
Report on the

Fourth Workshop on Hot Topics in Software Upgrades
(HotSWUp 2012)

http://www.hotswup.org/2012/

Karla Saur
Dept. of Computer Science

University of Maryland
College Park, MD

ksaur@cs.umd.edu

Iulian Neamtiu
Dept. of Computer Science and Engineering

University of California, Riverside
Riverside, CA

neamtiu@cs.ucr.edu

ABSTRACT
The Fourth Workshop on Hot Topics in Software Upgrades
(HotSWUp 2012) was held on June 3, 2012 in Zurich,
Switzerland. The workshop was co-located with ICSE 2012.
The goal of HotSWUp is to identify, through interdisci-
plinary collaboration, cutting-edge research ideas for imple-
menting software upgrades. The workshop combined pre-
sentations of peer-reviewed research papers with a keynote
speech on how empirical software engineering can help re-
duce update-induced failures. The audience included re-
searchers and practitioners from academia and industry. In
addition to the technical presentations, the program allowed
ample time for discussions, which were driven by debate
questions provided in advance by the presenters.

HotSWUp provides a premier forum for discussing problems
that are often considered niche topics in the established re-
search communities. For example, the technical discussions
at HotSWUp’12 covered dynamic software updates, package
management tools, using model-checking and verification to
verify updates, empirical software engineering and reposi-
tory mining, and highlighted many synergies among these
and other topics.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Reliability, Avail-
ability, and Serviceability; D.2.7 [Software Engineer-
ing]: Distribution, Maintenance, and Enhancement;
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures,Performance measures Process metrics,Product met-
rics; D.3.3 [Programming Languages]: Language Con-
structs and Features; D.3.4 [Processors]: Compilers; D.4.7
[Operating Systems]: Organization and Design; K.6.3
[Management of Computing and Information Sys-
tems]: Software Management

General Terms
Management, Experimentation, Human Factors, Perfor-
mance, Reliability

Keywords
Software upgrades, dynamic software update, model check-
ing, virtual machines, package management

HotSWUp 2012 Overview
The HotSWUp 2012 program featured a keynote address
and three research sessions; each session was followed by
a discussion period. The keynote, by Martin Pinzger, de-
scribed how mining software repositories can help reduce
update-induced failures by identifying failure-prone source
files and binaries. The first session included work related
to dynamic software updating; the second covered top-
ics related to the safety of dynamic updates and software
upgrades; and the final session included work on model-
checking software changes and dynamic updates. This re-
port summarizes the presentations and discussion that took
place during each session.

Keynote Address
Software Repository Mining for Improving Software
Upgrades by Martin Pinzger, Delft University of Technol-
ogy

Martin started with the motivation for his talk: software
upgrade error messages are frustrating and confusing. His
research area is mining software repositories, so the natural
connection to HotSWUp, and the guiding motive for his talk
was “Can we mine software repositories to reduce upgrade
failures?”.

The first piece of work he presented was on detecting fine-
grained source code changes, and using them to predict
bugs [13]. Their findings suggest that using SCC and de-
tecting changes at a fine-grained AST level performs better
at predicting bugs compared to churn (lines modified). The
next line of work focused on investigating whether developer-
module networks can be used to predict failures [26]. To
verify this, they use data collected from analyzing developer
contributions to Windows Vista binaries. They set up a
regression analysis where the independent variable was the

55

number of pre-release commits to a binary, and the depen-
dent variable was the number of post-release bugs in the
binary. Their findings have indicated that central modules
are more failure-prone than peripheral ones, and that cen-
trality measures can predict 83% of failure-prone binaries in
Windows Vista. As a consequence, their recommendation
for central binaries was to increase testing effort, consider
refactoring, and rethink how contributions and contribu-
tors are organized. These two lines of work indicate several
promising ideas for research in software upgrades that are
facilitated by mining repositories: identify upgrade-critical
components, identify upgrade bugs, collect anecdotes of up-
grade failures [20].

Session 1

How To Have your Cake and Eat It Too: Dynamic
Software Updating with Just in Time Overhead by
Rida Bazzi, Bryan Topp, and Iulian Neamtiu [4]

Rida Bazzi gave the talk. The main motivation of the work
was espousing and trying to address the inherent tension in
dynamic updates: on one hand, to permit dynamic updates
program state must be available, but exposing the state
imposes an inherent overhead because it prevents certain
compile optimizations. Moreover, dynamic update (DSU)
systems introduce additional overhead by periodically sav-
ing the state. For example, if the program contains update
points, compiler optimizations might move code up or down
around the update points, or optimize away certain variables
that contain state necessary for update. More generally, op-
timizations that lead to functions being inlined, variables
being eliminated, merged, or to instructions being reordered
will pose potential problems for updates that rely on these
variables. Hence, if the programmer needs to rely on consis-
tent state in order to perform the update, the compiler will
be denied certain optimization opportunities. The authors
propose a solution to this tension called switching gears:
during normal execution, a “high gear” version of the pro-
gram runs; this version’s only overhead is to save program
state. When an update is signaled, the execution is switched
to a “low gear” version that supports dynamic updates and
has high overhead; the update is performed, and then ex-
ecution is switched back to high gear. Preliminary perfor-
mance experiments indicate that, for CPU-bound applica-
tions, this approach incurs only around 10% steady-state
overhead, whereas prior approaches such as Ginseng [24] and
UpStare [18] can incur 40% to 100% overhead on such ap-
plications.

