
Elastic Executions from Inelastic Programs

Iulian Neamtiu
Department of Computer Science and Engineering

University of California, Riverside, CA, USA
neamtiu@cs.ucr.edu

ABSTRACT
In this paper we present an approach and tool named ELASTIN for
transforming inelastic programs—programs written with a specific
platform or a fixed set of Cloud resources in mind—into elastic
applications that run on elastic platforms by adapting, at runtime,
to changes in the available resources. With ELASTIN, program-
mers can develop their applications with various specific configu-
rations in mind, and let the compiler and runtime system take care
of combining these configurations into a single elastic application
that can safely switch between configurations on-the-fly, at run-
time. We used ELASTIN to elastify two popular applications, the
SQLite database engine and the Kiss FFT library, and found pro-
grammer burden to be very low. Benchmarks indicate that ELAS-
TIN is effective in practice, and reconfigurations are in the sub-
millisecond range. We envision this approach being useful in any
domain where quick runtime adaptation is necessary due to changes
in underlying resources.The approach can also be a stepping stone
towards migrating legacy applications to the Cloud.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Reliability, availability, and ser-
viceability; D.3.4 [Processors]: Compilers, Run-time environments;
I.2.2 [Automatic Programming]: Program modification, Program
transformation

General Terms
Languages, Measurement, Performance, Reliability

Keywords
Elastic software, self-adaptive systems, resource-aware applications,
runtime adaptation, Cloud computing, dynamic software updating

1. INTRODUCTION
We are currently witnessing a fundamental shift in how appli-

cations are developed and deployed. On the end-user side, Web
applications are replacing traditional applications. On the service-
provider side, monolithic server programs are transitioning to Cloud

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SEAMS ’11, May 23-24, 2011, Waikiki, Honolulu, HI, USA
Copyright 2011 ACM 978-1-4503-0575-4/11/05 ...$10.00.

computing applications. This shift is beneficial to end-users (Web
applications run a variety of hardware platforms and provide in-
creased interactivity) and service providers (Cloud computing sig-
nificantly reduces administration burden and start-up costs). How-
ever, the shift is problematic for application developers, as they
can make very few assumptions about the platform (CPU, memory,
disk space) their applications will run on, and applications have to
be rewritten significantly, if not constructed from scratch, to run on
a wide range of platforms. For example, a Web application for on-
line video streaming might run fine on laptops, tablets, and certain
smartphone models, but not on resource-poor phones. Similarly,
the elastic resources available in the Cloud cannot be taken advan-
tage of unless programs are written with elasticity1 in mind.

Ideally, applications would be self-adaptive: detect the operat-
ing conditions, and adapt to changes in conditions to deliver the
best possible user experience. This paper presents an approach
named ELASTIN that takes a step towards enabling the construction
of self-adaptive applications. Given various source code configura-
tions (e.g., one version optimized for maximum speed, another op-
timized for low memory consumption, and yet another optimized
for low storage requirements), in ELASTIN we combine all these
versions into a single application that can switch between configu-
rations at runtime, without shutting down the application and while
preserving in-memory state and providing certain safety guaran-
tees. The advantage of using ELASTIN is that it allows developers
to focus on one application configuration at a time, while enabling
the application to safely navigate through configurations at runtime
and without disruption. Configurations usually represent various
points in the space-time trade-off. For example, one configuration
can be memory-intensive but fast, another configuration can be de-
signed with low memory footprint in mind, but running slower. We
describe the approach in Section 2.

In Section 3 we show how we used ELASTIN to construct elastic
applications based on various configurations for two popular open
source programs: the SQLite database engine and the Kiss Fast
Fourier Transform library. These configurations must be selected
at compile-time, hence applications cannot adapt to changes in re-
sources while they run. The SQLite configurations are designed
to trade memory for query execution time, and vice versa. The
Kiss FFT configurations are designed to provide optimal speed, de-
pending on whether a floating-point unit is present or not. We were
able to apply ELASTIN to these applications with few changes to
the source code and minimal effort for supporting on-the-fly con-
figuration changes.

1Note that our elasticity definition means runtime adaptation to
changes in hardware resources; IBM’s definition of elasticity [25]
includes fault-tolerance, self-healing and administrative simplicity.

