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Abstract 
 
It is known that Naïve Bayesian classifier (NB) works very well on some 
domains, and poorly on some.  The performance of NB suffers in domains that 
involve correlated features.  C4.5 decision trees, on the other hand, typically 
perform better than the Naïve Bayesian algorithm on such domains. This paper 
describes a Selective Bayesian classifier (SBC) that simply uses only those 
features that C4.5 would use in its decision tree when learning a small example of 
a training set, a combination of the two different natures o f classifiers.  
Experiments conducted on eleven datasets indicate that SBC performs reliably 
better than NB on all domains, and SBC outperforms C4.5 on many datasets of 
which C4.5 outperform NB.  SBC also can eliminate, on most cases, more than 
half of the original attributes, which can greatly reduce the size of the training 
and test data, as well as the running time.  Further, the SBC algorithm typically 
learns faster than both C4.5 and NB, needing fewer training examples to reach 
high accuracy of classification.  
 
1  Introduction  
 
Two of the most widely used and successful methods of classification are C4.5 
decision trees [9] and Naïve Bayesian learning (NB) [2].  While C4.5 constructs 
decision trees by using features to try and split the training set into positive and 
negative examples until it achieves high accuracy on the training set, NB 
represents each class with a probabilistic summary, and finds the most likely 
class for each example it is asked to classify. 



 Several researchers have emphasized on the issue of redundant attributes, as 
well as advantages of feature selection for the Naïve Bayesian Classifier, not only 
for in duction learning.  Pazzani [8] explores the methods of joining two (or 
more) related attributes into a new compound attribute  where the attribute 
dependencies are present.  Another method, Boosting on Naïve Bayesian 
classifier [3] has been experimented by applying series of classifiers to the 
problem and paying more attention to the examples misclassified by its 
predecessor.  However, it was shown that it fails on average in a set of natural 
domain [7].  Augmented Bayesian Classifiers [5] is another approach where 
Naïve Bayes is augmented by the addition of correlation arcs between attributes.  
Langley and Sage [6], on the other hand, use a wrapper approach for the subset 
selection to only select relevant features for NB. 
 It has been shown that Naïve Bayesian classifier is extremely effective in 
practice and difficult to systematically improve upon [1].   In this paper, we show 
that it is possible to reliably improve this classifier by using a feature selection 
method.  Naïve Bayes can suffer from oversensitivity to redundant and/or 
irrelevant attributes.  If two or more attributes are highly correlated, they receive 
too much weight in the final decision as to which class an example belongs to.  
This leads to a decline in accuracy of prediction in domains with correlated 
features.  C4.5 does not suffer from this problem because if two attributes are 
correlated, it will not be possible to use both of them to split the training set, 
since this would lead to exactly the same split, which makes no difference to the 
existing tree.  This is one of the main reasons C4.5 performs better than NB on 
domains with correlated attributes.  
 We conjecture that the performance of NB improves if it uses only those 
features that C4.5 used in constructing its decision tree.  This method of feature 
selection would also perform well and learn quickly, that is, it would need fewer 
training examples to reach high classification accuracy. 
 We present experimental evidence that this method of feature selection leads 
to improved performance of the Naïve Bayesian Classifier, especially in the 
domains where Naïve Bayes performs not as well as C4.5.  We analyze the 
behavior on ten domains from the UCI repository.  The experimental results 
justify our expec tation.  We also tested SBC on another sufficiently large 
synthetic dataset and our algorithm appeared to scale nicely.  Our Selective 
Bayesian Classifier always outperforms NB and performs as well as, or better 
than C4.5 on almost all the domains. 
 
