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Abstract— Like it or not, unsolicited bulk commercial email
(aka “spam”) has become a regular menu item on the Internet
information diet. Every day, millions of people find their email
in-boxes clogged with vast quantities of spam. Moreover, the daily
replenishment of all those in-boxes with new spam also consumes
significant amount of network bandwidth. Dealing with spam is
like fighting a battle against a large army; the most effective
approach is to employ multiple tactics. However, almost all spam
control methods that have been proposed and implemented follow
the same basic theme of establishing a “front line” of defense at
the end-user level. Thus, in this paper we propose a method for
blocking the supply lines. More specifically, we identify spam at
the router level and control it via rate limiting.

Spam identification is done in two phases. In the first phase,
we identify the bulk stream of email messages and in second
phase we apply Bayesian classifier to identify whether it is a
spam. If a bulk email stream is classified as a spam then we rate
limit it (e.g no more than one copy per minute). Our proposed
method exploits the short timespan delivery and bulkiness of
spam emails. We use publicly available spam corpus to evaluate
our proposed scheme and in the other set of experiments, we
work on one month sanitized log of our department emails to
provide the representative results.

I. INTRODUCTION

The majority of work on controlling email spams is directed
at the recipient level. Using a variety of heuristics, these
techniques are quite successful in identifying and/or blocking
the delivery of spam to recipient’s email in-box [1][2][3][4].
However, even if the spammers do not succeed in reaching the
recipient’s eyeballs, or occupying disk space on the recipient’s
mail server, they are still free to consume large amounts of
network bandwidth in the process. As shown in the analysis
of Brightmail’s Probe Network [5], the percentage of total
Internet emails identified as spam has increased from 16%
in June 2002 to 50% in August 2003 and the trend is likely
to continue. The statistics obtained by Excedent’s white paper
[2] shows that 45% of global email traffic is spam and various
companies are spending about 30 billion dollars per year to
control spam emails in order to make their internal network
spam-free. Therefore, the challenge here is to protect the
network resources from abuse by spams, not just the end users.

In this paper, we propose a mechanism to control spams
at the router level. Our approach utilizes the fact that spams
are generally sent to multiple recipients with few alterations
to a common message content. Thus, our router segregates
mail delivery traffic from other traffic for further processing.
Whenever it detects email delivery traffic, it invokes the first
phase of our algorithm and attempts to match the content
of the incoming message against a cache of recently-seen

candidate messages. If it succeeds in finding a match, we
invoke the second phase of our algorithm, which consists of
Bayesian classification of the bulk message. If the message
stream qualifies as spam, we rate-limit its delivery by resetting
the TCP session if the elapsed time between consecutive copies
falls below our minimum delay threshold.

II. CONTROLLING E-MAIL SPAMMING AT ROUTER

If one user (say “Alice”) wants to send an email message
to another user (say “Bob”), then Alice’s mail looks up
the address for Bob’s mail server and opens a direct TCP
connection to port 25 on Bob’s server. At this point the two
mail servers carry out the email delivery transaction, according
to RFC 2822 [6] and the Simple Mail Transfer Protocol
(SMTP), as specified in RFC 2821 [7].

During this email delivery transaction, the entire dialog
between the two mail servers is visible to all routers along the
path between Alice and Bob. If any of those routers wanted to
block the transaction, it could simply force the TCP session to
close by sending a TCP reset segment to both parties. Thus,
we have an opportunity for controlling spam at the router
level, by monitoring all SMTP sessions passing through a
router, classifying each SMTP session as (unappealing) spam
or (wholesome) good, and finally policing the spam traffic to
limit its resource consumption. Note that we are not advocating
the policy of completely blocking the delivery of all emails
that our algorithm classifies as spam, which would be hard to
defend and quite possibly illegal. Instead, we suggest imposing
a limit on the number of copies of bulk emails we accept per
unit time.