Figure 1: High-level overview of ELASTIN.

In Section 4 we provide the results of an experimental evalu-
ation of ELASTIN. We show how SQLite can take advantage of
large amounts of memory available at runtime to increase query
processing rate. When the available memory shrinks, SQLite can
still function, albeit at a reduced query rate. This scenario is useful
in a Cloud context, where additional memory that might become
available allows the SQL server to speed up queries. Similarly,
we show how Kiss FFT can take advantage of the presence of a
floating-point unit to speed up FFT computation, yet still function
when the floating-point unit is turned off. This scenario is useful on
limited-power devices that turn off the floating-point units in their
CPUs to save energy. Finally, we measured the time required to
effect configuration changes, and found this to be modest, at most
672 µsec. In Section 5 we present future research directions and in
Section 6 we review related work.

In short, this paper makes the following contributions:

• An approach for transforming inelastic programs into elastic
applications which will run elastic executions.
• A study and evaluation of our approach on two popular open

source programs—SQLite and Kiss FFT—used in the con-
struction of mobile, desktop and server software.

2. APPROACH
In this section we present our approach, named ELASTIN. ELAS-

TIN stands for ELASTicity with gINseng, as it is built upon our
existing infrastructure for dynamic software updating, named Gin-
seng [17, 15]. ELASTIN currently works on programs written in
C.

2.1 Overview
A high-level overview of ELASTIN is provided in Figure 1. ELAS-

TIN is a program “elastifier,” in that it takes as input different source
code configurations, each optimized for a different runtime con-
figuration, and transforms them into an elastic executable that can
switch between configurations at runtime.

To make the presentation clearer, throughout the paper we use
two standard configurations: H, which stands for “High perfor-
mance” and L, which stands for “Low resource consumption.” The
Ginseng compiler combines all source code configurations into an

elastic executable, along with runtime support for safe configura-
tion switching. The elastic executable is then deployed. When-
ever conditions in the environment (e.g., as observed by sensors),
or changes in resources lead to the decision that the current exe-
cution configuration should change, the runtime system, added to
the executable by the compiler, will trigger configuration changes
(transitions).

2.2 Development
Programmers write their code for versions H, L, etc. assuming a

single version, optimized for a specific configuration—it is ELAS-
TIN’s responsibility to perform data migration and ensure safe con-
figuration changes. We believe this model is conceptually simple,
as the programmers have to only focus on one configuration, not on
state migration or on the safety of configuration changes.

2.3 Compilation
The Ginseng compiler is in charge of several tasks. First, it

rewrites the original C code into C code that can be modified at
runtime. Second, it performs a static safety analysis and annotates
the code with analysis results; this information is used later on,
at runtime, for safe configuration changes. Third, it computes the
source code differences between different configurations, and adds
these code differences to the elastic executable. Fourth, it generates
data migration functions that will change the in-memory data upon
configuration changes. Finally, it compiles the C code to binary
and links-in a runtime system whose job is to perform configura-
tion changes. All these tasks are performed by the Ginseng in-
frastructure. The performance penalty introduced by Ginseng, i.e.,
performance decrease due to runtime configuration change support
is typically 0–6% [17, 15].

2.4 Configuration Changes
For now, we present configurations to Ginseng as program up-

dates, i.e., a H → L configuration change represents a dynamic
update (dynamic patch loading and state transformation) from the
H source code to the L source code. This solution does not scale
very well, though, since with any configuration change Ginseng
loads a new dynamic patch, which will lead to memory bloat as
configuration changes accumulate; we plan to address this issue in
future work.

The Ginseng runtime system carries out an on-the-fly change to
the new configuration by loading the dynamic patch: configuration-
specific functions are redirected to their version for the new config-
uration, and a lazy data transfer, that converts data to the format
expected by the new configuration is started; the data conversion is
lazy for performance reasons [17]. For this work we signaled con-
figuration changes manually, but in the future we expect changes to
be triggered by a control module, based on policy and information
from sensors.

