
SEAMSTER: A Generic Fault Tolerant System for Dynamic Scheduling in a 

Distributed Real-Time System 

 

Piyush R Satapathy    Van Lepham 

             Piyush@cs.ucr.edu    lephamv@cs.ucr.edu 

 

Department of Computer Science and Engineering 

University of California Riverside 

 

Abstract: 

 
For decades parallel and distributed 

computing has been a motive for time 

consuming tasks in-order to get the tasks 

done at a higher rate and to free the 

resources as early as possible. Parallel 

execution can be done in many ways 

ranging from a multi processor machine to a 

highly clustered grid. Some of the common 

resources used nowadays are clusters in an 

LSF (Load Sharing Facility), clusters in a 

Grid, or a set of machines in a LAN or 

WAN network or a single machine with 

number of processors embedded in it. We 

develop a framework called SEAMSTER 

which can execute parallel jobs in any of 

these resources irrespective of which version 

the tool is or which vendor the tool is 

provided from. Also we provide monitoring 

and feedback mechanisms for the executed 

jobs to make the whole scheduling a better 

performance, scalability, flexibility and 

extensibility. We present experimental 

results for several scheduling strategies that 

effectively utilize the monitoring and job-

tracking information provided by 

SEAMSTER. These results demonstrate that 

the tool proposed can effectively schedule 

work across a large number of distributed 

processors or machines or clusters that are 

owned by multiple units in a virtual 

organization in a fault-tolerant way in spite 

of the highly dynamic nature of the 

resources used and complex policy issues. 

The novelty lies in use of effective 

monitoring of resources and job execution 

tracking in making scheduling decisions and 

fault-tolerance across a wide variety of 

resources. We have also visited some of the 

tools in the dynamic scheduling in 

distributed real-time system and we verify 

that our framework is more of a general 

version compared to all those.

 

1. Introduction: 

 
For decades there has been a well adoption for 

parallel execution of time consuming tasks. 

Computer Scientists, Engineers and Software 

Industries nowadays use massive distributed 

computing to speed up the execution process. 

Tasks ranging from running regression test cases 

and running nightly software build in software 

industry to executing complex scientific 

calculations in research and development are all 

easily parallelized and executed in parallel. The 

user specifies the hierarchies of all the parallel 

jobs to be executed in order to get the proper 

final output. Depending on this user input the 

execution happens in parallel on a multi 

processor machine or across a number of 

interconnected machines. Distributed engines 

such as GRID and LSF are also providing such 

kind of parallel execution environments. But the 

problem lies if one or more jobs get failed due to 

some fault causing behaviors. Here we provide a 

generic system; an easy-to-use and application 

oriented tool which can run jobs in parallel in 

any parallel execution environment in the most 

fault tolerant way. The tool can run parallel jobs 

in any distributed engine such as any kind of 

Grid engines and LSF engines, or in a 

multiprocessor machine, or in a set of 

interconnected machines. Distributed engines 

such as Grid and LSF have their own scheduling 

policies by a spooling technique. But as we 

present a generic tool we implement the 

scheduling policies assuming that anytime we 



can submit the number of jobs equal to the 

number of parallel execution possible in the 

engine. This saves the spooling overhead and 

gives a fair share with other users. Also we 

implement the scheduling for a set of 

interconnected machines and for a 

multiprocessor machine based on the well 

established and recently developed scheduling 

algorithms. We also present the experimental 

results of all these implemented algorithms with 

some well proved benchmarks. 

In this paper, we present the architecture and 

characteristics of SEAMSTER and its 

performance on a set of platforms like a native 

machine, a set of machines and sets of different 

clustering environments. We consider a multi 

processor machine inside our campus for parallel 

execution in a single machine. For set of 

machines we select 40 machines inside the 

campus and for running in clusters we use 

GRID3 [3], a worldwide consortium of 

university resources consisting of 2000+ CPUs. 

These results show that SEAMSTER can 

effectively reschedule jobs if one or more of the 

machine stops responding due to system 

downtime or slow response time improve total 

execution time of an application using 

information available from monitoring systems 

as well its own monitoring of job completion 

times and manage policy constraints that limit 

the use of resources. These features demonstrate 

the effectiveness of SEAMSTER in overcoming 

the highly dynamic nature of the today’s parallel 

job execution requirements and complex policy 

issues to utilizing the various available 

resources, which is an important requirement for 

executing large production jobs in an 

organization.  

