
Simulation Verification of multiple levels of
constraints for system level designs in systemC

Piyush Ranjan Satapathy, Xi Chen and Harry C. Hsieh
Department of Computer Science

University of California, Riverside, CA 92521
piyush, xichen, harry@cs.ucr.edu

Abstract— A problem of increasing importance in the design of
highly complex, heterogeneous, concurrent and large multipro-
gramming systems is the, so-called, deadlock or deadly-embrace
problem. So deadlock detection and resolution has been an
important issue for decades. In this paper we have surveyed the
different possibilities of deadlocks in system design in SystemC
language environment and then we verify the work that has been
done on the treatment of deadlocks from both the theoretical
and practical points of view in concurrent systems modeled in
Metropolis design environment. We have applied the proposed
data structure called the dynamic synchronization dependency
graph (which captures the run time dependencies in MMM envi-
ronment) in our deadlock detection algorithms and found that it
suits well to the designs in the systemC environment too. We have
also figured out some other constraints of system level design like
live lock and starvation in systemC environment. Some changes
have been applied to the loop detection algorithm to handle the
detection of such scenarios in the specified design environment.
We demonstrate our surveys, analysis and applications through
different real world design examples.

I. INTRODUCTION

System level design has been an essential part of EDA
industry for last few years. The earlier in the design process
a designer can locate a problem, the less time and resources
it costs to fix the problem. Every time a design is synthesized
from one level to a more detailed level, such as behavioral to
RTL or RTL to gate, it takes longer to do a design simulation.
Furthermore, problems that occur at higher levels of design
abstraction are often hidden by the details of a lower-level
abstraction, making design debugging more difficult and time
consuming. Lost time and added expense are pushing design,
analysis, and verification above the RTL level. So verification
with multiple levels of constraints at system level design is a
must.

Different Constraints specification at higher level of abstrac-
tion in system design has already been done by the authors in
[3]. The most significant constraint in system level design is
deadlock detection and prevention which has been simulated
and verified in a generalized model in [5]. The authors in
[2] have discussed the deadlock analysis of system level
design in a specific environment called Metropolis simulation.
They have also proposed a data structure called the dynamic
synchronization dependency graph (DSDG) that reflects online
deadlock analysis. The authors in [1] have presented a live
lock analysis for a specific purpose oriented system level
design. Also the starvation analysis [4] which is a similar
concept of deadlock analysis has been discussed heavily in

the literature. Here we do the verification of all the above
mentioned constraints named, deadlock analysis, live lock
analysis and starvation analysis at system level design in
SystemC simulation environment.

SystemC [?] enables system level modeling that is, model-
ing of systems above the RTL level of abstraction, including
systems which might be implemented in software or hardware
or some combination of the two. One of the challenges in
providing a system level design language is that there is a wide
range of design models of computation, design abstraction
levels, and design methodologies used in system design. To
address this challenge in SystemC 2.0, a small but very general
purpose modeling foundation has been added to the language.
On top of this language foundation we can then add the more
specific models of computation, design libraries, modeling
guidelines, and design methodologies which are required for
system design. Using some of the existing features of SystemC
(for example; wait() method, Event type, SystemC scheduler,
and systemC execution model) we can build a simulation
model for the analysis of our desired constraints.

II. RELATED WORK

III. SYNCHRONIZATIONS IN SYSTEMC

SystemC has a set of features like channels, interfaces,
and events for generalized modeling of communication and
synchronization. A channel is an object that serves as a
container for communication and synchronization. Channels
implement one or more interfaces. An interface specifies a set
of access methods to be implemented within a channel, but the
interface itself doesn’t provide the implementation. An event
is a flexible, low-level synchronization primitive that is used
to construct other forms of synchronization. In this section we
review different synchronization constructs in systemC level
description and discuss how deadlock situations are caused by
the synchronization mechanism in a concurrent system model.

A. Static and Dynamic Sensitivity in SystemC

In order to facilitate the modeling at higher level of ab-
straction and as well as the creation of refined communica-
tion channels, SystemC language description forms a layered
approach for system level design. SystemC simulation kernel
forms the base layer. Dynamic sensitivity and notion of events
are introduced as components of the next layer. Channels,
interfaces and ports form the third layer as Interface Method
Call scheme. Then signals are implemented on top of the

