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ABSTRACT
Software projects use different repositories for storing project and
evolution information such as source code, bugs and patches. An
integrated system that combines these multiple repositories and
can answer a broad range of queries regarding the project’s evo-
lution history would be beneficial to both software developers and
researchers. For example, the list of source code changes or the list
of developers associated with a bug fix are frequent queries for both
developers and researchers. Integrating and gathering this infor-
mation is a tedious, cumbersome, error-prone process when done
manually, especially for large projects. Previous approaches to this
problem use frameworks that limit the user to a set of pre-defined
query templates, or use query languages with limited power. In this
paper, we argue the need for a framework built with recursively
enumerable languages, that can answer temporal queries, and sup-
ports negation and recursion. As a first step toward such a frame-
work, we present a Prolog-based system that we built, along with
an evaluation of real-world integrated data from the Firefox project.
Our system allows for elegant and concise, yet powerful queries,
and can be used by developers and researchers for frequent devel-
opment and empirical analysis tasks.

Categories and Subject Descriptors
D.1.6 [Programming Techniques]: Logic Programming; H.3.4
[Information Storage and Retrieval]: Systems and Software—
Question-answering (fact retrieval) systems

General Terms
Human Factors, Languages

Keywords
Data integration; Prolog; software evolution; empirical studies

1. INTRODUCTION
Software projects are larger than ever and their histories run for

longer than ever, so developers are overwhelmed whenever they
are faced with tasks such as program understanding or searching
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through the evolution data for a project. Examples of such fre-
quent development tasks include understanding the control flow,
finding dependencies among functions, finding modules that will
be affected when a module is changed, etc. Similarly, during soft-
ware maintenance, frequent tasks include keeping track of files that
are being changed due to a bug-fix, finding which developer is suit-
able for fixing a bug (e.g., given that she has fixed similar bugs
in the past or she has worked on the modules that the bug occurs
in). In addition, a framework that allows querying on integrated
evolution data for large projects would be beneficial for research in
empirical software engineering, where data from these repositories
is frequently used for hypothesis testing. All these tasks require ex-
pressive and efficient search over large data sets across repositories;
therefore a framework that can integrate these data from multiple
sources and answer a broad range of queries would be beneficial
for both software development and empirical analysis.

While prior frameworks allow efficient search and analysis on
software evolution data, they have two main inconveniences: (1)
they are not flexible enough, e.g., they permit a limited range of
queries, or have fixed search templates; (2) they are not power-
ful enough, e.g., they do not allow recursive queries, or do not
support negation; however, these features are essential for a wide
range of search and analysis tasks. In this paper, we show how we
can address these shortcomings by using a Prolog-based integration
and query framework. We chose Prolog because it is declarative
yet powerful, which allows elegant, concise expression of queries
for data collection and hypothesis testing. Our framework cap-
tures a wealth of historical software evolution data (information on
bugs, developers, source code), and allows concise yet broad-range
queries on this data. The three main novelties of our framework
are: (1) it is temporally aware; all the tuples in our database have
time information that allows comparison of evolution data (e.g.,
how has the cyclomatic complexity of a file changed over time?);
(2) it supports powerful language features such as negation, recur-
sion, and quantification; (3) it supports efficient integration of data
from multiple repositories in the presence of incomplete or missing
data using several heuristics.

2. RELATED WORK
Herraiz et al. [6] identified the need for organized software repos-

itories that can improve data retrieval techniques in software en-
gineering and ensure repeatability, traceability and third-party in-
dependent verification and validation. They proposed a research
agenda by identifying the research challenges in this area.

