
Report on the

Third Workshop on Hot Topics in Software Upgrades
(HotSWUp’11)

http://www.hotswup.org/2011/

Christopher M. Hayden
Dept. of Computer Science

University of Maryland
College Park, MD

hayden@cs.umd.edu

Iulian Neamtiu
Dept. of Computer Science and Engineering

University of California, Riverside
Riverside, CA

neamtiu@cs.ucr.edu

ABSTRACT
The Third Workshop on Hot Topics in Software Upgrades
(HotSWUp’11) was held on April 16, 2011 in Hannover, Ger-
many. The workshop was co-located with ICDE 2011. The
goal of HotSWUp is to identify, through interdisciplinary
collaboration, cutting-edge research ideas for implementing
software upgrades.

The workshop combined presentations of peer-reviewed re-
search papers with a keynote speech on the practical issues
related to performing large-scale upgrades. The audience
included researchers and practitioners from academia, in-
dustry, and government. In addition to the technical pre-
sentations, the program allowed ample time for discussions,
which were driven by debate questions provided in advance
by the presenters.

HotSWUp provides a premier forum for discussing problems
that are often considered niche topics in the established re-
search communities. For example, the technical discussions
at HotSWUp’11 covered dynamic software updates, package
management tools, database schema upgrades, upgrades of
systems with real-time constraints, upgrading satellite soft-
ware, and highlighted many synergies among these and other
topics.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Mainte-
nance, and Enhancement; D.3.3 [Programming Lan-
guages]: Language Constructs and Features; D.4.7
[Operating Systems]: Organization and Design; H.2.1
[Database Management]: Logical Design; K.6.3
[Management of Computing and Information Sys-
tems]: Software Management

General Terms
Management, Experimentation, Human Factors, Perfor-
mance, Reliability

Keywords
Software upgrades, dynamic software update, package man-
agement, database schema evolution, real-time upgrades

HotSWUp’11 Overview
The HotSWUp’11 program featured three research sessions
and a discussion period for each. Prior to the sessions, Philip
Bernstein gave a keynote describing an approach to au-
tomating schema and object-relational-mapping evolution.
The first session included work related to software update
correctness; the second covered topics related to database
evolution; and the final session covered systems for runtime
updating. This report summarizes the presentations and
discussion that took place during each session.

Keynote Address
Schema and Mapping Evolution in an Object-
Relational Mapper by Philip Bernstein (Microsoft Re-
search)

In the keynote address, Philip Bernstein discussed the prob-
lem of modifying a database’s schema and object-relational
mapping (ORM) to reflect changes to a program’s entity
types (i.e., the classes representing persistent data). The
keynote talk began with an overview of the variety of ORM
strategies that are used by real-world programs, which mo-
tivated the need for tools to facilitate evolution and also
presented challenges to automating evolution. Next, Bern-
stein discussed two related research problems that he and his
collaborators have pursued: (1) an approach to inferring the
mapping patterns in use to allow the ORM and schema to be
modified automatically, and (2) avoiding full recompilation
of an ORM mapping that has evolved.

Updating the schema and ORM in response to entity type
changes is challenging because there are a variety of ORM
patterns that can be used and the patterns for a particular
program may be unknown or even heterogeneous. Bernstein
described three common mapping patterns:

93



• Table-per-type - where a separate relational table is
created for each abstract and concrete persistent ob-
ject class in the program,

• Table-per-concrete-type - where all of the data for a
particular concrete type is stored in a single table, and

• Table-per-hierarchy - where many related concrete
types are all stored within a single table.

Further, there are many ways to allocate/reuse columns for
each entity type in the table per hierarchy approach. To
update the schema and ORM when an entity type changes,
it is necessary to determine the mapping pattern that applies
to the types/attributes that were affected.

Bernstein described an approach they developed to au-
tomate this process, wherein each mapping from en-
tity/attribute to table/column is treated as data and mined
to determine the mapping patterns in use [24, 25]. The map-
ping patterns that affect a particular entity type are inferred
based on the notion of “local scope” which is computed by
applying a cutoff to distance metrics (e.g., sibling classes are
closer than ancestors). Bernstein then showed that, given an
inferred mapping pattern, they can support entity addition,
removal, modification, and refactoring (i.e., changes to the
class hierarchy). This approach was implemented as an ex-
tension to Visual Studio. This tool updates the mapping
and store model automatically and supports directly updat-
ing the SQL database or generating a script to apply the
update at deployment.

