two random walk data sets with
different lengths (from 30 to 256), the lengths of one random walk
data set follow uninform distribution (RandU) and the other one
has normal distribution (RandN). There are 1,000 trajectories in
each random walk data set. The pruning power and speedup ratio
results for these and ASL data sets are shown in Table 3.

ASL RandN RandU
Pruning Power 0.09 0.07 0.26
Speedup Ratio 1.10 1.07 1.31

Table 3: Test results of near triangle inequality
The results show that both the pruning power and the speedup

ratio of near triangle inequality is pretty low compared to the results
of mean value Q-grams. This is because the factor |S| that we
introduced in near triangle inequality is too big, which reduces its
pruning power. Finding a smaller suitable value is left as future
work. We also find that near triangle inequality works better on
the data set whose lengths follow a uniform distribution (trajectory

lengths of ASL data follow a near normal distribution), confirming
our claim that it is more effective for trajectories of variable lengths.

5.3 Efficiency of Pruning by Histograms
In this experiment, we test the efficiency of different types of his-

tograms. We test two scan methods, histogram sorted scan (HSR)
and histogram sequential scan (HSE), with trajectory histograms
of four different bin sizes (ε, 2ε, 3ε, 4ε) and one-dimensional data
sequence histograms of bin size ε. The same three data sets used
in Section 5.1 are tested here. The test results of pruning power
and speedup ratio are shown in Figures 9 and 10, respectively. In
both figures, 1HE stands for one-dimensional data sequence his-
tograms with bin sizes ε. 2HE, 2H2E, 2H3E, and 2H4E mean
trajectory histograms with bin size ε, 2ε, 3ε, and 4ε, respectively.

The pruning power results show that trajectory histograms with
bin size ε has the highest pruning power on three data sets. A
closer examination of Figure 9 shows that pruning power of one-
dimensional data sequence histograms is better than that of trajec-
tory histograms with larger bin sizes. Thus, in terms of efficiency
of two methods used to reduce the number of histogram bins, cre-
ating one-dimensional sequence histograms with the same bin size
ε is better than enlarging the bin size ε of trajectory histograms.

Even though HSR requires an additional sorting step, the results
show that HSR beats HSE both in pruning power and speedup ratio
tests, which indicates that it is worth sorting to increase the search
efficiency. Since the computation cost of histogram distance is lin-
ear, nearly all the speedup ratio results match the pruning power
test results, that is, the method that has higher pruning power needs
less time to answer k-NN queries. However, the speedup ratio
of one-dimensional data sequence histograms is very close to or
even more than that of trajectory histograms with the same bin size
(Figure 10(a)). This is because the pruning powers of two types
of histograms are very similar and the time saved from comput-
ing distances using one-dimensional data sequence histograms is



(a) ASL data (b) Slip data (c) Kungfu data
Figure 9: Pruning power comparisons of histograms on three data sets

(a) ASL data (b) Slip data (c) Kungfu data
Figure 10: Speedup ratio comparisons of histograms on three data sets

more than the time that is spent on computing the extra number of
EDR. Comparing the pruning power and speedup ratio results of
mean value Q-grams and histograms (Figures 7 vs. 9 and Figures 8
vs. 10), we also find that histograms generally perform better than
mean value Q-grams on removing false candidates.

5.4 Efficiency of Combined Methods
We test the combination of methods proposed in Section 4.4 on

NHL data [5], a mixed data set [34] and a randomwalk trajectory
data set [6, 19]. The NHL data consists of 5000 two dimensional
trajectories of National Hockey League players and their trajectory
lengths vary from 30 to 256. The mixed data set contains 32768
trajectories whose lengths vary from 60 to 2000. The randomwalk
data set contains 100,000 two dimensional trajectories and their
lengths vary from 30 to 1024. Based on the results of above exper-
iments, for trajectory histograms, we select HRE rather than HSE,
even though it requires an additional sorting step, since HRE out-
performs HSE both in pruning power and speedup ratio. The PS2
method on mean value Q-grams is selected as the Q-grams filter.
We do not select PR because it can only archive higher pruning
power at a very expensive search cost. In the experiment, we test
all six possible ordering combinations of methods. As we expect,
the six combinations achieve the same pruning power on three data
sets, which confirms the claim that the three pruning methods are
independent of each other. With respect to speedup ratio, because
of the differences in pruning power and computation cost of each
pruning method, the application order affects the speedup ratio as
shown in Figure 11 (The results of all the three data sets are listed
in [7]). 2HPN means applying trajectory histograms with bin size
ε pruning first, then Q-grams filtering, and at last, near triangle
inequality pruning; the other symbols represent the rest of appli-
cation orders. As shown in Figure 11, the example combination
method listed in Figure 6 (applying histogram pruning first, then

mean value Q-gram filtering, finally, near triangle inequality prun-
ing) achieves the best performance, which is also the case in the
other two data sets. The reason is that applying a pruning method
with more pruning power and less expensive computation cost first
will cause fewer false candidates left for subsequent pruning, re-
sulting in a decrease in the time cost of subsequent pruning.