Hindle and German [7] proposed SCQL, a first-order and tempo-
ral logic-based query language for source code repositories. Their
data model is a directed graph that captures relationships between
source code revisions, files and modification requests. SCQL sup-
ports universal and existential queries, as we do, but does not sup-



Table Table Name Attributes
Source Basic sourcebasic FileNameAndPath, Release, List of Functions Defined, Complexity, Defect Density, Date
Source Change sourcechange FileNameAndPath, Date, RevisionID, BugID, DeveloperID, Days, Lines Added
Source Depend sourcedepend FileNameAndPath, List of Files Depends it on (w.r. t . the static call graph), Date
Bugs bugs Bug ID, Date Reported, Developer ID, Date Changed, Developer Role, Severity,

Bug Status, Bug Resolution, List of Dependencies, DaysReported, DaysFixed

Table 1: Database schema.

port negation and recursion, which we do. While we do not pro-
pose a new language, the significant difference is that we consider
multiple software repositories to integrate data and answer queries.
Instead of source code changes only, our framework captures rela-
tionships between three artifacts: developers, bugs and source code.

Fischer et al. [2] proposed an approach for populating a release
history database that combines source code information with bug
tracking data and is therefore capable of pinpointing missing data
not covered by version control systems such as merge points. Sim-
ilar to Fischer et al., we build our database initially by extracting
information from source code and bug repositories.

German [3] proposed recovering software evolution history us-
ing software trails—information left behind by the contributors such
as mailing lists, version control logs, software releases, documen-
tation, and the source code. The method was used to recover soft-
ware evolution traits for the Ximian project. Our data collection
and database population is similar, though our framework is meant
to answer queries aggregating data from multiple repositories.

Begel et al. [1] developed Codebook, a framework capable of
combining multiple software repositories within one platform. Our
work is similar but the main challenge in building a framework for
open source projects lies in collecting and accurately integrating re-
lated data in absence of organized repositories and missing data [2].
Their query language is restricted to regular expressions, but has
support for a fixed set of pre-computed transitive closure results;
we use Prolog, a Turing-complete language, hence our framework
can express unrestricted queries (including temporal ones).

Nussbaum et al. [8] presented the Ultimate Debian Database
that integrates information about the Debian project from various
sources to answer user queries related to bugs and source code us-
ing a SQL-based framework. However, their framework does not
have support for queries that require negation or transitive closure.

Starke et al. [10] conducted an empirical study on programmers’
search activities to identify the shortcomings of existing search
tools. They found that SQL-based state-of-the-art source code search
tools are not effective enough for expressing the information de-
veloper is seeking. We believe that declarative query support will
improve developers’ code-search experience.

Hajiyev et al. [5] proposed CodeQuest, a Datalog-based code
search tool for Java programs. They used four open source Java
applications: Jakarta Regexp, JFreeChart, Polyglot and Eclipse to
demonstrate their tool. Our work significantly differs from this
work in two ways: (1) we do not build any language specific tool,
thus forming a broader framework, and (2) we integrate multiple
repositories, which allows the user to search information about
bugs and developers in addition to source code.

3. FRAMEWORK
We now turn to presenting our framework. We first motivate

our decision for choosing Prolog as the storage and querying en-
gine for our framework, then describe the key novel features in our
approach, followed by the data model. We implemented our frame-
work in DES, a free, open-source Prolog-based implementation of

a basic deductive database system [9].

3.1 Why Use Prolog?
Prolog is declarative. In declarative languages, queries are con-

cise and elegant because there is no need to specify control flow or
pre-define query templates.

Prolog supports negation. Negation extends the range of ex-
pressible queries but is potentially expensive. For example, pre-
vious frameworks cannot answer queries like “return the list of de-
velopers who have not fixed bugs in module A” or “return the list
of modules that are not affected when module A is changed”; such
queries are useful, however, e.g., the second query can be used to
reduce regression testing. Query Q1 in Table 2 is an example of
negation use in our framework.

Prolog supports recursion. Recursive queries are important, e.g.,
for computing the transitive closure required in impact analyses.
Although certain versions of SQL support recursion, it is usually a
limited form of recursion, and implemented via proprietary exten-
sions. Q2 in Table 2 is a sample query that requires recursion.

