
Approximation Algorithms

Chapter 9: Bin Packing

Presented By:

Piyush Ranjan Satapathy
Class CS260 By Dr Neal Young

(Original Slides From Nobuhisa Ueda’s Webpage)

Overview (1/4)

� Main issue: Asymptotic approximation
algorithms for NP-hard problems

– [Ideal case]: Given an instance, we can always obtain
its solution with any approximation ratio.

• PTAS (Polynomial Time Approximation Scheme)

– See section 8 of the textbook.

– [Better case]: For almost all instances, we can obtain
its solution with any approximation ratio.

• Bin Packing problem

• Minimum approximation ratio = 3/2 if # bin is 2.

Overview(2/4)

� PTAS

– Time bounded by a polynomial in (n), the problem size.

– For any ε > 0 for a problem instance I the performance

guarantee is A(I) ≤ (1+ ε) OPT(I)

� FPTAS

– Time bounded is polynomial in both problem size(n) and (1/ ε).
– We saw the Knapsack which is O(n2 n / ε)

� FPTAAS

– Time bounded is polynomial in both problem size, and (1/ ε)
and having a hidden constant in the order of (ε).

– A(I) ≤ (1+ ε) OPT(I) + Oε (1)

Overview (3/4)

– PTAS

• There is a polynomial-time algorithm that always finds a

solution within a given approximation factor ε.

– Asymptotic PTAS

• There is a polynomial-time algorithm for any large-sized

instances that always finds a solution within a given

approximation factor ε.

Optimal

solution

PTAS

OPT

PTAS
Not a

PTAS
Asymptotic

PTAS

Gradient

(1+ ε)

Gradient

(1+ ε’)

Score of

solution

found

Overview (4/4)

� Bin packing problem

– An example

– The First-Fit algorithm.

• Approximation factor is 2.

– No approximation algorithm having a guarantee of 3/2.

• Reduction from the set partition, an NP-complete problem.

– Asymptotic PTAS Aε.

• The minimum size of bins=ε, # distinct sizes of bins= K.
• Exact algorithm where ε and K are constants.

• Approximation algorithm where ε is constant.

Bin packing problem

� Input:

– n items with sizes a1, …, an (0 < ai ≤ 1).

� Task:

– Find a packing in unit-sized bins that minimizes the
number of bins used.

Items 0.3 0.2 0.2 0.4 0.50.2 0.2

Bins

1.0

0.3

0.2

0.2

0.4
0.5

0.2

0.2

Bin packing problem

� Input:

– n items with sizes a1, …, an (0 < ai ≤ 1).

� Task:

– Find a packing in unit-sized bins that minimizes the
number of bins used.

Items 0.3 0.2 0.2 0.4 0.50.2

Bins

0.2

1.0

0.3

0.2

0.2

0.40.5

0.2
0.2

Overview (3/4)

� Bin packing problem

– An example

– The First-Fit algorithm.

• Approximation factor is 2.

– No approximation algorithm having a guarantee of 3/2.

• Reduction from the set partition, an NP-complete problem.

– Asymptotic PTAS A
ε
.

• Lower bound of bins: ε, # distinct sizes of bins: K.
• Exact algorithm where ε and K are constants.

• Approximation algorithm where ε is constant.

The First-Fit algorithm (1/4)

� This algorithm puts each item in one of partially
packed bins.

– If the item does not fit into any of these bins, it opens
a new bin and puts the item into it.

Items 0.3 0.8 0.20.40.5 0.2 0.2

Bins

1.0

0.40.5

Order

0.3

The First-Fit algorithm (2/4)

� This algorithm puts each item in one of partially
packed bins.

– If the item does not fit into any of these bins, it opens
a new bin and puts the item into it.

Order

Items 0.3 0.8 0.20.40.5 0.2 0.2

Bins

1.0

0.40.5

0.3

0.8

The First-Fit algorithm (3/4)

� This algorithm puts each item in one of partially
packed bins.

– If the item does not fit into any of these bins, it opens
a new bin and puts the item into it.

Order

Items

Bins

0.3 0.8 0.20.40.5 0.2 0.2

1.0

0.40.5

0.3

0.2

0.8

The First-Fit algorithm (4/4)

� This algorithm puts each item in one of partially
packed bins.

– If the item does not fit into any of these bins, it opens
a new bin and puts the item into it.

Order

Items

Bins

0.3 0.8 0.20.40.5 0.2 0.2

1.0

0.40.5

0.3

0.2

0.2
0.2

0.8

First-Fit finds a 2OPT solution (1/2)

� OPT: # bins used in the optimal solution.

� [Proof]

– Suppose that First-Fit uses m bins.

– Then, at least (m-1) bins are more than half full.

• We never have two bins less than half full.

– If there are two bins less than half full, items in the second bin can

be substituted into the first bin by First-Fit.

0.4 0.2 0.4

0.2

First-Fit finds a 2OPT solution (2/2)

� Suppose that First-Fit uses m bins.

� Then, at least (m-1) bins are more than half full.

