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ABSTRACT 
Much of the world’s data is in the form of time series, and 
many other types of data, such as video, image, and 
handwriting, can easily be transformed into time series. This 
fact has fueled enormous interest in time series retrieval in 
the database and data mining community. We argue, 
however, that much of this work’s narrow focus on efficiency 
and scalability has come at the cost of usability and 
effectiveness. In this work, we introduce a general framework 
that learns a distance measure with arbitrary constraints on 
the warping path of the Dynamic Time Warping calculation.  
We demonstrate utility of our approach on both classification 
and query retrieval tasks for time series and other types of 
multimedia data including images, videos, and handwriting 
archives. 

1. INTRODUCTION 
Much of the world’s data is in the form of time series, and 
many other types of data, such as video, image, and 
handwriting, can also be trivially transformed into time series. 
This fact has fuelled enormous interest in time series retrieval 
in the database and data mining community. We argue, 
however, that much of this work’s narrow focus on efficiency 
and scalability has come at the cost of usability and 
effectiveness. For example, the lion’s share of previous work 
has utilized the Euclidean distance metric, presumably 
because it is very amenable to indexing [2][5][7]. However, 
there is increasing evidence that the Euclidean metric’s 
sensitivity to small differences in the time axis makes it 
unsuitable for most real world problems [1][4][6][11][22] 
[26]. This fact appears to have gone almost unnoticed 
because, unlike their counterparts in information retrieval, 
many researchers in the database and data mining community 
evaluate algorithms without considering precision/recall or 
accuracy [13].   

In this work, we introduce a new distance measure and 
empirically show its utility with thorough experiments 
measuring the precision/recall and accuracy. While we will 
demonstrate that our measure is the best in literature, it has a 
potential weakness; It requires some training or human 
intervention to achieve its finer results. However, to achieve 
this end, we will show that the classic information retrieval 
technique of relevance feedback can be used.  

The rest of the paper is organized as follows.   The remainder 
of this section will familiarize readers with the time series and 
its tight connection with other types of multimedia data.  
Section 2 gives a review of Dynamic Time Warping (DTW), 
and related work.  In Section 3, we introduce our approach 
which is based on learning domain specific (and possibly 

class specific) constraints on the popular DTW distance 
measure using a representation we call the R-K Band.  Section 
4 demonstrates how this framework is used for relevance 
feedback then reports the empirical evaluation on three real-
world datasets.  Lastly, Section 5 gives conclusions and 
direction for future work.   

1.1 The Ubiquity of Time Series Data 
In this section, we wish to expand the readers’ appreciation 
for the ubiquity of time series data. Rather than simply list the 
traditional application domains, i.e. stock market data, 
electrocardiograms, weather data, etc., we will consider some 
less obvious applications that can benefit from efficient and 
effective retrieval.  

Video Retrieval: Video retrieval is one of the most important 
issues in multimedia database management systems. 
Generally, research on content-based video retrieval 
represents the content of the video as a set of frames, leaving 
out the temporal features of frames in the shot.  However, for 
some domains, including motion capture editing, gait 
analysis, and video surveillance, it may be fruitful to extract 
time series from the video, and index just the time series (with 
pointers back to the original video). Figure 1 shows an 
example of a video sequence that is transformed into a time 
series. There are several reasons why using the time series 
representation may be better than working with the original 
data. One obvious point is the massive reduction in 
dimensionality, which enhances the ease of storage, 
transmission, analysis, and indexing. In addition, it is much 
easier to make the time series representation invariant to 
distortions in the data, such as time scaling and time warping.  
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Figure 1 Stills from a video sequence; the right hand is tracked, and 
converted into a time series 

Image Retrieval: Image Retrieval has become increasingly 
crucial in our information-based community. Large and 
distributed collections of scientific, artistic, technical, and 
commercial images have become more prevalent, thus 
requiring more sophisticated and precise methods for users to 
perform similarity or semantic based queries. For some 
specialized domains, it can be useful to convert the images 
into “pseudo time series”. For example, consider Figure 2 
below.   Here, we have converted an image of a leaf into a 
time series by measuring the local angle of a trace of its 
perimeter. The utility of such a transform is similar to that for 



video retrieval. 
 

