
LAB 4 Notes

The Relational Algebra
• Any questions on the project (Discuss)
• In the previous lab we discussed how to convert an ER model into the

Relational model of a specific database.
• Today we will discuss how to store and retrieve information in our database

Outline
1) Glace at Relational Algebra Operators. Emphasize on the most
important aspects and then jump into examples
2) Examples on Relational Algebra.
3) A Glace at SQL Operators. Emphasize on the most important aspects
and then jump into examples
5) Examples on SQL.
6) Putting all together: Relational Algebra & SQL

Relational Algebra (is the foundation for Structured Query Language SQL)

• One of 2 Formal Query Languages associated with the relational model
• An Algebra, is a formal structure consisting of sets and operations on those

sets.
• Relational Algebra is based on set theory
• The Inputs/Outputs are relations (set of records)
• R.A is a closed language. The output of one operator is a RELATION (nested)

(Working Example in case they want one.)
Employee Department

ssn, name, surname, age did, dname, mngrssn
12, Jacob, Jacobson, 30 1, A, 12
13, Mike, Allison, 50 2, B, 13
14, Chris, Mathews, 80 3, C, 12

• Unary Operators: Operation done on just one relation
1. Projection Π (on columns), πdname(DEPARTMENT) = A, B, C
2. Selection σ (on rows) σage>50(EMPLOYEE) =

13, Mike, Allison, 50
14, Chris Mathews, 80

• Binary Operators (Set Operators):
3) Union U . RUS. R and S must be union compatible (same # fields, domains)
4) Intersection ^ . R^S. R and S must be union compatible
5) Set Difference, R-S all tuples in R but not in S
6) Cross-Product (Cartesian Product) R x S. All fields of R followed by all
fields of S

12, Jacob, Jacobson,30, 1, A, 12

12, Jacob, Jacobson,30, 2, B, 13
12, Jacob, Jacobson,30, 3, C, 12

• AxB = BxA
• Number of tuples : MxN
• R |><|c S = σc(RxS) (General)
• Renaming operator: p(C(1 id1, 5 id2), Employee x Employee)

7) JOIN (just naming difference
 Condition Join : If condition is anything (A|><|a>b B)
 Equi-join : If condition is equality (A|><|A.a=B.b B)
 Natural-join : An equijoin condition done on the attribute that has the same
name

e.g A|><| B => No duplicate column

8) DIVISION

 “Useful for queries like: Find name of sailors who reserved ALL boats”
 In SQL this is represented by nested queries.

e.g.
Reservation Boat
ssn, name, boatID boatID

 Reservation/Boat => ssn of sailors who reserved ALL boats

Otherwise if name is included then different result

 Aggregate operations e.g.
• “Find the minimum salary of all employees are not supported by standard

Relational Algebra”.
• Some extensions allow you to deal with them but in this course you don’t

consider them.
• We will see Aggregates in further extend in Chapter 5.

EXAMPLE

• Retrieve the names of all employees in department 5 who work more than 10 hours per week on
the ‘ProjectX’ project.

ρ(EMP_W_X, σPNAME=’ProjectX’(PROJECT)) |><|PNUMBER=PNUM (WORKS_ON))
ρ(EMP_WORK_10, (EMPLOYEE) |><|SSN=ESSN (σ HOURS>10 (EMP_W_X))
π LNAME, FNAME (σ DNUM=5(EMP_WORK_10))

• Retrieve the names of all employees who work on every project.
ρ(PROJ_EMPS, π PNUM, ESSN (WORKS_ON))
ρ(ALL_PROJS, π PNUMBER (PROJECT))
ρ(EMPS_ALL_PROJS, PROJ_EMPS / ALLPROJS)
π LNAME, FNAME (EMPLOYEE |><| EMP_ALL_PROJS)

• Find the names and addresses of all employees who work on at least one project located in Houston
but whose department has no location in Houston.
ρ (E_P_HOU, π ESSN(WORKS_ON |><|PNUM=PNUMBER (σ PLOCATION=’Houston’(PROJECT))))
ρ (D_NO_HOU, π DNUMBER(DEPARTMENT) – _DNUMBER(σ DLOCATION=’Houston’(DEPARTMENT))
ρ (RESULT_EMPS, π SSN(EMPLOYEE |><|DNUM=DNUMBER (D_NO_HOU))
π LNAME, FNAME, ADDRESS(EMPLOYEE |><| RESULT_EMPS)

• SQL (Structured Query Language)
• Widely used relational database language
• SQL – Query Language but has several other aspects

1) DDL (Definition Language) Create/delete/Alter tables &
Views. Creating indexes/ deleting indexes

2) DML (Manipulation Language) Insert/Delete/ Update Rows
3) Embedded and Dynamic SQL (will be covered as part of the

project)
Allows SQL code to be executed from a host language such as C or Java.