TABLE I

LAYERED APPROACH OF SYSTEMC SIMULATION KERNEL

Remote Procedure Calls (RPC)
Signals

Channels, Interfaces and Ports
Events & Dynamic Sensitivity

SystemC Simulation Kernel

channels, interfaces and ports layer. And then the Remote
Procedure Calls scheme is implemented on top of the other
four layers. The layered approach has been shown in Table ??
In systemC a process plays an important role. It describes the
functionality of the system, and allows expressing concurrency
in the system. Processes are contained in modules and they
access external channel interfaces through the ports of a
module. Events are treated as primitive behavior triggers.
A process can suspend on or be sensitive to one or more
events. Events allow for resuming and activating processes.
The sensitivity of a process defines when this process will
be resumed or activated. A process can be sensitive to a
set of events. Whenever one of the corresponding events is
triggered, the process is resumed or activated. If the sensitivity
of the process is declared statically; i.e., if it is declared
during elaboration and can not be changed once simulation
has started, then it is called Static Sensitivity. The sensitivity
of a process can also be altered during simulation which is
called Dynamic Sensitivity. In some cases of the system level
design we want a process to be sensitive to a specific event
or a specific collection of events which may change during
simulation. This dynamic sensitivity is possible by using the
wait() method and notify() method. This method has been
extended to allow specifying one or more events or a collection
of events to wait for.

B. Synchronization by wait statement

In systemC, the wait() method is called anywhere in the
thread of execution of a thread process. When it is called,
the specified events temporarily overrule the sensitivity list,
and the calling thread process suspends. When one or all of
the specified events is notified, the waiting thread process
is resumed. The calling process is again sensitive to the
sensitivity list. When the wait() method is called without
arguments, the calling thread process will suspend. When one
of the events in the sensitivity list is notified, the waiting thread
process is resumed. The static sensitivity of the calling thread
process doesn’t change. In addition to events, it is also possible
to wait for time which is used as a timeout when waiting for
one or more events. Following is a list of different forms of
wait() method which are supported by systemC.

1) wait(): Upon this method, the calling process waits until
the events in the sensitivity list are notified.

2) wait(e1): This wait method resumes execution of the
current process until the event e1 is notified.

3) wait(e1 | e2 | e3): This wait method holds the current
thread process until either of events e1, e2, or e3 is done.

Fig. 1. An example of wait() statements

4) wait (e1 & e2 & e3): This wait method holds the
execution of current thread process until all of the events
e1, e2, e3 are done.

The semantics of the wait() method with one or more
event arguments is that the method returns (i.e. the thread of
execution is resumed) either when at least one of the events
is notified or when all the events are notified. A mixture of |
operator and & operator is not supported by systemC.

In systemC, the system function and the architecture are
modeled as separate networks of process communicating
through channels. In a functional network, functional pro-
cesses run concurrently and communicate with each other
through ports, channels and interfaces. In an architectural
network, computing and storage resources are modeled with
the media. Services that the architecture can provide are
modeled with the processes that are called mapping processes.
A function model is mapped to an architecture model as
the events of functional processes and mapping processes are
synchronized with wait() and notify() constraint. A designer
is allowed to implement particular schedulers as systemC
schedulers to manage architectural resources and services in
architecture model.

A wait constraint is an alternative of a tryst used in the
concurrent programming. It can specify that two events in
two different processes must occur at the same time. If only
one of the two events can be scheduled to occur, the process
containing the event has to be blocked until the other event
can occur also. A wait can also require that an event can’t
occur until any of the other events occur. The execution of a
process has to be blocked at a certain event until all the wait
constraints containing the events are satisfied. For example
lets assume functional process P0 and mapping process P1

and P2 have events e0, e1 and e2 respectively and P0 is
synchronized by a wait constraint wait(e1 | e2) which requires
that e0 cannot occur until e1 or e2 occurs. This scenario may
denote that a functional process can not run until there are
free computation resources and communication channels in the
architecture. The execution of P0 may be blocked by either
P1 or P2 as illustrated in Fig. 1.

A wait constraint amongst functional processes can also lead
to blocking until one or all the events of the called processes
are notified. For example lets assume functional process P0,
P1, P2 and P3 have events e0, e1, e2 and e3 respectively and
P0 is synchronized by a wait constraint wait(e1 & e2 & e3)
which requires that e0 cannot occur until e1 and e2 and e3

Fig. 2. An example of wait() constraint amongst the thread processes

occurs. This scenario may denote that a functional process can
not run until there are other functional processes are done. The
execution of P0 may be blocked by any one processes of P1,
P2 and P3 as illustrated in the Fig. 2.

C. Synchronization by Events and Notifications

SystemC provides a fixed set of channels and corresponding
events. The event type SC EVENT supports user defined
channel types. The different functionality that the event type
SC EVENT provides are as follows;

1) Constructor: SC EVENT is used to create an event
object by calling the constructor without any arguments.

2) Notify: An event can be notified by calling the notify(
) method of the event object.