 

The rest of the paper is structured in the 

following manner. Section 2 discusses the state-

of-the-art – the way that most recent tools handle 

the jobs in dynamic resource allocation 

environment and the difficulties faced. Section 3 

discusses the characteristic behaviors of our 

proposed framework. Section 4 outlines our 

architecture in detail and component wise which 

addresses the scheduling woes described in 

section 2. Section 5 provides the implementation 

details of our tool and next section discusses the 

evaluation methods and experimental results 

which gives evidence of the effectiveness and 

comparison of different scheduling 

methodologies using the fully functional set of 

machines as the test bed. Future works and 

conclusion are discussed on Section 7. 

2. Related Work: 

 
We have explored a number of academic and 

industry oriented tools which are available 

widely. The most recent work on this is the 

SPHINX tool [11], which schedules the jobs 

across a number of grid sites available in Grid3 

project. This handles fault tolerant behaviors; 

however, this work can not support to the other 

parallel execution environment. Similarly, the 

tool OpenSTARS (Open Schedulability Tool for 

Analysis of Real-time Systems) [1], is described 

as an “efficient, scalable, flexible, and extensible 

open-source tool and framework that real-time 

systems researchers and practitioners can use for 

both offline and online analysis” [1]. However, 

this tool does not provide sufficient scope for 

dynamic execution with fault causing behaviors. 

Besides these two tools, we also visited five 

other tools named as Cheddar, VEST, STAF, 

TimeWiz, RapidRMA, which give scopes either 

for a real time analysis of dynamic scheduling 

methods or for some specific application 

oriented systems, but are not so well designed to 

handle the fault causing behaviors. None of these 

tools efficiently presented a way to handle real 

life parallel job execution methods taking all 

possible fault causing behaviors into 

consideration. We visit all these tools briefly in 

the following section. 

 

2.1 SPHINX 
 

SPHINX [11] is a middleware scheduler in a grid 

system. It is a modular system including a client 

and a server. First, the user needs to pass the 

defined format execution request to the SPHINX 

client. The client will forward the job to the 

server. The server acts as a scheduler. It will 

locate the best resource to schedule the job. It 

also maintains catalogs of the data and replicas; 

estimates the completion time of the requests; as 

well as monitors the status of the resources.  

After receiving the decision from the server, the 

client will submit the job request to the grid 

system. The SPHINX handles the fault tolerant 

behaviors using the Job Tracker module lies 

within the client.  The Job Tracker will keep 

track the status of the submitted jobs.  If some 

fault causing behavior happens, it will send the 

cancellation request to the grid to cancel the 

executing job and send re-schedule request to the 

server to request for a replacement resource.  

 



However the architecture is not robust enough to 

be fit into any parallel execution environment. 

The whole purpose of this architecture was to 

model a fault tolerant system for scheduling jobs 

across a number of grid sites. In this paper, the 

scheduling algorithms and the architecture have 

been designed keeping the grid site as the 

granularity rather than a single machine in the 

grid cluster. The later is important when there are 

hundreds of machines connected to a particular 

grid cluster. 

 

2.2 OpenSTARS 

 

The authors of OpenSTARS [1] tool pay much 

attention on some required criteria of the tool to 

be considered as a good real-time analysis tool.  

These criteria include correctness, performance, 

scalability, flexibility, and extensibility. The 

OpenSTARS operates based on these main 

objects: Domain, SchedAlgorithm, Driver, and 

Result. The Domain object is an interface used to 

translate from and to the format recognized by 

the scheduling algorithm. It is called Task, 

Resource, and Dependency model (TRDModel).  

The SchedAlgorithm object will do the job of 

analyze the system and report if and how quickly 

the algorithm return a correct result. The Driver 

object acts as an interface between real-time 

system and scheduling algorithm. It will choose 

the best algorithm. The Result object keeps the 

scheduling analysis result and domain 

information for usage when needed. The 

operation includes three steps: setup, analyze, 

and interpret. In the setup step, the Domain will 

parse the XML input and translate to the 

TRDModel. In the second step, the Driver will 

scan the TRDModel to collect information about 

the jobs and resources. Based on this 

information, the Driver will choose a correct 

algorithm to run and call the corresponding 

SchedAlgorithm. Then the SchedAlgorithm will 

return a Result object. In the last step, the 

Domain will save and output the result to the 

user in the format of an XML file. 

