
Fail-Stop Failure ABFT for Cholesky
Decomposition

Doug Hakkarinen, Student Member, IEEE , Panruo Wu, Student
Member, IEEE , and Zizhong Chen, Senior Member, IEEE

Abstract—Modeling and analysis of large scale scientific systems often use linear least squares regression, frequently employing
Cholesky factorization to solve the resulting set of linear equations. With large matrices, this often will be performed in high
performance clusters containing many processors. Assuming a constant failure rate per processor, the probability of a failure
occurring during the execution increases linearly with additional processors. Fault tolerant methods attempt to reduce the
expected execution time by allowing recovery from failure. This paper presents an analysis and implementation of a fault
tolerant Cholesky factorization algorithm that does not require checkpointing for recovery from fail-stop failures. Rather, this
algorithm uses redundant data added in an additional set of processes. This differs from previous works with algorithmic methods
as it addresses fail-stop failures rather than fail-continue cases. The implementation and experimentation using ScaLAPACK
demonstrates that this method has decreasing overhead in relation to overall runtime as the matrix size increases, and thus
shows promise to reduce the expected runtime for Cholesky factorizations on very large matrices.

Index Terms—Extreme scale systems, Linear Algebra, Checkpoint Free, Algorithm Based Fault Tolerance.

F

1 INTRODUCTION

In scientific computing, the manipulation of large
matrices is often used in the modeling and analysis
of large scale systems. One such method widely used
across many applications is linear regression. Linear
regression tries to find the combination of M coeffi-
cients for M regressors that best fit a model based on
data of R samples, with each sample consisting of a
set of independent variables (xi) and a resulting value
(yi, with the set of yi called y). Then a matrix X is
created, where each row contains the regressor values
from a sample. Regressors can be constants (for an
intercept), or functions of the independent variables.
Most often linear regression is used to find the best
estimate in the presence of a random unknown error.
Usually this estimation is done as an overdetermined
system, meaning there are more samples than coeffi-
cients. Thus, X is of dimension R×M , with R larger
than M . The problem takes the form of finding the
best set of coefficients for the regressors (commonly
β) such that Xβ has the minimal difference from y.
In ordinary least squares regression, this problem is
defined as finding β such that XTXβ=XTy. The first
step is to compute the matrix product of the of XTX.
The resulting M ×M matrix, A, is symmetric positive
semi-definite and often symmetric positive definite.
Factoring this matrix into a triangular form for opti-
mization is often desirable and produces an efficient

Doug Hakkarinen is with the Department of Electrical Engineering
and Computer Science, Colorado School of Mines, Golden CO. Email:
dhakkari@mines.edu
Panruo Wu and Zizhong Chen are with the Department of Com-
puter Science and Engineering,University of California, Riverside. Email:
pwu011,chen@cs.ucr.edu

way to find optimal coefficients through substitution.
As such, factoring a symmetric positive definite is
focused on through several techniques.

One efficient method for factoring a symmetric
positive semi-definite matrix is through Cholesky fac-
torization. In this factorization method, the result is
either the upper triangular matrix U, such that UTU
is A, or the lower triangular matrix X, such that
XXT is A. In this work we focus only on creating
the lower factorization L, although all methods that
are used for X can be done for U as well since it
is a symmetric algorithm. The Cholesky method is
favored for many reasons, the foremost being it is
numerically stable and does not require pivoting. The
sequential Cholesky algorithm has several forms, such
as the Outer Product, Right-Looking, and bordered.

In order to use Cholesky factorization for large data
sets, methods need to be used that take into account
the effects of performance based on cache usage. The
libraries LAPACK and BLAS aid in optimizing the
usage of cache through the blocking technique. The
impact of this technique on the Cholesky method is
that more than one iteration is effectively handled at
once. Specifically, the number of iterations handled
at once is the block size, MB. Blocking reduces se-
quential iterations (row by row) into fewer blocked
iterations. The advantage of the blocked approach
that many of the steps use the same data. Taking the
actions across the entire row will clear the cache of
this data, causing additional cache misses. Blocking
prevents taking the action across the entire row, thus
improving the performance.

If using a single node is not fast enough or the
matrix size exceeds the memory on a single node,

DRAFT: IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 2

multiple process methods have been explored, partic-
ularly in the widely known software ScaLAPACK [9].
ScaLAPACK combines both the usage of LAPACK
blocked techniques and support for multiple pro-
cesses. Since there are more processes and there is
an advantage to distributing the work across many
processes, ScaLAPACK uses block-cyclic matrix dis-
tribution of data. In block-cyclic matrix distribution,
the blocks that a particular processor contains come
from many parts of the global matrix. As such, addi-
tional consideration must be taken when developing
algorithms that act with ScaLAPACK and also interact
with the data on the processes directly.

As the number of processors employed grows large,
the probability of a failure occurring on at least one
processor increases. In particular, a single processor
failure is commonly modeled using the exponential
distribution during periods of constant failure rates.
Constant failure rates appear in the “Normal life” or
“random failure” period in the commonly referenced
Bathtub curve [20]. Constant failure rates apply for
processors that are beyond their burn-in phase and
not yet to their end of life phase. Under the assump-
tion of an exponential failure rate of each processor,
the failure rate of the overall system can be shown to
grow linearly with the number of processors. Thus,
for systems with increasing numbers of processors,
failures become a larger problem. As the high perfor-
mance community looks to exa-scale processing the
failure rates must be addressed.

In order to counteract this increasing failure rate as
systems grow, many techniques [14], [15] have been
developed in order to provide fault tolerance. The
most traditional technique is the checkpoint, or the
routine saving of state. Some research has suggested
that checkpointing approaches may face further diffi-
culties as the number of processes expands [13].

Another promising approach is to take advantage
of additional data held within the algorithm being
executed to allow the recovery of a failed process. Ap-
proaches are known as algorithm based fault tolerance
(ABFT) [19], [4], which use information at the end of
execution of an algorithm to detect and recover fail-
ures and incorrect calculations. ABFT has tradition-
ally been developed for fail-continue failures (failures
which do not halt execution), with the goal of detect-
ing and correcting errors at the end of computation.
ABFT algorithms have received wide investigation,
including development for specific hardware architec-
tures [3], efficient codes for use in ABFT [2], [27],
comparisons to other methods [26], [25], and analysis
of potential performance under more advanced failure
conditions [1]. The use of result checking in contrast
to ABFT post-computation has also been studied [24].
Building on earlier work [17], we investigate the use
of algorithmic methods to help recover fail-stop fail-
ures, or failures that halt execution. More importantly,
our work demonstrates that ABFT can be used to

recover failures during computation, rather than only
after computation completes. Similar ABFT methods
for fail-stop failures have been studied for matrix
multiplication [7], [8], [5], for LU Decomposition [10],
[11], [12], and Conjugate Gradient methods [22]. This
method is not an endpoint, as potential improvements
can be made through hot-replace strategies [28], [29],
[30], but those methods depend on the algorithm to
maintaining a checksum (such as is demonstrated in
this work).

The differences between using data from within an
algorithm versus checkpointing are numerous. The
most specific difference is that the algorithm, for the
most part, runs with little modification or stoppage
such as is required to perform a checkpoint. If the
amount of time to recover is approximately constant
relative to the overall execution time, then this greatly
improves the recovery time. The disadvantage of
algorithmic recovery is that it only works on the
algorithm in question, whereas checkpointing can
often work regardless of what computation is being
performed. Furthermore, depending on the algorithm
and the recovery method, it may require more intense
computation time to determine and restore the state
of a failed process, which may or may not exist in
checkpointing systems. In this work, we develop the
use of algorithmic recovery for single fail-stop failures
during a Cholesky factorization. While we only exam-
ine the case of a single failed process, adaptation for
recovery of multiple failures is certainly possible [6].

