
Evaluation of Software Release Readiness Metric [0,1]

across the software development life cycle

Piyush Ranjan Satapathy

Department of Computer Science & Engineering

University of California, Riverside

piyush@cs.ucr.edu

Abstract

Each day, software engineers and managers cope with the challenges of building complex systems and

challenges which threaten the project cost, schedule, and technical performance. Software metrics are

quantitative standards of measurement for various aspects of software projects. A well designed metrics

program will support decision making by management and enhance return on the IT investment. There

are many aspects of software projects that can be measured but not all aspects are worth measuring. In

this paper I propose a formula for calculating a software release readiness metric, called the “ShipIt”

coefficient, with values defined in the interval [0, 1], where the value 1 indicates complete readiness. I am

including any and all measurements of the software development life cycle, the development team, and the

owning organization and the release policies. The metrics I consider here are measurable in practice. And

I hope it may help the software industry in the direction of decision making keeping the eye on business

goals. Evaluation of the software release readiness factor at any point of time through out the software

life cycle can be obtained by desired modification of our formula which may help in meeting the schedules

and the control costs for the marketability and competitiveness of the software product. But as always the

business decision has a greater role in software release time so my formula has certain limits.

1. Introduction

In the today’s competitive commercial software market, software companies feel compelled to release

software the moment it is ready. They have to always deal with treading the line between releasing poor

quality software early and high quality software late. A well prepared answer to the question, "Is the

software on the track for release maximizing the goals?" has not been found yet. It’s always critical for a

company’s management to gauge this factor successfully. The answer is sometimes based on gut instinct,

but several techniques can put this judgment on a firmer footing. We propose a method of gauging the

software readiness factor by evaluating each and every stage of a software life cycle. We use various

existing models for each stage and come out with a simple formula combining all those. Using this

formula one can find out the relative completeness of the project at any point of the software lifecycle on a

0 to 1 scale basis.

The use of software metrics for controlling software projects throughout the development and testing

processes is now well documented. Metrics for design evaluation [9], code complexity analysis [10], test

allocation [11, 12], fault targeting [13], maintainability [14, 15], portability analysis [16], and general code

health [17] have all been defined, implemented, and used to improve software quality in industrial

systems. Also most of these metrics have been successfully applied in software decision making.

Application of software metrics in project progress and estimation [8, 7], and in software system

maintainability [5] gives a practical insight to the system.

The development of a software product is theoretically concluded by exhaustively testing its performance

and quality. During testing it’s expected that functional and requirement problems will be identified and

corrected. At some point, a decision will be made that testing should be concluded and the product be

released for customers use. The release decision is usually based on an evaluation of the software’s

expected quality balanced against its release date commitment. Based on this Author in [1] has given a

clear method for determining the release readiness of a software product. He has devised a method called

Zero failure method to calculate the time to reach at an acceptable release time. However author in [3] has

devised a method called the stopping rule based on the number of remaining software faults to determine

the optimum software release time. Author in [4] has measured the software readiness with defect tracking

by devising rules like Defect pooling and Defect Seeding.

We now turn our attention to the use of software metrics in evaluation of software release readiness

decision. As the author in [6] says that starting a new metrics program or improving a current program

consists of five steps, we have considered all those 5 steps. As the step1, we have identified our business

goal. Our goal is to track the cost, quality and timeline of the software product at any point of time during

the software life cycle. By evaluating a method for determining the software release readiness factor will

give us proper insight to the project complexity during the development. Also it will help us managing the

traceability and cost estimation of the software project through out its lifecycle. As step2 we have

identified metrics for each stage of the life cycle. We have gathered some historical data to support our

metrics as a step3. And then we automate our measurement procedures to reach a generalized formula

which is result of step4. And as the step5 we use the formula and metrics value and do the decision

regarding the software release.

We strictly follow the software life cycle processes defined in IEEE standard [18]. Also we refer [2,8] for

the simulation of software development processes to get a historical data regarding the validation and

sharing of each stage in the life cycle. Given the set of metrics for each stage of the software life cycle

and given which stage of the software life cycle a software project is in, we can determine the software

release readiness factor by a coefficient value called “ShipIT” on a scale of 0 to 1; where 0 indicates that

the software life cycle has not been started yet and 1 indicates that the product is ready to ship. As per the

software life cycle processes we consider the life cycle to be consisting of phases like Requirements and

Definition stage, system and software design stage, implementation stage, testing stage, operation stage

and maintenance stage.