2  Naïve Bayesian Classifier 
 
2.1  Description and Problems 
 
The Naïve Bayesian classifier is a straightforward and frequently used method 
for supervised learning.  It provides a flexible way for dealing with any number 
of attributes or classes, and is based on probability theory (Bayes’ rule).  It is the 
asymptotically fastest learning algorithm that examines all its training input.  It 
has been demonstrated to perform surprisingly well in a very wide variety of 



problems in spite of the simplistic nature of the model.  Furthermore, small 
amounts of bad data, or “noise,” do not perturb the results by much. 
 However, there are two central assumptions in Naïve Bayesian classification.  
First, the classification assumes that the elements of each class can be assigned 
on probability measurement, and that the measurement is sufficient to classify the 
element into exactly one class.  This assumption entails that the classes can be 
differentiated only by means of the attribute values.  The dependence on this type 
of diffe rentiation is related to the idea of linear separability; therefore, Naïve 
Bayesian classification may not easily learn or predict complicated Boolean 
relations. 
 The other assumption is that given a particular class membership, the 
probabilities of particular attributes having particular values are independent of 
each other.  However, this assumption is often violated in reality.   
 A plausible assumption of independence is computationally problematic.  
This is best described by redundant attributes.  If w e posit two independent 
features, and a third which is redundant (i.e. perfectly correlated) with the first, 
the first attribute will have twice as much influence on the expression as the 
second has, which is a strength not reflected in reality.  The increased strength of 
the first attribute increases the possibility of unwanted bias in the classification.  
Even with this independence assumption, Hand and Yu illustrated that Naïve 
Bayesian classification still works well in practice [4].  However, this pape r 
shows that if those redundant attributes are eliminated, the performance of Naïve 
Bayesian classifier can significantly increase. 
 
3  C4.5 Decision Trees 
 
Decision trees are one of the most popular methods used for inductive inference.  
They are robust for noisy data and capable of learning disjunctive expressions.  A 
decision tree is a k-ary tree where each of the internal nodes specifies a test on 
some attributes from the input feature set used to represent the data.  Each branch 
descending from a node corresponds to one of the possible values of the feature 
specified at that node.  And each test results in branches, which represent 
different outcomes of the test.   
 The algorithm starts with the entire set of tuples in the training set, selects the 
best attribute that yields maximum information for classification, and generates a 
test node for this attribute.  Then, top down induction of decision trees divides 
the current set of tuples according to their values of the current test attribute.  
Classifier generation stops, if all tuples in a subset belong to the same class, or if 
it is not worth to proceed with an additional separation into further subsets, i.e. if 
further attribute tests yield only information for classification below a pre -
specified threshold.   
 Decision tree algorithm uses an entropy -based measure known as 
“information gain” as a heuristic for selecting the attribute that will best split the 
training data into separate classes.  Its algorithm computes the information gain 
of each attribute, and in each round, the one with the highest information gain 
will be chosen as the test attribute for the given set of training data.  A well-
chosen split point should help in splitting the data to the best possible extent.  



After all, a main criterion in the greedy decision tree approach is to build shorter 
trees.  The best split point can be easily evaluated by considering each unique 
value for that feature in the given data as a possible split point and calculating the 
associated information gain.   
 A simple decision tree algorithm only selects one decision tree given an 
example set, though there may be many different trees consistent with the data.  
The information gain measure (implemented in ID3 decision trees) is biased in 
that it tends to prefer  attributes with many values rather than those with few 
values.  C4.5 suppresses this bias by using an alternative measure called 
Information Gain Ratio, which considers the probability of each attribute value.  
This removes the bias of information gain towards features with many values.  
 
3.1  Tree Pruning 
 
C4.5 builds a tree so that most of the training examples are classified correctly.  
Though this approach is correct when there is no noise, accuracy for unseen data 
might degrade in cases where there is a lot of noise associated with the training 
examples and/or the number of training examples is very small.  To alleviate this 
problem, C4.5 uses the post-pruning method.  This approach allows C4.5 to grow 
a complete decision tree first, and then post-prune the tree.  It tries to shorten the 
tree in order to overcome overfitting.  This generally involves removal of some 
of the nodes or subtrees from the original decision tree.  Its goal is to improve (by 
pruning) the accuracy on the unseen set of examples.  As a result, C4.5 achieves 
further elimination of features through pruning.  It uses rule -post pruning to 
remove some of the insignificant nodes (and hence, some not so relevant  
features) from the tree. 
 