2 CHOLESKY FACTORIZATION WITH
CHECKSUM MATRICES

In this section, we explore the impact of checksum ma-
trix inputs (as defined by [19]) on different Cholesky
factorization algorithms. Checksum matricies of this
type introduce redundant data as additional columns
as linear combinations of the original matrix columns.
Cholesky factorization requires a positive definite ma-
trix input. As the checksum matrix is not linearly in-
dependent, it is no longer invertible, and not positive
definite. Therefore, care must be taken to ensure the
Cholesky factorization result to match the result of
factorization of the original matrix. We explore the ef-
fects of checksum matrices on the Bordered algorithm,

Af =




a1,1 a1,2 · · · a1,n
∑n

1 a1,j
a2,1 a2,2 · · · a2,n

∑n
1 a2,j

...
.

...
an,1 an,2 . . . an,n

∑n
1 an,j∑n

1 ai,1
∑n

1 ai,2 · · · ∑n
1 ai,n

∑n
1

∑n
1 ai,j




Fig. 1. Diagram of an unblocked checksum matrix. For
Cholesky, the original matrix (without the checksum)
must be symmetric (aij = aji) and positive definite.

DRAFT: IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 3

1: for i = 1 :M do
2: A(i, 1 : i − 1) ← A(i, 1 : i − 1)L(1 : i − 1, 1 :

i− 1)−1 {where L(1 : i− 1, 1 : i− 1) is the lower
triangular part of A(1 : i− 1, 1 : i− 1) including
main diagonal. }

3: A(i, i)←
√
A(i, i)

4: end for

Fig. 2. The unblocked bordered Cholesky algorithm
factorizes a M ×M symmetric matrix into A = LLT in-
place, where the lower triangular matrix L overwriting
the lower triangular part of A.

the Outer Product algorithm, and the Right-Looking
algorithm.

We establish which Cholesky algorithm variants
have the possibility of maintaining a checksum during
computation. An example unprocessed, unblocked
checksum matrix is shown in Figure 1. This checksum
matrix is the starting point for all the unblocked
algorithms being examined. For the algorithms that
the checksum is maintainable, we then establish how
to do so in a 2-D block cyclic version.

2.1 The Bordered Algorithm Does Not Maintain
Checksums During Computation

The sequential, unblocked inline Bordered algorithm
processes the matrix from upper left corner to the
lower right corner. We focus on the generation of
the L matrix (lower triangle), but symmetry holds for
the upper triangular matrix. In each iteration of the
Bordered algorithm, one additional row of entries is
processed on and below the diagonal.

Figure 2 shows the algorithm. If this algorithm is
performed on the checksum matrix in the Figure 1,
the checksum row and checksum column (the last row
and column) will not be touched until the last itera-
tion. Updating the payload matrix without touching
the checksums accordingly will therefore invalidate
the checksums during the whole factorization. It can
be shown that the checksum becomes valid only after
n iterations, at which point the desired factorization
is done. The checksums are not naturally maintained
during the factorization.

2.2 The Outer Product Algorithm Maintains
Checksums

The sequential, unblocked Cholesky Outer Product
method can be separated into iterations for which M
iterations as shown in Figure 3. This method is called
the Outer Product method [16].

The first modification of the Outer Product algo-
rithm is to initially form the checksum matrix using
a summing reduce operation to the checksum pro-
cess row and column (see Figure 1). If the original
matrix is n × n, the unblocked checksum matrix is

1: for i = 1 :M do
2: A(i :M, i)← A(i :M, i)/

√
A(i, i)

3: if i < M then
4: A(i + 1 : M, i + 1 : M) ← A(i + 1 : M, i + 1 :

M)−A(i+ 1 :M, i)A(i+ 1 :M, i)T

5: end if
6: end for

Fig. 3. The unblocked outer-product Cholesky al-
gorithm factorizes a M × M symmetric matrix into
A = LLT in-place, where the lower triangular matrix
L overwriting the lower triangular part of A.

(n + 1) × (n + 1). The second modification is that
we skip the last iteration since the checksum matrix
is not positive definite anymore. Now perform the
algorithm described in Figure 3 on the augmented
checksum matrix. We claim that every iteration i in
Figure 3 preserves the checksums in some way. The
algorithm stops after n iterations, and the column
checksums are maintained after every iteration of the
unblocked, inline Outer Product algorithm.

To see why the outer product algorithm maintains
the column checksums at the end of every iteration,
we need only to look at the operations in one iteration
in Figure 3. For brevity we denote the sub matrix A(i :
n, i : n) by Ai:n,i:n. Note that now M = n+ 1. We use
induction on i. Suppose before any iteration i, the first
i− 1 columns in the lower triangular L, have column
checksums available at the checksum row:

An+1,j =

n∑

k=j

Ak,j , j = 1, . . . , i− 1 (1)

and the trailing matrix has column checksum avail-
able:

An+1,j =

n∑

k=i

Ak,j , j = i, . . . , n (2)

These conditions hold when i = 1 by construction of
the checksum matrix. We show that upon completion
of iteration i, the conditions (1, 2) hold for i + 1. In
fact, after the line 2 in Fig 3, the condition (1) holds
for j = i since the vector and its checksum are scaled
by the same factor. After the trailing matrix update in
line 3

Ai+1:n+1,i+1:n+1 ← Ai+1:n+1,i+1:n+1−Ai+1:n+1,iA
T
i+1:n+1,i

we would like to prove that condition (2) holds for
i+1. In fact, the trailing matrix update is logically as
the following equation if both line 2 and 4 in Fig 3
are not done in-place in memory:

Bi:n+1,i:n+1 ← Ai:n+1,i:n+1−
1√
Ai,i

Ai:n+1,i
1√
Ai,i

ATi:n+1,i

Note that the checksum property is closed under
matrix multiplication (column checksum matrix mul-
tiply by row checksum matrix) and addition. It is

DRAFT: IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 4

0
BBBBBBBBBBBBBBB@

a1,1p
a1,1

0 · · · 0 0

a2,1p
a1,1

a2,2 �
a2,1a2,1

a1,1
· · · a2,n �

an,1a2,1

a1,1

nX

1

ai,2 �
a2,1

a1,1

nX

1

ai,1

...
. . .

. . .
. . .

...

an,1p
a1,1

an,2 �
a2,1an,1

a1,1
. . . an,n �

an,1an,1

a1,1

nX

1

ai,n �
an,1

a1,1

nX

1

ai,1

Pn
1 ai,1p
a1,1

nX

1

ai,2 �
a2,1

a1,1

nX

1

ai,1 · · ·
nX

1

ai,n �
an,1

a1,1

nX

1

ai,1

nX

1

nX

1

ai,j �
(
Pn

1 ai,1)
2

a1,1

1
CCCCCCCCCCCCCCCA

Fig. 4. Unblocked checksum matrix after one iteration
of the unblocked, inline outer product method. The
first column contains elements of L. Columns 2 to
n+ 1 are the updated but not yet processed elements.
The top row are all zero. The column checksums are
preserved.

easy to see that Bi:n+1,i:n+1 is the difference between
two full checksum matrix therefore must also be
a full checksum matrix. Further, we note that the
first row Bi,i+1:n+1 = 0, which means that the non-
zero sub matrix Bi+1:n+1,i+1:n+1 is a full checksum
matrix. We conclude by noting that this sub matrix is
the new value of Ai+1:n+1,i+1:n+1. Hence, induction
shows that condition (1, 2) holds after every iteration
i = 1, 2, . . . , n. Figure 4 shows the preserved column
checksums at the end of the first iteration.

In summary, after each iteration, both the check-
sums of the first i columns and the south-east (n−i)×
(n − i) trailing matrix maintain checksums naturally.
The equivalent of a process failure in the unblocked
algorithm would be the erasure of a particular ele-
ment in the matrix. In order to recover any element
in the matrix, the checksum along with the other
elements could be used at any step. For example,
element Ar,c is reconstructed by

Ar,c ← AM+1,j − (

r−1∑

k=1

Ak,c +

M∑

k=r+1

)Ak,c

The sum of the other rows in its column recovers the
checksum row.