Our major contribution in this paper is a top down approach for calculation of software release readiness

factor which covers each and every stage of a software development life cycle. Starting from requirement

analysis to the retirement process in customers’ site we have considered all the major steps. The most

important thing is that we have considered the sub processes of the major processes. We have devised

methods to quantify all the significant metrics of each stage and sub stages with proper coefficients.

Giving an experimental weight for each of these coefficients we calculate the weighted average and then

finally we normalize it to a value between 0 and 1.

The rest of the paper is structured as follows. In section 2 we present the back ground and the relevant

software metric models. Section 3 contains our main idea. Section 4 analyses our work. We have put some

validations in section 5. And in section 6 we conclude the paper.

2. Background and Model

Delivery of a “system” from a supplier to a customer is called a release. The “system” consists of a set of

authorized and integrated components. The supplier is usually the development organization. The

customer is the internal or external recipient of the system. Software release management is a process by

which a product is made ready for distribution to customers. The purpose of the release management is to

ensure that the products are ready when promised. Software release management process is analogically

similar to a baking process. The key practices of a software release would be as follows; Release Planning

(Managing and publishing release schedule), Defining deliverables that included in a release, Building and

Versioning the integrated release package, managing dependencies across components, Coordinating

activities across company, controlling changes that would impact the release schedule, establishing release

criteria and assessing the release readiness. There are some significant components of a release. Amongst

those important are the followings; Golden Build (software), Documentation and Help, Training materials,

Marketing collateral, Internal documents, Customer Notification and Release Notes. Some of the common

release problems seen now a days are (i) take too long which impacts revenue (ii) Unpredictable which

impacts dependent plans (iii) Poor quality which impacts support (iv) Not useful which again impacts

revenue (v) Contents unplanned which impacts integrity (vi) Contents uncontrolled which impacts

reliability (vii) Overlooked distribution/installation which impacts support. There are so many works in

the area of determining the release time. [1,3,4,7] but all these methods or models are on the basis of

quality assurance and based on the testing phase of the software life cycle. So to handle the software

release management, a proper method should be there to know the status of the release at any point of time

of the software development process. The different models and methods that we have considered for our

work are as bellows

2.1 COCOMO Prediction Model [19]

Effort = a (Size)
b

Effort = person months

Size = KSLOC (predicted Thousands of Source Lines of Code)

a, b are constants depending on type of system:

‘Organic’: a = 2.4 b = 1.05

‘semi-detached’: a = 3.0 b = 1.12

‘Embedded’: a = 3.6 b = 1.2

Time = a (effort)b

effort = person months

Time = development time (months)

a, b constants depending on type of system:

‘Organic’: a = 2.5 b = 0.38

‘semi-detached’: a = 2.5 b = 0.35

‘Embedded’: a = 2.5 b = 0.32

2.2 Halstead’s Metrics Model [21]

A program P is a collection of tokens, classified as either operators or operands.

n1 = number of unique operators

n2 = number of unique operands

N1 = total occurrences of operators

N2 = total occurrences of operands

So, Length of P is N = N1+N2

Vocabulary of P is n = n1+n2

Theory: Estimate of N is N = n1 log n1 + n2 log n2

Theory: Effort required to generate P is

 n1 N2 N log n

E = ------------------

 2n2 (Elementary mental

Discriminations)

Theory: Time required to program P is T = E/18 seconds.

2.3 Albrecht’s Function Points Model [20]

 ExtIP = Number of External inputs

 ExtOP= Number of External outputs

 Extenq= Number of External inquiries

 Extfiles= Number of External files

 Intfiles= Number of Internal files

 Wi = Weighting factor of External inputs

 Wo = Weighting factor of External outputs

 We = Weighting factor of External enquiries

 Wf = Weighting factor of External files

 Wif = Weighting factor of Internal files

The Unadjusted Function Count (UFC) is the sum of all these weighted scores.