Figure 2. Many image indexing/classification tasks can be solved 
more effectively and efficiently after converting the image into a 
"time series" 

Handwriting Retrieval: While the recognition of online 
handwriting [10] may be largely regarded as a solved 
problem, the problem of transcribing and indexing existing 
historical archives remains a challenge. The usefulness of 
such ability is obvious. For even such a major historical figure 
as Isaac Newton, there exists a body of unpublished, 
handwritten work exceeding one million words. For other 
historical figures, there are even larger collections of 
handwritten text. Such collections are potential goldmines for 
researchers/biographers.  
Figure 3.A shows an example of text written by George 
Washington, which is all but illegible to modern readers with 
little experience with cursive writing.  
 

Figure 3.A) An example of handwritten text by George Washington. 
B) A zoom-in on the word "Alexandria", after being processed to 
remove slant. C) Many techniques exist to convert 2-D handwriting 
into a time series; in this case, the projection profile is used (Fig. 
created by R. Manmatha) 

Many off-line handwritten document image-processing 
algorithms have recently been proposed in the interest of 
word recognition and indexing [12].  While handwriting is not 
a time series, there exist several techniques to convert 
handwriting to (one or more) time series; many of these 
transformations were pioneered by Manmatha and students 
[17].  

1.2 Existing Work on Time Series Retrieval  
The explosion of interest in time series indexing in the last 
decade has been extraordinary, with well over a thousand 
papers devoted to the subject [13]. However, the vast majority 
of the work has focused on the Euclidean distance; recent 
work has demonstrated that this similarity model generally 
does not work well for many real-world problems since even 
very similar time series often demonstrate some variability in 
the time axis. The problem of distortion in the time axis can 
be addressed by Dynamic Time Warping (DTW), a distance 
measure that has long been known to the speech processing 
community [15][16][20][23]. This method allows for non-
linear alignments between the two time series to 
accommodate sequences that are similar but out of phase, as 
shown in Figure 4.C. 

Our approach takes this recent work on DTW as its starting 
point. In particular, DTW is currently viewed as a “one-size-
fits-all” algorithm, which is applied to diverse domains in a 

black box fashion. We note, however, that we may be able to 
fine-tune the algorithm, for a particular domain and even a 
particular query, by selectively limiting the amount of 
warping we allow along various parts of the query. For 
example, in Figure 4, we can see that the first 1/5 and the last 
1/6 of the time series do not require warping. This happens to 
be true for all instances in this particular domain.  As we will 
demonstrate, by selectively limiting the amount of warping 
allowed, we can actually improve the accuracy of DTW, and 
as an important side effect, we can drastically improve the 
indexing performance. Before formally introducing our 
technique, we must review the basic DTW algorithm in some 
detail. 

2. BACKGROUND 
Suppose we have two time series, a query sequence Q = 
q1,q2,…,qi,…,qn of length n and a candidate sequence C = 
c1,c2,…,cj,…,cm of length m.  The DTW algorithm finds the 
optimal time alignment between these two given time series.  
To align two sequences using DTW, an n-by-m matrix is 
constructed where the (ith, jth) element of the matrix 
corresponds to the cumulative squared distance, d(qi,cj) = (qi - 
cj)2 , the alignment between points qi and cj.  To find the best 
match between these two sequences, the path through the 
matrix that minimizes the total cumulative distance between 
them is discovered.  This is illustrated in Figure 4. A warping 
path, W, is a contiguous set of matrix elements that 
characterizes a mapping between Q and C. The kth element of 
W is defined as wk = (i,j)k. By definition, the optimal path Wo 
is the path that minimizes the warping cost: 
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This path can be found using dynamic programming to 
evaluate the following recurrence which defines the 
cumulative distance γ(i,j) as the distance d(i,j) found in the 
current cell and the minimum of the cumulative distances of 
the adjacent elements:   

 γ(i,j)  = d(qi,cj) + min{ γ(i-1,j-1) , γ(i-1,j ) , γ(i,j-1) } (2) 

Although the dynamic programming algorithm reduces the 
(potentially exponential) number of paths which we must 
consider to a “mere” m * n, this may still be prohibitively 
large for many problems.  The following well known 
constraints further reduce the number of warping paths that 
must be considered:- Boundary Conditions, Continuity 
Condition, Monotonic condition, and Adjustment Window 
Condition.  
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Figure 4. A) Two similar sequences Q and C, but out of phase.  B) 
To align the sequences, we construct a warping matrix, and search 
for the optimal warping path, shown with solid squares.  Note that 
the “corners” of the matrix (shown in dark gray) are excluded from 
the search path as part of an Adjustment Window condition. C)  The 
resulting alignment 



By applying the above conditions, we can restrict the moves 
that can be made from any point in the path and so restrict the 
number of paths that need to be considered.  Figure 4.B 
illustrates a particular example of the last condition with the 
Sakoe-Chiba Band. Since a good path is unlikely to wander 
very far from the diagonal, the distance that the path is 
allowed to wander is within the window of size r, above and 
to the right of the diagonal. As we will see in Section 3, it is 
this type of constraint that we will exploit to improve DTW. 