2.3 Right-Looking Cholesky Algorithm Maintains
Column Checksums
The Right-Looking inline, unblocked algorithm is sim-
ilar to the inline, unblocked Outer Product algorithm.
The key difference between the Right-Looking algo-
rithm and the Outer Product algorithm is the data
that is maintained. Computationally speaking, since
the trailing matrix B is symmetric there is no need
to maintain the entire submatrix. It is possible to
compute half of the B matrix at the same time that
the L matrix is being filled in. The Right-Looking al-
gorithm utilizes the symmetry and does not maintain
the unneeded half of the matrix.

The result of these optimizations in the Right-
Looking algorithm is that the columns that contain
B no longer add up to the checksum. The elements
above the diagonal in the B matrix can no longer

Fig. 5. Unblocked Right-Looking algorithm recovery.
Yellow lines indicate what elements add to checksum
for columns where the column for recovery is less
than or equal to the iteration. Purple indicates what
elements are needed for recovery when the column for
recovery is greater than the iteration number.

be used to recover a missing value. For a failure
in column c, the missing elements are contained in
row c. Figure 5 demonstrates how to recover without
additional steps in each iteration.

The checksum row, along with the other elements
of the matrix of the unblocked, inline Right-Looking
method, contains sufficient information to recover any
single element in the lower triangle of the matrix. We
examine the block cyclic version of this algorithm in
Section 3.2.

2.4 Summary of Checksum Maintenance
A summary of the checksums maintained by each
algorithm is shown in Table 1. The Bordered algorithm
is unable to maintain either row or column checksum.
The Outer Product algorithm is able to 1) maintain
both Row and Column Checksums for the as yet
unprocessed matrix, 2) column checksums for the L
matrix, and, 3) can maintain row redundancy for the
L matrix (with modification). The Right-Looking al-
gorithm maintains the column checksum, but requires
an additional step for recovery in order to re-establish
symmetry in the matrix. As both the Right-Looking
algorithm and Outer Product algorithm can recover
from a failure, we now look at how these algorithms
behave in a 2-D block cyclic data distribution.

Bordered Outer Product Right-Looking
No Y es Y es∗

TABLE 1
Column checksums maintain or not?

3 2D BLOCK CYCLIC CHOLESKY ALGO-
RITHMS WITH CHECKSUMS

In blocked Cholesky algorithms, including block-
cyclic algorithms, a block is processed each iteration.

DRAFT: IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 5

a

b B

bT

Fig. 6. Blocked Outer Product Cholesky factorization,
in iteration 3

1: while a is not empty do
2: (POTF2) Solve L from a = LLT , a← L
3: (TRSM) Solve X from b = XaT , b← X
4: (SYRK) B ← B − bbT
5: Move to the trailing matrix:

(
a bT

b B

)
← B

6: end while

Fig. 7. Blocked Outer Produce Cholesky factorization
algorithm.

For example, in the blocked Outer Product algorithm,
several diagonal elements are handled on each iter-
ation. When distributing a blocked algorithm across
a process grid, each process generally manipulates
only one block at a time. Blocks are usually sized to
maximize the benefit of cache. In a block cyclic data
distribution, each process has more than one block of
data, with each block having a specific size (defined
as MB rows and NB columns). Additionally, blocks
from different parts of the matrix are on each process.
These blocks are assigned from the global matrix to
the processes in a cyclic fashion [21] to balance load.
Basically the matrix is divided into many blocks, and
the processes are treated as a p1× p2 2D process grid.
The blocks are assigned to the processes in the process
grid in a round-robin manner. More specifically, block
(i, j) got assigned to processer (i mod p1, j mod p2)
assuming all indices start from 0.

For simplicity, we cover the case where the proces-
sor grid, without the checksum row and column, is
square P×P . Additionally, we assume the blocking is
square (i.e., MB×MB). As the input matrix (without
checksum) is M ×M , and there are P ×P processors
(without checksum processor), we assume each pro-
cessor holds an equal number of elements,M

2

P 2 , which
we assume is a square number of elements with a
side length ML. Finally, for ease of implementation,
we assume each processor’s local matrix to be evenly
divisible into a square number of blocks on each
processor (i.e., (ML)2 mod (MB)2 = 0).

While these assumptions greatly ease the imple-
mentation, this method can still be used for Cholesky

factorizations where these conditions do not hold.
Block cyclic checksum algorithms function by reserv-
ing an extra row and/or column of processes to
hold a checksum of the values, which is called the
checksum process row and checksum process column,
respectively. We call a matrix with a checksum process
row as a row process checksum matrix. Note that in
such a matrix, each process column has respective
blocks that sum to the value in the checksum process
row. We call a matrix with both checksum process row
and column a full process checksum matrix. In the
checksum processes, a sum of the respective values of
the other blocks in the same row or column, respec-
tively, are kept. To do so, each checksum process holds
the same number of elements as any other process,
namely MXLLDA2. The total number of additional
processes to add a checksum row and column is
2P + 1. The full process checksum matrix therefore
is (M +MXLLDA)× (M +MXLLDA).

The execution of the block cyclic Cholesky with
checksum routine proceeds just as a normal block-
cyclic Cholesky routine with the following exception:
every P iterations, when a checksum block would be
the next block to be used as the matrix diagonal, the
algorithm jumps to the next iteration. As such, no
additional iterations are performed in the running of
the Cholesky routine. However, each iteration may
take longer due to the additional communication and
time due to the existence of the checksum row and
column. Other than this, the checksum block cyclic
Cholesky algorithms function similarly to a standard
block cyclic Cholesky algorithm, such as is found in
ScaLAPACK’s PDPOTRF.

3.1 The 2D Block Cyclic Outer Product Algorithm

For a distributed 2-D block cyclic distribution, the
blocked version is effectively the same. The major
difference is that care must be taken in order to ensure
that the data needed at any step is sent to the correct

(a) Global view (b) Local view

Fig. 8. Global and Local views of a 6x6 input matrix
(8x8 checksum matrix), symmetric blocked checksum
matrix to be used in demonstration of the 2-D block
cyclic Outer Product and Right-Looking algorithms.
The size of each block is 1 element, the number of
blocks per process is 4 (MB = 2).

DRAFT: IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 6

(a) Global view (b) Local view

Fig. 9. Global and local views after three iterations of
the Outer Product algorithm. Blue is the unprocessed
matrix. Green are parts of L. Orange are parts that
should be treated as 0s for ease of using column
checksums. The next step would have a checksum
block as the diagonal block, so it is skipped. The now
zero checksum blocks are noted in yellow.

processes. The snapshot of iteration j = 3 is shown
in Figure 6 and the blocked right looking Choleskys
algorithm is shown in Figure 7.

For clarity, we present a numerical example of the
blocked version. The initial checksum matrix is shown
in Figure 8. Figure 9 illustrates the state after the first
three steps. From this view, it looks similar to the
unblocked method as the block sizes are 1; however,
note that the checksums are maintained within each
section of the matrix. After step three, the next step
would have a checksum block as the diagonal block
and is skipped. As the data of the original matrix is
in the non-checksum blocks, the algorithm produces
the same result as the non-checksummed algorithm.

3.2 Handling Failure in a 2D Block Cyclic Right-
Looking Algorithm

We next look at the 2-D block cyclic Right-Looking
algorithm. This algorithm is similar to the correspond-
ing Outer Product algorithm. Only the lower triangle
of B matrix is maintained.

After any given iteration of the inline algorithm,
the global matrix contains three different parts: 1) the
partial result matrix L, 2) the unfactorized elements B,
and 3) data that is no longer needed. Figure 10 shows
the breakdown of a matrix after one iteration. The L
portion of the matrix holds the partial result. The B
matrix contains the yet to be factorized elements.