Sum of sizes

of the items

2

1
OPT

1

−
>≥∑

=

m
a

n

i

i

The size

of
12OPT −> m

m≥2OPTSince m and OPT are integers.

Overview (3/4)

� Bin packing problem

– An example

– The First-Fit algorithm.

• Approximation factor is 2.

– No approximation algorithm having a guarantee of 3/2.

• Reduction from the set partition, an NP-complete problem.

– Asymptotic PTAS Aε.

• Lower bound of bins: ε, # distinct sizes of bins: K.
• Exact algorithm where ε and K are constants.

• Approximation algorithm where ε is constant.

No factor 3/2 approx. algorithms

� [Sketch of Proof]

– Suppose that we have a factor 3/2 approximation
algorithm A.

– Then, A can find the optimal solution for the set
partition problem in polynomial time.

(Partitioning n +ve integers into two sets each adding
up to half of the summation of all n numbers)

This is Equivalent to n items to be packed in 2 bins.

• Note that the set partition problem is NP-complete.

– The result from the above assumption contradicts with
P ≠ NP.

Overview (3/4)

� Bin packing problem

– An example

– The First-Fit algorithm.

• Approximation factor is 2.

– No approximation algorithm having a guarantee of 3/2.

• Reduction from the set partition, an NP-complete problem.

– Asymptotic PTAS Aε.

• The minimum size of bins: ε, # distinct sizes of bins: K.
• Exact algorithm where ε and K are constants.

• Approximation algorithm where ε is constant.

Theorem 9.3

� We can find an approx. solution with factor [(1+2 ε)
OPT+1]

– where 0 < ε <1/2.
• First-Fit is available if ε - 1/2.

– The factor [(1+2 ε) OPT+1] > (2OPT+1) if ε ≧ 1/2.

– 3 bins are required if OPT=2.

• Consistent with the previous inapproximable result.

– 1,001 bins are sufficient for an instance with OPT=1,000.

• by setting ε =1/4,000.

– Note: Its computation time is polynomial time but huge.

� We will follow the algorithm and proofs…

Algorithm

1. Remove items of size < ε from the list

2. Partition all the items into groups of (k) where k=[1/ ε 2].
Round items of each group to the largest size of the
item belonging in it

3. Find an optimal packing

4. Use this packing for original item sizes

5. Pack items of size < ε using First-Fit.

Lemma 9.4

� Consider bin packing with constraints (BP1)

– The minimum size ε of items is a constant.

– # distinct sizes of bins, K, is a constant.

� There exists a polynomial-time algorithm for BP1
that finds the best solution.

– The algorithm searches for the solution exhaustively.

• # combinations of items in a bin denotes R.

• # combinations of n bins such that R distinct bins are
available denotes P.

• P is upper-bounded by a polynomial of n (O(nR)).

Lemma 9.4

� Bin packing with constraints:

– The minimum size ε of items is a constant.

– # distinct bins, K, is a constant.

ε

1.0
At most 1/ε
items are

in a bin.

If ε=0.3,
1/ε = 3.33… =3.

There are K distinct items.

a1

a1

a1

a1

a1

a2

…..

a1

ak
…..

How many combinations

of items are possible in a bin?
M is the max. #

of items in a bin.

R, # combinations of items in a bin

� Pack M items in a bin from (K +1) different items.

– K + 1 = items with K sizes + empty (unselected).

– E.g.) K = 3, M = 3.

a1

a1

a1

a1 is selected.

a1

a2

a3

a1 a2 a3

a1

a3

a1 a3 unselected

3 (=M) partitions are

selected from

6 (= K + M) elements.

R=

 +

M

KM

M and K are constants

→ R is also constant.

P, # combinations of bins

� # combinations of bins with R different bins

– We can find P in a similar way..

– P can be bounded by a function of n.

– E.g.) R=3, n = 3.

b1

b1 was selected.

b1 No binb3

b3

b1 b1

b1

).(

)(

R

R

nO

Rn
R

Rn
P

=

+≤

 +
=

possible combination

is bounded by a

polynomial of n.

We can find the best packing

by exhaustive search in polynomial time.

Examples of nR

� ε: min. size of items, K: # different items.

– ε =0.3 (M = 3), K=3.

• R = 6C3=20, computation time O(n20).

– ε =0.1 (M = 10), K=3.

• R = 10C3=120, computation time O(n120).

– ε =0.05 (M = 20), K=3.

• R = 20C3=1140, computation time O(n1140).

Lemma 9.5

� Bin packing with (less) constraints :

– The minimum size ε of items is a constant.

� There exists a factor (1+ε) approximation
algorithm.

– It first modifies the sizes of items into only K different
ones.

– It uses the exhaustive search used in Lemma 9.4.

• K = 1/ε2 , Q = nε2 .
– Q: # items with the same size in a group.

How to modify the sizes of items

� I: the original input, J: its modified one.

� J consists of Q groups.

� The size of each item is set to the maximum size
of items in its group.

I 0.3 0.2 0.1 0.4 0.50.6 0.7

J

Let Q=3.

0.3 0.4 0.50.2

0.6 0.70.60.6

Sort them by size.