2.1 Related Work 
There has been relatively little work on relevance feedback 
for both time series and multimedia retrieval.  However, 
relevance feedback in text-mining community has been the 
subject of much research since the 1970’s [3][18][19] and still 
is an active area of research.  It is only in recent years that the 
researchers started to expand relevance feedback into time 
series [14], image [25], and multimedia retrieval domains. 
Before addressing the relevance feedback system with DTW, 
we first must introduce our representation, the R-K Band, 
which will be used for the DTW distance measure in the 
classification task and relevance feedback. 

3. RATANAMAHATANA-KEOGH BAND 
The ‘Adjustment Window Condition’ discussed in Section 2 
has been almost universally applied to DTW, primarily to 
prevent unreasonable warping and to speed up its 
computation.  However, surprisingly little research has looked 
at discovering the best shape and size of the window.  Most 
practitioners simply use one of the well-known bands, e.g. 
Sakoe-Chiba Band [20] or Itakura Parallelogram [9], 
proposed in the context of speech recognition several decades 
ago.  In addition, there is a widespread but unwarranted belief 
that having wider bands improves accuracy, and having 
narrower bands decreases accuracy. The use of smaller-size 
band is seen as a compromise made to make the algorithm 
tractable.   This belief has been proved to be false by our 
extensive experiments on wide variety of datasets; 
surprisingly, the accuracies often peak at smaller-size 
window, and degrade or become stable for wider window 
sizes.  The motivation for our work has sparked from this 
discovery; we find that in general, the effect of the window 
size on accuracy is very substantial, and is strongly domain 
dependent.  And if the width of the band can greatly affect 
accuracy, then the shape of the band could also have similarly 
large effects. Our ideal solution would be to find an optimal 
band (both shape and size) for a given problem that will 
potentially increase the accuracy.  In the next section, we first 
introduce our representation, the R-K Band, which allows user 
to specify arbitrary shaped constraints. 

3.1 A General Model of Global Constraints 
We can represent any warping window as a vector R: 

Ri = d  0 ≤ d ≤ m,  1 ≤ i  ≤ m  (3) 
where Ri  is the height above the diagonal in the y direction, as 
well as the width to the right of the diagonal in the x direction.  
Note that |R| = m, and the above definition forces R to be 
symmetric, i.e. the constraint above the diagonal is the mirror 
image of the one below the diagonal.  
To represent a Sakoe-Chiba Band of overall width of 11 
(width 5 strictly above and to the right of the diagonal) with 

the definition: 
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or an Itakura Parallelogram with the definition: 
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The classic Euclidean distance can also be defined in terms of 
Ri = 0; 1 ≤ i ≤ m; only the diagonal path is allowed.  More 
generally, we can define any arbitrary constraint with a 
suitable vector R.  Figure 5 illustrates some examples of R-K 
Bands.  
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Figure 5. We can use R to create arbitrary global constraints.  A) 
Note that the width of the band may increase or decrease.  We can 
also use R to specify all existing global constraints, e.g. Sakoe-Chiba 
Band B) and Itakura Parallelogram C) 

An interesting and useful property of our representation is that 
it also includes the ubiquitous Euclidean distance and classic 
DTW as special cases. We also can exploit the R-K Bands for 
both classification and indexing (query retrieval) problems, 
depending on the task at hand.  In particular,  
• for classification, we can use a different R-K Band for each 

class; we denote the band learned for cth class as the R-Kc 
Band. 

• for indexing, we can use one R-K Band that maximizes the 
trade off between efficiency and precision/recall. 