For blocks that are in the L section of the matrix,
the checksum is the sum of the entire column of
corresponding local entries of L. For blocs in the B
section of the matrix, the checksum is the sum of the
elements in the column of the B matrix, including
those that would be past the diagonal if they were
maintained. To use these checksum blocks, symmetric
elements must be used to recover elements in B sim-
ilar to the unblocked Right-Looking algorithm. These
are transposed from the equivalent row of the failure

(a) Global view (b) Local view

Fig. 10. Global and Local views of Matrix from Figure 8
after one iteration of the Right-Looking algorithm. The
block size is 1 element. Green shows parts of L. Blue
shows unprocessed data in B. Red shows parts of B
that are not maintained.

Recovery Routine
1: Restore Matrix Symmetry for Column fc
2: A(fr, fc, ∗)← 0
3: if Column = fc then
4: for all Blocks b ∈ LocalMatrix do
5: if fr = checksumr then
6: Reducecol

∑P
i=1A(i, fc) to A(fr, fc)

7: else
8: Reducecol A(P + 1, fc) +∑P

i=1−A(i, fc) to A(fr, fc)
9: end if

10: end for
11: end if

Fig. 11. The steps to recover from a failure in the 2-
D block cyclic Right-Looking parallel algorithm, where
A(r,c,b) is the local matrix block for row r, column c,
block b, the process failure row is fr and the process
failure column is fc.

column into the failure column, thus reconstructing
the column checksum relationship.

In a block cyclic distribution, one process may
contain data from all three sections. Thus, upon a
failure, each element must be examined individually
to determine how it should be recovered and restore
symmetry as necessary. Once in this form, the block
cyclic equivalent of the unblocked recovery algorithm
is used (see Figure 11).

When a failure occurs, the algorithm must restore
the values of the failed data to the failed process.
The following preconditions must be met: 1) the row
and column of the failed process must be known,
2) no additional processes may fail during recovery,
3) the failed step of the iteration must be known
and detected before the next step begins, and 4) the
iteration must be known. Section 4.3 examines specific
recovery procedures based on the step in an iteration
when a process fails.

DRAFT: IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 7

4 OVERHEAD SCALABILITY ANALYSIS

To examine the overhead scalability of ABFT
Cholesky, we first examine the runtime of the (non-
fault tolerant) blocked Right-Looking Cholesky fac-
torization on a P × P process grid. We then examine
the scalability of the overhead and for recovery in a
square ((P + 1) × (P + 1)) process grid using a full
process checksum matrix.

4.1 Blocked Right-Looking Cholesky Runtime

The runtime of inline blocked Outer Product Cholesky
routines is dominated by the iterative matrix updates.
We examine the contributions to runtime of these iter-
ations to characterize the general runtime of the inline
block-cyclic Right-Looking Cholesky factorization in
the lower triangular case. Each iteration consists of a
local factorization of the next diagonal block, a panel
(elements below the diagonal block) update, and an
update of the remaining matrix. The size of the panel
and the remaining matrix depends on the iteration,
going from largest to smallest. We first examine the
size of the panel and remaining matrix. We then
examine the runtime of each step of an iteration. We
then summarize the total runtime.

4.1.1 Size Of Data Affected in An Iteration

In general, there are a total of
⌈
M
MB

⌉
iterations. For

simplicity of illustration, we assume that the M is
evenly divisible by MB, though the analysis does
not significantly change in the case that there is a
remainder. In each iteration, the panel to be updated
consists of all rows below the diagonal in the columns
of the diagonal block. In the first iteration, the panel
would have dimensions MB × (M −MB). In the ith

iteration the panel size is MB × (M − (i ·MB)). The
total number of elements updated during the panel
update over all iterations is:

M
MB∑

i=1

MB · (M − i ·MB)=
M2 +M ·MB

2
(3)

We analyze the average size of an iteration. The
average size of the panel on a given iteration is the
total divided by the number of iterations:

M2+M ·MB
2
M
MB

=
M ·MB +MB2

2
= O(M ·MB) (4)

As the remaining matrix update is the scaled sub-
traction of the the outer product of the panel with its
transpose from the existing elements, the number of
elements is the square of the number of row elements
of the panel. Therefore, the average size of the trailing
matrix is O(M2).

4.1.2 Diagonal Block Factorization
The diagonal block is held on a single process. There-
fore any serial unblocked factorization can be used.
The block is a matrix of size (MB×MB). Several serial
algorithms are capable of performing this factoriza-
tion in O(MB3 · γ) where γ is the time to perform an
arithmetic operation. We consider the common case
that MB << M . The block factorization is not the rate
limiting step so we do not explore this step further.

4.1.3 Panel Update
During the panel update, the factorized diagonal
block is sent to the processes holding the panel
elements. Each of the elements in the panel must
be updated. The initial distribution of the factorized
diagonal block requires a broadcast down the process
column. The optimal algorithm for this broadcast
depends on the system’s latency (α), bandwidth (β),
number of nodes in the process column (P), and
the number of elements to broadcast (i.e., MB2) (see
Table 3). As there are several methods to broadcast,
we generically denote the runtime for broadcast as
BCast(η, Pb) where η is the number of elements
to be broadcasted, and Pb is the number of pro-
cesses involved in the broadcast. As there is one
block that is broadcasted, the broadcast step requires
BCast(MB2, P). The runtime of this step of each
iteration is O(BCast(MB2, P) + MB2·M

P · γ).

4.1.4 Remaining Matrix Update
The remaining matrix update requires the outer prod-
uct of the panel to be computed on the processes
holding the remaining matrix elements. Each block
in the remaining matrix requires at maximum two
different blocks from the panel (the two blocks used
to perform the outer product). One of these blocks is
the corresponding block in the same row in the panel.
Therefore a row broadcast of the panel results in this
block being received by the appropriate processes.
Again, the optimal broadcast method depends on
several factors (see Table 3). This sub-step therefore
requires BCast(M ·MB

P , P).
The elements of the transpose of the panel are dis-

tributed to the columns that correspond to the equiv-
alent rows of the panel. On a square process grid, this
panel transpose can be performed pairwise between
processes holding the panel and those holding the
first row of the remaining matrix blocks. M · MB
elements must be transmitted, and are distributed
over P process rows, and must be sent to P process
columns. We note the time of one send as Snd(η)
where η is the amount of data to send. In this case,
the runtime would be Snd(M ·MB

P).
After the exchange, the process row with the trans-

posed panel then broadcasts the transposed panel
down the process column to complete the data distri-
bution. This sub-step requires BCast(MB·M

P , P). Once

DRAFT: IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 8

the data is distributed, there are O(M2) elements to
update using P×P processes. As each element update
requires MB multiplications, MB additions and one
subtraction, the element update is O(MB·M2

P 2 · γ) each
iteration. The update step therefore has a runtime of:

O(BCast(
M ·MB

P
,P)+Snd(

M ·MB

P
)+
M2·MBγ

P 2
)

(5)

4.1.5 Runtime Over Iterations
The overall runtime can be approximated as the av-
erage time of each step multiplied by the number of
iterations. The maximum in this case is determined
either by the time to broadcast, or the arithmetic
update of any given iteration. In both cases, the re-
maining matrix update dominates the iteration. There
are M

MB iterations. The overall runtime for the dis-
tributed block-cyclic Cholesky factorization through
this variant is therefore:

O(
M3γ

P 2
+
M ·BCast(MB·M

P ,P)+BCast(MB·M
P ,P)

MB
)

(6)

4.2 Overhead of ABFT Cholesky on a Square Grid
with Full Processor Checksum Matrix
The overhead of ABFT Cholesky consists of the over-
head for setting up the initial checksum process row
and checksum process column (i.e., full checksum
matrix), the overhead due to increased matrix size,
and the overhead due to algorithm modification. The
overhead of the algorithm modification is negligible
as it consists only of skipping iterations where a
checksum block would be the diagonal block. This
check would only occur once per iteration. The other
two overheads, however, deserve closer analysis. In
this section, we assume that the original matrix is
distributed over a P × P process grid, with the full
checksum matrix process grid being (P +1)× (P +1).