So,

UFC = Σ (ExtIP x Wi) + Σ (ExtOP x Wo)+ Σ (Extenq x We)+ Σ (Extfiles x Wf)+ Σ (Intfiles x Wif)

DI = Degree of Influence = Σ [General Application characteristics [i]]

 (i = 1 to 14)

TCF = Technical Complexity Factor = 0.65 + (0.01 * DI)

FP = Adjusted Function Count; FP = UFC x TCF

Based on the programming language we can know the number of source statements/LOC for each FP. Let

this number be defined by “SourceStatement”. So the total number of lines of code is defined as;

LOC = SourceStatement x FP

2.4 Zero Failure Method [1]

The zero-failure method is a decision technique that specifies the number of test hours before software

release in which no additional test failures are permitted to be found. It incorporates the idea that the

longer testing proceeds without finding a failure, the greater the likelihood becomes that the number of

remaining failures is very small. If no failures are seen in the target test time, the software is judged ready

for customer release. If failures (even one) are detected, the request for release is rejected and

conventional testing is continued. Like many quality models, the zero-failure method assumes that the rate

of failure discovery decreases exponentially as testing progresses. This means that a high rate of failure

detection early on becomes smaller as testing continues and fewer failures remain to be found. Also,

like other models, it assumes that testing is representative of use, test intensity or stress is constant, and the

probability of failure discovery is constant and equal for all failures. Given that the information submitted

to the method is representative of the testing process, it is assumed that only two data points are needed to

establish an acceptable reliability-model curve, one of which is at zero failures. To apply the method, it is

assumed that 0.5 failures is equivalent to zero failures. This correction causes the method’s projections

to be slightly conservative. The method is derived from the exponential model Problem Rate

p(t) = a x e
-b(t)

To calculate the zero-failure test hours requires three inputs: the target projected average number of

customer failures, the total number of test failures detected so far, and the total test-execution hours up to

the last failure. The calculation for zero-failure test hours is given by;

 ln [(Customer problems) / (0.5 + Customer problems)]

Zero Failure Test Hour = -- x (Test hours to last

 ln [(0.5 + Customer problems) / (test + Customer problems)] problem)

2.5 Stopping Rules Method [22]

In practice it’s not reasonable to test the software until all faults are removed. A possibility is to stop

testing when the number of remaining faults is less than a prescribed number. Another possibility is to

stop when the number of remaining faults is less than a prescribed portion of initial faults. Assuming the

Jelinski-Moranda model [23] is valid and the parameters N0 and Φ have been estimated using previously

collected data. Denoted by M the number of acceptable faults and let T be the time needed to remove n =

N0 – M faults. Then it can be shown that the expected value of T is given by

 ET = ∑ [1 / (Φ (N0 – i +1))]

 (i = 1 to n)

Hence the test may be stopped at the time given above. Also there is a stopping rule method based on the

software failure intensity requirements [3].

2.6 Maintainability Index Method [5]

The literature of at least the last ten years shows that there have been several efforts to characterize and

quantify software maintainability. In the software industry, a program's maintainability is calculated using

a combination of widely-used and commonly-available measures to form a Maintainability Index (MI).

The basic MI of a set of programs is a polynomial of the following form (all are based on average-per-

code-module measurement):

MI = 171 - 5.2 x ln(aveV) - 0.23 x aveV(g') - 16.2 x ln (aveLOC) + 50 x sin (sqrt(2.4 x perCM))

The coefficients are derived from actual usage. The terms are defined as follows:

aveV = Average Halstead Volume V per module s

aveV(g') = Average extended cyclomatic complexity per module

aveLOC = Average count of lines of code (LOC) per module

perCM = Average percent of lines of comments per module

Oman develops the MI equation forms and their rationale. He indicates that the above metrics are good

and sufficient predictors of maintainability. Oman builds further on this work using a modification of the

MI and describing how it was calibrated for a specific large suite of industrial-use operational code. Oman

describes a prototype tool that was developed specifically to support capture and use of maintainability

measures for Pascal and C. The aggregate strength of this work and the underlying simplicity of the

concept make the MI technique potentially very useful for operational Department of Defense (DoD)

systems.