Having introduced an R-K Band, we can easily represent any 
arbitrary warping windows.  However, we are left with the 
question of how to discover the optimal R-K Band for the task 
at hand.  In some cases, it maybe is possible to manually 
construct the bands, based on domain knowledge. For 
example, a cardiologist may know from experience that the 
Romano-Ward syndrome may manifest itself with high 
variability in the length of one part of the heartbeat (the QT-
wave), but little variability in the other section of a heartbeat 
(the UP-wave)[24]. We could explicitly attempt to encode this 
insight into an R-K Band for retrieving instances of the 
disease, allowing Ri to be large where variability is expected.  

Unfortunately, our preliminary attempts to manually construct 
R-K Bands met with limited success, even for simple toy 
problems. Furthermore, since the number of possible R-K 
Bands is exponential, exhaustive search over all possibilities 
is clearly not an option.  In the following sections, however, 
we will show how we can learn the high-quality bands 
automatically from the data.   

3.2 Learning Multiple R-Kc Bands for Classification 
While it is generally not possible to handcraft accurate R-K 
Bands, it is possible to pose the problem as a search problem, 
and utilize classic search techniques from the artificial 



intelligence community. Using generic heuristic search 
techniques, we can perform both forward and backward 
searches. The forward search starts with the initial Sakoe-
Chiba band (uniform) of width 0 (Euclidean), and the 
backward search starts from the uniform band of the 
maximum width m, above and to the right of the diagonal. 
 

 

 
 

Figure 6. An illustration of our 
forward search algorithm 
 

Due to space limitations, we will only give a simple intuition 
behind this approach as illustrated in Figure 6. For a forward 
search, we start off with Euclidean Bands, one for each class.  
Then it takes turns, one class at a time, trying to expand or 
increment the whole section of the band before re-evaluating 
its overall accuracy for that particular band.  If an 
improvement is made, we keep on expanding that section; 
otherwise, we undo the expansion, split that section in half, 
and then recursively expand each portion individually before 
another re-evaluation.  Backward search is very similar; 
except that we start off with a very wider band then try to 
tighten the band instead of expanding.  Here, we do not 
include a bi-directional search, a straightforward combination 
of the forward and backward search; this is omitted in this 
work for brevity. 
The searches are complete when one of the following is true:-
No improvement in accuracy can be made; the width of the 
band reaches m for the forward search and 0 (Euclidean) for 
the backward search or; each section of the band (after 
recursively cut the portion in half) reaches some threshold. 
We set a threshold to be some function of m. 
 

Figure 7. The R-Kc Bands learned from 6 different species 

We can illustrate the utility of our R-Kc Bands for 
classification by the following simple experiment.  We tested 
various similarity measures (Euclidean, DTW with 10% 
warping, DTW with best uniform warping, and DTW with R-
Kc Bands) on the Leaf dataset (dataset details in 4.3.2) and 
measure their classification error rates.  Euclidean is very fast 
but inaccurate, giving 34.16% error rate.  DTW with 10% 
uniform warping gives a big improvement with only 4.52%.  
However, the best uniform warping size for this dataset is at 
8.6% window size, giving 4.3%. With R-Kc Bands, we 

produce 6 different bands, one for each class shown in Figure 
7.  Classification using these bands gives us almost a perfect 
result, a mere 0.9% error rate.  These promising results 
suggest that R-Kc Bands are very effective in improving 
accuracy in classification. 

3.3 Learning One R-K Band for Indexing 
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In addition to creating R-Kc Bands for classification, we can 
learn one single R-K Band for indexing or query retrieval.  
The one-band learning algorithm is very similar to the 
multiple-band learning in the previous section, except that we 
only maintain one single band that represents the whole 
problem and that we measure the precision/recall instead of 
the accuracy. 

We re-illustrate this approach by another simple experiment, 
measuring precision and recall for indexing.  We take 10 
examples of Cylinders from the Cylinder-Bell-Funnel dataset 
[6][11] and place them in a database containing another 
10,000 random-walk sequences that are similar in shape but 
do not belong in the class.   Another 30 examples of Cylinders 
with 470 random-walk sequences are used in the R-K Band 
training process.  To evaluate our method, another 10 
different Cylinder examples are used to make 10 iterations of 
k-nearest neighbor queries to the dataset, using various 
distance measures (Euclidean, DTW with 10% warping, and 
DTW with R-K Band).   