4.2.1 Overhead of Checksum Matrix Setup
The checksum process column contains a block-wise
summation of corresponding blocks over the blocks of
each row. Therefore, each block needs to be transmit-
ted and summed into the checksum process column.
This operation is the equivalent of an summation
MPI Reduce call. Depending on the characteristics
of the matrix and system, the best way to perform
this reduction varies. As such, we note the time for
reduction as Reduce(η, Pr), where η is the size of the
data to be reduced by process, and Pr is the number
of processes involved. We assume that the destination
does not significantly impact the runtime.

Each process, including checksum processes, holds
M2

P 2 elements. Each process row has P processes, plus
the checksum column process, making P+1 processes.

Therefore each reduction occurs over P +1 processes.
As such, the reduce across rows takes Reduce(M

2

P 2 , P+
1). There are a total of P reductions needed, but these
can be done in parallel.

After construction the checksum process column,
we construct the checksum process row. This con-
struction is also the summation of corresponding
blocks, but this time over the process columns into
the checksum process row. There are P process rows,
plus the checksum row, making P + 1 rows. Again,
each process holds M2

P 2 elements. The summation into
the checksum process row requires Reduce(M

2

P 2 , P +
1). Once the second reduction step is complete, the
checksum process row and column setup is complete.
Therefore, the overall runtime for the checksum setup
step is O(Reduce(M

2

P 2 , P + 1)).

4.2.2 Overhead of Increased Matrix Size
To analyze the overhead of the increased matrix size,
we must analyze both any increase in program wall-
clock runtime and the overhead that results from
using an increased number of processes. We first look
at the sources of increased wall-clock runtime.

The checksum matrix increases the size of the ma-
trix in each dimension by one process. The modi-
fied algorithm skips any iteration where a checksum
block is the diagonal block. Therefore, the number
of iterations remains

⌈
M
MB

⌉
. Within each iteration the

amount of data has increased.In the diagonal block
factorization step, no additional data has been intro-
duced so the runtime of this step remains unchanged.
During the panel update step, the diagonal block
must be communicated to (P + 1) processes instead
of P processes and perform additional computation
on the blocks held in the checksum process. For the
computation, as an additional process is available,
the amount of wall-clock time remains unchanged.
The increase in the broadcast results in a runtime of
BCast(MB2, P + 1) + MB·M

P , or overhead of:

O(BCast(MB2, P + 1)−BCast(MB2, P)) (7)

During the remaining matrix update, the broad-
cast across process rows and the broadcast across
process columns both broadcast over one addi-
tional process. Therefore these steps both now take
BCast(MB·M

P ,P+1). The panel transpose must also be
communicated from and to the respective checksum
row process of the panel and the checksum column
process. In a P × P grid, there is a one to one
correspondence of these processes, and therefore the
time is only to send the elements. This is also true for
the original processes, and as such this step presents
no additional overhead. The number of matrix ele-
ments that must be computed during the panel up-
date also increases. However, the number of elements
increases proportionally to the number of checksum

DRAFT: IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 9

processes, and reside on those checksum processes.
Therefore, the runtime increase for this step consists
of the increase in the additional time for broadcast, or
O(BCast(MB·M

P , P + 1)−BCast(MB·M
P , P)).

Looking at the iteration steps, the remaining matrix
update dominates the runtime as in the non-fault
tolerant case. As the number of iterations has not
changed, the wall-clock overhead for all the steps is:

O(
M(BCast(MB·M

P ,P+1)−BCast(MB·M
P ,P))

MB
) (8)

The remainder of the overhead can be classified as
the time to use the additional processors that could
be used for some other job in a cluster. The number
of processors has increased by one processor row
and one processor column. Therefore, the number
of processors has increased from P 2 to (P + 1)2. To
determine the overall overhead, we therefore scale the
wall-clock overhead by (P+1)2

P 2 .
Multiplying this overhead factor by the dominant

overhead in Equation 8 yields the approximate over-
head for the fault tolerant Cholesky routine due to the
increased matrix size. Thus the overall overhead from
the increased matrix size is:

O(
(P + 1)2

P 2
· M
MB

·BCast(MB ·M
P

,P + 1)) (9)

4.3 Recovery on a P x P Processor Grid
When a process fails, the contents of its memory
related to the matrix need to be reconstructed when
it is restarted, or on a replacement process. We refer
to the process taking the place of the failed process
as pf . We also assume a recovery routine is initiated
on every process that indicates which process has
failed. With knowledge of which process failed, the
other processes place pf in the equivalent point in
their communications, and that pf assumes the role
in terms of memory and processing tasks that would
have been performed by the failed process. Therefore,
the objective of recovery is to restore the memory of
pf to a point where the factorization can continue.

Immediately after pf comes online, an arbitrary
other process, say process 0, should transmit informa-
tion concerning which iteration was being performed,
and furthermore during what step of the iteration
the failure occurred. Additional information such as
the characteristics and decomposition of the matrix
should also be sent. Based on the iteration and the
decomposition, pf determines what block positions in
the matrix it should contain and determine whether
those blocks contain the result matrix L, are no longer
needed (i.e., are above the diagonal in a row that has
already been passed by the iterations), the diagonal
block Ai,i, panel blocks bi, or remaining matrix blocks
Bi. The other processes should likewise identify that
type of data contained in pf ’s blocks.

1: if This Node Failed then
2: LocalMatrix← 0
3: else
4: for all Blocks ∈ Local Matrix do
5: if Block Above Diag AND Column = Fcol

then
6: Receive Block into LocalMatrix
7: Transpose LocalMatrix
8: end if
9: if Block Below Diag AND Row = Fcol then

10: Send LocalMatrix to transposed position
11: end if
12: end for
13: end if
14: if Column = FCol then
15: if Row = ChkRow then
16: ColumnReduce −ONE · LocalMatrix To

FRow
17: else
18: ColumnReduce LocalMatrix to FRow
19: end if
20: end if

Fig. 12. The steps performed by each node to recover
from a failure needing the Hybrid row + column data.
Data is the local data matrix, Row is the processor
row, Column is the processor column, and FRow and
FCo are the row and column of the failed node. Send,
Receive, and ColumnReduce represent calling the re-
spective MPI functions. It is assumed that a common
ordering of blocks is available across processors.

For simplicity of implementation, it may also be
advantageous for any process that contains unneeded
blocks to ensure these blocks contain zeros as it en-
ables column summation reduce calls on these blocks
without special handling of the memory for these
blocks. On the other hand, this may cause an overhead
increase and can be avoided through careful imple-
mentation. pf should also ensure that the contents of
its local matrix initially are zeros.

The actions to recover any given block depends on
the type of data that should be contained in that block
and on what part of an iteration the failure occurred.
Of these, there is no need to recover elements that
are no longer needed, as these blocks are not part of
either the result nor are still needed for computation.

The most straightforward blocks to recover are
those of the resulting L matrix, as these do not depend
on which step of an iteration the failure occurred. If a
pf is a checksum row process, any blocks in L can be
recovered by performing a summation reduce call on
pf ’s process column. For any other process, the blocks
in L are recovered by transmitting the contents of the
checksum process of its column, and then subtracting
the result of a summation reduce of processes 1 to P
(where pf contains zeros). This pattern of summation

DRAFT: IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 10

Block Step - sub-step Recovery Point Data Used
Unneeded Any Not recovered None
L Any Final Column
Ai,i,bi Diagonal factorization Iteration start Column
Bi Diagonal factorization Iteration start Hybrid row + column
Ai,i, bi Panel update - Broadcast Iteration start Column
Ai,i, bi Panel update - Computation End of update Column
Bi Panel update - Any Iteration start Column
Ai,i, bi Remaining matrix update End of iteration Column
Bi Remaining matrix update - bi broadcast Start of update Hybrid row + column
Bi Remaining matrix update - bTi creation Start of update Hybrid row + column
Bi Remaining matrix update - bTi broadcast Start of update Hybrid row + column
Bi Remaining matrix update - computation End of iteration Hybrid row + column

TABLE 2
Recovery by block location and iteration sub-step summary for recovery on a lower triangular matrix.

reduce to reconstruct a checksum process, or subtract-
ing the summation of all other processes’ elements
from the checksum process’s elements is the basic
strategy for recovery, and we refer to it as the recovery
strategy.