3. Our Main Idea

As per IEEE standard for Developing Software Life cycle processes [18], we have identified the major

steps of the software life cycle processes. Those are as follows: 1. Software Lifecycle Modeling process

2. Project Management Process 3. Pre Development Process, 4. Development Process 5. Post

Development process and 6. Integral process. As the first step of the above processes we have chosen the

waterfall model or the SPM model [24]. And then considering the waterfall cycle model and considering

the rest 5 steps above, we have fine tuned the whole processes and we have come up with some significant

ingredients of the software development processes. Those are as ;(1). Requirement gatherings (2).

Requirements Analysis Process (3). System and software design process (5). Implementation Process (6).

Testing process (7). Quality Assurance process (8). Manuals and Documentation Process (9). Supervision

process (10). Support Process.

We have considered the above 10 steps for determining the software release readiness coefficient. Its

rarely practical to include all the steps in the software development. So we are assuming some conditions

to make our method work properly. The first assumption is: while the software development is in the

requirement gathering stage or in analysis stage or in design stages no coding or testing process is

allowed. The second assumption is that we consider software ready to be released when the software

product is fully deployed in the customers’ site retiring the previous used methodologies or previous

version of the software product. This assumption facilitates us to include the support factor in our

calculation. The third assumption is that the requirements keep coming till the end of the detailed design

process. After that all the new requirements are considered for next version of software.

Based on our 3 assumptions and 10 methodologies stated above, we came out with 7 granular components

for which we can be able to collect the metrics during the software life cycle and using that we can

calculate the software release readiness coefficient. Those 7 components are defined as 1.

RequirementAnalysisDesign Stage (Includes first 3 processes) 2. Coding (Includes Implementation

process) 3. Testing (Includes testing process) 4. Quality assurance 5. Manuals and Documentation 6.

Supervision7. Support. Then we give a weight to each of these components as per the efforts (person per

months) required for each stage. Bsasically this comes from experience. We have considered in terms of

variables here. Let these weights be defined as WRAD, WCODE, WTEST, WQA, WMD, WSV, WSP respectively

on a scale of 0 to 100.

Then as the next step we consider the metrics from each step one by one (which will be our next section)

and we come out with 7 significant factors from each step on a scale of 0 to 1. Let these factors be defined

as RAD, CODE, TEST, QA, MD, SV, and SP. So the software release readiness metric (ShipIT) can be

defined as bellows;

ShipIT = [(WRAD x RAD) + (WCODE x CODE) + (WTEST x TEST) + (WQA x QA) +

 (WMD x MD) + (WSV x SV) + (WSP x SP)] / 100

Where, WRAD, WCODE, WTEST, WQA, WMD, WSV, WSP Є [0, 100] and RAD, CODE, TEST, QA, MD, SV,

and SP Є [0,1]. Based on our assumption we can see that while the software development is in the

RequirementAnalysisDesign stage, the factors CODE, TEST, QA, MD, SV and SP will all be ‘0’.And also

we can note that (WRAD + WCODE + WTEST + WQA + WMD + WSV + WSP) = 100.

4. Analysis

4.1 RequirementAnalysisDesign stage:

We divide this stage into three sub stages as (1). Defining and gathering Requirements (2).Analyzing the

Requirements (3) Detail Designing of the requirements. We collect the metrics data for each of these

stages. Let RR be the till date number of required requirements from the customers and RD be the defined

and developed requirements by till now. So the factor by which the requirement gathering and defining is

completed is given by R as bellows;

R = (RD / RR)

It’s a point to note that RR keeps increasing either from customers’ side or from the market competitions.

And RD tries to catch up the RR value. Similarly let Aavail be the no of available defined and developed

requirements ready to be analyzed and let AD be the number of requirements for which analysis is done.

So from our generalization we can say that Aavail = RD. And the factor by which the requirement analysis

is completed is given by as bellows;

 A = (AD / Aavail) = (AD / RD)

For the design stage let Davail be the number of available analyzed requirements ready to be designed and

let DD be the number of features or requirements for which the detail design has been done. So from our

analysis we can follow that Davail = AD. And the factor by which the detail design is completed is given by

as bellows;

 D = (DD / Davail) = (DD / AD)

Assuming sufficient man powers to perform all these above three steps in a parallel processing way, we

can calculate the RAD as bellows;

 RAD = [(WR x R) + (WA x A) + (WD x D)] / 100

Where WR, WA, WD are the weights of the above mentioned three steps respectively on the basis of effort

spent on each one. Its noted that WR, WA, WD Є [0, 100] and (WR + WA + WD) = 100. And also its easily

noted that the factors R, A and D all Є [0, 1]. From our analysis it’s clear that when no requirements has

been defined or developed then RAD = 0. That’s because R = 0 and automatically all others should be 0.