 

OpenSTARS does not provide a fault tolerant 

technique of scheduling jobs. It is more or less 

an experimental tool rather than a real life 

system for distributed job scheduling. 

 

2.3 Cheddar 

 

Cheddar [13] is an open-source real-time 

scheduling tool.  It implements most of the 

classical real time scheduling algorithms such as 

Rate Monotonic Analysis, Earliest Deadline 

First, Deadline Monotonic, and Least Laxity 

First.. However, it does not support the fault 

tolerant behaviors and can not be compatible 

with wide variety of resources. 

 

2.4 VEST 

 

VEST [14] has been built as a toolkit whose aim 

is to provide a rich set of dependency checks 

based on the concept of aspects to support 

distributed embedded system development via 

components.  Though this tool is a real time 

distributed system, yet it can not be applied 

across applications. It is limited to embedded 

applications and lacking the proper ways to 

handle the fault tolerant techniques. 

 

2.5 STAF 

 
The Software Testing Automation Framework 

(STAF) [16] built by IBM is an execution engine 

which helps to automate the distribution, 

execution and analysis of results of the test cases 

in an environment properly arranged for software 

nightly built. This is an open source, multi-

platform, multi-language framework designed 

around the idea of reusable components, called 

services (such as process invocation, resource 

management, logging, and monitoring). It is built 

on top of XML, python and also provides a nice 

GUI monitoring application. However this can 

not schedule any real life jobs in a parallel 

environment. Also STAF does not take care of 

rescheduling the failed jobs as its application is 

not mattered with the handlings of the fault 

causing behavior. 

 

2.6 TimeWiz  

 

TimeWiz [12] is another tool designed for 

modeling, analyzing, and simulating 

performance and timing behavior of real-time 

systems. TimeWiz only works in the Widows 

platform and it is more an analysis tool rather 

than a real time distributed system.  

 

2.7 RapidRMA 

 

RAPID RMA [15] is also a real time analysis 

tool which allows real-time systems software 

developers to prevent costly design mistakes and 

accelerate their development schedules. The 

multiple analysis tools contained in 

RAPID RMA allow designers to test software 

models against various design scenarios and 



evaluate how different implementations might 

optimize the performance of their systems. By 

isolating and identifying potential scheduling 

bottlenecks in both soft and hard real-time 

systems, RAPID RMA gives a better hand to the 

art of modeling in real-time system.  

 

3. Characteristics of SEAMSTER: 
 
Our main goal is to put forward an infrastructure 

which will execute parallel jobs in a fault-

tolerant scheduling technique. Fault behaviors in 

a real time execution system are caused by 

various reasons such as geographically 

distributed systems, heterogeneous resources, 

dynamic loads, availability of the resources, 

decentralized ownerships, and different local 

scheduling policies. We see the consequences as 

below for these fault behaviors. (1) Job Failure 

with No Output: job will be stopped running 

without completion. (2) Job Failure with Wrong 

Output: job will complete running but it will 

produce wrong output due to some inter 

dependencies or some synchronization issues. (3) 

Job Slowdown: job will be continuing running at 

a very slow rate to exceed the time out period. 

To overcome this problem we implement the 

below three techniques. 

 

1.  Feedback Technique: We develop a method 

to get the execution status information of each 

submitted job. Our scheduling algorithm utilizes 

this information to submit any new job, kill and 

reschedule any slow job, and reschedule the 

failed jobs.  

 

2. Monitoring Technique: We develop a 

method to monitor all the machines on the 

parallel execution environment. This information 

is updated frequently and our scheduling 

algorithm uses this information for choosing the 

right resource. We reschedule jobs if one or more 

of the jobs exceed time out period by system 

downtime or slow response. In the 

implementation across machines we utilize the 

monitoring information not to send the jobs to 

the failed or slowed down systems. We keep on 

looking to those systems until the systems pass 

some pinged criteria. We also schedule keeping 

the view of minimum number of resource used 

and minimum amount of time used. 

 

3. Keeping History:  We store the history of 

executed jobs for future reference. The 

framework keeps the records of the size and type 

of jobs executed for the first time in a database. 