At the beginning of each iteration, conceptually Ai,i,
bi, and Bi are partitioned. After the diagonal block
factorization, Ai,i contains Li,i. Until the completion
of the panel update, the column checksum for the
panel column is not maintained. If pf contains Li,i,
that block is reconstructed by recovering from the
processes column and then restarting the iteration. If
pf contains any of the blocks in bi, recovery occurs to
the end of the panel update (i.e., all other processes
complete the panel update and then recover the lost
data in pf). In the panel update, Li,i is broadcast to the
processes of the rest of the panel bi. If a failure occurs
during the broadcast, it may be uncertain which of
the unfailed processes have received the factorized
diagonal block and a re-broadcast is necessary.

As the checksum block of the panel is also updated,
the column checksum is again maintained for this
column. In fact, after this point, the panel and is
part of the L matrix. Recovering to the end of the
panel update removes any need to recompute the
result on any other process, or even to perform the
explicit computations on pf . That the recovery of pf
can actually occur to a point where the failed process
had not yet reached reduces the recovery runtime.

To review, in the remaining matrix update step
there is a row broadcast, the creation of bTi , a col-
umn broadcast, and computation. For the remaining
matrix update steps, each block has a block from bi
and from bTi . As these are shared between rows and
columns respectively of blocks of Bi on a process, we
assume that the process holds these separately until
the computation step. Therefore, if a failure occurs
during the row broadcast, the creation of bTi , or the
column broadcast, none of the elements of Bi have yet
been affected. If the full Outer Product method were
used (not just lower triangular), the blocks of Bi on
pf could be recovered through the recovery strategy on

the process column. Since the upper triangular half of
Bi is not maintained in the Right-Looking algorithm,
the direct usage of the blocks above the diagonal
is not possible. Fortunately, the needed data is held
symmetrically in the lower triangular matrix. In a
P×P process grid (with square block sizes), there is a
one to one correspondence of processes in the row and
column for these blocks As such, a transpose from the
process row to the process column can be performed.
The recovery strategy over the process column is used.
We refer to this pattern as recovery over a hybrid row
+ column (See 12).
pf also has to receive another copy of the needed

blocks of bi and bTi . These blocks are obtained through
direct communication from any process on its process
row and column respectively. Once the elements of bi
and bTi are distributed, all of the processes perform
the update of Bi as Bi⇐Bi - bibTi . If any process fails
during this update, the remaining processes should
complete their computation of the iteration, and then
use the hybrid row + column to recover pf to the end
of the iteration.

As such, it is possible to recover any given block
at any step of the computation without keeping in-
formation of any earlier iteration. We summarize the
recovery steps by block type and step in Table 2. L
is the inline result matrix. Ai,i is the diagonal block
of the iteration. bi is the panel of the iteration. Bi is
the remaining matrix. Unneeded are blocks above the
diagonal.

4.4 Scalability of ABFT Cholesky
To determine the scalability of the ABFT Cholesky
overhead and recovery times, we must know the
runtime of the broadcast and reduce algorithms being
used. As the best algorithms vary depending on sev-
eral factors, we choose two families of collective oper-
ations to evaluate against: the Binomial family and the
Pipeline family. The Binomial family broadcast and
reduce work through distance doubling and reduce
the total number of communications required to the
order of log2(P). The Pipeline family broadcast and

DRAFT: IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 11

Family BCast(η, Pb)

Binomial dlog2(Pb)e ·
η
ηs

(α+ ηs · β)
Pipeline (Pb +

η
ηs
− 2)(α+ ηs · β)

Reduce(η, Pr)

Binomial dlog2(Pb)e ·
η
ηs

(α+ ηs · β + ηs · γ)
Pipeline (Pr +

η
ηs
− 2)(α+ ηs · β + ηs · γ)

TABLE 3
Runtimes for Binomial and Pipeline families [23]

Family Cholesky Runtime Approximation

Binomial O(M
3γ
P2 +

M2 log2 P
P ·MB

· (α+MB · β))
Pipeline O(M

3γ
P2 + M

MB
· (P + M

P
− 2)(α+MB · β))

TABLE 4
Runtimes for Cholesky

reduce break up the data into pieces and stream the
data through the communicating processes such that
there is high utilization of every processes communi-
cation resources. The Pipeline family incurs a startup
cost related to the number of processes involved so
these algorithms tend to perform best when data is
able to be broken up into many more pieces than there
are processes. Table 3 shows the respective runtimes
for BCast and Reduce operations assuming a message
size of ηs under the Hockney model [18] with the data
size η and message size ηs. We assume that the latency
(α) and bandwidth (β) are not functions of message
sizes.

One important consideration is the choice of mes-
sage size. While the optimum message size on a
system depends on topology, latency, and bandwidth
among other factors, we choose the size MB as it
allows more direct comparison and is a reasonable
value in many cases. Table 4 shows the non-fault
tolerant blocked Cholesky runtimes using these fam-
ilies under the Hockney model [18]. These values are
derived by substituting the values from Table 3 into
Equation 6.

We evaluate the checksum setup and increased
matrix size overheads using the Binomial and Pipeline
families for BCast and Reduce operations in Table 5.
A key observation for the Binomial family is that
dlog2 P + 1e − dlog2 P e has a maximum value of one
enabling the simplification shown. We then divide the
overheads by the runtime of the non-fault tolerant
Right-Looking Cholesky routine in Table 6.

We now show that each of the four scaled overheads
in Table 6 is scalable as M and P become large. Table 6
shows overheads for Cholesky runtime divided by the
runtime of the non-fault tolerant routine using the
Binomial and Pipeline families under the Hockney
model [18] assuming a message size of MB. In the
ideal case, the overhead diminishes as both M and P
get large, but we note that the Pipeline family check-

Family Checksum Setup

Binomial O(dlog2 P + 1e · M
2(α+MB·β+MB·γ)

MB·P2)

Pipeline O((P + M2

MB·P2 − 1)(α+MB · β +MB · γ))
Increased Matrix Size

Binomial O(
(P+1)2

P2
M2

MB·P (α+MBβ))

Pipeline O(
(P+1)2

P2
M
MB

(α+MBβ))

TABLE 5
Overheads using the Binomial and Pipeline families

Family Checksum Setup

Binomial O(
dlog2(P+1)e(α+MBβ+MBγ)
M·MBγ+Pdlog2 Pe(α+MBβ)

)

Pipeline O(
(P+ M2

MB·P2−1)(α+MB·β+MB·γ)
M3

P2 + M
MB

(P+M
P
−2)(α+MB·β)

)

Increased Matrix Size

Binomial O(
M·(α+MBβ)(P2+2P+1)

P2·MB(
M2γ
P

+dlog2 Pe(α+MBβ))
)

Pipeline O(
(P2+2P+1)(α+MBβ)

M2·MB+(P3+M·P−2P2)(α+MBβ)
)

TABLE 6
Relative overheads for Cholesky runtime

sum setup overhead does not diminish, but does not
grow as a fraction of runtime either. We start with the
binomial checksum setup overhead. The denominator
dominates the numerator in terms of both M (only in
denominator) and in P (dlog2 P + 1e < P · dlog2 P e as
P becomes large). Therefore, as M , P , or a combina-
tion of the two get large, this overhead diminishes as
a fraction of the runtime. For the binomial increased
Matrix size overhead, the denominator dominates in
P (P 2 + 2P < P 2 dlog2 P e as P becomes large) and
in M (M < M2). The differing coefficients are of
concern if latency, bandwidth, or processing speed
change drastically relative to each other (e.g., slowing
a processor to save energy). We leave that analysis for
future work.