3) Cancel: An event notification can be cancelled by calling
the cancel() method of the event object.

notify() method can operate in 3 different ways. Those are as
follows; (1)notify() with no arguments: immediate notification.
Processes sensitive to the event will run during the current
evaluation phase. (2) notify() with a zero time argument: delta
notification. Processes sensitive to the event will run during
the evaluation phase of the next delta cycle. (3) notify() with a
non-zero time argument: timed notification. Processes sensitive
to the event will run during the evaluation phase at some future
simulation time.

The SystemC simulation kernel supports the concept of
delta cycles. A delta cycle consists of an evaluation phase and
an update phase. This is typically used for modeling primitive
channels that cannot change instantaneously, such as sc signal.
By separating the two phases of evaluation and update, it
is possible to guarantee deterministic behavior (because a
primitive channel will not change value until the update phase
occurs - it cannot change immediately during the evaluation
phase).However SystemC can model software, and in that case
it is useful to be able to cause a process to run without a delta
cycle (i.e. without executing the update phase). This requires
events to be notified immediately (immediate notification).
Immediate notification may cause non-deterministic behavior.
The ordering of the execution of events will be random and
there would be possibilities like deadlock and live lock. For
Example; If a process P1 notifies immediately to an event e2

of process P2 and P2 notifies immediately event e3 of process
P3 and e3 waits up to event e1 of process P1, then there
will be a deadlock if the execution of the P1 is over by the

TABLE II

DESCRIPTION OF THE BEHAVIOUR OF THE SIMULATION KERNEL

1 Initialization: execute all processes (except SC CTHREADs) in an
unspecified order.

2 Evaluation: select a process that is ready to run and resume
its execution. This may cause immediate event notifications to
occur, which may result in additional processes being made ready
to run in this same phase.

3 Repeat step 2 until there are no processes ready to run.
4 Update: execute all pending calls to update() resulting from calls

to request update() made in step 2.
5 If there were any delta event notifications made during steps 2 or 4,

determine which processes are ready to run due to all those events
and go back to step 2.

6 If there are no timed events, simulation is finished.
7 Advance the simulation time to the time of the earliest pending

timed event notification.
8 Determine which processes are ready to run due to all the timed

events at what is now the current time, and go back to step 2.

time the notification of e3 comes to the scheduler. In this case
the e3 will keep waiting but P1 will never be finished as its
already over. Also series of notify() or different combinations
of wait() and notify() would cause such situations which we
will explore detail later.

D. SystemC simulator kernel

The systemC simulation kernel plays an important role to do
the scheduling. The scheduler’s task is to determine the order
of execution of processes within the design based on the event
sensitivity of the processes and the event notifications which
occur. The systemC scheduler has support for both software
and hardware oriented modeling. Due to software modeling
the systemC exhibits some non deterministic behavior which
leads to system level blockings. The over all steps for the
execution of the systemC scheduler are outlined below and
the flowchart is represented in Fig. 3.

E. Deadlock in SystemC

Deadlock in systemC can be defined as situations where
two or more processes are blocked in execution while each is
waiting for some conditions to be changed by others. Given
the events and sensitivity lists, the following situations may
block the execution of a running process.

1) SystemC uses concepts like mutual exclusion (mutex)
or semaphores to handle the software modeling where a
shared variable is used. It guarantees that two processes
can not simultaneously access the variable. So a process
has to wait for the availability of resources from other
functional or architectural processes. For example: In
this example, which SC THREAD will run first is un-
defined and there is no way in systemC to tell which
will run first. If Thread2 runs first then there is no way
to execute the thread1 which will cause a deadlock for
the thread1.

2) A process cannot execute if it has wait statement and
the events in the wait list are not finished. Suppose
we have a process P1 which has a wait statement as

Fig. 3. Flow Chart Diagram of SystemC Scheduler

wait(e2 | e3 | e4) where e2, e3 and e4 are events in
processes P2, P3 and P4 respectively. There may be
cases when none of the three called events will finish
execution. Such a case is when P2 waits for P3 and P3

waits for P4 and P4 waits for an event in the P1 which
has not been executed yet.

3) Lets say that a process P1 has an wait statement like wait
(e2 & e3 &e4) where e2, e3 and e4 are some events in
the process P2,P3 and P4. Here the process P1 cannot
execute until all the three events are finished execution.
So now if the same situations arise for e2, e3 and e4

as described above in 1, we can get a blocking of the
system. Also additionally if for every event e2 or e3 or
e4, there becomes a no determinism behavior as given in
1, then also P1 will get blocked leading to blocking of
all the wait statements in the modeling and so causing
system level deadlock.