Finally, Bernstein described a technique to incrementally
compile the mapping specification into executable views,
thereby avoiding the expense of a recompiling the full map-
ping specification. Full recompilation is prohibitive for large
models because it involves an expensive test to ensure that
the ORM correctly round-trips.

Together, these two techniques allow developers to modify
entity types and have the system generate appropriate mod-
ifications to the schema and ORM.

Discussion
Following the talk, an audience member asked whether these
problems could be handled more easily if the mapping pat-
terns were manually specified, rather than inferred. Bern-
stein responded affirmatively, and noted that this has been
done somewhat in the past, for example with annotations
on the entities. However the keynote’s research targets real-
world systems where these mappings are not specified.

The audience asked whether schema changes applied us-
ing this system to a “hacky” entity-database mapping might
make the mapping worse. Bernstein acknowledged this con-
cern, but noted that performance often motivates inelegant
ORM choices, so “hacky” mappings may be unavoidable.

The audience asked whether problems associated with evolv-
ing mappings from objects to relational tables could be im-
proved by just using a database with object-oriented fea-
tures. The speaker pointed out that many DBMSs do not
have OO features.

The audience asked whether it was also important to con-
sider the speed of performing the migration rather than just
the speed of computing/updating the mapping, in order to
support on-line migration. The speaker noted that on-line
database migration is a hard problem because temporary
tables are required for many types of updates.

The audience asked whether the information gleaned from
inferring the entity-db relationships could be used to en-
able advanced, vendor-specific features, like sparse columns.
Bernstein noted that they had not considered this, but that
it might be useful.

Session 1: Update Semantics and Analysis

Formal Reasoning about Runtime Code Update by
Nathaniel Charlton, Ben Horsfall, Bernhard Reus (Univer-
sity of Sussex) [4]

Nathaniel gave the talk. He presented an approach to verify-
ing the correctness of dynamic software updates. At a high
level, the approach aims to construct proofs about the safety
of runtime updates using Hoare logic. The problem with us-
ing standard Hoare logic for correctness is that pre- and
post- conditions only reason about data, not code. To sup-
port reasoning about code changes, the authors use nested
Hoare triples—assertions that characterize the behavior of
a procedure w.r.t. how it manipulates the heap.

The authors propose a strategy that requires developers to
write their program such that it contains a transition func-
tion that installs new code and data. For a program written
in this way, Nathaniel described how to verify updates us-
ing a tool called Crowfoot that performs verification based
on nested Hoare triples. This technique was used to verify
updates to a web-server example given in the paper Formal-
izing Dynamic Software Updating (Bierman, Hicks, Sewell,
Stoyle)[2]. In the presented work, the authors studied the
safety of adding logging to a web server.

An audience member asked whether this technique would
allow checking higher-level properties referring to state that
persists across the update. Nathaniel responded that such
properties are hard to prove using (nested) Hoare triples.
Michael Hicks noted that implementing program updates
as a program+transition function mirrors the compilation
strategy used by many DSU compilers and asked whether
that particular approach was selected for compatibility with
nested Hoare triples. Nathaniel responded that he had evi-
dence that these proofs were possible with other verification
strategies.

An audience member remarked that users of Crowfoot
manually do the job of an update compiler (e.g., indirection,
function pointers) and asked whether this was the intent of
the design. Nathaniel answered that what is essential is
modeling and verifying the effects of updating on the heap.

An audience member asked whether the authors could prove
whether a certain behavior that was present in the old ver-
sion is preserved in new version. Nathaniel noted that their
system can not prove program equivalence.