Michael Hicks agreed that the argument [that the tension is
inherent] is valid, but indicated having less-frequent update
points as a way to minimize the impact on performance.
Cristian Cadar asked what was the baseline when measuring
the overhead of the switching gears approach: the baseline
was the program with full compiler optimizations enabled.

A Study of Dynamic Software Update Quiescence
for Multithreaded Programs by Christopher Hayden,
Karla Saur, Michael Hicks, and Jeffrey Foster [15]

Karla gave the talk. Allowing updates to take place only at

well-defined update points simplifies the reasoning of pro-
gram correctness. However, with multithreaded programs
all threads must hit an update point before an update can
take place, so there is the potential risk of update points de-
laying an update for too long, even indefinitely in the case of
deadlock. The authors conducted a study of 6 diverse multi-
threaded server programs to measure the amount of delay
that occurs before all threads in a program are at an update
point. They concluded that although some programs had
no problems, some programs would not ever be ready for
updating because of threads blocking due to condition vari-
ables or I/O. To solve this, the authors created a library,
QBench, that allows blocking calls to be interrupted, en-
abling or expediting the time to the ability to perform an
update. They concluded that with the QBench library, all
programs they tested had all threads at update points (and
therefore were ready for update) within 0.155 to 107.558 ms,
and most were below 1 ms.

The first question asked was how the authors suggest
that programmers find these blocking calls, and how can
programmers know they are not missing blocking calls. The
authors used manual analysis of source code to find the
blocking calls (such as searching for condition variables),
and the results show that there are no missing blocking
calls. Another participating commented that it may be
possible to abstract blocking calls away into a library and
then link against that to streamline the removal of blocking
calls. A final question was how does the time scale with the
number of threads, e.g., 100 threads. The answer was that
the time depends more on code and the number of blocking
calls than number of threads; many threads automatically
don’t block and cause no delay.

Towards Standardized Benchmarks for Dynamic
Software Updating Systems by Edward K Smith,
Michael Hicks and Jeffrey S Foster [28]

Edward gave the talk. The motivation behind the work was
the observation that DSU adoption in the “real world” lags
behind, even though DSU research is booming. A brief his-
tory of DSU systems was presented, from PODUS (1989,
1991) [27, 12], to Erlang (1999) [2] to OPUS (2005) [1]
to Ginseng (2006, 2009) [24, 22] to POLUS (2007) [8],
to UpStare (2010) [18], Ekiden (2011) [16], and Kitsune
(2012) [17]. The trend, as DSU has progressed with these
systems, is to increase flexibility, and decrease programmer
burden and performance overhead. However, a look at the
state of practice indicates that DSU systems are not widely
adopted. Therefore, the authors argue the need for bench-
marks to compare relative advantages of DSU systems. In
particular, they propose DSU system metrics such as per-
formance (e.g., availability, steady-sate overhead), flexibility
(changes supported), and usability (programmer burden).
The talk closed with a call to the community to push for
DSU adoption by providing DSU benchmarks.

Sander van der Burg asked if the authors have looked at
component updates in addition to the source-level updates
characteristic of the aforementioned systems. The answer
was yes, e.g., POLUS performs updates at the binary level.
Rida Bazzi suggested adding correctness as a metric, which

56

was agreed on as a good point. Another question raised
the point of Java DSU, where the application genre is
quite different from the genre of C DSU applications prior
work has most focused on. A final comment suggested
that real-world programs (e.g., desktop applications) use
a different programming model compared to the server
programs traditionally used to test DSU.

Discussion
A discussion session followed the talks. The first ques-
tion was “how do DSU system authors choose benchmarks?”
Rida Bazzi replied that the choice process is biased: program
understanding is an important factor, i.e., DSU researchers
pick systems that are easy to understand and update.

The success of Ksplice—a DSU system for the Linux ker-
nel [3]—was brought up. Ksplice is widely used in the in-
dustry so there is compelling evidence that people care about
dynamic updates enough to buy a subscription. The ques-
tion then, is what made Ksplice popular: “killer” apps (e.g.,
security patches) or ease of use (Ksplice is close to a “push-
button” update model where constructing and applying up-
dates is very easy)? Michael Hicks mentioned that Ksplice
takes usability head-on (perhaps a reason for its success), be-
cause security bugs are easily fixed with, say, 3-line updates.
However, performing whole-release updates using Ksplice is
problematic at best, because the massive changes in whole-
release updates make safety a serious issue. The conclusion
was that perhaps both factors (usability and small patches
being sufficient for security fixes) led to Ksplice’s success.