Usually the user selects an algorithm to schedule 

the jobs dynamically. If the user doesn’t specify 

a particular algorithm to run, then the analyzer 

chooses an optimized algorithm matching the 

information of the jobs to be scheduled with the 

information stored in the database. We also keep 

the trivial information like individual machine 

performance and algorithm related information 

into the database.  

 

4. SEAMSTER Architecture: 

 
Figure 1 describes the architecture of 

SEAMSTER. Targeting the three characteristics 

as mentioned above we develop 3 layers in our 

proposed architecture.  The end levels are the 

user who schedules the job and the resource that 

executes the job. And in the middle layer we 

have three components named as analyzer, 

monitor and history storage. The monitor has 3 

components such as a job monitor, a resource 

monitor and a supervisor. The details of each 

component have been given below. 

 

4.1 Scheduling Job 

 

The user schedules the job by giving input 

information to the system. Input information are 

the type of resource, the resource handling 

information, the static or dynamic job list and the 

choice of scheduling algorithm.  

 

4.2 Analyzer: 

 

The main function of the analyzer is to choose a 

best algorithm based on the type of jobs at hand. 

If the user chooses optimized algorithm as an 

option then the analyzer analyzes the information 

in the history storage.  

 



 
   

    Figure 1: SEAMSTER system architecture 

 

It matches the type of file and size of file of the 

jobs at hand with similar jobs information from 

the data base and then based on this information 

it allocates the best algorithm. 

 

4.3 History Storage: 

 

The history storage stores all the first hand 

information. It keeps a record of all the unique 

kind of jobs executed along with the time taken 

and the resource name used for the job. It also 

stores the information of all the faulty machines 

and jobs which got failed and need to be 

rescheduled. 

 

4.4 Supervisor: 

 

To avoid using RPC (Remote Procedure Calls), 

we design a module called Supervior.  

Supervisor is an executable program.  It acts as a 

middleware helping the scheduler in starting, 

suspending, and resuming a job.  It has three 

basic functions as followed:  

1. Start: when the Scheduler asks the 

Supervisor to execute a job, the 

Supervisor will create a process to start 

executing that job. In the mean time it 

will collect the corresponding process 

ID and write to a file.  The Scheduler 

will collect the process ID from that file 

and store in the database to use later to 

suspend or resume the job. 

2. Suspend: when the Scheduler asks the 

Supervisor to suspend a job, it needs to 

provide the Supervisor the process ID 

of the required suspend job.  The 

Supervisor will suspend that job by 

sending a SIGSTOP signal. 

 

3. Resume: similarly, when the Scheduler 

asks the Supervisor to resume a job, it 

will need to provide the Supervisor the 

corresponding process ID of that job. 

The Supervisor will resume the job by 

sending a SIGCONT signal. 

 

4.5 Resource Monitor: 

 

Resource monitor monitors all the machine 

where jobs are scheduled. It keeps on pinging all 

the used resources. If any machine does not 

respond within a fraction of time second then the 

monitor assumes it as faulty and updated the 

history storage. All the faulty machines will not 

be monitored any more until the amount of  jobs 

at hand get finished execution. 

 

4.6 Job Monitor 

 

This component of the architecture keeps on 

looking to the job status of each job. We develop 

 Supervisor & 

keeping History 

Resource Monitor 

      Job Monitor 

Native 

Machine 

Set of 

Machines 

Grid 

Clusters 

LSF 

Analyzer User 

History 

Storage 

Scheduling 

job 

Wide variety of resources 
Middleware 

Sets algorithm 



a method of knowing the status of job at three 

various stages such as fired, running and done. 

We keep a time track of every job scheduled and 

if the time spent for any interval of these three 

exceeds a certain specific amount we kill the job 

and reschedule it according to the algorithm 

planned before. 

 

4.7 Wide Variety of Resources: 

 

This is one of our major implementation. We 

have generalized the kind of resource a user 

wants to use. The use can give a set of machine 

names or a single machine or a cluster like grid 

or LSF or anything else. With addition to the 

type of resource the user needs to supply with 

the login information as a simple file format. The 

file should contain the command to loginto the 

resource, command to execute the job, command 

to know the status of the job and command to 

kill the job. For example if the user chooses grid 

as his resource then he must give “qsub” as 

execution command, “qstat” as status command 

and “qdel” as delete command inside a file in a 

certain prescribed format. 