2.5 Safety
Dependability is an important goal for self-adaptive systems [2].

As the source code configurations are written with a single config-
uration in mind and no runtime configuration change, it is essential
that ELASTIN take steps towards guaranteeing the safety of config-
uration changes. For example, Kiss FFT defines its main FFT data
structure in the L configuration as:
struct kiss_fft_cpx_old { int r ; int i ;}
and as:
struct kiss_fft_cpx_old { float r ; float i ;}
in the H configuration. A runtime change in the functions that
operate on these structures without an appropriate update in the un-

derlying data will lead to type safety violations and, most likely,
a crash. Ginseng’s compilation strategy (that allows data to be up-
dated at runtime so that it changes representation) and safety analy-
ses prevent such type safety violations [17]. Furthermore, Ginseng
allows programmers to specify program regions that should be ex-
ecuted atomically with respect to a configuration change, but still
allow changes to be performed immediately. For example, the pro-
grammer might designate an event-processing loop as an atomic re-
gion, to avoid situations where H code started processing an event,
there is a configuration change, and L code finishes the processing,
which even when type-safe, might lead to inconsistency. We call
this property transactional version consistency [16], and we used it
to ensure that the long-running loops in both SQLite and Kiss FFT
are atomic with respect to configuration changes. Note that the
safety of dynamic software updating has been proved undecidable,
in the general case, by Gupta [8]; nevertheless, with type safety
and version consistency, Ginseng goes a long way toward provid-
ing configuration change safety guarantees.

3. EXPERIENCE
We used ELASTIN to “elastify” two open-source programs: the

SQLite database engine (version 3.6.9), and the Kiss FFT library
(version 1.2.9). We chose these programs because they are popular,
make compile-time decisions about performance trade-offs, and are
deployed on a variety of platforms, from smartphones to desktops
and servers. For each program, we selected two configurations, H
and L, and used Ginseng to switch between these configurations at
runtime. In the remainder of this section we briefly present each
program and its compile-time trade-offs, and discuss changes we
made to the source code to prepare it for processing with Ginseng.

3.1 Applications
SQLite is a small-footprint SQL engine [11] written in C. SQLite

is very popular, with an estimated 500 million installations [23].
Because it is used on wide range of platforms, from embedded
systems to desktops and servers, SQLite comes with several dif-
ferent memory allocators. The default memory allocator—which
uses the system malloc—is space-efficient, but possibly not fast or
deterministic enough for embedded systems. Therefore, SQLite of-
fers a second memory allocator named memsys5 that does not call
malloc, uses a fixed amount of memory, rounds allocation requests
to the next power of two and provides “mathematical guarantees
against fragmentation and breakdown” [10]. Switching between
the default and memsys5 allocators requires recompilation [9]. Our
L configuration consisted of SQLite with the default, malloc-based
allocator; the H configuration consisted of SQLite with a 64MB
memsys5 allocator. The rationale for choosing these configura-
tions is to demonstrate how an SQL server could adapt to elastic
Cloud resources, in this case expanding or shrinking memory.

Kiss FFT is a Fast Fourier Transform library [4] written in C.
According to its documentation, the library is “able to do fixed or
floating point [FFT] with just a recompile.” In addition, Kiss FFT
has support for other optimized configurations, such as OpenMP or
SIMD. The fixed-point (integer), floating point, OpenMP, or SIMD
configurations are selected at compile-time. Our L configuration
consisted of Kiss FFT with the integer-based FFT computation;
the H configuration consisted of Kiss FFT with the floating-point
based FFT computation. The rationale for choosing these configu-
rations is to demonstrate how performance of multimedia applica-
tions using Kiss FFT can be better adapted to changes in the hard-
ware platform, e.g., by allowing FFT processing even when the
floating-point unit in the CPU is turned off to conserve power.

3.2 Source Code Changes
When building dynamically updateable applications with Gin-

seng the programmer may need to intervene at two phases: when
preparing the source code for compilation, and when creating dy-
namic patches—an update consists of loading a dynamic patch.
ELASTIN inherits these burdens. We present details on the strat-
egy we followed, and programmer effort (annotations or lines of
code) for each of these phases, in turn, for our two test programs.