3.2 Key Features
We now showcase some key features of our framework; existing

approaches fail to support one or more of these features.

3.2.1 Temporal Queries
Previous approaches that build databases from integrating mul-

tiple software repositories are not capable of answering temporal
queries. For example, the following queries cannot be answered
by existing systems: (1) who modified file A on a given day?, (2)
whom was the bug B assigned to during a certain period?, (3) what
changes were made to a file F during a specific period of time?, (4)
how have source code metrics (e.g., complexity, defect density) of
a file changed over time?

3.2.2 Recursion
Transitive closure is helpful for impact analysis, e.g., “return the

set of files that will be affected by modifications to file F .” The
problem with prior approaches is that they either cannot compute
transitive closure, or can only compute it when the graph (where
edges indicate a “depends” relationship) is known statically. For
example, we might want to find all the descendants of a file F after
it has been refactored. If we do not know the definition of “de-
pends”, i.e., in this case, is-descendant-of, at the time we
construct the database, we first need to write a query that gener-
ates the graph, and then transitively close it, using a language pow-
erful enough to express transitive closure. Similarly, suppose we
have a bug B1 in file F , and we want to find the list of subsequent
bugs in F that might have been introduced in the process of fix-
ing B1. The problem is, the list of subsequent bugs is constructed
dynamically, e.g., all the bugs in F minus the list of bugs in F
that depend on other bugs in other files. Previous approaches such
as Codebook [1] use pre-computed transitive closure for efficiently
answering a pre-defined set of queries, e.g., “the set of all functions



Natural Language Query DES Clause
Q1: Return the list of bugs fixed by developer
D which do not depend on other bugs

bugs_not_depend(B,D,R) :− bugs(B,_,D,_,_,_,_,_,R), not(R=’null’).

Q2: Given two functions F1 and F2, check if
a change to F2 will affect F1

reach(X,Y) :− sourcedepend(X,Y).
reach(X,Y) :− reach(X,Z), sourcedepend(Z,Y).

Q3: Return all activities (fixes F or source
code changes C) associated with developer D

activity (B,D,F) :− sourcechange(F,D,B,_,_,_,_).
activity (B,D,F) :− bugs(F,_,D,B,_,_,_,_,_,_,_).

Q4: Return all bugs fixed by developer D bugs_fixed(B,D,R) :− bugs(B,_,D,’Fixed’,_,_,_,_,_,_,_).
Q5: Return the bugs developer D could not fix bugs_not_fixed(B,D) :− bugs(B,_,D,’Assigned’,_,_,_,_,_,_,_).
Q6: Return the list of bugs developer D re-
ported and was eventually fixed by E

bugs_fixed_D_E(B,D,E) :− bugs(B,_,D,’Reported’,_,_,_,_,_,_,_),
bugs(B,_,E,’Fixed’ ,_,_,_,_,_,_,_).

Q7: Return the list of files modified by devel-
oper D on date DT

source_modified_bydate(F,D,R,DT) :− sourcechange(F,D,_,R,DT,_,_).

Q8: Return the list of bugs reported and fixed
by the same developer D

bugs_fixed_D_D(B,D) :− bugs(B,_,D,’Reported’,_,_,_,_,_,_,_),
bugs(B,_,D,’Fixed’,_,_,_,_,_,_,_).

Q9: Return the tossing history of bug B bugs_toss(B,D,R) :− bugs(B,_,D,R,_,_,_,_,_,_,_).
Q10: Return the source files that have been
modified by two developers D and E

common_modified(D,E,R) :− sourcechange(R,D,_,_,_,_,_),
sourcechange(R,E,_,_,_,_,_).

Q11: Return the list of bugs fixed between
dates D1 and D2

bugs_fixed_bydate(B,D,DT) :− bugs(B,_,D,’Fixed’,_,_,_,_,_,DT,_),
DT<D2, DT>D1.