 

5. Implementations: 
 

We have developed a user friendly Graphical 

User Interface in java aiming to ease the use of 

the system.  Our main implementation of the 

system goes in C++ language and some scripting 

in PERL. The different components shown in the 

GUI in fig 2 have been described below. 

 

 
 

    Figure 2: Snapshot of SEAMSTER GUI 

 

5.1 Scheduling Options 

 

The system allows the user to choose an 

algorithm in the supplied list: Round Robin, 

CPU Based, Job Completion Based, Earliest 

Deadline First , Least Laxity First and etc. If the 

user wants the analyzer to calculate the best 

fitting algorithm the he has to choose the option 

of “optimized algorithm”. The system also 

allows the user to choose between a list of 

available resources that they want to use such as 

a Native Machine, a Set of Machines, GRID, or 

LSF or any other clustering environments. There 

are options for running the system without any 

monitoring and feed back mechanism. And the 

last option here we have is a performance check 

option; upon setting this option to yes the system 

will run the algorithms with some given bench 

mark to measure the performance. 

 

5.2 Input Output Options 

 

The user needs to supply a list of executable jobs 

that are stored in a file.  The system allows the 

user to browse to the location where the input 

job list file is saved. Similarly the resource name 

is also set in a file and given as input. And the 

login information and the path to output are also 

given to the system as input. Each job in the job 

file is represented as a script name. The script 

contains the job to be run. Right now we don’t 

support how to create these scripts. But we have 

plans to make our systems robust enough to 

make these scripts automatically without 



depending upon the user to create it. We have an 

option named as “keep session alive”. If the user 

chooses yes then the system will behave 

dynamically and will allow real time jobs to be 

handled until the user closes or stops the 

application. Upon choosing this option as “no” 

the system will behave as a static scheduler. 

 

5.4 Status Updates: 

 

The status panel of the GUI shows a tabular 

format of the output in four different columns. 

The columns present the name of the job file, 

name of the job and name of the machine and 

status. The status column will change from time 

to time starting from fired to running and then 

done.  

 

6. Evaluations and Setups: 

   
We currently implement 5 different algorithms in 

our system. We have visited these algorithms 

shortly as shown below. Our experiment is based 

on a comparison of performance of all these 

algorithms with and without of monitor and 

feedback mechanism. Our machine set up is 

discussed in the second section 

  

6.1 Algorithms Implemented 
6.1.1 Round Robin: 

 

Round Robin algorithm tries to submit jobs in 

the order of machines given in the machine list. 

Without waiting for the jobs to be finished in any 

one machine the scheduler schedules in a round 

robin fashion. The maximum limit of any 

machine is not exceeded. With the monitoring 

and feedback mechanism, the scheduler 

schedules on the machines which are active and 

promptly running.  

 

6.1.2 CPU Based: 

 

This algorithm takes the number of CPUs in each 

machine into account and schedules the job 

based on the maximum number of jobs that can 

be scheduled in any one machine. With the 

monitor and feedback mechanism the scheduler 

utilizes the information of previously submitted 

jobs from the history storage and calculates the 

load rate with the following formula for each 

machine it plans jobs to schedule  

Ratemachine  = (panned_jobmachine + 

unfininshed_job machine) / CPU machine 

Where “machine” represents a particular 

machine name.  

 

6.1.3 First Come First Service based : 

 

The system will schedule the job as long as there 

is an available resource.  When all the resources 

are busy, the system keeps checking and waiting 

for the first job to be done and the corresponding 

resource to be released.  Then it will schedule the 

next job to that resource.  

 

6.1.4 Early Deadline First (EDF): 

 

The system will collect the jobs in the input job 

list and build a priority queue based on the 

deadlines of the jobs with the smallest deadline 

being at the top. While there is job in the queue, 

the system will schedule the job that has smallest 

(or earliest) deadline first accordingly.  When a 

new job arrives, it will update the queue. It also 

can suspend the running job and schedule the 

new job if the new job has smaller deadline, then 

resume the suspended job later when there is no 

competition.  

 

6.1.5 Least Laxity First (LLS): 

 

LLS algorithm will assigns the priority of the 

jobs based on their laxity values. The laxity 

value is calculated as followed:  

 

Laxity = Time_to_deadline - Remain_exec_time 

 

LLS will update the laxity values of all the jobs 

whenever there is a new job arrival and schedule 

the job with the least laxity first. 