4) The event type and notify() also will cause nondeter-
ministic behavior in systemC. For example let’s say that
process P1 has events e1 and e2. The process P1 calls
event e3 of process P2 after its own execution of e1 but
before e2. So now the execution of P2 will be started
just after the e1. Now let’s say that process P2 has an
event which notifies to event2 of process P1. So here
the execution order of P1 from event e1 to event e2 will
not be clear and any wait statements or any other event
lists in that segment of the program may cause blocking
of the system.

SC MODULE(nondeterminism)

sc in Trig;
int SharedVariable;
void proc 1()

wait(sharedVariable);
SharedVariable = 1;
cout � SharedVariable � endl;

void proc 2()
SharedVariable = 2;
cout � SharedVariable � endl;

SC CTOR(nondet)
SC THREAD(proc 1);
sensitive � Trig.pos();
SC THREAD(proc 2);
sensitive � Trig.pos();

;

Fig. 4. A Non Deterministic example of thread process

The interaction of these wait(), sc event and notify() state-
ments can be quite complicated and may land in the blocking
of the system. A deadlock exists if there is nondeterministic
behavior due to mutex sharing or if there exists dependency
loops among the processes in a system. To identify and analyze
these deadlock situations and report the processes before hand
is our motive in this paper.

F. Livelock in SystemC

In systemC, live lock is defined as a situation where the
system falls into dead loop and responds to no further inter-
rupts. It is identified as infinite cyclic executions of any events.
Different possibilities of live lock in systemC are described as
below.

1) If a process P1 has some events named e1, e2 and e3

and all these events are specified as event objects and
each one notifies the other by calling notify() or by
calling notify(SC ZERO TIME) in a cyclic basis, then
it will lead to a live lock of the process P1 which will
not let any other processes to execute.

2) When a method process is invoked, it executes until
it returns. If there is an infinite loop inside certain
number of processes due to the continuous calling of
each other by notify(time, SC NS, my event) then a
livelock situation will be occurred.

3) SystemC supports clock threading of processes by call-
ing SC CTHREAD. Clocked thread processes are only
triggered on one edge of one clock, which matches the
way hardware is typically implemented with synthesis
tools. SC CTHREAD processes typically have infinite
loops that will continuously execute. So the execution is
usually stopped from the looping by the use of watching
construct. If the watching expression doesn’t become

// datagen.h #include ”systemc.h”
SC MODULE(data gen)
sc in clk clk;
sc inout¡int¿ data;
sc in¡bool¿ reset;
void gendata();
SC CTOR(data gen)

SC CTHREAD(gen data, clk.pos());
watching(event1.delayed());

;
//datagen.cc
#include”datagen.h”
voidgendata()if(event1)⇒ Go to next simulation
time of the systemC scheduler.
while (true)
data = data + 1;
wait();
data = data + 2;
wait();
data = data + 4;
wait();

Fig. 5. Watching Event of SC CTHREAD Process creating Livelock

true at all due to other constraints in systemC then the
scheduler will keep executing the same process which
will lead to a livelock.

G. Starvation in systemC

In systemC, a subtler definition of starvation is that a process
is blocked and waiting for some events to occur and at least
one process that is able to notify the event is still running, but
will never notify the event to lease the waiting process. Some
of the possibilities are described below.

1) If a process P0 is blocked by a sensitivity list as Wait
(e1&e2&e3), then if any one of these three events
doesn’t get notified then P0 will wait infinitely and it
will lead to starvation of the PO. And we have already
discussed some of the cases where an event keeps
blocking or doesn’t get notified.

2) Circular Notify () event at immediate phase or at next
delta cycle phase cause some of the processes to live
lock. So the processes which wait for those live locked
processes will be in starvation.

3) SC CTHREAD will also cause some starvation situa-
tions when watching() condition doesn’t get satisfied
or when wait until() condition doesn’t get satisfied.

REFERENCES

[1] Bettina Buth, Jan Peleska, and Hui Shi. Combining methods for the
livelock analysis of a fault-tolerant system. http://www.informatik.uni-
bremen.de/agbs/jp/papers/amast98.html, 1998.

[2] X. Chen, A. Davare, H. Hsieh, A. Sangiovanni-Vincentelli, and Y. Watan-
abe. Simulation-based deadlock analysis for system level designs. In DAC
’05, 2005.

[3] J. Burch L. Lavagno R. Passerone F. Balarin, Y. Watanabe and
A. Sangiovanni-Vincentelli. Constraints specification at higher levels of
abstraction. In Workshop on High Level Design Validation and Test,
November 2001.

[4] G. M. Karam and R. J. A. Buhr. Starvation and critical race analyzers for
ada. IEEE Transactions on Software Engineering, v.16 n.8, p.829-843,
August 1990.

[5] A. Basavatia M. Krishnamurthi and S. Thallikar. Deadlock detection and
resolution in simulation models. 26th Conference on Winter Simulation,
1994.