Another participant pointed out Android apps: they must
be ready to stop/restart so maybe the community should fo-
cus on that platform; an enabler might be the fact that An-
droid app updates seem to be mostly additive (added code
and features and very few deletions). Michael Wahler sug-
gested that the researchers, especially academic ones, should
talk to industry and understand what kind of upgrades and
state transfer are required in a practical setting. Danny
Dig mentioned that, based on his experience discussing
with developers from industry, DSU systems cannot require
burdensome or unusual annotations because developers in
the industry are not likely to accept/embrace them. Mar-
tin Pinzger suggested that a static analysis approach, akin
to FindBugs, that advises programmers of update-critical
statements might prove effective.

Session 2

Safe and Automated State Transfer for Secure and
Reliable Live Update by Cristiano Giuffrida and Andrew
S. Tanenbaum [14]

Cristiano gave the talk. He presented an approach for live
update that supports automated state transfer, including
pointer transfer and dynamic object reallocation. The ap-
proach is based on non-intrusive compiler-based instrumen-
tation and uses metadata to track (introspect) objects. Es-
sentially, when reaching an update point after an update is
signaled, a new process is instantiated and the state is trans-
ferred. The transfer is observed by a state transfer mon-
itor. After the transfer is complete, control is transferred

to the new process and old process is cleaned up. Objects
are tracked by intercepting malloc (via a malloc wrapper),
and all the usual data structure change idioms [21] are sup-
ported.

The first question was whether object copying time was
an issue; as expected, this time depends on the number of
objects in the executing application. The second question
asked about applications that the authors tested their
approach on; the answer was mainly two applications: a
research operating system (MINIX), and a prototype for
user programs.

Atomic Dynamic Upgrades Using Software Transac-
tional Memory by Lúıs Pina and João Cachopo [25]

Lúıs gave the talk. Their work was motivated by the obser-
vation that immediate update semantics (after an update,
objects are converted before the program resumes at the
new version) is intuitive, while lazy semantics (objects are
converted upon first access, which can be long after the con-
trol resumes [24]) is non-disruptive, as the time to convert
objects to the new version is amortized. Hence their solu-
tion aims to provide immediate semantics safety and lazy
semantics performance. A potential issue can arise when
conversion code tries to access program state that has al-
ready been converted. To reason about safety, they use
transactions—code in a transaction is atomic with respect to
the update, i.e., it appears to execute at either the old ver-
sion or the new version [23]. Their solution to this tension
is to keep the old versions of objects in memory after the
update, so that post-update transactions running at the the
old version see the objects at the old version. Then, when-
ever a post-update transaction encounters an object that
has not been converted yet, a concurrent conversion trans-
action is started and completed before the original transac-
tion resumes. Their system is flexible, e.g., it supports class
splitting/deletion. They implemented a prototype named
DuST’M using a bytecode rewriting stage after compila-
tion that enhances the original program with support for
dynamic software upgrades. The resulting transformed pro-
gram runs on top of any JVM. Therefore, they do not re-
quire any special JVM to run and update programs using
DuST’M. Based on their evaluation, lazy upgrades are far
less disruptive than immediate updates, though (naturally)
slower than performing no updates.

The first question was if there were any limitations to their
approach. Lúıs answered that one requirement was that
the underlying system must support transactions, e.g., via
an STM; without transactions, their scheme does not work
(note that STM support imposes an overhead). The second
question asked what instrumentation is needed to support
the scheme; the answer was that every instance is accessed
through a handle.

A Generic Approach for Deploying and Upgrad-
ing Mutable Software Components by Sander van der
Burg [29]

The author started with the motivation: software deploy-

57

ment is getting more complicated, (operating) systems are
getting bigger, software configurations are difficult to re-
produce, and upgrading may break the system. Therefore,
there is a need for deployment automation. In prior work
they have developed Nix [10], a package manager support-
ing reliable, reproducible package deployment and atomic
local upgrades. Disnix [31, 30] extends the Nix package
manager to support reliable and reproducible deployment
of service-oriented systems onto networks of machines. In
their approach, packages are encoded with a hash code in
the name representing the dependencies (architecture, li-
braries, build procedure). While Nix and Disnix can manage
static components, mutable components must be handled
separately, and this is performed by the Dysnomia exten-
sion, which is new for this work. Dysnomia requires that
components implement five operations, activate, deactivate,
snapshot, incremental-snapshot, and restore. The semantics
of these operations is application-dependent, but it allows
Dysnomia to store these mutable components in a container
and support isolation and snapshots for reproducibility. A
disadvantage of the current scheme is that creating snap-
shots prior to upgrades can take very long, which is prob-
lematic, e.g., if the component is a database that clients
need access to. In order to safely upgrade a system, they
must avoid any interference from end-users that might af-
fect the dump phase. Therefore they block end-user access
and always wait until the entire dump has been made. As an
optimization, the blocking time window can be shortened by
using incremental dumps, although it may still be expensive
for upgrading systems under high load.