 

6.2 Set Ups: 
 

We set 40 Machines inside the Engineering 

Building Unit II. Some of them permanently 

show fault causing behaviors; 5 Machines do not 

get ported, other 6 Machines get connected but 

fail to execute the jobs. We wrote 15 simple loop 

functions as part of our evaluation benchmarks. 

The execution time of these loop functions 

varied from 5 seconds to 5 minutes.  We take 

each such loop function as one of our job. We 

have 60 such Jobs. Each job name is put in side a 

script and all the scripts are listed in a file line 

wise and this file is one of the inputs to our 

system. The different characteristics and results 

of these experiments are shown below. 

 



7. Experiments and Results: 

 

Performance Analysis

0
50

100
150
200
250
300
350
400

Ro
un
dR

ob
in

#C
PU

 B
as
ed

FC
FS

 B
as
ed

ED
F 
Ba
se
d

Scheduling Algorithms

T
im

e
 (
s
e
c
)

No Monitor No Feedback

Monitor and Feedback

    

Reschedulings due to Monitor and Feedback

0

2

4

6

8

10

12

14

10 20 30 40 50 60

No. of Jobs Executed

A
v
e
ra

g
e
 n

u
m

b
e
r 
o
f 

R
e
s
c
h
e
d
u
li
n
g
s

#CPU Based

Round Robin

First Come First

Serve

Early Deadline First

 
 Figure 3a. Performance analysis    Figure 3b. Rescheduling on a list of  

  on a list of machines    machine as shown in fig 3a. 

 

Performance Analyis on a single Machine

0

100

200

300

400

500

600

Ro
un
dR

ob
in

#C
PU

 B
as
ed

FC
FS

 B
as
ed

ED
F 
Ba

se
d

Scheduling Algorithm

T
im

e
 (
s
e
c
) No Monitor and No

Feedback

Monitor and Feedback

     

Reschedulings on a single Machine with Monitor 

and Feedback

0

0.5

1

1.5

2

2.5

3

3.5

10 20 30 40 50 60

No of JObs Executed 

A
v
e
ra

g
e
 N

u
m

b
e
r 
o
f 

R
e
s
c
h
e
d
u
li
n
g
s #CPU Based

Round Robin

First Come First

Serve

Early Deadline First

 
 Figure 3c. Performance analysis on a          Figure 3d. Rescheduling on a single machine 

  Single machine     as shown in fig 3d. 

 

We have plotted the results of two experiments. 

The first experiment was on a set of 40 machines 

with the set of 60 jobs to execute and the second 

experiment was on a single machine with 60 jobs 

to execute in parallel. From fig. 3a we observe 

that monitoring and feedback mechanism gives a 

better performance up to 10%. The time note 

here is the end to end execution time. With no 

monitoring and feed backing, the system will 

hang out and give no outputs of the jobs 

executed in the faulty machine. The time we 

noted for this is the time out of the system itself. 

With monitoring we kill the jobs on faulty 

machines with in a fraction of recognizing the 

faults and reschedule them in good available 

machines on the basis of the algorithm chosen.  

Fig. 3b shows the number of rescheduling in 

each of these algorithms. We do the experiments 

several times and take the average number for 

plotting. Similarly fig. 3c and fig. 3d show the 

time consumed and rescheduling done in one 

particular machine. However the rescheduling is 

very less here because of the high power 2.8GHz 

dual Intel Xeon processor machine. But there are 

certain rescheduling due to the time out for 

certain jobs. And this is because the machine is 

not capable of running 60 jobs in parallel and it 

automatically does a serialization of jobs. The 

time consumed by all these algorithms is also 

significantly higher than that of the first 

experiment. 

 



8. Conclusion and Future Work: 

 
In this paper we introduced a new architecture 

for parallel execution of jobs in real life. We 

visited a number of tools across industry and as 

well as academics and we figured out that there 

was no such robust tool which could fit into a 

dynamic environment of today’s first changing 

software development and methodologies. We 

took into account a various number of resources 

and the best fault tolerant techniques that has 

been devised yet and all the well established 

dynamic scheduling algorithms. Our initial 

experiments on a certain number of machines 

show a promising result. We have not yet tried 

our system in cluster environment. 