94



Towards a Categorical Framework to Ensure Correct
Software Evolutions by Sylvain Bouveret, Julien Brunel,
David Chemouil, and Fabian Dagnat [3]

David gave the talk. He began the talk by presenting the
motivation behind their work: verification of satellite control
software. For example, one satellite software requirement
might be flying in formation, hence when patches are applied
to individual satellites, what is the impact of the upgrade on
the whole formation? Their approach is to find out the proof
obligations for requirements using a categorical framework
(correctness by construction, not a posteriori). Category
theory is well-suited for representing abstract architectures
(since, in category theory, objects are black box elements).
The application architecture is first mapped to an abstract
category (in-out relationship between objects) and then to a
concrete category (contracts in LTL [22] formulas). Patches
can contain several elements, e.g., renaming a proposition,
removal/additions of axioms, or combining elements of simi-
lar nature into one. They leave several items to future work:
declarative language for patches, assess generation of proof
obligations in practice.

One audience member asked that, since elements have no
state, isn’t the approach actually addressing software evo-
lution, rather than dynamic updates. David answered that
indeed state is not taken into account.

Predicting Upgrade Failures Using Dependency
Analysis by Pietro Abate and Roberto Di Cosmo [5]

Pietro gave the talk. Their work seeks to determine the
critical software packages in distributions of programs and
libraries for Linux-based operating systems. Their objec-
tive is to identify “important” packages based on metadata
(e.g., by looking at conflicts and dependencies), categorize
packages based on their importance, and also predict the
packages for which upgrades are most risky. Their approach
is to first compute the strong impact set for each component
p, which consists of the packages that must be installed for
p to be installed. The next step is to compute a prediction
map for p—packages that will surely be broken when p is
upgraded. They have implemented a prediction model to
determine what future updates to packages would break the
most other packages and have applied it to Debian. The re-
sults show that GCC, libc, and Perl are among the packages
with large impact sets and prediction maps. Next, they clus-
ter packages that should be upgraded together, e.g., GCC
and libgcc and found that when all the components in a clus-
ter are updated together, no other packages are broken. In
the future they plan to formalize this approach, and apply
to other package managers (rpm worlds, Eclipse).

Discussion
Iulian Neamtiu noted that he sees a dichotomy in the ap-
proaches taken: the first approach is operational and the
second is behavioral. Michael Hicks made another high-level
observation that we care about both individual software cor-
rectness and architecture; also, he asked whether we should
consider behavior that is removed as a result of the update.

An audience member noted that Crowfoot is not specifi-
cally written to work with dynamic updates and wondered

whether other verification techniques might be similarly use-
ful.

Rida Bazzi asked what kind of semantic changes should be
allowed, e.g., if the update changes a“bad behavior”to a fail-
stop behavior, should it be allowed? Michael Hicks thinks
this should probably be supported. Rida added that some-
times the application vendor wants to make sure a certain
behavior is gone, e.g., a vulnerability is eliminated, whereas
sometimes it is desirable to crash (e.g., crash when a vulner-
ability is triggered, rather than continue).

Carlo Zaniolo asked whether employing testing techniques
might address some of the weaknesses of DSU verification
techniques and wondered whether the two could be com-
bined. Michael Hicks pointed out that Hayden et al.’s paper
at HotSWUp’09 [13] provides an approach for testing dy-
namic updates. Michael Wahler (ABB Research) mentioned
that an ongoing EU project, PINCETTE [21], is integrat-
ing static and dynamic analysis techniques to identify the
impact of intra-component changes and component replace-
ment. Rida mentioned that their work at Arizona State
University is also investigating this problem. Carlo Zaniolo
asked why is there no work in testing application updates,
e.g., using simulation to assess the impact of an update to
a cloud application.

The discussion then moved to the subject of online upgrades
of databases. An audience member asked whether some
of this correctness work is applicable to database changes.
Philip Bernstein noted that not many people are performing
on-line migration since it is perceived as too dangerous, but
correctness of rolling updates may be an interesting problem
to address formally.

One audience member commented that supporting general
online database upgrades is “scary” for practitioners, but
certain schema changes can safely be performed online. For
example, adding a column is feasible, but splitting a table
may be more dangerous, or slow. Philip Bernstein remarked
that it would be useful to have some automated tools to
determine the dependencies within a database, as depen-
dencies would help indicate the order in which tables should
be upgraded; he also pointed out that in-place migration is
not widely used as it is considered too dangerous.