For SQLite, we had to add 1 line of code for identifying a long-
running loop and enforcing transactional version consistency (as
explained in Section 2.5), 1 line to pacify Ginseng’s type safety
analysis, and 14 lines in auto-generated dynamic patches that con-
tain the configuration change logic (transitioning from H to L and
vice versa). The configuration change code consisted of allocating
a large block of memory for memsys5 and telling SQLite to switch
allocators.

For Kiss FFT, we had to add 6 lines of code for identifying long-
running loops and enforcing transactional version consistency, 2
lines to pacify Ginseng’s type safety analysis, and 7 lines in con-
figuration change code (completing Ginseng’s auto-generated dy-
namic patches).

4. EXPERIMENTAL RESULTS
We now show how the elastic applications generated by ELAS-

TIN are effective at exploiting the performance/resources trade-off
by measuring the performance and resource consumption in the H
and L configurations. For our experiments, we started each pro-
gram in a H configuration, named H1, changed the configuration
to a L configuration named L1, then switched again to a H2, and
finally switched to L2. We also present measurements on configu-
ration transition times.

4.1 Experimental Setup
We conducted our experiments on a two-CPU, quad-core Xeon

@ 2.33GHz system with 12GB of RAM and a RAID5 array of three
Western Digital RE3 1TB@7200 rpm hard drives. The test sys-
tem ran CentOS 5.5, Linux kernel version 2.6.18. The code gen-
erated by Ginseng was compiled with gcc 4.1.2 using the default
application-specific compile flags.

4.2 Elastic Execution

4.2.1 SQLite
To demonstrate the performance/memory trade-off in SQLite,

we conducted a database query performance experiment. We first
populated an empty database with 4 tables, each containing 10,000
records. After populating the database, we ran a 10,000 query
benchmark 2 in the first configuration (H1). At the completion
of this query benchmark, we switched configuration on-the-fly to
L1, and ran another 10,000 query benchmark; then switched con-
figuration on-the-fly to H2, benchmarked with 10,000 queries and
finally switched to L2, and benchmarked again. The H1/H2 and
L1/L2 configurations were identical, but we label them with se-
quence numbers for clarity.

In Figure 2 we plot the SQLite query processing throughput,
measured each second. The top of the figure indicates the con-
figuration; arrows configuration changes (transitions). The elastic
2The database schema for our experiment was adapted from
Mozilla, one of the programs that uses SQLite. The queries follow
the frequency we observed in an empirical study on how SQLite
is used by Mozilla: 40% SELECT, 30% INSERT, 20% UPDATE,
10% DELETE. The database contents, as well as the new tuples and
attributes used in INSERT and UPDATE were created randomly.

0 

100 

200 

300 

400 

1  11  21  31  41  51  61  71  81  91  101  111  121  131 

Q
ue

ri
es
/s
ec
 

Time (sec) 

➞
 

➞
 

➞
 H1  L1  H2  L2 

Figure 2: SQLite query performance; arrows indicate configuration changes.

hhhhhhhhhhhhhMetric
Configuration H1 L1 H2 L2

Query performance (queries/sec) 296 263 295 264
(+12.3%) (+12%)

Memory consumption (KB) 2386 1028 1210 1044
(+130%) (+16.8%)

Table 1: SQLite: Average query performance and memory consumption, as absolute numbers and percents relative to L1 and L2’s
average.

SQLite ran in configuration H1 from second 1 to 33, in configu-
ration L1 from second 34 to 70, in configuration H2 from second
71 to 103, in configuration L2 from second 104 to 140. As evident
from the figure, while performance varies within a configuration,
it is clear that H configurations have higher performance than L
configurations, and take less time (33 seconds v. 36 seconds).

In Table 1 we present the average values for query performance
and effective memory consumption in each configuration. The per-
centages indicate the performance gain, and increase in memory
consumption, respectively, for the H1 and H2 configurations com-
pared to the average of L1 and L2 configurations. As we can see,
query performance is about 12% higher in the H configurations
than in the L configurations; the trade-off is higher memory con-
sumption, 130% in H1 and 16.8% in H2. The memory consump-
tion is higher for H1 compared to H2 due to residual data in table
caches from the initial table population that precedes benchmark-
ing. Note that the H1 and H2 memory values in Table 1 show
effective memory consumption, but that might be deceptively low,
as 64MB were pinned down for use by the memsys5 allocator in
H configurations (Section 3.1).