 

We are planning to get a planet lab ID and an ID 

from Grid3 to conduct more research and 

experiments on our proposed system. Though we 

initially targeted for a number of algorithms we 

could not finish all of them due to the time 

constraint and also our planning regarding the 

implementation of certain benchmarks into our 

system are yet to be done

.  

 

References: 
[1]  K. Bryan, T. Ren, J. Zhang, L. Dipippo, and 

V. Fay-Wolfe. The Design of the OpenSTARS 

Adaptive Analyzer for Real-Time Distributed 

Systems. In Proceedings of the 19th IEEE 

International Parallel and Distributed Processing 

Symposium IPDPS'05, 2005. 

 

[2] C. Cavanaugh and R. Ari. Dynamic Resource 

Management Algorithm for a Distributed Real-

time System. In Proceedings of the 19th IEEE 

International Parallel and Distributed Processing 

Symposium IPDPS'05, 2005. 

 

[3] I. Foster. The Grid2003 Production Grid: 

Principles and Practice. In Proceedings of the 

13th IEEE International Symposium on High 

Performance Distributed Computing, 2004. 

 

[4] N. I. Kaemeno_ and N. H. Weiderman. 

Hartstone distributed benchmark: requirements 

and definitions. In Proceedings of the 12th IEEE 

Real-Time Systems Symposium, IEEE 

Computer Society Press, December1991. 

 

[5] R. Kar and K. Porter. Rhealstone- a Real-

Time benchmarking Proposal. In Dr Dobbs 

Journal, (2), February 2002.  

 

[6] D. L. Kiskis and K. G. Shin. SWSL: A 

Synthetic Workload Specification Language for 

Real-Time Systems. In IEEE Transaction on 

Software Engineering 20(10), October 1994. 

 

[7] K. Low, S. Acharya, M. Allen, E. Faught, D. 

Haenni, and C. Kalbeisch. Overview of Real-

Time Kernels at the Superconducting Super 

Collider Laboratory. In Proceedings of the IEEE 

Particle Accelerator Conference, 1991. 

 

[8] B. Shirazi, L. Welch, B. Ravindran, C. 

Cavanaugh, B. Yanamula, R. Brucks, and E. 

huh. DynBench: A Dynamic Benchmark Suite 

for Distributed Real-Time Systems. In 

Proceedings of the 11 IPPS/SPDP'99 Workshops 

Held in Conjunction with the 13
th
 International 

Parallel Processing Symposium and 10
th
 

Symposium on Parallel and Distributed 

Processing,1999. 

 

[9] N. D. Thai. Real-Time Scheduling in 

Distributed Systems. In Proceedings of the 

International Conference on Parallel Computing 

in Electrical Engineering PARELEC'02, 2002. 

 

[10] B. G. Ujvary and N. I. Kamenoff. 

Implementation of the Hartstone distributed 

benchmark for real-time distributed systems: 

results and conclusions. In Proceedings of the 

5th International Workshop on Parallel and 

Distributed Real-Time Systems, IEEE Computer 

Society Press, 1997. 

 

[11] J. uk In, P. Avery, R. Cavanaugh, L. 

Chitnis, and M. Kulkarni. SPHINX: A Fault-

Tolerant System for Scheduling in Dynamic Grid 

Environments. In Proceedings of the 19th IEEE 

International Parallel and Distributed Processing 

Symposium IPDPS'05, 2005. 

 

[12] TimeSys Corporation, TimeWiz: Model and 

Analyze System Performance 

http://www.timesys.com/products/timew

iz/ 
 

[13] The Cheddar Project: a Free Real Time 

Scheduling Analyzer 

http://beru.univ-

brest.fr/~singhoff/cheddar/ 



 

[14] J.AStankovic, R. Zhu, R. Poornalingram, C. 

Lu, Z. Yu, M. Humphrey, and B. Ellis, “VEST: 

An Aspect-Based Composition Tool for Real-

Time Systems,” The 9
th
 IEEE Real-Time and 

Embebed Technology and Applications 

Symposium, Toronto, Canada, May 2003. 

 

[15] RapidRMA: The Art of Modeling Real-

Time Systems 

http://www.tripac.com/html/prod-fact-rrm.html 

 

[16] Software Testing Automation Framework 

(STAF) 

http://staf.sourceforge.net/index.php 

 

 