Any proposal to increase the amount of processing at an
Internet router must include an assessment of the cost of
supporting it. Fortunately, special-purpose network processors
are becoming commercially available for many high-speed
networking applications, which offer router architects access to
significant processing power, flexibility, and ease-of-use/reuse.
Many vendors provide content-addressable memory (CAM)
as the co-processors to be used with the network processor to
accomplish high speed data search. The email rate-limiting can
be added to edge routers at low cost using any of the powerful
network processors and high-speed CAM co-processors, which
provides the flexibility and programmability to the router
architects. As another alternative, we can simply configure the
router to forward SMTP traffic to an external computer for
offline processing, where we apply our rate-limiter algorithm



and control the spam email. The rest of the network traffic is
undisturbed and sent through high-speed data path.

III. CONTENT MATCHING PHASE

In this first phase of identification process, we attempt to
find a match between each new incoming email message and
a cache of previously-seen email messages. The goal here
is to correctly classify each message as containing either
repeated or unique content, and without excessive computation
or storage requirements. Clearly we can only increase the
probability of correctly identifying a repeated message by
testing it against more samples of known repeated content.
However, pattern matching between two repeated messages is
expensive because of variable-length header information that
is specific to each recipient. Thus, we use sampling (described
below) rather than a full text comparison to detect a match,
which can lead to a problem of increasing the number of false
positives if we test it against too many samples of unique
content.

To minimize these problems, we use a two-level cache
structure, which exploits the “bulk delivery in a short time
span” property of spam emails to bias the content of our cache
structure towards repeated messages. The primary message
cache is used to store one prototype for each of the k most-
recently seen repeated message types in LRU order, where k is
the tunable primary cache size. We also keep a time-stamp of
each message stored in the primary message cache to rate-limit
the spam mails. Conversely, the secondary message cache is
used to store the l most-recently seen new candidates for a
repeated message type in FIFO order.

These two caches are used in the following way. Whenever
the router receives a new email message, it is compared against
all stored message prototypes in both caches. If it matches an
entry in either message cache, the new message is classified as
repeated content and passed to phase 2 for further processing.
Thereafter, we transfer the cached message prototype to the
primary cache (if the matched entry was in the secondary
cache), and then update the LRU structure of the primary
cache. If the new email message does not match any stored
message prototypes, it is classified as unique content and
avoids further spam processing. In addition, we save a copy
of the message in the secondary cache in case it is our first
prototype for a new stream of repeated messages. Thus, the
secondary message cache acts as a filter before the primary
message cache, and new repeated message prototypes can only
be added to the primary message cache following a match in
the secondary cache.

Our content matching algorithm is optimized for detecting
spam messages, which are generally sent in bulk to many dif-
ferent users on different networks with a little personalization
to the common content. In order to detect this, we partition
each new email into multiple fixed-length substrings called
patterns. The set of patterns is now tested against all messages
stored in the cache; if a sufficiently high percentage of its
patterns match a single cached message, then we declare it to
contain repeated content. To find a small pattern in a big string,

we employ Boyer Moore’s algorithm [8], which is much more
efficient in complexity than other brute force algorithms.

IV. BAYESIAN SPAM CLASSIFICATION PHASE

In this section, we describe our spam classification method.
We used Bayesian classifier to identify spam emails. Bayesian
is a simple, self learning and multi-lingual method which takes
entire message into account. In general, it consists of two
phases - Training and Testing.

Training phase: Each incoming email is reduced into a
set of unique tokens1 to assemble an initial list of tokens. The
count of good and bad emails containing these tokens is main-
tained in the initial-token-set. If an incoming email consists
of a new token which is not already present in the initial-
token-set, then the new token is added to the initial-token-
set and the count is updated. This keeps our initial-token-set
always updated with the new words used by spammers. It helps
making the algorithm more robust against the new spamming
techniques adopted by spammers.

Testing phase: A new email message is tokenized to convert
it to a set of tokens {t1, t2,..}. Next, use each token ti (which is
present in the initial-token-set generated in the training phase)
to calculate a conditional probability that this message is spam,
given its inclusion of token ti. New tokens, not already present
in the initial-token-set are added in the initial-token-set and
their count is updated. Once the individual probability of each
token has been generated, we combine them using the Bayes
Theorem [9] to get an overall estimate of spamminess of an
email message.