Q12: Return the list of source files modified
by developer D before date D1

source_modified_bydate(F,D,R,DT,DY) :− sourcechange(F,D,_,R,DT,DY,_),
DY<D1, DY>0.

Q13: Return the list of open (unresolved) bugs bugs_new(B,D) :− bugs(B,_,D,_,_,_,_,_,_,_,−1).

Table 2: Sample queries from our library.

F depends on”; however, queries like “list all functions that both
F1 and F2 depends on” cannot be answered because they require
language support for recursion/transitive closure. Moreover, when
data from new releases is added to the database, pre-computed tran-
sitive closure does not work, because the “depends” relationships
might have changed due to the new data, hence a dynamic transitive
closure algorithm would be required.

3.2.3 Integration
In open source projects, it is often difficult to integrate related

information because it is spatially dispersed and incomplete. For
example, often bug reports do not have complete information about
files that were changed during a bug fix. Consider Mozilla bug
334314; according to the Bugzilla bug report, three changes were
made to file ssltap.c to fix this bug—once by developer ID
alexei.volkov.bugs and twice by developer ID nelson. The infor-
mation in the patch reference for this change is incomplete; 1 it is
not clear who-has-made-which-change. However, from the change
log of file ssltap.c, we can retrieve developers, changes, and
change timestamps, which helps us complete the bug database.

3.3 Storage
Our framework is designed to integrate information from three

sources: (1) source code repositories—size, location, source code
dependencies from the static function call graph, etc., (2) bug repositories—
who reported the bug, what is the present status of the bug, bug
dependency data, etc., and (3) interaction between developers—
who tossed bugs to whom, which two developers worked on same
files, etc. Note how function calls, bugs and developer interactions
induce dependency graphs. We integrate information from these
three sources and store it into a database, so that our framework
can answer cross-source queries, as demonstrated in Section 4. The
1Patch for bug 334314:
https://bug334314.bugzilla.mozilla.org/attachment.cgi?id=218642

schema for our database is presented in Table 1. We now proceed
to describing the database schema, contents, and updates.

Source code. The source code data is stored in three tables: ba-
sic source code information, source code changes and source code
dependencies. The basic source code information table (sourcebasic)
stores, for each module (file): its location, the list of functions it
defines, complexity metrics, defect density information, and a cor-
responding date. Note that a file can have multiple entries in the
database due to multiple releases, hence when a file is not changed
in a release, all values but the release timestamp remain unchanged.
These entries are important for tracking changes between releases.
In the source change table (sourcechange), we store details of all
revisions that have been made to a file, either as feature enhance-
ments or bug fixes: the date the change was made, the revision ID,
the bug ID (if the change was due to a bug fix) and the developer
who committed it, and number of lines added. For a source change
entry in the database, we also store the number of days since the
first commit2 the current activity took place.3 In the source depen-
dency table (sourcedepend), we store information about which
other entities a given module or function depends on directly, i.e.,
file, module or function dependencies induced by the call graph.

Bugs. The bug table (bugs in Table 1) stores information related
to a bug: the date on which the bug was reported, list of devel-
opers associated with the bug and their roles (i.e., who reported
it, who the bug was assigned to at some point, who fixed it), the
severity of the bug, the present status of the bug, final resolution
of bug and list of bugs this bug depends on. To answer queries
about a time interval (e.g., how many bugs were fixed between July
2008 and May 2010), we add two attributes —DaysReported and
DaysFixed—that represent the number of days since the first re-

2The first commit found in the log files we used was on 07/23/1998.
3This is done to answer queries involving time intervals.



lease of the project that the bug was reported and fixed respectively.
If a bug has not been resolved at the time of database creation,
DaysFixed is set to −1.

Developer information. Thanks to our source and bug table
schema design choice, having a developer database is redundant.
All the information for developers (e.g., tossing information, bug
fix information, code authorship information) can be extracted from
the source code and bug tables.