4.2.2 Kiss FFT
To demonstrate the performance/power consumption trade-off in

Kiss FFT, we conducted the following experiment: we started the
elastic Kiss FFT in configuration H1, i.e., floating-point FFT com-
putation, and computed 50,000 FFT transforms (on 1,024 points),
measuring the FFT computation rate each second; at the comple-
tion of this benchmark, we switched configuration on-the-fly to L1,
i.e., integer-based FFT computation and ran another 50,000 FFTs;
then switched configuration on-the-fly to H2, benchmarked with
50,000 FFTs and finally switched to L2, and benchmarked again.

Application Transition time (µsec)
H1 → L1 L1 → H2 H2 →L2

SQLite 672 158 346
Kiss FFT 125 144 139

Table 3: Transition (configuration change) times.

In Figure 2 we plot the FFT processing throughput. Again, the
top of the figure indicates the configuration and arrows indicate
configuration transitions. The elastic Kiss FFT ran in configuration
H1 from second 1 to 25, in configuration L1 from second 26 to
62, in configuration H2 from second 63 to 92, in configuration L2

from second 93 to 129. As in the SQLite case, H configurations
have higher performance.

In Table 2 we present the average values for FFT throughput dur-
ing each configuration. Performance is about 46.9%, and 23.4%,
respectively, higher in the H configurations than in the L configu-
rations. While the performance is low in the L configurations, this
might be acceptable if the multimedia application using Kiss FFT
runs on a device low on battery, as it allows the application to con-
tinue running without quickly depleting the battery. We did not
measure memory consumption for the Kiss FFT experiments, as
for this application high performance is achieved when using the
floating point unit, rather than when using more memory.

4.3 Service Disruption
One of the main goals of this work is to allow on-line config-

uration changes, i.e., without service interruption. By performing
configuration switches on-line rather than by stopping the appli-
cation and restarting at a different configuration we preserve use-
ful application state, leave connections open, and sustain service.

0 

500 

1000 

1500 

2000 

2500 

1  11  21  31  41  51  61  71  81  91  101  111  121 

FF
Ts
/s
ec
 

Time (sec) 

➞
 

➞ ➞

H1  L1  H2  L2 

Figure 3: Kiss FFT throughput; arrows indicate configuration changes.

hhhhhhhhhhhhhMetric
Configuration H1 L1 H2 L2

Throughput (1,024-point FFTs/sec) 1990 1383 1672 1326
(+46.9%) (+23.4%)

Table 2: Kiss FFT: Average throughput, as absolute numbers and percents relative to L1 and L2’s average.

However, the service will still be paused shortly, while the run-
time system performs configuration changes (Section 2.4). Table 3
shows the transition times (service pauses) introduced by a con-
figuration change. For SQLite, transition times vary between 158
and 672 µsec, hardly a problem for application users; for Kiss FFT,
these pauses are even shorter, in the 125–144 µsec interval.

5. FUTURE WORK
We plan to extend this work in several directions. In the cur-

rent ELASTIN implementation, configuration changes are triggered
manually. However, a self-adaptive system needs to monitor the
program and the environment, and automatically detect conditions
that warrant a configuration change, and trigger the change. For
example, for Kiss FFT, a monitor and trigger could look like this:

switch (battery_life) {
case (< 10%) :

configuration <− L;
case (> 30%) :

configuration <− H;
default:

// no configuration change needed
}

A second future direction is to elastify, and then run benchmarks
on, Cloud applications. The Cloud is an excellent target for our ap-
proach, due to its elastic resource model. Moreover, due to the nov-
elty of the Cloud platform, there are few applications written from
scratch for the Cloud, that can take advantage of elastic resources;
rather, legacy applications must be retrofitted for the Cloud, and
ELASTIN is ideal in that regard, since it accepts legacy applications
and converts them into elastic ones.

6. RELATED WORK
Runtime adaptation has been achieved by various means: with

programming language support [7], with architecture-based sup-

port [18, 19, 6, 13], via adaptation frameworks [5], or with com-
piler, runtime, and OS support [5, 12, 22, 3, 1].