This is the case when our above method for calculating RAD doesn’t hold true. So we exclusively say that

in words.

4.2 Coding Stage:

We divide the coding stage into three categories. 1. Creating source 2. Creating Object 3. Building

process. Now for each stage we have identified distinguished metrics. For the first stage, the metrics we

consider are, no of system modules completed vs total system modules, the no of application modules

completed vs total application modules and the no of GUI modules completed vs the total no of GUI

modules. Let’s define Sm, Am, Gm as the fraction of completion of the system modules, application

modules and graphical user interface modules respectively. So by definition I can represent these factors

as below; Sm = (Completed no of system modules / Planned no of system modules); Am =(Completed no

of application modules/Planned no of application modules); Gm = (Completed no of GUI

modules/Planned no of GUI modules). Lets assume that the weights of these three factors be Wsm, Wam

and Wgm where Wsm, Wam and Wgm Є [0,100] and (Wsm) + (Wam) + (Wgm) = 100. So we can express the

factor by which the creating source contributes to the total coding phase as below;

Source = [(Wsm x Sm) + (Wam x Am) + (Wgm x Gm)] / 100

Now in the second category of coding stage we consider creating the objects. One can evaluate it by

considering the number of modules as above but we give here a more practical approach. We consider the

LOC (lines of code), Number of files and known anomalies. But however considering LOC only is not a

good substitution for effort, complexity and functionality. LOC fails to take account of redundancy and

reuse of the code. So we consider either the COCOMO prediction model combined with Albrecht’s

Functional point (section 2) or Halstead’s software metrics model. If we use the 1
st
 category, Albrecht’s

functional point method gives us the KSLOC value at the starting of the coding stage. And then using this

KSLOC value we can calculate the time required to complete (Timetotal) by COCOMO prediction model.

And at any point of the coding stage let’s say we have already spent “Timespent “amount of time. SO the

fraction by which it contributes towards finishing of the coding stage is given by

Object = [(Timespent) / (Timetotal)] which Є [0,1]

Also we can calculate the (Timetotal) by using the Halstead’s software metrics model at the starting of the

coding stage and we can use the above formula.

In the third category of the coding stage we consider the building process. This is somewhat equivalent to

unit testing but not exactly unit testing. It considers the metrics like – Compiling time, -Handling warnings

time, -Incremental build time as per platform dependency, and –Incremental build time as per compiler

dependency. We assign some weights to each of these 4 metrics and let’s say the weights are WCT, WHT,

WBPT, WBCT respectively. And at any point of coding stage we can know the fraction of completion of all

these processes. Lets say the completed percentage of each of these processes be defined as CT, HT, BPT

and BCT respectively. So the fraction by which the building process contributes to the coding stage is as

follows;

Build = [(WCT x CT) + (WHT x HT) + (WBPT x BPT) + (WBCT x BCT)]

Where CT, HT, BPT and BCT Є [0, 1] and WCT, WHT, WBPT, WBCT Є [0,100] and WCT + WHT + WBPT +

WBCT = 100. So finally we need to calculate the factor by which the coding stage contributes to the

completion of the software development. Let this factor be called as “CODE”. And let the weights of

effort sharing amongst the three sub stages be defines by the variables, Wsource, Wobject and WBuild. So

“CODE” will be defined as;

CODE = [(Wsource x Source) + (Wobject x Object) + (WBuild x Build)] / 100

And its clear to note that Wsource+Wobject+WBuild = 100 and Source, Object and Build Є [0,1]. The basic

assumption we have done here is that in any software life cycle in the coding stage, development of

sources and objects and building the processes can happen simultaneously except a few lag time at the

beginning which is required to start the building process. Because one can only compile and build once he

has some raw code which is produced by the first two stages.