Michael Hicks remarked that the dependency analysis from
Abate and di Cosmo’s work would be useful in finding out
which packages can be safely upgraded depending on who
is logged on and what programs they are running. Pietro
Abate pointed out that, right now, sysadmins never apply
updates with users logged on, so, their system would indeed
be helpful in allowing updates to be applied without kicking
users out first. Another audience member remarked that the
dependency work can also be applied to impact of schema
evolution, by performing a translation from DB/schema evo-
lution terminology into the dependency framework.

Session 2: Database Upgrades

Schema Evolution Analysis for Embedded
Databases by Shengfeng Wu and Iulian Neamtiu [27]

95



Iulian Neamtiu gave the talk. The motivation for their work
was the ubiquity of embedded databases (e.g., SQLite), and
the observation that, to support dynamic updates to appli-
cations, online schema upgrades must be supported as well.
To understand how embedded database’ schemas evolve, he
described an empirical study of the evolution of embed-
ded databases for programs that persist data using SQLite.
This work compared empirical results against prior stud-
ies that looked at evolution of database schemas for server
programs [6, 16]. The presenter provided two observations:
database schemas change mostly in the beginning of an ap-
plication’s evolution; and changes are usually simple, with
column additions, deletions, and type changes being most
frequent.

An audience member noted that the study compared appli-
cations that were quite different and suggested that a dif-
ferent selection of subject applications might have produced
different results. Iulian Neamtiu pointed out that because
the study looked at a wide range of programs— both desktop
and server applications—the results should generalize. An-
other audience member observed that the study compared
changes to databases with changes to program code and sug-
gested that looking at data structure changes in the program
might have produced a stronger correlation; the presenter
agreed.

Causes for Dynamic Inconsistency-tolerant Schema
Update Management by Hendrik Decker [11]

This talk discussed the observation that databases are of-
ten able to support querying, updating, and other reasoning
even when the facts stored in the database become incon-
sistent. The work presented definitions for integrity con-
straints and database updates using Datalog, as well as ex-
amples of various database updates that violate or preserve
integrity constraints. Prior work by the author [9, 8] showed
that inconsistency-tolerant integrity-checking methods pre-
serve cases, i.e., instances of integrity constraints satisfied
prior to the update. In later work [7], they considered pre-
venting an increase in causes of inconsistency (i.e., database
facts responsible for integrity violations). Here, Hendrik de-
scribed how cause-based inconsistency-tolerance can also be
ensured for updates that change integrity constraints. He
also showed that each cause-based method is also case-based
and shares the advantages of the case-based approaches.

An audience member asked whether this approach sup-
ported negation. The presenter responded affirmatively and
noted that negations are needed to produce inconsistencies.

Propagating Evolution Events in Data-Centric Soft-
ware Artifacts by George Papastefanatos, Panos Vassil-
iadis, and Alkis Simitsis [20]

George gave the talk. This work seeks to provide an ap-
proach for determining which parts of a database are affected
by a schema change. To do this, the authors present a view
of a data management system as an Architecture Graph that
connects database tables, schemas, constraints, and queries.
The system determines how a database change will affect
the nodes of the graph by propagating notification of the
change as messages between nodes in the graph. The “sta-

tus” of each node is determined based on the messages re-
ceived by that node and its policies. A node’s status in-
dicates whether a change affects that node and nodes may
reject certain changes that are incompatible with installed
policies. The authors prove termination and correctness of
the propagation process in their paper.

An audience member asked why it was useful to propagate
the effects of schema changes throughout a data model when
there will be other parts of the system (e.g., the program
code) that depend on the particular views and queries that
were previously in place. The presenter responded that this
approach allows the developer to understand and automate
the adjustment of the affected views.

Another audience member asked whether this approach
will produce node statuses deterministically. The presen-
ter noted that their previous work did not guarantee de-
terminism, but this work does since a node’s status is only
computed after all of its inputs have been computed.

Discussion
An audience member asked Iulian Neamtiu how often he has
observed “regression” in database schemas where changes
that have been added are subsequently undone. Neamtiu
indicated that he observed this only a few times out of hun-
dred of commits they have investigated.