Petr Hosek asked about the number of users for the system—
the speaker said the system has about 25 users and it was
also running on his laptop. The next question was whether
Sander had considered using Disnix (which incorporates
Dysnomia) to deploy software in a university lab’s network.
The answer was that a different system, Charon is used in
that setting. Charon’s purpose is to do distributed infras-
tructure deployment and to take care of the systems compo-
nent, whereas Disnix takes care of deploying the application
components of service-oriented systems, (but it does not de-
ploy the underlying system configurations, e.g. the operat-
ing systems and system services). The last question asked if
the build process can be parallelized to run on multiple ma-
chines. The answer was yes; as Nix borrows concepts from
purely functional programming languages and every build is
defined as a function, Nix can easily determine the closures
and determine which functions can be run in parallel.

Discussion
The first point of discussion was not specifically targeted
at the speakers in the session, but rather more generally at
identifying settings where dynamic or incremental update
techniques are not worth applying. For example, what if
dynamic update time is higher than the time it would take
to restart? On a related note, what if the time to generate bi-
nary patches is longer than to sending the whole new binary?
One participant offered that large in-memory state does not
mean the whole state is important [and thus warranting dy-
namic updates to avoid losing the state]. An example is the
caching daemon Memcached [19] which is widely used on
Web servers to cache content so that clients can be served
from memory and avoid going to the disk; it is undesirable

to restart Memcached very often as performance is degraded
while it rebuilds the state to load objects into the cache.

A question for Cristiano Giuffrida asked to clarify their defi-
nition or rollback; in their case, rollback means the program
can recover from crashes, but can not recover form corrupt
state. A second question was whether in their system the
requirement for state transfer is inherent or is due to C’s
weak type system (put another way, if their approach was
for Java, would it need annotations?). Cristiano answered
that applying their technique would probably be easier to
other languages especially if they support, e.g., variant types
(unlike C which only has unions).

Cristiano then asked whether state annotation [to iden-
tify state that must be converted at update] is a burden
or a blessing? The consensus was that one-time program-
mer intervention to identify such state (which tends to be
needed in the beginning of the evolution) is acceptable. His
second question was whether the audience strongly wants
hot rollback (in case the update goes wrong); the answer
was yes, e.g., if an error occurs when updating the graphic
card drivers the system can become unusable. Finally, how
should I/O be buffered to support rollback? A solution
might be to use Dumitraş’s staged upgrades [11].

Session 3

Verification of Software Changes with ExpliSAT by
Hana Chockler and Sitvanit Ruah [9]

This paper was presented by Julia Rubin, a colleague of
the authors. She began by explaining that model checking
provides the benefit of verification but the process is very
time-consuming and does not scale well to large programs.
The authors built upon their prior work on ExpliSAT, which
is a concolic model checker combining concrete and symbolic
model checking. ExpliSAT works by traversing the control
flow graph and creates all possible control paths. New in this
paper is the path traversal heuristic: traverse paths that
have changed first. Their system passes the changes from
the new version to the ‘goto-cc’ compiler, which simplifies
the program’s control flow. Then, the simplified version is
passed to ExpliSAT with the update, and that output is
then passed to the SAT solver to validate the expressions.
The current approach works for sequential programs, but
does not work for concurrent programs (future work). They
tested ExpliSAT on a C++ program used in the ITER EU
Project’s thermo-nuclear reactor robot that changes the di-
vertor cassette. ExpliSAT did not terminate in several hours
[while the system presented in their work found the bug in
several seconds].

Michael Hicks noted that this work sounds like dynamic
symbolic execution and asked how is this work different from
dynamic symbolic execution. Cristian Cadar asked if the au-
thors are actually running the program and if it was similar
to C-Prover, the model checker. Julia responded that they
are not actually running the program; it is a concrete traver-
sal of the control graph. The paths are computed on-the-fly
and in every traversal the tool takes a different path, which
is what the authors mean by concolic.

58

Multi-Version Software Updates by Cristian Cadar and
Petr Hosek [5]

Petr gave the talk. He began by explaining that there have
been many critical reliability issues in software updates. For
example, Lighttpd web server developers fixed a small bug
which unfortunately also broke a different feature. For a
period of 12 months, the users had to either stick with the
old version or upgrade to a new buggy version. In fact,
bug fixes have a 14%–24% chance of being buggy them-
selves [33]. Existing approaches such as verification and
validation are helpful, but despite their usage, we still see
bugs in real-world systems. The authors’ goal is to improve
the execution of upgraded software to provide the benefits
of the newer version but the stability of the older version.
In their approach, the authors run both the old and new
version in parallel and coordinate the execution of the two
versions. They use the output of the correctly executing
version at any given time. The multi-version application is
run on top of a virtulization framework alongside the con-
ventional application. This ensures that the multi-version
application acts as one program to the external world. The
authors must resolve diversions by synchronizing between
the two versions at multiple levels of abstraction (protocol
level, system calls), and handling the diversions by using the
output of the new version by default. They must balance the
trade-off between ease of synchronization and stability. The
authors implemented a prototype for x86 in which they run
two versions of a program with small differences in behavior
and they successfully survived a number of crash bugs in
Redis. The authors plan to improve performance overhead
and non-crashing divergences in the future.