Figure 11: Speedup ratio comparison of different applying orders of
three pruning methods on NHL data

Finally, we test the performance of different types of histogram
pruning in the combination method. Two types of histograms are
used in the combined method in Figure 6: trajectory histograms
and one-dimensional data sequence histograms with the same bin
size ε. Based on previous experiment results, we compare the com-
bined method of applying HSR on histograms first, then, PS2 on
mean value Q-grams, and finally, pruning by near triangle inequal-
ity (with 400 reference trajectories). The results are shown in Fig-
ures 12 and 13. In both figures, NTR stands for pruning by near
triangle inequality, 1HPN stands for the combination with one-
dimensional data sequence histograms with bin size ε, merge join
on two dimensional Q-grams, and near triangle inequality.



(a) NHL data (b) Mixed data (c) Randomwalk data
Figure 12: Pruning power comparisons of combined methods on three large data sets

(a) NHL data (b) Mixed data (c) Randomwalk data
Figure 13: Speedup ratio comparisons of combined methods on three large data sets

The results show that combined methods using one-dimensional
data sequence histograms achieve the best performance. Both the
pruning power and the speedup ratio are increased. The speedup
ratio is nearly twice of using histogram pruning only, five times
that of mean value Q-grams only, and twenty times that of near tri-
angle inequality. The combined method with trajectory histograms
also beats the method using trajectory histograms only. However,
because of the large number of bins of trajectory histograms, its
performance improvement is diminished by the time spent on com-
puting the histogram distances, especially for large databases.

6. CONCLUSIONS AND RELATED WORK
We argue that an accurate and robust similarity measure is needed

for searching similar trajectories in the database, since existing
ones do not handle real data with noise well. In this paper, we
propose a new distance function, Edit distance on Real sequence
(EDR) to measure the similarity between trajectories. EDR is more
robust and more accurate than existing distance functions. We show
that EDR has similar efficacy as DTW, ERP and LCSS over trajec-
tories without noise, but more robust performance over trajectories
with noise.

In order to improve the retrieval efficiency of EDR, we propose
three pruning techniques and prove that they do not introduce false
dismissals. We also propose different implementation methods of
three pruning techniques and test their efficiency by extensive ex-
perimental studies. Most importantly, we show the three pruning
methods can be combined to deliver superior retrieval efficiency.

Limited work has been done on multidimensional time-series
data. Bozkaya et al. [4] present a modified version of LCSS to com-
pute the distance between two sequences. In order to answer the
similarity-based queries efficiently, an index scheme is designed
based on the lengths of the sequences and relative distances be-
tween sequences. However, they focus on retrieving sequences
of feature vectors extracted from image sequences and indexing is
based on exact equality match on real values, which is not suitable
for similarity search. Our work focuses on trajectory retrieval and
EDR is defined based on range value match. Lee et al. [25] use the

distance between minimum bounding rectangle to compute the dis-
tance between two multidimensional sequences. Even though they
can achieve very high recall, the distance function can not avoid
false dismissals. Our work guarantees that there are no false dis-
missals. Cai and Ng [5] propose an effective lower bound technique
for indexing trajectories. However, Euclidean distances are used as
the similarity measure [25, 39, 5], and, as argued earlier, this mea-
sure is not robust to noise or time shifting which often appear in
trajectory data. Little and Gu [27] use path and speed curves to
represent the motion trajectories and measure the distance between
two trajectories using DTW. Vlachos et al. [35] also use DTW on
rotation invariant representation of trajectories, sequences of angle
and arc-length pairs. However, DTW requires continuity along the
warping path, which makes it sensitive to noise and it is unable to
find trajectories that have similar shapes but with dissimilar gaps
in between. Chen and Ng [6] introduce a metric distance func-
tion, ERP, to measure the similarity between time series data. Like
DTW, ERP can handle the time series data with local time shifts.
However, because it takes the differences of real values as distance,
ERP is also sensitive to noise. As shown in the experimental results
over benchmark data, EDR distance function we proposed in this
paper is robust to noise.

Vlachos et al. [36] use LCSS to compare two trajectories with
the consideration of spatial space shifting. Compared with DTW
and ERP, LCSS is robust to noise. However, LCSS allows gaps
with various sizes to exist between similar shapes in the sequences,
which cause it inaccurate. In our work, the spatial shifting of tra-
jectories are handled by normalization. Compared to LCSS, EDR
is not only robust to noise, it also assigns penalties according to the
sizes of the gaps in between similar shapes, which makes it more
accurate. A cluster-based indexing tree is proposed in [36] to im-
prove the retrieval efficiency using LCSS. The performance of this
indexing method depends on the clustering results. However, due
to LCSS not following triangle inequity, it is hard to find good clus-
ters and representing points in the data set [15]. Our three pruning
techniques do not have this limitation.
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