4  Selective Bayesian Classifier 
 
Our purpose is to improve the performance of the Naïve Bayesian classifier by 
removing redundant and/or irrelevant attributes from the dataset, and only 
choosing those that are most informative in classification task, according to the 
decision tree constructed by C4.5. 
 
4.1  Description 
 
As described in section 3, the features that C4.5 selected in constructing its 
decision tree are likely to be the ones that are most descriptive in terms of the 
classifier, in spite of the fact that a tree structure inherently incorporates 
dependencies among attributes, while Naïve Bayes works on a conditional 
independence assumption.  C4.5 will naturally construct a tree that does not have 
an overly complicated branching structure if it does not have too many examples 
that need to be learned.  As the number of training examples increases, the 
attributes that are considered will usually be the ones that are not correlated.  
This is mainly because C4.5 will use only one of a set of correlated features for 
making good splits in training set.  However, sometimes many of the branches 



may reflect noise or outliers (overfitting) in the training data.  “Tree pruning” 
procedure in C4.5 attempts to identify and remove those least reliable branches, 
with the goal of imp roving classification accuracy on unseen data.  Even after 
pruning, if the result decision tree is still too deep or grown into too many levels, 
our algorithm only picks attributes contained in the first few levels of the tree as 
the most representative attributes.  This is supported by the fact that by the 
selection of attributes that split the data in the best possible way at every node, 
C4.5 will try to ensure that it encounters a leaf at the very earliest possible point, 
i.e. it prefers to construct shorter trees.  And by its algorithm, C4.5 will find trees 
that have attributes with higher information gain nearer to the root.  We 
conjecture that this simple method of feature selection would help Naïve 
Bayesian classifier perform well and learn quickly, that is, it would need fewer 
training examples to reach high classification accuracy. 
 
4.2  Algorithm 
 

 
 

 
Figure 1 shows the algorithm for the Selective Bayesian classifier. We first 
shuffle the training data and use 10% of that to run C4.5 on.  This is to make sure 
that all the subsamples are not biased toward any particular classes.  We find 
10% of the training to be a good size for feature selection process.  Once we run 
C4.5 and obtain the decision tree, we only pick attributes that only appear in the 
first 3 levels of the decision trees as the most relevant features.  We hypothesize 
that if a feature in the deeper levels on any one execution of C4.5 is relevant 
enough, it will finally rises up and appear in one of the top levels of the tree in 
some other executions of C4.5.  It is important to note that in the 10 different 
iterations, C4.5 may give slightly different decision trees, i.e. it uses different 
attributes to produce decision tree for different training sets, even when the 
number of training examples is the same across these training sets.  We union all 
the attributes from each run, and finally, run the Naïve Bayesian classifier on the 
training and test data using only those features selected in the previous step. 

Figure 1.  Selective Bayesian Classifier Algorithm:    
Feature Selection Using C4.5 

1. Shuffle the original data. 
2. Take 10% from the original data as training data. 
3. Run C4.5 on data from step 2. 
4. Select a set of attributes that appear only in the first 

3 levels of the simplified decision tree as relevant 
features. 

5. Repeat 10 times (step 1-4) 
6. Union the sets of attributes obtained from all 10 

rounds. 
7. Run Naïve Bayesian classifier on the training and 

test data using only the final features selected in step 
6. 



 
5  Experimental Evaluation 
 
5.1  The Datasets 
 
We used 10 datasets from the UCI repository and one synthetic dataset, shown in 
Table 1.  The Synthetic Data, created with Gaussian distribution, contains 
1,200,000 instances with 20 attributes and 2 classes.  We chose 10 datasets from 
the UCI databases, 5 of which Naïve Bayes outperforms C4.5 and the other 5 of 
which C4.5 outperforms Naïve Bayes. 