4.3 Testing

The testing process starts just after the coding stage and consists of testing and finding the bugs and

debugging those. The testing usually consists of Unit testing (feature wise), Integration testing (Across the

features) and System testing (across the platforms and compilers). We consider the metrics for this as

follows; -no of total features vs. no of features already covered in unit testing, -No of possible relations

amongst the features vs. the no of interactions already tested, and the no of integration tests required vs. no

of completed integration tests. The metrics for debugging phase consists of -no of open issues and no of

total issues at hand. These will take care of line coverages, purifying errors and profiler results. So let’s

assign weights to each of the three testing process as Wutest, WItest and Wstest. Now let L1 be the factor by

which the unit test has been completed. Its defined as the ratio of the completed no of unit testcases versus

the planned no of unit testcases. Similarly we can know the L2 and L3 for integration test and system test

respectively. So the factor by which the finding bugs contribute towards the testing is given as;

Bugfinding = [(Wutest xL1) + (WItest xL2) + (Wstest xL3)] /100

Where Wutest, WItest and Wstest Є [0,100] and (Wutest+ WItest + Wstest) = 100; L1, L2, and L3 Є [0, 1]. Now

let’s say the weight of finding bugs be WBugfinding and that of debugging be WDebugging. And let debugging

stage contribute a factor “Debugging” towards the testing process which is defined as 1 minus the ratio of

open issues to total issues counted from the beginning to that point. So the overall factor by which the

testing contributes towards the software life cycle is as follows;

TEST = [(WBugfinding x Bugfinding) + (WDebugging x Debugging)] / 100

And here WBugfinding + WDebugging = 100; and Bugfinding, Debugging Є [0, 1].

4.4 Quality Assurance

Quality is the important factor of software product. But sometime marketability comes before that. So

there is a proper trade off between these two. From the customers or from the market reviews we can find

out the desired quality of the product and accordingly we can apply the Zero failure test hour method

(section2) or the stopping rule method to know the exact remaining hour of the testing process to be

carried on. We have considered the Regression testing as our metrics here. If we use Zero failure method

we can find the Zero failure test hour and if we use stopping rule we can find ET (expected time to reach

the desired quality). So then we can calculate the pseudo hours we completed by subtracting the zero

failure test hour or the ET from the required total test hour which is planned at the beginning of the stage.

So the factor by which it contributes towards the completion of the software development is given by;

QA = [(Pseudo Test Hours Completed) / (Total test hours planned)] on a scale [0, 1]

4.5 Manuals and Documentations

We divide this stage into number of stages as follows; -Requirement Documents, - Design Documents, -

Implementation and Usability Documents, -Test plan documents, and -User guide documents. Usually

documentation is a by default metrics for measurement at each stage of the development process. Let’s

distribute the weights from 0 to 100 amongst all these documentations. WRD, WDD, WID. WTD, WUD be the

weights of all these documentation processes respectively. And at any point of time we can calculate the

fraction of completed documentation at each stage. Let these fractions be RD, DD, ID, TD and UD

respectively. So we can calculate the factor by which the Manuals and documentation contributes to wards

the completion of the software development as follows;

MD = [(WRD x RD) + (WDD x DD) + (WID x ID) + (WTD x TD) + (WUD xUD)] / 100

And here WRD + WDD +WID + WTD +WUD = 100; and RD,DD,ID,TD,UD Є [0, 1].

4.6 Supervision

Supervision usually consists of two types of processes. 1. Installation process 2. Training process. The

metrics involved in Installation process are, -distribution of software, -installation of software, -acceptance

or package testing. We can collect the required and completed data and can find out the fraction of

completion of each of these steps. Let the fraction of completions be DS, IS and AT respectively. Giving a

particular weight to all these (lets say WDS, WIS and WAT) we can calculate the contribution of installation

process towards supervision by IP = [(WDS x DS) + (WIS x IS) + (WAT x AT)] /100 on a scale [0, 1]. In the

training process we can consider the metrics like, -Developing training materials, -Validating training

program, and –Implementing training program. And if the fraction of completion of each of these stages

are TDM, TVM and TIM respectively and if the weights of each of these metrics are WTDM, WTVM, WTIM

then we can calculate the contribution of training process toward the completion of supervision as;