For the Pipeline checksum setup overhead, the
overhead diminishes with a larger M (M2 < M3),
though this case too suffers from the differing coeffi-
cients mentioned before. Additionally, as P becomes
large, the overhead as a fraction of runtime converges
to 1 + MBγ

α+MBβ . While this fraction does not grow, it
unfortunately does not shrink as P becomes large.
Fortunately, in common cases, P only grows when
M grows, and the overhead fraction tends to reduce,
though it does not converge to zero. The increased
matrix size overhead for the Pipeline family dimin-
ishes as both P and M become large.

As the overhead under both families has been
shown to be generally scalable as P and M increase,
we now consider the scalability of the recovery rou-
tine. The dominating factor of the recovery routine
is the Reduce call to reconstruct the local matrix of
pf . Fortunately, the amount of data and number of

DRAFT: IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 12

processes involved is the same as for the checksum
setup. As such, the recovery too is scalable as P and
M become large.

For the performance of the system overall, it should
also be considered that as the number of components
grows, the expected number of failures grow similarly.
As we are using additional checkpoint processes, the
failure rate has increased by the number of check-
point processes divided by the processes without
checkpoints, or 2P+1

P 2 . As the number of processes
grows, this failure rate converge to the failure rate
of the calculation without fault tolerance added and
therefore can be ignored for large scale systems.

Another concern is that the number of failures
overall will increase as the process grid grows large,
leading to longer runtimes. We note that this is not a
function of overhead as we have considered it, but is a
concern for minimizing the runtime of the application
and that this increased failure rate occurs regardless
of fault tolerance method.

The Binomial and Pipeline families cover two of the
major behaviors for collective operations and are fre-
quently used in MPI implementations. The scalability
of ABFT Cholesky factorization under these two fam-
ilies shows promise for providing generically scalable
fault tolerance. We next perform an evaluation of an
implementation to verify the scalability.

5 EVALUATION

To verify the correctness of recovery and run-
time analysis, we compare two functions for doing
the Right-Looking Cholesky factorization. The first,
PDPOTRF, is the ScaLAPACK function for doing
Cholesky factorization. In order to simulate a failure,
a second Cholesky factorization routine, FTPDPOTRF,
was written that assumes the full matrix with check-
sum row and column are given as parameters. The
method implements the P × P with full process
checksum matrix described in Section 4. As previously
described, this method skips any data blocks along
the diagonal that belong to the checksum processes.
At the end of the method, the contents of the first
P × P process contents are examined to verify they
match the result from a standard call to PDPOTRF on
the matrix without the checksum processes.

The recovery test method has three additional pa-
rameters that specify where and when a failure occurs.
Specifically, it takes the row and column of the process
to fail and the iteration failure occurs. In particu-
lar, it simulates a failure during either the diagonal
factorization or during the panel broadcast update
when the iteration may have to be restarted. For the
Reduce implementation, we allow the MPI environ-
ment to select an algorithm as our individual choice
of algorithm would not be reflected in PDPOTRF
either. Forcing a particular algorithm in PDPOTRF
would also deviate its runtime from its more realistic

use. While this testing is not adequate to do a full
scale exponential distribution failure simulation, this
method successfully tests that the recovery method
and calculates the time required to recover.

The recovery function first sets up the checksum
recovery to make a column reduction operation to the
failed process provide all the data needed to recover.
The recovery function then reduces to the failed pro-
cess. Finally, the function uses the communicated data
to set the values in the global matrix.

The first phase requires that each process go
through its blocks and determine which is necessary
for recovery. These blocks are maintained in a tempo-
rary matrix, which is used to perform the reduction.
Additionally, since the B section of the matrix is not
symmetric in ScaLAPACK, it is first necessary to get
the transpose of this section of the matrix, find its
transpose (minus the diagonal), and add it back to the
temporary matrix. In the second stage, a column-wise
by process grid communicator is established. If the
column contains the failed process, then a summation
reduction is performed. Upon completion of this step,
the original matrix is recovered.

For the scalability testing, trials on the Kraken
supercomputer were performed. Kraken is a Cray XT5
system featuring 12 core AMD “Istanbul“ processors
(2.6GHz). Specifically, tests using process grids of 35×
35 (36× 36 for FTPDPOTRF) and 107× 107(108× 108
for FTPDPOTRF) were performed. In these tests, the
matrix was sized to 4000 × 4000 double precision
elements per process. The runtime for PDPOTRF and
FTPDPOTRF were measured, as well as the runtime
for one call of the recovery routine. The block size
was selected based upon the best of several smaller
scale runs to be 200 × 200 elements. The runtimes
for PDPOTRF were averaged over two runs, and
FTPDPOTRF was averaged over four runs.

Figure 13 compares the wall-clock runtimes of
PDPOTRF and FTPDPOTRF. FTPDPOTRF is slower
than PDPOTRF on both the P = 35 and P = 107 sizes.
Despite this, the difference between the two methods
is a small fraction of the total runtime. The fraction
of the runtime is shown in Figure 14. The wall-
time fraction of total runtime is decreasing as was
predicted in Section 4. Both Figure 13 and Figure 14
do not account for the additional overhead from the
additional processors being used.

To account for the additional processors used, we
scale the results by the number of processors used
to produce a direct comparison of processor-time. We
represent the data in processor-hours due to the scaled
values. We show in Figure 15 the runtime used by
PDPOTRF and FTPDPOTRF on the process grids with
P = 35 and P = 107. Again, the difference does
not appear to be significant in comparison with the
overall runtime of either function. Figure 16 shows
the explicit percentage overhead in reference to the
runtime of PDPOTRF. As can be seen in the figure,

DRAFT: IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 13

Fig. 13. Average wall-clock runtime of FTPDPOTRF
((P+1) × (P+1)) and PDPOTRF (on P × P) by in the
global matrix size. Left has P=35 and right has P=107.

Fig. 14. Percent wall-clock runtime of overhead of FT-
PDPOTRF ((P+1)×(P+1)) compared with PDPOTRF
(P × P). Left has P=35 and right has P=107.

the overhead is less than 10% on the P = 35 processor
grid, and decreases to less than 4% on the P = 107
processor grid size. The reduction of overhead as a
fraction of runtime as the processor grid and matrix
grow is consistent with the analysis in Section 4.

Fig. 15. Comparison of processor-hours used by FT-
PDPOTRF ((P+1)×(P+1)) compared with PDPOTRF
(P×P) by number of elements in the global matrix. Left
has P=35 and right has P=107.

Beyond the overhead, we also consider the scala-
bility of recovery as the process grid and matrix size
jointly grow. A scalable overhead is unfortunately of
little use if the recovery time is not scalable as well.
Figure 17 shows the average recovery in seconds of
the PDPOTRF runtime for the data communication
needed to recover a single failure. This recovery time

Fig. 16. Overhead viewed as percent of processor-
hours used for FTPDPOTRF ((P+1) × (P+1)) and
PDPOTRF (P ×P) by number of elements in the global
matrix. Left has P = 35 and right has P = 107.

is on the order of seconds even for the larger matrix
size. As such, this supports the analysis in Section 4.

Fig. 17. Average wall-clock for restoring one processes
data by process grid side size.

6 CONCLUSIONS

As matrices and process grids grow, fault tolerance be-
comes an increasing concern due to increased failure
rates. We have presented a scalable method for adding
Algorithm Based Fault Tolerance to the Cholesky Fac-
torization through the use of a full checksum matrix
on square process grids. Through this work we have
made the following contributions:

• Shown that column checksums are maintained
for the Outer Product Algorithm

• Shown that the row+column checksums can be
used for the Right-Looking Algorithm

• Shown that checksums are not maintained for the
Border Algorithm

• Developed an ABFT method that is compatible
with 2D Block Cyclic Decomposition

• Showed the method is scalable as the process grid
and matrix become large

• Developed a proof of concept implementation
(FTPDPOTRF)

• Evaluated the overhead and recovery scalability
on a process grid on the order of 100× 100

DRAFT: IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 14

ACKNOWLEDGEMENT

The authors would like to thank the anonymous
reviewers for their insightful comments and valuable
suggestions to improve the quality of this paper.
This research is partly supported by National Sci-
ence Foundation, under grants #CCF-1118039, #OCI-
1150273, and #CNS-1118037.