Table 1. Descriptions of domains used 

Dataset # Attributes  # Classes # Instances 
Ecoli 8 8 336 

GermanCredit 20 2 1,000 
KrVsKp 37 2 3,198 

Monk 6 2 554 
Mushroom 22 2 8,124 

Pima 8 2 768 
Promoter 57 2 106 
Soybean 35 19 307 

Wisconsin 9 2 699 
Vote 16 2 435 

SyntheticData 20 2 1,200,000 
 
5.2  Experimental Design 
 
1. Each dataset is shuffled randomly. 
2. Produce disjoint training and test 

sets as follows. 
10% training and 90% test data 
20% training and 80% test data 
… … … … 
90% training and 10% test data 
99% training and 1% test data 

3. For each set of training and test 
data, run 
• Naïve Bayesian Classifier 

(NBC) 
• C4.5, and 
• Selective Bayesian 

Classifier (SBC) 
4. Repeat 15 times 

 

The classifier accuracy is determined by Random Subsampling method. The 
overall accuracy estimate is the mean of the accuracies obtained from all 
iterations.  This will give us information about both the learning rates, as well as 
the asymptotic accuracy of the learning algorithms used. 
 
5.3  Experimental Results 
 
The results confirm the initial hypotheses.  It is clear that SBC does improve 
NBC’s performance in all domains, and it does learn faster than both C4.5 and 
NBC on all the dataset, i.e. with small number of training data (10%), the 
prediction accuracy for SBC is higher. 



 Figure 2 – 11 depict the learning c urves for the 10 UCI datasets. 
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Figure 2: Ecoli. 336 instances, 8 attrib,  
 8 classes, 4 SBC attrib. 
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Figure 3:  German.  1,000 instances, 20  
 attrib, 2 classes, 6 SBC attrib. 
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Figure 4:  KrV sKp. 3,198 instances, 37  
 attrib, 2 classes, 4 SBC attrib. 
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Figure 5:  Monk. 554 instances, 6  
 attrib, 2 classes,4  SBC attrib. 
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Figure 6: Mushroom. 8,124 instances, 22  
 attrib, 2 classes, 6 SBC attrib. 
 

65

67

69

71

73

75

77

79

81

83

10 20 30 40 50 60 70 80 90 99

Figure 7:  Pima.  768 instances, 8 attrib,  
 2 classes, 5 SBC attrib. 
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Figure 8:  Promoter. 106 instances, 57  
 attrib, 2 classes, 5 SBC attrib. 
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Figure 9:  Soybean.  307 instances, 35  
 attrib, 19 classes, 12 SBC attrib. 
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Figure 10:  Wisconsin. 699 instances, 9  
 attrib, 2 classes, 4 SBC attrib. 
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Figure 11: Vote. 435 instances, 16 attrib,  
 2 classes, 3 SBC attrib. 

 The X -axis shows the training data (%), and  the Y -axis shows the 
accuracy on test data.  SBC is represented by •••• with a solid line .  NBC is 
represented by �  with  a big dash line.  And C4.5 is represented by �  with  a 
small dash line. 
 
 Note that all the C4.5 accuracy considered in this experiment is based on the 
simplified decision tree (with pruning).  This accuracy is usually higher on the 
unseen data, comparing with the accuracy based on unpruned decision trees. 
 To see a clearer picture on the SBC performance, table 2 shows the results for 
NBC, C4.5, and SBC algorithms using 80% of the data for training and 20% for 
testing.  The figures shown in bold reflect the winning method on each dataset.  
The last two columns show the improvement of SBC over NBC and C4.5. 
 

Table 2. Accuracy of each method using 5-fold cross-validation (15 iterations) 

Dataset NBC C4.5 SBC SBC vs NBC SBC vs C4.5 
Ecoli 81.99 78.65 83.27 +1.6% +5.9% 

German 75.35 74.00 76.21 +1.1% +3.0% 
KrVsKp 87.81 99.12 94.69 +7.8% -4.5% 
Monk 96.16 98.46 97.47 +1.4% -1.0% 