An audience member noted that facilitating schema evolu-
tion was a popular research topic, and asked why there has
been little take-up of these techniques by industry. This
elicited a good discussion from both the speakers and the
audience about this question, as described next.

One audience member noted that the theory presented in
the research world was quite clean, but databases in the
real world are much more messy, giving the example of con-
sistency checking as a tool that sometimes fails to work with
real-world systems. Another audience member agreed, ob-
serving that users disable consistency checking because it is
too expensive. Another audience member suggested that the
lack of interest might result from users caring more about
features they can use right away than tools that will help
them maintain their software in the future. Carlo Zaniolo
noted that schema evolution techniques had not begun to
come into their own until recently, suggesting that the tech-
niques might be approaching sufficient maturity for adop-
tion.

Philip Bernstein suggested that the rapid pace of DB run-
time innovation makes it difficult for tools for schema evolu-
tion to keep pace. Further, he noted ISVs have a tough time
keeping up with new features and may not have resources
to expend on schema evolution tools. However, he noted
that, if one vendor “gets the ball rolling,” this might lead
to other vendors following; he also noted that universities
could be in a good position to build an open source migra-
tion solution—and suggested that it might turn out to be
hard problem!

Another audience member pointed out that Oracle Flash-
back allows people to go to previous schema versions, sug-
gesting there is hope that such tools will be adopted. Once

96



companies realize there is a need for automatic support for
managing the schema history, then there will be more of a
market for these tools.

Rida Bazzi noted that Facebook has published some ba-
sic software for supporting online evolution of schemas. He
noted that this is an important problem since some criti-
cal applications (like hospital software systems) might only
update once a year and cannot even tolerate two hours of
downtime, due to policy or regulation.

An audience member wondered whether cloud computing
would be a driver for schema evolution uptake—for exam-
ple, Facebook implements their schema updates in applica-
tion code [10]. Philip Bernstein suggested that the cloud
requires gradual roll-out of data changes over a large num-
ber of machines and distributed processes; the main chal-
lenges in this context are with the program code and not
the schema itself.

Another audience member noted that cloud computing
changes our assumptions significantly due to its distributed
nature and that might provide new ways of thinking about
migration since many traditional database consistency guar-
antees need to be relaxed. Iulian Neamtiu agreed, noting
that many large scale systems, like YouTube, could not op-
erate if strict ACID guarantees were required.

Session 3: Approaches and Systems

Hot-updates for Java-based Smart Cards by Agnes
Cristele Noubissi, Julien Iguchi-Cartigny and Jean-Louis
Lanet [19] (invited paper)

Agnes gave the talk. She started by observing that smart
cards are widely used for SIM cards, bank cards, and elec-
tronic passports, and periodically, the software on the smart
card needs to be updated (e.g., due to new banking regu-
lations or travel security requirements). Their solution to
smartcard updates is called EmbedDSU: an embedded JVM
with DSU support. Their system consists of a DIFF Gener-
ator that is run prior to deployment to the smart card, and
a custom JVM running on the card to apply the update.

The first step of this approach is the execution of the DIFF
Generator, which calculates the differences between the old
and new code, and produces output in a DSL called DIFF.
Once the DIFF patch has been created, it can be uploaded
to a running smart card using a card reader. When an up-
date request occurs, the card stores the DIFF in persistent
memory and waits until all active stack frames correspond-
ing to modified methods have returned. When a safe point is
reached, EmbedDSU updates class metadata including the
constant pool, field table, and method table for each mod-
ified class. To update the instances of changed classes to
their new representation, a modified garbage collector tra-
verses the heap performing transformation.

An audience member asked what motivated this work.
Agnes answered that a certain telecom company wants to
support updating in their SIM cards. She also noted that
one constraint that differentiated this work from other DSU
systems was the need to take care to minimize energy con-

sumption. Another audience member asked what steps are
taken to guarantee that updates to passports or other criti-
cal smart cards are secure. Agnes answered that EmbedDSU
requires patches to be signed to guarantee integrity.