There are at

most K different

item sizes.

0.1 0.6 0.7

0.30.30.3

Modify I.

How to pack items

� From Lemma 9.4, the optimal packing for J can
be found in polynomial time.

� The packing for J is also valid for the original
item sizes.

J

0.6

0.3

0.6

The optimal # bins

denotes OPT(J).

What about approx.

factor Z where

OPT(J) ≤ z OPT(I)?

0.6 0.70.60.60.30.30.3

0.3

0.70.6

0.3

0.4

0.1

0.6

0.3

0.70.5

0.2

For evaluating OPT(I),…

� We prepare another modified instance J’.

� J’ consists of Q groups.

� Each item size is set to the minimum in its group.

Any item in J’ is the

same as or smaller

than the original

item in I.

OPT(J’) ≤ OPT(I)

I 0.3 0.2 0.1 0.4 0.50.6 0.7

J ’

Suppose Q=3.

0.3 0.4 0.50.2

0.4 0.70.40.4

Sort them by size.

0.1 0.6 0.7

0.10.10.1

Modify I.

Diff. between OPT(J) and OPT(J’)

J’

JQ

J’Q

OPT(J) ≤ OPT(JQ)+Q

Each of the biggest Q items

packed into Q bins in J.Any item in J’Q
is always not

smaller than

one in JQ.

OPT(JQ) = OPT(J’Q)

: basis of size

for modification

J’ contains every

item in J’Q.

OPT(J’Q) ≤ OPT(J’)0.4 0.70.40.40.10.10.1

0.6 0.70.60.60.30.30.3

0.60.30.30.3

0.4 0.70.40.4

Q items

Q items

J

Diff. between OPT(J) and OPT(J’)

J’

JQ

J’Q

OPT(J) ≤ OPT(JQ)+Q

OPT(JQ) = OPT(J’Q)

OPT(J’Q) ≤ OPT(J’)0.4 0.70.40.40.10.10.1

0.6 0.70.60.60.30.30.3

0.60.30.30.3

0.4 0.70.40.4

Q items

Q items

OPT(J)

≤ OPT(JQ)+Q

= OPT(J’Q)+Q

≤ OPT(J’)+Q

≤ OPT(I)+Q

Relation between Q and OPT(I)

� Q ≤ nε2 since Q = nε2 .
� OPT(I) > nε since.

– ε = any item size,

– nε = the total item size (n: # items),

– The total item size = # bins (that is, OPT(I))

� Then, Q ≤ nε2 = ε (nε) ≤ εOPT(I).
� OPT(J) ≤ OPT(I)+Q ≤ (1+ε) OPT(I).

0.3 0.60.2 0.2 0.4

0.2
0.2
0.2

0.2
0.2 I

n

ε

0.2
0.2
0.3

0.4

0.6

OPT(I)nε

Theorem 9.3

� We can find an approx. solution with factor [(1+2

ε) OPT+1]
– where 0 < ε <1/2.

• First-Fit is available if ε = 1/2.
– The factor [(1+2 ε) OPT+1] > (2OPT+1) if ε = 1/2.

– 3 bins are required if OPT=2.

• Consistent with the previous inapproximable result.

– 1,001 bins are sufficient for an instance with
OPT=1,000.

• by setting ε =1/4,000.

Algorithm Aε

Input

Items I
More

than ε
I ’

Not more

than ε
I – I ’

Procedure in

Lemma 9.5

Pack items in I –

I’ into bins of I’
by First-Fit.

(1+ε)OPT(I ’)

L ≤ (1+ ?)OPT(I)+?

We consider two exclusive case

to find the upper bound of L.

Output

L bins

Evaluation of Aε (1/2)

� Consider two exclusive cases:

1. No extra bin was required for packing items in I – I’.

– L ≤ (1+ε)OPT(I ’) ≤ (1+ε)OPT(I).
• Since there are more items in I than in I’.

2. Extra bins were required for packing items in I – I’.

– In each of L-1 bins, room is smaller than ε .

L-1

1- ε
Total sum of

item sizes

)1)(1(OPT
1

ε−−>≥∑
=

La
n

i

i

Item size in

.1
1

OPT
L≥+

−ε
Then, we have

Evaluation of algorithm Aε (2/2)

()

()

()).
2

1
0(021

1

121
1

1

1)21)(1(
1

1

1

1
21

2

≤<≥−
−

=

−−+
−

=

−+−
−

=

−

−+

εε
ε
ε

εε
ε

εε
εε

ε

).
2

1
0(

1

1
21 ≤<

−
≥+ ε

ε
ε

Then, we have

Therefore,

.
2

1
0 1OPT)21(1

1

OPT

 ≤≤++≤+
−

≤ εε
ε

L

Conclusion

� We consider the bin packing problem.

– For almost all instances, we can obtain its solution
with any approximation factor.

– There is an approx. algorithm to find factor 2 solution.

– It is impossible to find a solution with arbitrary
approximation ratio under P is not equal to NP.

– There is an approx. algorithm with arbitrary
approximation ratio for large size instances.