We measure the precision from 1-object (10%) to 10-object 
(100%) recall levels.  The results are shown in Figure 8. It is 
apparent that utilizing an R-K Band in this problem improves 
both precision and recall by a wide margin, compared to 
Euclidean and DTW with 10% warping.  However, an R-K 
Band needs to be learned from a training data, which may not 
be practical or available in many circumstances.  To resolve 
this problem, we can build a training data through relevance 
feedback system, with a little help from the user in identifying 
the positive and negative examples to the system. We will 
explain how this works in Section 4, but first we will attempt 
to develop the readers’ intuition as to why the R-K Bands can 
produce superior performance  
 

Figure 8. The Precision-
Recall curves from 10% to 
100% recall for various 
distance measures: 
Euclidean, DTW with 10% 
window size, and our 
proposed method – R-K 
Band that gives perfect 
precision for all recall levels 
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3.4 Intuition behind R-K Bands Learning 
After seeing some examples of our R-K Band’s utility, we 
would like to further convince readers by giving an intuition 
why R-K Band improve accuracy.  Consider the following 
problem of face classification based on the head profile. We 
took a number of photos (20-35) of each individual with 
different expression on the face, e.g. talking, smiling, 
frowning, etc.  We then use the similar method (see section 
1.1) to extract each of the head profile into time series as 
shown in Figure 9.  
We will show by experiment how R-K Bands may play an 



important role in this problem.  First, we consider a 2-class 
problem: a dataset that contains only the collection of profiles 
from 2 different individuals that look rather different (1 male, 
1 female).  The R-Kc Bands learned from our framework 
discover the bands both of size zero, the Euclidean distance 
measure, with 2% error rate.  The result suggests that these 
two individuals are very distinguishable, i.e. the set of time 
series within each class is much different from another, just 
by looking at their Euclidean distances.  Hence, no warping is 
necessary; in fact, too much warping could potentially hurt 
the accuracy because one person could be forced to match 
with another. 

  

Figure 10. An example of 
averaging 4 sequences with DTW.  
Pairs of sequences are 
hierarchically combined by DTW 
with their weights until the final 
averaged sequence is obtained 

Averaged SequenceAveraged Sequence

 

However, averaging a collection of time series that are not 
perfectly time-aligned is non-trivial and DTW is needed [8].  
Each pair of time series are averaged according to their 
weights and warping alignment.  The results from each pairs 
are hierarchically combined 

 

Figure 10 illustrates this averaging process using equal weights 
for all sequences; in practice, the weights may all be different.  
In the next section, we will show how the relevance feedback 
system can benefit from our proposed R-K Band framework. 

Figure 9. Starting from the neck area, the head profile is converted 
into a "pseudo time series" 

4.2 R-K Band in Relevance Feedback 
We will empirically demonstrate that our proposed R-K Band 
combined with the query refinement can improve precision 
and recall of retrieval.  Table 1 shows our relevance feedback 
algorithm.   

We then extend our experiment by adding 2 more male 
individuals into our problem (112 instances total). The 
corresponding R-K Bands are learned which give very low 
error rate of 1.8% (vs. 6.25% for Euclidean).   

Table 1: R-K Band learning with Relevance Feedback 
Algorithm RelFeedback(initial_query) 
1. Repeat until all rankings are positive. 
2. Show the 10 best matches to the current query to 

the user. 
3. Let the user rank how relevant each result is. 
4. According to the ranking, accumulatively build 

the training set; positive result  class 1, 
negative result  class 2. 

5. Learn a single envelope (R-K Band) that 
represents the given training data. 

6. Generate a new query, by averaging (with DTW) 
the positive results with the current query 
according to their weights (rankings). 

7. end; 

4. RELEVANCE FEEDBACK 
In text-mining community, relevance feedback is well known 
to be effective method to improve the query performance 
[3][18][19][21].  However, there has been relatively little 
research in non-text domains, such as images or multimedia 
data.  In section 1.1, we have introduced time series as an 
alternative in representing certain types of multimedia data, 
including special cases of images and video.  We will explain 
in this section how we utilize and incorporate the technique 
into the relevance feedback system using our proposed 
framework, R-K Band. 

In the first iteration, given a query, the system uses the initial 
R-K Band (the special case of Euclidean distance) to retrieve 
the 10 nearest neighbors, and then shows them to the user 
(line 1).  When the user finishes their ranking, the positive 
and negative responses are noted and collected as a training 
data (lines 3-4).  The algorithm uses this training data to learn 
an R-K Band that best represents the positive objects in the 
training set while being able to correctly differentiate the 
positive from the negative instances (line 5).  The training 
data will be accumulated during each round, developing a 
larger training set, thus producing progressively finer results.  
The process is complete when only positive feedbacks are 
given to the system or the user abandons the task. 