Non-disruptive Large-scale Component Updates
for Real-Time Controllers by Michael Wahler, Stefan
Richter, Sumit Kumar, Manuel Oriol [26]

Michael gave the talk. The primary motivation for this work
is that many mission-critical systems that need to be contin-
uously available have real-time constraints. Therefore, they
must support updating real-time system components while
preserving state and respecting time bounds. Michael de-
scribed a typical real-time application with a 5 ms cycle. To
be on the safe side, loading new components must complete
in about 2/3 of a cycle time; the rest is “slack time.” The
challenge is transferring state to the new components: in
particular, it may not be possible to complete the transfer
within a single cycle.

The authors’ solution is to break down the transfer so that
it can be performed over multiple cycles. To support this,
they use a dirty bit vector to store the state transfer status
for each component; the transfer is known to be completed
when all bits are marked as “clean.”

An audience member asked whether there is an implicit
assumption that the updating process converges. Michael
agreed that they make this assumption, and it seems that in
practice their scheme converges; however, there is no explicit
convergence guarantee.

Another participant asked why there are no global variables
in this approach. Michael answered that, since each compo-
nent is in a different address space (for dependability rea-
sons), there are no global variables.

Another participant asked whether the slack time percent-
ages should be even greater, e.g., to allow for failures.
Michael answered that, even though in their experience 1/3
slack time was sufficient, he could foresee cases where more
than a 1/3 would be needed.

State Transfer for Clear and Efficient Runtime Up-
grades by Christopher Hayden, Edward Smith, Michael
Hicks, and Jeffrey Foster (University of Maryland, College
Park, USA) [12]

Christopher gave the talk. He began by pointing out that
many DSU tools have been proposed: Ginseng [18, 17], PO-
LUS [23], UpStare [15], JVolve [23], but they suffer from
several limitations: reasoning about post-update behavior
(e.g., ensuring that the update is safe or correct), steady-
state performance overhead (e.g., tools such as Ginseng use
a special compilation scheme that leads to steady-state per-
formance overhead even in the absence of updates); and use
of nonstandard tools (e.g., special compilation).

The authors’ solution is Ekiden, a DSU system for C pro-
grams that updates a program by starting the new version
from scratch and transferring the state from the running
version. With Ekiden, the programmer prepares programs

97



for updating by “tagging” state that needs to be transferred,
adding explicit update points to long-running loops, adjust-
ing program flow to return to the correct loop following an
update, and writing transformation functions to convert old-
version state to work with the new version. The Ekiden li-
brary provides a set of tools for writing C programs that
support state-transfer DSU.

Ekiden addresses many of the limitations of existing DSU
systems: updated program behavior is explicit in the pro-
gram code and therefore easier for the developer to reason
about, updating incurs no steady-state overhead because no
costly indirection must be compiled into the program, and
updating can be implemented as library rather than requir-
ing special compilation.

One participant asked which platforms Ekiden supports.
Christopher answered that they had currently tested the im-
plementation on GNU/Linux and Mac OS X. Iulian Neamtiu
asked whether there might be program state that cannot be
transferred using Ekiden, such as the process PID, parent-
child relationships among processes or a socket’s state. The
speaker answered that those types of state can be trans-
ferred. For example, file descriptors and sockets are pre-
served because the new version is started via fork() + exec();
however, transferring internal library state may require ex-
tra effort.

Discussion

One participant asked the session panelists to name some
reasons why customers are not eager to embrace DSU.
Michael Wahler answered that, in many cases, customers
want software safety certification (e.g., for nuclear power
plants); in his view, software certification for DSU is a
long way off. Another suggested explanation was that pro-
grammers may worry more about single version features
than supporting smooth evolution in the future. Christo-
pher Hayden observed that DSU is a feature targeted to
users/administrators, who may begin to demand it as more
programs begin to provide support. He noted that DSU is
different from a low-level runtime feature like garbage col-
lection that is targeted at programmers.

Michael Wahler was asked whether formalization techniques
presented in the earlier sessions would be useful for real-
time systems. His answer was that many real-time software
developers are electrical engineers, not computer scientists,
and may lack a formal methods background. In addition, he
noted that extensive testing is the current standard and that
it may be impractical to require a full formal specification
of the system.