Danny Dig noted that the authors are currently running
whole copies of the program and wondered if it would be
possible to slice it and only run the part of the program
where we see the divergences; it would waste less CPU cy-
cles and might be more lightweight, as right now the authors
are running the same program several times. Petr responded
that they realize their idea might not be the most energy-
efficient, but their current process is not much different than
fully loading the CPU. The problem is identifying the dif-
ferences, forking the execution, and then trying to merge
back—this is difficult due to changes in the runtime state.
Cristian added that differences in runtime state exist, but
if many different versions are in memory, sooner or later
the problem will be that full instances must be run anyway.
Danny followed up by asking if they could do state merging.
The authors responded that they are not concerned with
state transfer problems as long as the external behavior is
the same.

Michael Hicks noted that in this approach, users are limited
to changes that do not dramatically affect the semantics.
If the behavior is a bit different, the versions could diverge
in small ways. For example, the format of an output log
message could change and use UNIX time instead of day-
month-year. There will be a diversion every time but the
user won’t care. Petr responded that in many cases even
when this happens, divergence can be ignored, but it is hard
to determine which cases can be ignored.

Michael followed up by pointing out that in the case of

a stateless change, if we change the way we internally
represent the database, then behavior will diverge—some
keys will be in new instance but not in old instance.
Cristian explained that they cannot currently handle this;
this is a current limitation. They are trying to infer these
changes and there is some external research on this related
to mapping the old state with the new state; they hope to
build on this research. Danny asked what kind of changes
they currently support, and Petr responded that they can
handle changes to control flow and can cover multiple
functions as long as the stack is the same. They cannot
handle changes to the stack layout or data structure changes.

Theseus: whole updates of Java server applications
by Erwann Wernli [32]

Erwann explained that the goal of his paper is to allow differ-
ent versions of code to coexist by using contexts that isolate
each version of the code. He proposed a user-defined updata-
bility in which everything happens via objects, called The-
seus. Theseus uses whole, lazy, or eventual migration and
does not impose any timing constraints and uses the garbage
collection to force transformations if necessary. Contexts
are first-class: first instantiate the context and then invoke
methods to trigger the update. In his approach, he used
incremental rather than global updates, and must restart
threads so that the installation completes. Erwann built a
prototype an applied it to 5 versions of the web-server Jetty,
which is bound by I/O. He performed a load test and didn’t
notice any obvious overhead.

Danny Dig asked how the shared objects are found, and if
extra state is used for this purpose. Erwann explained that
when objects are potentially shared, they are reachable by
traversal. There is also the case of garbage collection in
which migration must be forced: the traversal starts at the
root of objects that are known to be shared. In his approach,
there is no extra state, but rather he traverses the whole
graph that he knows is reachable. When the program calls
invoke on the new context, it does some new action on the
new object.

Danny asked whether he handles Java 7 where the program-
mer is given threads that are no longer reachable. Erwann
responded that Jetty was using a threadpool which was
somewhat similar and the program was able to handle that.

Sander van der Burg asked that, since Theseus does not use
proxies, how are instance IDs preserved among upgrades?
Erwann responded that he keeps a synthetic object to use
as the identity. Sander then asked that if I have one object
that is referenced by two others, how do you deal with this
in an upgrade? Erwann responded that on the switch to the
new version, he tracks which are shared common to the two
others; there is no proxy, but the two are linked together so
they belong together.

Cristian Cadar asked about the two transform functions:
one forward and one backward. How are these made? Er-
wann responded that the transform functions are completely
generated by the programmer, but that he plans to automate
this in the future.

59

Discussion
Sander van der Burg asked Wernli about coming from a user
perspective: “how should potential users use your approach?
Does it work by changing pieces of the code and then the
update occurs automatically?” Wernli responded that the
programmers must change their application to use the pro-
gram and then do the reflective call in the application for the
update. van der Burg added that from an end-user perspec-
tive, if more fine-grained changes are supported, it would be
very beneficial, however then users must get acquainted with
the Theseus approach and change their process to changing
the code directly. Wernli stated that he focused more on
updating the Jetty server itself (focused on the the middle-
ware) and focused less on the end-user. At this point the
clarification questions ended and the discussion segued into
more general software upgrade topics.