V. RECIPIENT-SIDE NOTIFICATION

We provide a mechanism to inform the end-user of spam
emails so that appropriate actions can be taken at the recipient
side. We use one reserved flag of TCP header to mark the
spam email. Once a spam message is found at the router, the
reserved flag is set. It is the end-user’s prerogative to utilize
this feature to filter spam emails at the recipient side. Generally
while sending TCP/IP packets, all the reserved flags of TCP
headers are unset. Spammers might not want to set the TCP
header’s reserved flag because it defeats the purpose for the
spammer. Therefore, the spammer will send email messages
with TCP header’s reserved flag unset. The spam message
passes through various routers in Internet. Our ratelimiter at
the edge router will classify the spam message and set the
appropriate flag. As this flag is set by the router and spammers
don’t have any control on the router, an efficient classification
can be achieved.

VI. TESTING

The operation of the algorithm within a router was rep-
resented by simulating the execution of the router’s task
scheduler loop. We created a stream of IP packets from

1Token is a selected word from an email message. HTML tags, commonly
used English words (i.e articles, prepositions, conjunctions, etc) are not
considered as tokens, since they are likely to appear in both good and bad
emails.
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Fig. 1. Tuning the primary message cache size
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Fig. 2. Tuning the message pattern size
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Fig. 3. Tuning the matching threshold
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Fig. 4. Rate-limiting spam emails
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Fig. 6. Bayesian matching accuracy

publicly available archives of spam and good emails. In the
router dispatch loop, we fetch an IP packet at each simulation
step. We then feed it to the packet classifier. The classifier
checks to find if its a SMTP packet and then it sends the
packet to SMTP parser. SMTP parser determines whether the
received packet is a message packet or not. Upon a match,
it calls content matching algorithm to find if this message
is a bulk message or not. On a match, the email message
is sent to the second phase of Bayesian classification. The
training of Bayesian classifier was done using an archive of
1513 good and 2401 spam emails obtained from [10] (October
2002). Testing was done using an entirely different set of 1000
emails(both good and spam emails)taken from the archive [11]
and from [10](February 2003). The evaluation of the algorithm
was based on: a) Accuracy; b) percentage of false positives;
and c) percentage of false negatives. Accuracy is defined by
the following formula:

Accuracy = 1
2 (Correctly classified GoodEmail Count

Total GoodEmails

+Correctly classified Spam Count
Total Spams ) · 100

(1)
False positive is defined as the percentage of good emails

identified as spams, whereas False negative is defined as the
percentage of spam emails identified as good emails.

A. Content Matching Phase

Our content-matching algorithm includes various control
parameters, such as primary cache size, secondary cache size,
pattern size, rate-limiter rate, and matching threshold to fine
tune the performance of our content-matching algorithm. A

typical value of 100 for primary cache size, 20 for secondary
cache size, 75% for matching threshold and 60 seconds for
ratelimit timegap is used in our analysis. The effects of altering
these parameters are shown in Figures 1–4.

Varying the size of the message caches. The sensitivity of
the three performance metrics to the primary message cache
size is shown in the figure 1. We see that the Accuracy is gen-
erally high, and rises to a broad maximum of approximately
99% for cache sizes between 25 and 35. At the same time, we
see that the percentage of false negatives drops significantly
(from approximately 10% to almost zero) as we increase the
size of primary message cache. However, this improvement is
counterbalanced by a much smaller increase in the percentage
of false positives (from almost zero to approximately 0.15%).
We see very little sensitivity to the size of the secondary cache,
which suggests that further tests using additional message
traces needs to be done before we can reach any conclusions.

Varying the pattern size. Figure 2 shows the sensitivity
of our three performance metrics to the pattern size used for
content matching. Usually a spammer sends multiple copies
of a mail by making few alterations. Once again, we see that
Accuracy is always very high, whereas the probability of false
positives is always extremely low while the probability of false
negatives is small but increasing.

Varying the matching threshold. Matching threshold is the
lower bound of match percentage obtained for an incoming
mail to be qualified as an email message. If we keep the
threshold value very low, then the chances of false positives
increases. The plot of the three metrics with varying matching
threshold is shown in figure 3.