One participant asked about the current certification pro-
cess for space industry projects. The answer was that these
projects use a single process (e.g., model-driven engineering
that integrates model design with model verification—source
code is automatically generated from the model).

One participant asked how to guarantee update safety for
nuclear power plants. Michael Wahler suggested the use of
redundant systems as a solution. Iulian Neamtiu pointed out
that redundancy is not always the answer, and may intro-

duce new problems, as in the 2008 nuclear power plant shut-
down incident where an update installed on a single com-
puter in the monitoring system led the monitor to disagree
with the control system causing the plant to shut down [14].

An audience member asked whether certifying DSU patches
would mean showing that dynamic and offline upgrades
achieve the same result. The answer was no, because def-
initions of DSU correctness must specify correct handling
of in-memory state, which is not maintained in offline up-
grades.

One participant wondered whether DSU could be popular-
ized by making it available on Linux. Another participant
noted that Ksplice currently supports dynamic updates to
the Linux kernel [1].

Acknowledgments
We thank the program chairs: Michael Hicks, Rida A. Bazzi,
Carlo Zaniolo. We also thank the program committee: Carlo
Aldo Curino, Fabien Dagnat, Johann Eder, Manuel Oriol,
George Papastefanatos, Paolo Papotti, Jason Nieh, Mark
Segal, Liuba Shrira, Xin Qi. Finally, we would like to thank
the authors of submitted and invited papers for providing
the excellent content of the program and for their enthusi-
astic participation in the workshop.

1. REFERENCES
[1] J. Arnold and M. F. Kaashoek. Ksplice: automatic

rebootless kernel updates. In Proceedings of the 4th
ACM European conference on Computer systems,
EuroSys ’09, pages 187–198, New York, NY, USA,
2009. ACM.

[2] G. Bierman, M. Hicks, P. Sewell, and G. Stoyle.
Formalizing dynamic software updating. In On-line
Proceedings of the Second International Workshop on
Unanticipated Software Evolution (USE), pages 13–23,
2003.

[3] S. Bouveret, J. Brunel, D. Chemouil, and F. Dagnat.
Towards a categorical framework to ensure correct
software evolution. In HotSWUp ’11: Proceedings of
the Third Workshop on Hot Topics in Software
Upgrades, Hannover, Germany, 2011.

[4] N. Charlton, B. Horsfall, and B. Reus. Formal
reasoning about runtime code update. In HotSWUp
’11: Proceedings of the Third Workshop on Hot Topics
in Software Upgrades, Hannover, Germany, 2011.

[5] R. D. Cosmo and P. Abate. Predicting upgrade
failures using dependency analysis. In HotSWUp ’11:
Proceedings of the Third Workshop on Hot Topics in
Software Upgrades, Hannover, Germany, 2011.

[6] C. Curino, H. J. Moon, L. Tanca, and C. Zaniolo.
Schema evolution in wikipedia - toward a web
information system benchmark. In ICEIS (1), 2008.

[7] H. Decker. Toward a uniform cause-based approach to
inconsistency-tolerant database semantics. In
Proceedings of the 2010 international conference on
On the move to meaningful internet systems: Part II,
OTM’10, pages 983–998, Berlin, Heidelberg, 2010.
Springer-Verlag.

[8] H. Decker and D. Martinenghi. Classifying integrity
checking methods with regard to inconsistency

98



tolerance. In Proceedings of the 10th international
ACM SIGPLAN conference on Principles and practice
of declarative programming, PPDP ’08, pages 195–204,
New York, NY, USA, 2008. ACM.

[9] H. Decker and D. Martinenghi. Inconsistency-tolerant
integrity checking. IEEE Transactions on Knowledge
and Data Engineering, 23:218–234, 2011.

[10] T. Dumitraş, I. Neamtiu, and E. Tilevich. Second acm
workshop on hot topics in software upgrades (hotswup
2009). In OOPSLA ’09: Proceeding of the 24th ACM
SIGPLAN conference companion on Object oriented
programming systems languages and applications,
pages 705–706, New York, NY, USA, 2009. ACM.