On Overhead:
Petr Hosek asked a question related to the overhead prob-
lem. He explained that when they started working on their
approach, they tried to run benchmarks and noticed that on
CPU-bounded applications, even for example on Redis, the
latency increase was less than 1 millisecond. So even if the
overhead is a factor of, say, 3x, the increase to 2 or 3 mil-
liseconds isn’t significant. What is an acceptable overhead
to the user, and how to bound/measure this? Pina pointed
out that latency is per user interaction, and bounded to
load. i.e., it is not up to the users if they can tolerate the
increasing latency, but it is up to the service provider to
decide to tolerate lower throughput. Iulian Neamtiu added
that, based on anecdotal experience, software vendors can-
not tolerate overhead, even 10% is unacceptable. Cristian
Cadar stated that it seems like 10% overhead should defi-
nitely be OK; in fact, users would accept a 2x–3x program
overhead when they cannot tell the speed difference, but it
is really annoying when programs crash. Neamtiu pointed
out that perhaps the right question to ask is about energy
consumption—if the battery lasts only 1/3 as long, then that
is a problem. Explaining this performance overhead (e.g., for
Cloud programs where cycles are paid for) to CFOs watching
the bottom line, would be impossible. Related to Cristian
and Petr’s work, Iulian mentioned that the authors could get
some pointers from looking at the log and replay community
regarding which system calls to replay and where to handle
non-determinism. For example, there is no need to replay
getpid() as that is irrelevant for high-level tasks. But on
the other hand, read() or write() calls must be recorded.
The log and replay community might provide some turnkey
solutions. Finally, gdb extensions exist that support deter-
ministic replay.

Relating Software Updating to Product Line:
Julia Rubin stated that she is from the product line of work,
with families of related products for target customers. Her
question was: do participants think that some technolo-
gies/techniques from software updating can be used in prod-
uct line community? The main challenge is to maintain a
set of products that are very similar but slightly different.
Iulian Neamtiu stated that this is a question for the archi-
tecture part of software engineering—as a software architect
you have your architecture/design right if no major redesign
is necessary when adding a new product to the line. Danny
Dig mentioned that he is interested in the notion of pro-

grams as first-class citizens; take the same transformation to
a different branch. Wernli noted that this is similar to the
case where programmers construct virtual classes and nest
them. Julia said that based on her experience with prod-
uct lines, these techniques are not widely used in industry,
mostly just in academia. Sander van der Burg stated that
he works with Philips Medical Systems, and in their prod-
uct line, technology is used to reassemble medical imaging
software. Dependency management is a problem; objects
must be there at runtime and there are no means of stati-
cally verifying if they are all available. Sander said he has
some partial solutions to the problem in his current deploy-
ment. He uses hashcodes to identify components in a unique
manner and uses conservative garbage collection techniques
to search for pointers and determine the required runtime
dependencies. He mentioned that maybe we could use sim-
ilar techniques in modeling product lines. Julia said that
something for upgrades can be applied to the product line
related problems, and we can forge new solutions.

Security Patches:
Michael Hicks stated that he served on a government panel,
where he talked about static security patches. As it turns
out, many security vulnerabilities that are exploited are ones
that patches already exist for, but patches have not been ap-
plied. In other words, there are very few zero-day attacks;
most attacks are from un-upgraded systems. The govern-
ment agency organizing the panel would really like systems
to get patched quickly, but more importantly patched reli-
ably—they are very hesitant to take a patch from the in-
ternet and just apply it. An example of this is updating
the Flash player: to perform the upgrade, they [the agency]
must get the patch and bring it to all systems; it takes a
lot of manual effort to obtain the correct the patch and dis-
tribute it broadly and quickly. If the researchers could make
this patch application happen immediately with almost no
user intervention, it would make systems much more secure
and palatable. Hence dynamic upgrades, and well tested up-
grades, are a very fruitful direction. This is a motivation to
keep in mind as the HotSWUp community pushes ahead in
its work. Cristian Cadar added that there are many places
where reliability is not important, but performance is. Then
there are times where people care most about reliability and
will sacrifice energy consumption. An example of this is
search engines which might launch a query redundantly, say,
3 times in parallel just to keep latency low, which puts extra
load on the data center, but the search engine providers are
willing to do this for performance reasons. Cristian men-
tioned that this also relates to multi-version execution to
speed up software in various contexts. Iulian Neamtiu said
that you can decrease energy consumption by reusing parts
in the parallel version, rather than redoing the entire execu-
tion. Cristian said that determining when to do the update
(ex: laptop unplugged) can also be useful and he assumes
even for DSU it might make sense to restart the application
if it is actually cheaper, but other times, the trade-offs make
DSU worth it. Iulian mentioned that Candea has proposed
the use of micro-reboots to keep state clean [7, 6].