 Paradox is that in SQL we call:

• SELECT -> Projection π and
• WHERE -> Selection σ

A) SQL BASIC QUERY BLOCK

SELECT [DISTINCT] select-list
FROM from-list
WHERE qualification;

1 Chris 20
2 Chris 35
3 Chris 20
4 John 15

Sailors(sid, name, rating, age)

SELECT DISTINCT name, age
FROM Sailors;

 selects all the distinct pairs
i.e. chris, 20
 chris, 35

Relational Algebra => πname,age (Sailors)

B) #1 Set Manipulation constructs: SQL UNION, INTERSECT AND EXCEPT

+ Set Manipulation constructs extend the basic query form
+ Union compatible

(SELECT [DISTINCT] select-list-X
FROM from-list
WHERE qualification)
UNION/INTERSECT/EXCEPT (MINUS)
(SELECT [DISTINCT] select-list-X
FROM from-list
WHERE qualification)

Sailors who reserved Red or green boat

green red

SELECT *
FROM SailorsReserveBoats
WHERE color=red OR color=green;

SELECT *
FROM SailorsReserveBoats
WHERE color=red
UNION
SELECT *
FROM SailorsReserveBoats
WHERE color=green

Sailors who reserved Red but not green boat

green red

SELECT *
FROM SailorsReserveBoats
WHERE color=red
EXCEPT
SELECT *
FROM SailorsReserveBoats
WHERE color=green

C) #2 Set Manipulation constructs: Correlated Nested and nested IN, EXIST

(SELECT [DISTINCT] select-list
FROM from-list
WHERE attribute [NOT] IN

Union
compatible

 (SELECT attribute
 FROM from-list
 WHERE condition)

Example:
NOT CORELLATED IN (work well by optimizer)

: Select sailors who reserved boat 103
SELECT *

SELECT *
FROM EMPLOYEE E, RESERVES R
WHERE E.sid = R.sid;

FROM EMPLOYEE
WHERE sid IN
 (SELECT R.sid
 FROM RESERVES R)

CORELLATED EXISTS (ARE NOT optimized adequately)

Allows us to check whether a set is empty or not.
e.g. usually helpful in correlated queries.

(SELECT [DISTINCT] select-list
FROM from-list
WHERE EXISTS

 (SELECT attribute
 FROM from-list
 WHERE condition)

e.g. select the employees with the highest salary
SELECT *
FROM EMPLOYEE E1
WHERE EXISTS (SELECT MAX(E2.salary)
 FROM EMPLOYEE E2
 WHERE E2.id = E.id)

D) AGGREGATE OPERATORS
SELECT [COUNT, SUM, AVG, MAX, MIN(attribute)]
FROM from-list
WHERE qualification

Putting it all together: Simple Example
Consider the following schema:

 Suppliers(sid: integer, sname: string, address: string);
 Parts(pid: integer, pname: string. color: string);
 Catalog(sid: integer, pid: integer, cost: real);

Execute the script called lab4.sql on my web site to create the tables. Load data into
the tables found in catalog.txt, parts.txt, suppliers.txt. Refer to the postgres manual if
you have any question regarding this process.

Write the Relational Algebra statements and execute the corresponding SQL
statements for the following queries:

• Find the pid of parts with cost lower than 10$
• Find the name of parts with cost lower than 10$
• Find the address of the suppliers who supply "Fire Hydrant Cap"
• Find the name of the suppliers who supply green parts

	A) SQL BASIC QUERY BLOCK
	B) #1 Set Manipulation constructs: SQL UNION, INTERSECT AND EXCEPT
	UNION/INTERSECT/EXCEPT (MINUS)

	Sailors who reserved Red or green boat
	UNION
	Sailors who reserved Red but not green boat
	EXCEPT
	C) #2 Set Manipulation constructs: Correlated Nested and nested IN, EXIST
	NOT CORELLATED IN (work well by optimizer)
	CORELLATED EXISTS (ARE NOT optimized adequately)
	D) AGGREGATE OPERATORS