[11] C. for Dynamic Inconsistency-tolerant Schema
Update Management. Hendrik decker. In HotSWUp
’11: Proceedings of the Third Workshop on Hot Topics
in Software Upgrades, Hannover, Germany, 2011.

[12] C. Hayden, E. Smith, M. Hicks, and J. Foster. State
transfer for clear and efficient runtime upgrades. In
HotSWUp ’11: Proceedings of the Third Workshop on
Hot Topics in Software Upgrades, Hannover, Germany,
2011.

[13] C. M. Hayden, E. A. Hardisty, M. Hicks, and J. S.
Foster. Efficient systematic testing for dynamically
updatable software. In Proceedings of the 2nd
International Workshop on Hot Topics in Software
Upgrades, HotSWUp ’09, pages 9:1–9:5, New York,
NY, USA, 2009. ACM.

[14] B. Krebs. Cyber Incident Blamed for Nuclear Power
Plant Shutdown. Washington Post, June 5, 2008.
http://www.washingtonpost.com/wp-dyn/content/

article/2008/06/05/AR2008060501958.html.

[15] K. Makris and R. Bazzi. Multi-threaded dynamic
software updates using stack reconstruction. In
USENIX ATC, 2009.

[16] V. Mandalapa. A framework for understanding
schema evolution in web information systems.
Master’s thesis, Arizona State University, 2009.

[17] I. Neamtiu and M. Hicks. Safe and timely updates to
multi-threaded programs. SIGPLAN Not., 44:13–24,
June 2009.

[18] I. Neamtiu, M. Hicks, G. Stoyle, and M. Oriol.
Practical dynamic software updating for c. In
Proceedings of the 2006 ACM SIGPLAN conference
on Programming language design and implementation,
PLDI ’06, pages 72–83, New York, NY, USA, 2006.
ACM.

[19] A. C. Noubissi, J. Iguchi-Cartigny, and J.-L. Lanet.
Hot updates for java-based smart cards. In HotSWUp
’11: Proceedings of the Third Workshop on Hot Topics
in Software Upgrades, Hannover, Germany, 2011.

[20] G. Papastefanatos, P. Vassiliadis, and A. Simitsis.
Propagating evolution events in data-centric software
artifacts. In HotSWUp ’11: Proceedings of the Third
Workshop on Hot Topics in Software Upgrades,
Hannover, Germany, 2011.

[21] PINCETTE Project. http://pincette-project.eu/.

[22] A. Pnueli. The temporal logic of programs. In
Foundations of Computer Science, 1977., 18th Annual
Symposium on, pages 46 –57, 31 1977-nov. 2 1977.

[23] S. Subramanian, M. Hicks, and K. S. McKinley.
Dynamic software updates: a vm-centric approach. In

Proceedings of the 2009 ACM SIGPLAN conference
on Programming language design and implementation,
PLDI ’09, pages 1–12, New York, NY, USA, 2009.
ACM.

[24] J. F. Terwilliger, P. A. Bernstein, and A. Unnithan.
Automated co-evolution of conceptual models,
physical databases, and mappings. In Proceedings of
the 29th international conference on Conceptual
modeling, ER’10, pages 146–159, Berlin, Heidelberg,
2010. Springer-Verlag.

[25] J. F. Terwilliger, P. A. Bernstein, and A. Unnithan.
Worry-free database upgrades: automated
model-driven evolution of schemas and complex
mappings. In Proceedings of the 2010 international
conference on Management of data, SIGMOD ’10,
pages 1191–1194, New York, NY, USA, 2010. ACM.

[26] M. Wahler, S. Richter, S. Kumar, and M. Oriol.
Non-disruptive large-scale component updates for
real-time controllers upgrade. In HotSWUp ’11:
Proceedings of the Third Workshop on Hot Topics in
Software Upgrades, Hannover, Germany, 2011.

[27] S. Wu and I. Neamtiu. Schema evolution analysis for
embedded databases. In HotSWUp ’11: Proceedings of
the Third Workshop on Hot Topics in Software
Upgrades, Hannover, Germany, 2011.

99