TP = [(WTDM x TDM) + (WTVM x TVM) + (WTIM x TIM)] /100 on a scale 0 to1. If the weight of the

installation process and training process be WIP and WTP (WIP + WTP = 100) respectively then we can

calculate the contribution of supervision towards the software development as follows;

SV = [(WIP x IP) + (WTP x TP)]/ 100 on a scale of [0, 1]

4.7 Support

We have considered the “Support” as the last step of a software release. In this step the main metric we

consider is beta customer reported bugs and repeating the software cycle if any. Once we reach a proper

maintainability factor as agreement with the customer we stop supporting and do the software version

release. So as discussed in section 2.6, we calculate the Maintainability Index and divide it by the desired

Maintainability Index to get the fraction of support which is completed. Let this be called SP.So by our

assumption,

SP = [Maintainability Index reached / Maintainability Index desired]

5. Validation

To validate our result we have gathered some data from past research. For the weights WRAD, WCODE,

WTEST, WQA, WMD, WSV, WSP we have followed [8] which says WRAD = 22% WCODE = 19% WTEST = 30%

WQA= 8%, WMD = 7% WSV =9% and WSP = 5%. So using our proposed method we can calculate the

release coefficient as; ShipIT = [(22 x RAD) + (19 x CODE) + (30 x TEST) + (8 x QA) + (7 x MD) + (9
x SV) + (5 x SP)] / 100. Similarly using past experiences and historical data we can calculate the RAD,

CODE, TEST, QA, MD, SV, and SP as follows; RAD = [(30 x R) + (20 x A) + (50 x D)] / 100; CODE =

[(40 x Source) + (20 x Object) + (40 x Build)] / 100; TEST = [(65 x Bugfinding) + (35 x Debugging)] /

100; QA = QA; MD = [(15 x RD) + (15 x DD) + (15 x ID) + (25 x TD) + (30 xUD)] / 100; SV = [(50 x IP)

+ (50 x TP)]/ 100; SP = SP. From paper [2], we can calculate that, Source = [(57 x Sm) + (28 x Am) + (15 x

Gm)] / 100; Build = [(40x CT) + (30 x HT) + (15 x BPT) + (15 x BCT)]; Bugfinding = [(35 xL1) + (35

xL2) + (30 xL3)] /100. Using all these weights from research and experiences and calculating the required

metrics we can find out the ShipIT coefficient. However the weights we consider here may not be correct

for all kinds of software developments. One can distribute the weights as per the conditions and apply the

formula to calculate the coefficient.

6. Conclusion

In this paper we understood the requirement of determining the software release readiness coefficient from

the factors of successful timely release, consistent release process, predictability, integration,

completeness and desired quality. Considering the whole software life cycle and detecting the measurable

metrics from each stage we came out with some quantization and normalization to calculate the desired

coefficient.

As its rightly said that “no one tool or method should be relied on to arbitrarily make the final

determination of whether a software product should be released”, we hope that our method would give a

proper insight to all the complexities involved in the decision making of software releases and it may help

in putting the software projects on track keeping the objective intact. As our method is a much generalized

one, it can be used easily by knowing the mentioned metrics and weights. The weights can be achieved by

experiences or by research but that varies across the software products and across the environments in

which these products are developed. However we have some of our major limitations here. Through out

the paper we have put our focus on the major releases rather than any minor, patch or emergency releases.

And we have assumed perfect release plans before the Software development life cycle starts. Release

plans like customer commitments, revenue recognition, resource availability, maximum changeability,

organizational capability are all assumed to be in ideal condition.

References

[1]. Brettschneider, R., Motorola Inc., Phoenix, AZ, “Is your software ready for release?”, IEEE

Software, July’1989, Volume6, Issue4, pp. 100,102,108

[2]. Gregory A. Hansen, GAPI, “Simulating Software Development Processes”, IEEE Software,

January 1996 (Vol. 29, No. 1), pp. 73-77

[3]. Min Xie, “On the Determination of Optimum Software release Time”, IEEE Intl Symp. on

Software Reliability Engineering, May1991. pp. 218-224

[4]. Steve McConnell, “Gauging Software Readiness with Defect Tracking”, IEEE Software, May/June

1997 (Vol. 14, No. 3), pp. 136-135

[5]. Don Coleman, Dan Ash, Bruce Lowther, Paul Oman, “Using Metrics to evaluate software system

maintainability” IEEE Computer Society Press Los Alamitos, CA, USA, Volume 27, Issue 8,