REFERENCES

[1] A. Al-Yamani, N. Oh, and E. McCluskey. Performance Eval-
uation of Checksum-Based ABFT. In IEEE International Sym-
posium on Defect and Fault-Tolerance in VLSI Systems, page 461,
2001.

[2] J. Anfinson and F. T. Luk. A Linear Algebraic Model of
Algorithm-Based Fault Tolerance. IEEE Transactions on Com-
puting, 37(12):1599–1604, 1988.

[3] P. Banerjee, J. Rahmeh, C. Stunkel, V. S. Nair, K. Roy, V. Bal-
asubramanian, and J. Abraham. Algorithm-Based Fault Tol-
erance on a Hypercube Multiprocessor. IEEE Transactions on
Computers, 39(9):1132–1145, 1990.

[4] R. Banerjee and J. Abraham. Bounds on Algorithm-Based Fault
Tolerance in Multiple Processor Systems. IEEE Transactions on
Computers, 35(4):296–306, 1986.

[5] G. Bosilca, R. Delmas, J. Dongarra, and J. Langou. Algorithm-
based Fault Tolerance Applied to High Performance Comput-
ing. Journal of Parallel and Distributed Computing, 69(4):410–416,
2009.

[6] Z. Chen. Optimal Real Number Codes for Fault Tolerant
Matrix Operations. In Proceedings of the 2009 ACM/IEEE Su-
perComputing Conference on Supercomputing, pages 29:1–29:10,
2009.

[7] Z. Chen and J. Dongarra. Algorithm-based Checkpoint-free
Fault Tolerance for Parallel Matrix Computations on Volatile
Resources. In Proceedings of the International Parallel and Dis-
tributed Processing Symposium, page 76, 2006.

[8] Z. Chen and J. Dongarra. Algorithm-Based Fault Tolerance for
Fail-Stop Failures. IEEE Transactions on Parallel and Distributed
Systems, 19(12):1628–1641, 2008.

[9] J. Choi, J. Dongarra, S. Ostrouchov, A. Petitet, D. Walker, and
C. Whaley. Design and Implementation of the ScaLAPACK
LU, QR, and Cholesky Factorization Routines. Scientific Pro-
gramming, 5(3):173–184, 1996.

[10] T. Davies, Z. Chen, C. Karlsson, and H. Liu. Algorithm-based
Recovery for HPL. In Proceedings of the 16th ACM Symposium
on Principles and Practice of Parallel Programming, pages 303–
304, 2011.

[11] T. Davies, C. Karlsson, H. Liu, C. Ding, and Z. Chen. High
Performance Linpack Benchmark: A Fault Tolerant Implemen-
tation Without Checkpointing. In Proceedings of the International
Conference on Supercomputing, pages 162–171, 2011.

[12] P. Du, A. Bouteiller, G. Bosilca, T. Herault, and J. Dongarra.
Algorithm-based Fault Tolerance for Dense Matrix Factoriza-
tions. In Proceedings of the 17th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, pages 225–234,
2012.

[13] E. Elnozahy and J. S. Plank. Checkpointing for Peta-Scale Sys-
tems: A Look into the Future of Practical Rollback-Recovery.
IEEE Transactions on Dependable Secure Computing, 1(2):97–108,
2004.

[14] G. Fagg, E. Gabriel, Z. Chen, T. Angskun, G. Bosilca,
J. Pjesivac-grbovic, and J. Dongarra. Process Fault Tolerance:
Semantics, Design and Applications for High Performance
Computing. International Journal for High Performance Appli-
cations and Supercomputing, 2004.

[15] E. Gabriel, G. Fagg, G. Bosilca, T. Angskun, J. Dongarra,
J. Squyres, V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine,
R. Castain, D. Daniel, R. Graham, and T. Woodall. Open
MPI: Goals, Concept, and Design of a Next Generation MPI
Implementation. In Proceedings of the 11th European PVM/MPI
Users’ Group Meeting, pages 97–104, 2004.

[16] G. Golub and C. Van Loan. Matrix Computations (Johns Hopkins
Studies in Mathematical Sciences). The Johns Hopkins University
Press, 3rd edition, Oct 1996.

[17] D. Hakkarinen and Z. Chen. Algorithmic Cholesky Factoriza-
tion Fault Recovery. In Proceedings of the 2010 IEEE International
Symposium on Parallel Distributed Processing, 2010. c©IEEE 2010.

[18] R. Hockney. The Communication Challenge for MPP: Intel
Paragon and Meiko CS-2. Parallel Computing, 20(3):389–398,
1994.

[19] K. Huang and J. Abraham. Algorithm-Based Fault Tolerance
for Matrix Operations. IEEE Transactions on Computers, C-
33(6):518–528, Jun 1984.

[20] G.-A. Klutke, P. C. Kiessler, and M.A. Wortman. A Critical
Look at the Bathtub Curve. IEEE Transactions on Reliability,
52(1):125–129, 2003.

[21] Vipin Kumar, Ananth Grama, Anshul Gupta, and George
Karypis. Introduction to parallel computing, volume 110. Ben-
jamin/Cummings Redwood City, 1994.

[22] F. Oboril, M.B. Tahoori, V. Heuveline, D. Lukarski, and J.-P.
Weiss. Numerical Defect Correction as an Algorithm-Based
Fault Tolerance Technique for Iterative Solvers. In Proceedings
of the 17th Pacific Rim International Symposium on Dependable
Computing (PRDC), pages 144–153, Dec 2011.

[23] J. Pjeivac-Grbovi, T. Angskun, G. Bosilca, G. Fagg, E. Gabriel,
and J. Dongarra. Performance Analysis of MPI Collective
Operations. Cluster Computing, 10(2):127–143, 2007.

[24] P. Prata and J. G. Silva. Algorithm Based Fault Tolerance Ver-
sus Result-Checking for Matrix Computations. In Proceedings
of the Twenty-Ninth Annual International Symposium on Fault-
Tolerant Computing, page 4, 1999.

[25] V. Stefanidis and K. Margaritis. Algorithm Based Fault Tol-
erant Matrix Operations for Parallel and Distributed Systems:
Block Checksum Methods. In Proceedings of the 6th Hellenic-
European Conference on Computer Mathematics and its Applica-
tions, pages 767–773, 2003.

[26] V. Stefanidis and K. Margaritis. Algorithm Based Fault Tol-
erance: Review and Experimental Study. In Proceedings of
the International Conference of Numerical Analysis and Applied
Mathematics, 2004.

[27] D.L. Tao, C.R.P. Hartmann, and Y. Han. New Encod-
ing/Decoding Methods for Designing Fault-Tolerant Matrix
Operations. IEEE Transactions on Parallel and Distributed Sys-
tems, 7(9):931–938, 1996.

[28] R. Wang, E. Yao, M. Chen, G. Tan, P. Balaji, and D. Bunti-
nas. Building Algorithmically Nonstop Fault Tolerant MPI
Programs. In Proceedings of the IEEE International Conference on
High Performance Computing, 2011.

[29] E. Yao, M. Chen, R. Wang, W. Zhang, and G. Tan. A New
and Efficient Algorithm-Based Fault Tolerance Scheme for A
Million Way Parallelism. CoRR, abs/1106.4213, 2011.

[30] Wang R. Chen M. Tan G. Sun N. Yao, E. A Case Study of
Designing Efcient Algorithm-based Fault Tolerant Application
for Exascale Parallelism. In Proceedings of the 26th IEEE Inter-
national Parallel and Distributed Processing Symposium (IPDPS),
pages 438–448, May 2012.