TABLE I

EFFECT OF PRIMARY CACHE SIZE

Primary Size Size+ Size+ Average time
cache match from time difference
size Percentage Percentage Percentage seconds (s)

40 61.018 39.601 37.945 21.531
60 67.969 41.358 38.280 21.659
100 77.752 43.932 38.741 21.773
500 97.154 52.140 39.416 21.898

1000 98.995 54.557 39.472 21.904
5000 99.141 54.885 39.477 21.904

TABLE II

EFFECT OF SECONDARY CACHE SIZE

Secondary Size Size+ Size+ Average time
cache match from time difference
size Percentage Percentage Percentage seconds (s)

10 75.886 43.190 37.165 19.287
20 77.752 43.932 38.741 21.773
40 80.087 44.286 39.303 24.137
100 84.022 44.846 39.950 24.774

Rate-limiting spam emails at edge router. We plot the
percentage of spam messages received at the edge router and
the percentage of the spam messages sent by the router. The
plot is shown in figure 4. From the figure, we can see that 60%
of the spam messages are ratelimited at the end of simulation.

B. Bayesian Spam Classification Phase

A mail is declared as spam if the estimate of spamminess
of the email is greater than a threshold value; otherwise it is
declared as a good email.

Varying the Number of Spam and Good emails. The
Accuracy was calculated by varying the number of unseen
spam and good emails and plotted in figure 6. The accuracy
is found to be 97% on an average.

Varying the threshold value. Threshold value is used for
classification of an email as a good or spam email based on
the Indicator of spamminess. Figure 5 shows the accuracy
obtained by considering various threshold values. A threshold
value of 0.5 is taken for this experiment.

C. Analysis of Realtime Email Logs

In this subsection, we provide a detailed analysis of real-
time email logs. We use one month log of our department
emails for the experimental analysis. The size of the email,
from field, and timestamp of the email are the only attributes
used in our analysis. We provide the justification of short time
span feature of bulk emails in temporal domain by selecting
different values of rate-limiting timegap. We use different form
of bulk classification as described below:

• When the size of the email matches (”size”)
• When the size and the ”from” field of the email matches

(”size+from”)
• When the size matches and the new email falls in the

ratelimit time imposed by the matched email’s timestamp
and ratelimit timegap (”size+time”).

TABLE III

EFFECT OF SIZE-MATCH PERCENTAGE

Size Size+ Size+ Average time
Match match from time difference

Percentage Percentage Percentage Percentage seconds (s)

0.5 63.003 39.228 29.538 23.547
1 77.752 43.932 38.741 21.773
2 90.688 48.503 50.232 21.344
3 95.501 50.619 55.889 22.088
4 97.473 52.221 59.681 22.507

TABLE IV

EFFECT OF RATELIMIT TIMEGAP

Ratelimit Size Size+ Size+ Average time
timegap in match from time difference
seconds (s) Percentage Percentage Percentage seconds (s)

30 77.519 43.752 30.387 10.081
60 77.752 43.932 38.741 21.773
120 78.203 44.039 47.810 38.562
240 78.812 44.144 55.379 65.489
600 79.747 44.402 65.330 153.28

We also provide the average time difference of bulk emails,
when the bulk email falls in the ratelimit timegap. A typical
value of 100 for primary cache size, 20 for secondary cache
size, 1% for size match percentage and 60 seconds for ratelimit
timegap is used to for our analysis.

1) Varying the size of message caches: We vary the primary
cache size from 40 to 5000 to find its effect on identifying bulk
emails. From the Table I, it is evident that there is a slight
increase in the percentage of bulk emails when the primary
cache size is increased from 1000 to 5000. We observe that
it can identify 38.741 % ”size+time” bulk emails of the total
emails with a reasonable primary cache size of 100. We vary
the secondary cache size from 10 to 100 and the results are
shown in Table II. With a reasonable secondary cache size of
40, we can identify about 39% bulk emails. It is evident from
table II that there is a constant increase in the percentage of
identified bulk emails with increase in the size of secondary
cache.