August 1994, pp. 44-49

[6]. Peter Kulik, “A practical approach to software metrics”, IEEE ITProfessional January/February

2000 (Vol. 2, No. 1), pp. 38-42

[7]. Troy Pearse, Tracy Freeman, Paul Oman, “Using Metrics to manage the End-game of a software

project”, Sixth IEEE International Symposium on Software Metrics November 04 - 06, 1999 Boca

Raton, Florida, pp. 207

[8]. Robert B. Grady, Hewlett-Packard, “Successfully Applying Software metrics”, IEEE Trans. Soft

Engr., September 1994 (Vol. 27, No. 9), pp. 18-25

[9]. L. Briand, et al., “A Comprehensive Empirical Validation of Design Measures for Object-Oriented

Systems,” Proc. Fifth Int’l Soft. Metrics Symp., CS Press, Los Alamitos, CA, Nov. 1998, pp. 246-

257.

[10]. T. Koshgoftaar, J. Muson, & D. Lanning, “Alternative Approaches for the use of Metrics to Order

Programs by Complexity,” J.sys. Software, V.24 (3), Mar. 1994, pp.211-221.

[11]. G. Atkinson, et al., “Directing Software Development Projects with Product Metrics,” Proc. Fifth

Int’l Soft. Metrics Symp., CS Press, Los Alamitos, CA, Nov. 1998, pp. 193-204.

[12]. J. Zhuo, et al., “On the Validation of Relative Text Complexity for Object-Oriented Code,” Proc.

Fifth Int’l Soft. Metrics Symp., CS Press, Los Alamitos, CA, Nov.1998, pp. 258-266.

[13]. J. Munson & T. Khoshgoftaar, “The Detection of Fault Prone Programs,” IEEE Trans. Soft. Engr.,

V.18 (5), May 1992, pp. 423-433.

[14]. D. Coleman, et al., "Using Metrics to Evaluate Software System Maintainability," IEEE Computer,

Vol. 27(8), Aug. 1994, pp. 44-49.

[15]. T. Pearse & P. Oman, "Maintainability Measurements on Industrial Source Code Maintenance

Activities,"Proc. 1995 Int’l Conf. on Soft. Maint., CS Press, LosAlamitos, CA, 1995, pp. 295-303.

[16]. T. Pearse & P. Oman, "Experiences Developing and Maintaining Software in a Multi-Platform

Environment," ," Proc. 1997 Int’l Conf. on Soft. Maint.,CS Press, Los Alamitos, CA, 1997, pp.

270-277.

[17]. D. Ash, et al., "Using Software Maintainability Models to Track Code Health," Proc. 1994 Int’l

Conf. on Soft.Maint., CS Press, Los Alamitos, CA, 1994, pp. 154-160.

[18]. “IEEE Standard for Developing Software Life Cycle Processes”, Software Engineering Standard

Committee of the IEEE Computer Society, Approved September 21, 1995, IEEE Standards Board

[19]. “COCOMO Effort Model”, by Brad Clark,

http://www.psmsc.com/UG1998/Presentations/cocomo2%201998.pdf

[20]. Paul Vickers, Northumbria University, “An introduction to Function Point Analysis”,

http://computing.unn.ac.uk/staff/cgpv1/downloadables/fpa.pdf

[21]. Joseph L.F. De, Kerf, “APL and Halstead’s theory of software metrics”, Proceedings of the

international conference on APL, September 1981, Volume 12, Issue1, pp. 89-93

[22]. P.A. Caspi, E.F. Kouka, “Stopping Rules for a Debugging process based on Different Software Reliability

Models”, Proc. Int. Conf. on Fault – Tolerant Computing, pp. 114-119, 1984

[23]. M.C.J. van pul, “ Simulations on the Jelinski-Moranda model of software reliability”, 1991, BS-

R9122, ISSN 0924-0659. http://ftp.cwi.nl/CWIreports/1991/BS-R9122.pdf

[24]. M.M.Lehman, “Process Models, Process programs, programming support”, IEEE Computer

Society, 1987, 9
th
 Intl conf. on Software Engr., pp 14-16