What’s Next:
Michael Wahler posed, “Say I have the Flash plug-in. Look
at the whole process of getting the update, applying the
update, etc. What’s missing? Or, if you look at multi-

60

version updates, when does it start to get messy to deploy
the upgrade? What tools exist for this?” Cristian said that
a lot of this is under work. From a testing and validation
perspective, people have started using incremental testing,
focusing on the testing the changed parts only. For example,
the keynote speech gave predictions that would be useful in
telling if a function is likely to be buggy. However, Iulian
added, changing the path analysis because of the regression
testing is expensive, and we need to minimize resource con-
sumption to speed up the process. Pina stated that it would
be useful to track static sources with dynamic statistics. We
know we lose 90% of time in 10% of the code, so we are really
keen about having that 10% of code completely bulletproof;
if we could somehow relate those two, it would be really nice
to know where to invest. Iulian stated that an Eclipse plug-
in, presented at ICSM’09, aggregates data acorss multiple
executions form the entire test suite and tells developers ex-
actly how much time is spent on a specific path/method;
this information, of course, depends on the quality of cov-
erage and how solid the regression test suite is. Danny Dig
added that you could just use a profiler, but Iulian pointed
out that a profiler only gives you one execution.

Acknowledgments
We thank the program chairs, Danny Dig and Michael
Wahler. We also thank the program committee: Don Ba-
tory, Walter Cazzola, Danny Dig, Michael Hicks, Bo Nørre-
gaard Jørgensen, Julia Lawall, Brice Morin, Iulian Neamtiu,
Tien N Nguyen, Manuel Oriol, Michael Wahler, Robert J.
Walker, Pen-Chung Yew.

Finally, we would like to thank the authors of submitted
and invited papers for providing the excellent content of
the program and for their enthusiastic participation in the
workshop.

1. REFERENCES
[1] G. Altekar, I. Bagrak, P. Burstein, and A. Schultz.

Opus: online patches and updates for security. In
Proceedings of the 14th conference on USENIX
Security Symposium, pages 287–302, Berkeley, CA,
USA, 2005. USENIX Association.

[2] J. Armstrong, R. Virding, C. Wikstrom, and
M. Williams. Concurrent programming in ERLANG
(2nd ed.). Prentice Hall International (UK) Ltd., 1996.

[3] J. Arnold and M. F. Kaashoek. Ksplice: automatic
rebootless kernel updates. In Proceedings of the 4th
ACM European conference on Computer systems,
EuroSys ’09, pages 187–198, New York, NY, USA,
2009. ACM.

[4] R. Bazzi, B. Topp, and I. Neamtiu. How to have your
cake and eat it too: Dynamic software updating with
just in time overhead. In HotSWUp ’12: Proceedings
of the Third Workshop on Hot Topics in Software
Upgrades, Zurich, Switzerland, 2012.

[5] C. Cadar and P. Hosek. Multi-version software
updates. In HotSWUp ’12: Proceedings of the Third
Workshop on Hot Topics in Software Upgrades,
Zurich, Switzerland, 2012.

[6] G. Candea, J. Cutler, and A. Fox. Improving
availability with recursive micro-reboots: A soft-state
system case study. In Performance Evaluation

Journal, 2003.

[7] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and
A. Fox. Microreboot - a technique for cheap recovery.
In Proceedings of the 6th conference on Symposium on
Opearting Systems Design & Implementation - Volume
6, OSDI’04, pages 3–3, Berkeley, CA, USA, 2004.
USENIX Association.

[8] H. Chen, J. Yu, R. Chen, B. Zang, and P.-C. Yew.
POLUS: A POwerful Live Updating System. In ICSE,
pages 271–281, 2007.

[9] H. Chockler and S. Ruah. Verification of software
changes with explisat. In HotSWUp ’12: Proceedings
of the Third Workshop on Hot Topics in Software
Upgrades, Zurich, Switzerland, 2012.

[10] E. Dolstra, E. Visser, and M. de Jonge. Imposing a
memory management discipline on software
deployment. In Proceedings of the 26th International
Conference on Software Engineering, ICSE ’04, pages
583–592, Washington, DC, USA, 2004. IEEE
Computer Society.

[11] T. Dumitraş and P. Narasimhan. Why do upgrades
fail and what can we do about it?: toward dependable,
online upgrades in enterprise system. In Proceedings of
the 10th ACM/IFIP/USENIX International
Conference on Middleware, Middleware ’09, pages
18:1–18:20, New York, NY, USA, 2009.
Springer-Verlag New York, Inc.

[12] O. Frieder and M. E. Segal. On dynamically updating
a computer program: From concept to prototype. The
Journal of Systems and Software, 14(2):111–128, 1991.

[13] E. Giger, M. Pinzger, and H. C. Gall. Comparing
fine-grained source code changes and code churn for
bug prediction. In Proceedings of the 8th Working
Conference on Mining Software Repositories, MSR
’11, pages 83–92, New York, NY, USA, 2011. ACM.

[14] C. Giuffrida and A. S. Tanenbaum. Safe and
automated state transfer for secure and reliable live
update. In HotSWUp ’12: Proceedings of the Third
Workshop on Hot Topics in Software Upgrades,
Zurich, Switzerland, 2012.

[15] C. Hayden, K. Saur, M. Hicks, and J. Foster. A study
of dynamic software update quiescence for
multithreaded programs. In HotSWUp ’12:
Proceedings of the Third Workshop on Hot Topics in
Software Upgrades, Zurich, Switzerland, 2012.