Updating the database. As software evolves, our database
needs to grow; note that the database is monotonically increasing
(we never retract facts).

4. EXAMPLES
We now proceed to presenting use cases for our system—a va-

riety of frequent queries that arise in software development and
empirical research. In Table 2 we demonstrate how using Prolog
improves expressiveness and allows arbitrary information retrieval,
without the need for pre-computation or templates. We envision
these queries forming the kernel of a query library that can be used
by developers in their daily development and maintenance activi-
ties; similarly, the library can be useful to researchers for empirical
analysis and hypothesis testing. Note that, since our query lan-
guage is based on Prolog, we support existential queries directly
(variables in Prolog clause heads are existentially quantified), and
universal queries by rewriting, i.e., ∀xQ(x)⇔ ¬∃x¬Q(x).

5. RESULTS
We randomly selected 2128 C files and 58 C++ files from the

Firefox source code repository and extracted their complete change
log histories to populate our source change database. We extracted
the 932 bugs associated with these source files. We also added to
our source dependency table the 50 function call edges induced by
the static call graph between functions in these files. In total, our
database contained 63,142 tuples. In Table 3 we present the queries
we used to test the query definitions showed in Table 2. The first
column shows the query invocation, the second column shows the
number of resulting tuples, 4 and the third column shows the query
execution time, in milliseconds. We found that the time taken to
answer a query using DES increases with the increase in number
of resulting tuples, hence it can be quite high for queries with large
results, e.g., Q10; we plan to address scalability in future work.

6. FUTURE WORK
We are currently using DES, an open-source Prolog-based im-

plementation of deductive databases [9] as our framework’s engine.
In the future, we plan to use the bdddbddb framework to speed
up queries [11], as bdddbddb has been shown to be able to handle
Datalog-based static analyses for large, real-world programs. We
plan to use other software traits/trails, e.g., mailing list information,
to improve our data set for more accurate information modeling and
retrieval. In our preliminary experiments as shown in Section 5, we
did not use the sourcebasic database or any queries related to it.
In future, we would like to extend our library to answer queries re-
lated to the sourcebasic like: “which file exhibited the maximum
increase in complexity or defect density during a given time inter-
val.” Additionally, we plan to track bug-introducing changes using
our framework—changes in the source code that led to bugs. Fi-
nally, we plan to add a visualization layer [4] on top of our current

4In query Q2 in Table 3, Func;Mod represents function Func
defined in module Mod; the resulting tuple 1 denotes there is a
path from F1;M1 to F2;M2 while 0 denotes otherwise.

Query Resulting Time
tuples (ms)

Q1 bugs_not_depend(B,wtc,R) 218 1,746
Q2 reach(’main;nsinstall .c’ ,

’PK11_FreeSlot;pk11slot.c’)
1 4

reach(’PK11_FreeSlot;pk11slot.c’,
’main;nsinstall .c’ )

0 5

Q3 activity (B,wtc,F) 2,569 4,489
Q4 bugs_fixed(B,wtc) 218 143
Q5 bugs_not_fixed(B,wtc) 558 287
Q6 bugs_fixed_D_E(B,fabientassin,wtc) 1 127
Q7 source_modified_bydate(F,nelson,

R,‘2001/01/07’)
46 197

Q8 bugs_fixed_D_D(B,nelson) 126 25
Q9 bugs_toss(236613,D,R) 18 143
Q10 common_modified(nelson,wtc,R) 465 25,120
Q11 bugs_fixed_bydate(B,D,DT),

2008/7/23<DT< 2008/10/23 .
47 1,769

Q12 source_modified_bydate(F,nelson,
R,DT,DY), DT=2008/7/23.

1,275 1,282

Q13 bugs_new(B,D) 810 2,435

Table 3: Example queries for query declarations in Table 2.

framework that will allow query results to be displayed visually,
rather than as text.
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