4.1 Query Refinement 
Relevance feedback methods attempt to improve performance 
for a particular informational need by refining the query, 
based on the user’s reaction to the initial retrieved documents 
or objects. In text retrieval in particular, the user’s ranking of 
the document allows reweighing the query terms.  
Working with time series retrieval is rather similar to the text 
retrieval; a user can draw or provide an example of a query 
and retrieve the set of best matches’ retrieval of 
images/videos/time series.  Once the user ranks each of the 
results, a query refinement is performed such that a better-
quality query is produced for the next retrieval round. For real 
time series retrieval (i.e. electrocardiograms or stock market 
data), the querying interface can show the time series directly. 
For transformed data of images or video, the underlying time 
series representation is hidden from the user, and the user sees 
only thumbnails of the actual images or video snippets. In our 
system, the user is asked to rank each result in a 4-point scale 
as shown based on relevance to their informational needs.   
These rankings are converted into appropriate weights which 
are used in the query refinement process (averaging the 
weighted positive results with the current query).   

In our experiments, we consider 3 multimedia datasets to be 
tested using the relevance feedback technique 

4.3 Datasets 
To evaluate our framework, we measure the precision and 
recall for each round of the relevance feedback retrieval.  
Since we only return the 10 best matches to the user and we 
would like to measure the precision at all recall levels, we 
purposely leave only 10 relevant objects of interest in all the 
databases. 

4.3.1 Gun Problem 
This dataset comes from the video surveillance domain (see 
Figure 1). The dataset has two classes, 100 examples each: 



• Gun-Draw: The actors have their hands by their sides.  
They draw a replicate gun from a hip-mounted holster, 
point it at a target for approximately one second, and then 
return the gun to the holster, and their hands to their 
sides. 

• Point: The actors have their hands by their sides.  They 
point with their index fingers to a target for 
approximately one second, and then return their hands to 
their sides. 

For both classes, the centroid of the right hand is tracked both 
in X- and Y-axes; however, in this experiment, we only 
consider the X-axis for simplicity.  The dataset contains 200 
instances, 100 for each class.  Each instance has the same 
length of 150 data points.  For the relevance feedback 
purpose, we only leave 10 Gun-Draw examples in the Point 
database, and randomly pick another example for an initial 
query. 

4.3.2 Leaf Dataset 
This dataset contains a collection of 6 different species of leaf 
images, including 2 genera of plant, i.e. oak and maple.  
Maple has 4 different species, and Oak has 2, with 442 
instances in total (original images are available at 
http://web.engr.oregonstate.edu/~tgd/leaves/dataset/herbarium).  
Each instance is linearly interpolated to have the same length 
of 150 data points.  In our experiment, we choose Circinatum 
maple as the specie of interest, i.e. only 10 images of such 
specie are left in the database, and we randomly selected 
another separate image as our initial query. 

4.3.3 Handwritten Word Spotting Dataset 
This is a subset of the WordSpotting Project dataset.  In the 
full dataset, there are 2,381 words with four features that 
represent each word image’s profiles or the background/ink 
transitions.  For simplicity, we pick the “background/ink 
transitions” (feature 4) and use the word “would” which 
occurs in the dataset 11 times for our query.   Hence, one is 
removed to be used as our initial query. 

4.4 Experimental Results 
We measure the performance of our relevance feedback 
system with the precision-recall plot from each round of 
iteration.  Figure 11 below shows the precision-recall curves of 
the three datasets for the first five iterations of relevance 
feedback.  Our experiments illustrates that each iteration gives 
significant improvement in both precision and recall. 
 

Figure 11. The precision-recall plots for the Gun, Leaf and Word 
spotting datasets with 5 iterations of relevance feedback 

5. DISCUSSION AND CONCLUSIONS 
In this work, we have introduced a framework for both 
classification and time series retrieval.  The R-K Band allows 
for any arbitrary shape of the warping window in DTW 
calculation.  With our extensive evaluation, we have shown 
that our framework incorporated into relevance feedback can 
reduce the error rate in classification, and improve the 

precision at all recall levels in video and image retrieval. 
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