[16] C. Hayden, E. Smith, M. Hicks, and J. Foster. State
transfer for clear and efficient runtime upgrades. In
HotSWUp ’11: Proceedings of the Third Workshop on
Hot Topics in Software Upgrades, Hannover, Germany,
2011.

[17] C. M. Hayden, E. K. Smith, M. Denchev, M. Hicks,
and J. S. Foster. Kitsune: Efficient, general-purpose
dynamic software updating for C. In Proceedings of
the ACM Conference on Object-Oriented Programming
Languages, Systems, and Appilcations (OOPSLA),
Oct. 2012.

[18] K. Makris and R. Bazzi. Multi-threaded dynamic
software updates using stack reconstruction. In
USENIX ATC, 2009.

[19] Memcached. http://www.danga.com/memcached/.

[20] P. Narasimhan. Failures & Downtime Incidents.
http://www.cs.cmu.edu/ priya/downtime.html.

61

[21] I. Neamtiu, J. S. Foster, and M. Hicks. Understanding
source code evolution using abstract syntax tree
matching. In Proceedings of the International
Workshop on Mining Software Repositories (MSR),
pages 1–5, May 2005.

[22] I. Neamtiu and M. Hicks. Safe and timely updates to
multi-threaded programs. SIGPLAN Not., 44:13–24,
June 2009.

[23] I. Neamtiu, M. Hicks, J. S. Foster, and P. Pratikakis.
Contextual effects for version-consistent dynamic
software updating and safe concurrent programming.
In Proceedings of the ACM Conference on Principles
of Programming Languages (POPL), pages 37–50,
Jan. 2008.

[24] I. Neamtiu, M. Hicks, G. Stoyle, and M. Oriol.
Practical dynamic software updating for C. In
Proceedings of the 2006 ACM SIGPLAN conference
on Programming language design and implementation,
PLDI ’06, pages 72–83, New York, NY, USA, 2006.
ACM.

[25] L. Pina and J. Cachopo. Atomic dynamic upgrades
using software transactional memory. In HotSWUp
’12: Proceedings of the Third Workshop on Hot Topics
in Software Upgrades, Zurich, Switzerland, 2012.

[26] M. Pinzger, N. Nagappan, and B. Murphy. Can
developer-module networks predict failures? In
SIGSOFT ’08/FSE-16: Proceedings of the 16th ACM
SIGSOFT International Symposium on Foundations
of software engineering, pages 2–12, New York, NY,
USA, 2008. ACM.

[27] M. E. Segal and O. Frieder. Dynamic program
updating: a software maintenance technique for
minimizing software downtime. Journal of Software
Maintenance, 1(1):59–79, Sept. 1989.

[28] E. Smith, M. Hicks, and J. Foster. In HotSWUp ’12:
Proceedings of the Third Workshop on Hot Topics in
Software Upgrades, Zurich, Switzerland, 2012.

[29] S. van der Burg. A generic approach for deploying and
upgrading mutable software components. In HotSWUp
’12: Proceedings of the Third Workshop on Hot Topics
in Software Upgrades, Zurich, Switzerland, 2012.

[30] S. van der Burg and E. Dolstra. Automated
deployment of a heterogeneous service-oriented
system. In 36th EUROMICRO Conference on
Software Engineering and Advanced Applications
(SEAA), pages 183 –190, Sept. 2010.

[31] S. van der Burg, E. Dolstra, and M. de Jonge. Atomic
upgrading of distributed systems. In Proceedings of the
1st International Workshop on Hot Topics in Software
Upgrades, HotSWUp ’08, pages 8:1–8:5, New York,
NY, USA, 2008. ACM.

[32] E. Wernli. Theseus: whole updates of Java server
applications. In HotSWUp ’12: Proceedings of the
Third Workshop on Hot Topics in Software Upgrades,
Zurich, Switzerland, 2012.

[33] Z. Yin, D. Yuan, Y. Zhou, S. Pasupathy, and
L. Bairavasundaram. How do fixes become bugs? In
Proceedings of the 19th ACM SIGSOFT symposium
and the 13th European conference on Foundations of
software engineering, ESEC/FSE ’11, pages 26–36,
New York, NY, USA, 2011. ACM.

62

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 400
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 400
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A0648062706410642062900200644064406370628062706390629002006300627062A002006270644062C0648062F0629002006270644063906270644064A06290020064506460020062E06440627064400200627064406370627062806390627062A00200627064406450643062A0628064A062900200623064800200623062C06470632062900200625062C06310627062100200627064406280631064806410627062A061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0020064506390020005000440046002F0041060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405D305E405E105D4002005D005D905DB05D505EA05D905EA002005D105DE05D305E405E105D505EA002005E905D505DC05D705E005D905D505EA002005D505DB05DC05D9002005D405D205D405D4002E002005DE05E105DE05DB05D9002005D4002D005000440046002005E905E005D505E605E805D905DD002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 0
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