Mushroom 90.37 99.80 98.85 +9.4% -1.0% 
Pima 75.03 75.35 79.94 +6.5% +6.1% 

Promoter 87.66 66.67 88.72 +1.2% +33.1% 
Soybean 84.02 83.20 88.27 +5.1% +6.1% 

Wisconsin 95.78 92.63 97.38 +1.7% +5.1% 
Vote 89.54 95.29 96.61 +7.9% +1.4% 

 
 From table 2, it is apparent that SBC outperforms the original NBC in 
EVERY domain, giving the accuracy improvement up to 9.4%.  SBC also 
outperforms C4.5 in almost all the domain, giving the accuracy improvement up 
to 33.1%.  Even though, SBC cannot beat C4.5 in some cases, it still gives quite 
big improvement over the Naïve Bayes (7.8%, 1.4%, and 9.4%).  
 Our experimental results demonstrate that C4.5 does pick good features for its 
decision tree (especially ones that are nearer to the root), which in turn 
asymptotically improves the accuracy of the Naïve Bayesian algorithm, when 



only those features are used in the learning process. Table 3 shows the number of 
features selected for Selective Bayesian classifier.  On almost all the datasets, 
surprisingly more than half of the original attributes were eliminated.  30% or 
less of all attrib utes selected were shown in bold, which means that we can 
actually pay no attention to more than 70% of the original data and still achieve 
high accuracy in classification.   
 

Table 3. Number of features selected 

Dataset # Attributes  # of Attributes 
selected 

Ecoli 8 4 
German Credit 20 6 

KrVsKp 37 4 
Monk 6 4 

Mushroom 22 6 
Pima 8 5 

Promoter 57 5 
Soybean 35 12 

Wisconsin 9 4 
Vote 16 3 

Synthetic Data 20 12 
 
 For speedup and scalability issues, we ran SBC on a large synthetic data just 
to see how fast it can learn.  The running time for SBC on our synthetic data give 
1.14 and 4.24 speedup over the original NBC and C4.5, respectively.  Note that 
we only used 2,000 instances out of the total of 1,200,000 instances for C4.5 
feature selection process, which made it a very quick operation.  Hence, in 
practice, if the dataset is large enough, we can even sample much less than 10% 
of data for the feature selection process.  The number of attributes selected by 
SBC was 12 out of the total of 20 attributes.  Table 4 illustrates the mean elapsed 
time (user and system time) for each classifier on this synthetic data, using 
1,000,000 instances for training and 200,000 instances for test data. 
 

Table 4. Mean Elapsed time for Synthetic Dataset (sec) 

NBC C4.5 SBC 
37.546 139.5 32.912 

 
 The running times of both SBC and NBC are much less than that of C4.5 
because Bayesian classifier only needs to go through the whole training data 
once.  They are also space efficient because they build up a frequency table in 
size of the product of the number of attributes, number of class values, and the 
number of values per attribute.  SBC, comparing to NBC, learns faster because 
fewer attributes are involved in learning.  However, it is obvious that most of the 
time spent in both  algorithms was on I/O, reading the training data.  That 
explains why SBC time did not reduce much from NBC time.  If there exists a 



very fast way of removing unwanted features from a very large dataset, SBC 
would only need 25.746 seconds and give 31.4% improvement over NBC. 
 
6  Conclusion 
 
A simple method to improve Naïve Bayesian learning that uses C4.5 decision 
trees to select features has been described.  The empirical evidence shows that 
this method is very fast and  surprisingly successful, given the very different 
natures of the two classification methods.  This Selective Bayesian classifier is 
asymptotically at least as accurate as the better of C4.5 and Naïve Bayes on 
almost all the domains on which the experiments were performed.  Further, it 
learns faster than both C4.5 and NB on each of these domains. 
 This work suggests that C4.5 decision trees systematically select good 
features for Naïve Bayesian classifier to use.  We believe the reasons are that 
C4.5 does not use redundant attributes in constructing decision trees, since they 
cannot generate different splits of training data.  When few training examples are 
available, C4.5 uses the most relevant features it can find.  The high accuracy of 
SBC achieves with few training examples is indicative of the fact that using these 
features for probabilistic induction leads to higher accuracy produced in each of 
the domains we have examined. 
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