2) Match Percentage: We vary the size-match percentage
from 0.5% to 4% and the result is tabulated in Table III. If
we increase the size match percentage, the chances of getting
more matches becomes high. This is reflected in table III as
there is constant increase in all three forms of classified bulk
emails with increasing size match percentage.

3) Ratelimit timegap: This parameter mostly affects the
”size+time” bulk emails. We vary the rate limit time gap
from 30 seconds to 600 seconds. The corresponding results
are shown in Table IV. For ratelimit timegap of 60 seconds,
we effectively send 64.1 % less bulks by ratelimiting them.

4) Cumulative Size Distribution of Emails: We also analyze
the cumulative size distribution of bulk emails (size+from) and
temporal bulk emails (size+time). The plot of the cumulative
size distribution for ”size+from” bulk emails and temporal
bulk emails are shown in figure 7 and figure 8 respectively.
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Fig. 7. Cumulative size distribution of bulk emails
(size+from)
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Fig. 8. Cumulative size distribution of temporal
bulk emails
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Fig. 9. Arrival distribution of temporal bulk emails

From the figure 7 and 8, it is evident is that most of the bulk
emails are in the range of 2000 to 8000 bytes in size.

5) Arrival Distribution of Emails: The arrival distribution
of emails give true behavior of incoming emails in temporal
domain. We plot the size of the email verses the timestamp of
the email. The plot of the arrival distribution for the temporal
bulk emails is shown in Figure 9. We can see that there are
lots of horizontal portions in the figure, which demonstrates
the short-time span feature of the bulk emails.

VII. RELATED WORK

Spam is a growing problem for email users and many
solutions have been proposed. These solutions vary from a
postage fee for email to Turing tests to simply not accepting
email from people you don’t know. In its simplest form, Spam
filtering is a mechanism to identify and filter spam messages.
Anti-relaying filters prevents the mail server from serving as
a promiscuous relay. It does not block incoming spams, but it
prevents an authentic mail server from spamming others.

Blocking by IP subnet or number, the domain name, unre-
solvable domain names, Header filtering triggered by invalid
headers, Checking ”To:” address of the recipient in the header,
are some of the common techniques used today. Since the
accuracy of these techniques is not 100%, some rare legitimate
emails may not get delivered. TarProxy [12] is a method
for throttling connections between spammer and an SMTP
server by slowing the rate at which the spammer can send
spam. Most of the filtering techniques are [1] Naive Bayesian
classification, Memory-based approach, Markov chains [3],
and Support Vector Machines (SVMs) [4]. Bayesian spam
classification technique claims an accuracy level of about 99%
[1], but it has a shortcoming of considering the independence
of features. Vipul’s razor [13] is a good example for collabo-
rative filtering. It is a distributed, spam detection and filtering
network, which establishes a constantly updating catalog of
spam in propagation. Our approach is fairly a new idea of
detecting and rate limiting spams using an efficient content
matching algorithm based on tunable pattern size and Bayesian
classifier. This technique is employed at the router level, which
effectively utilizes the network bandwidth, never blocks the
legitimate emails, and rate-limits the spam emails. It also
notifies the end-user of spam emails, identified at the router,
by setting a particular TCP header’s reserved flag.

VIII. CONCLUSION AND FUTURE WORK

We have implemented a two phase approach to detect
spam at the router level. First phase identifies the bulk mail
by pattern-matching and the second phase applies Bayesian
classifier on the identified bulk mail to classify it as a spam.
This work demonstrates that a significant amount of spam
controlling can be successfully achieved at the router level.
This approach not only protects the end-users from excessive
volumes of unsolicited mails, but also limits the network
congestion caused by spams.

Nevertheless, there is still plenty of scope for improvement.
Our scheme can be complemented with Vipul’s razor [13]
scheme to achieve a better collaborative filtering platform.
Our proposed scheme can also be used to detect viruses by
storing virus signatures separately. Virus detection along with
the spam detection at the router level can be a great step
towards building a secure Internet backbone.
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