Ghezzi et al. [7] recently introduced an approach called Con-
textErlang that implements Context-Oriented Programming in Er-
lang, to support the construction of self-adaptive software. They
implement context-dependent behavior by allowing messages to be
processed by different callback modules called variations; Erlang
permits dynamic binding of variations, which in effect changes the
context. Our approach is similar, in the sense that Ginseng, a dy-
namic updating system, provides the necessary on-the-fly change
mechanisms to ELASTIN. Their notions of variation, and variation
activation, respectively, are similar to our notions of configuration
and configuration change. However, their solution is at the pro-
gramming language level, whereas ours works at the compiler and
runtime level; also they target Erlang applications, whereas we tar-
get programs written in C.

Architecture-based runtime evolution [18, 19] relies on an ex-
plicit architectural model that allows runtime architectural changes,
e.g., component addition, removal, replacement and structural re-
configuration. In this model, a part of the system’s architecture is
available at runtime (as connectors, components, and implementa-
tion mappings) so it can be inspected and changed. The model per-
mits runtime changes, described by architectural modification oper-
ators. Their notion of safety is that visible system states are always
consistent (pre- and post-change). The Rainbow framework [6]
uses a two-layer model (architecture layer and system layer) to im-
plement architectural-based self-adaptation. System operation is
specified via invariants and adaptation strategies. The system layer
uses probes, resource discovery and effectors to cooperate with the
architecture layer. The architecture layer takes into account probe
and resource information and uses gauges to detect whether the
system conforms to the specified invariants. If a violation is de-
tected, an adaptation engine evaluates possible adaptation courses
(as specified by strategies) and triggers adaptation by notifying the
effectors. Our approach is at a lower level. We do not require ap-

plications to be designed using a special architecture, rather we aim
to elastify off-the-shelf applications. As a consequence, albeit for-
mally proved, our notion of safety is low-level (code-based version
consistency and type safety); we cannot provide guarantees that
certain architectural consistency properties or integrity constraints
are preserved when configurations change.

Chang and Karamcheti [5] developed a framework for enabling
runtime application adaptation on distributed platforms; applica-
tions are developed using a tunability interface—language-level an-
notations that allow an application to specify alternate control paths,
resource requirements for a configuration, QoS metrics and config-
uration transition functions. Given these annotations, their frame-
work generates monitoring and steering agents that make adap-
tation decisions based on application behavior and available re-
sources. A virtual-machine based profiling infrastructure computes
a mapping from control parameters to output quality in various con-
figurations, to derive runtime transition decisions. Their approach
explores a different point in the design space: programmers are
much more involved in adaptation in their case, by structuring their
applications around the tunability interface. In contrast, in our ap-
proach the focus is on one source code configuration at a time (e.g.,
conceivably each configuration being programmed by a separate
team with expertise in that configuration space), and we require no
application restructuring. Their system, however, implements au-
tomatic monitoring and steering, which we currently lack.

The K42 operating system from IBM Research [12, 22, 3, 1]
supports autonomic computing via hot-swapping classes: all the
code is encapsulated behind class interfaces, and reconfigurations
to code or data consist of dynamic updates to classes. All classes
that might be subject to dynamic updating have to provide state
import and state export methods, thus upon update, the new ver-
sion imports the old version’s exported state. In this approach, ap-
plications have to run on K42 and be written from scratch with
hot-swapping in mind. In contrast, with ELASTIN we can take
off-the-shelf inelastic applications and convert them into elastic ap-
plications without the need for large-scale changes or re-engineering.

Sadjadi et al.’s work on TRAP/J [20] and ACT/J [21] achieves
dynamic adaptation for Java programs by using aspects to com-
pile Java programs into adapt-ready programs that can be adapted
(“transparently shaped”) at runtime. Given an application, the pro-
grammer selects a subset of classes that should be adaptable, and
the compiler uses aspect weaving to permit changes to these classes’
code. It is unclear to us what steps these systems take to guarantee
the safety of runtime adaptation. In our approach the program-
mer must specify a small number of annotations, mainly for safety,
however the programmer is not required to anticipate which parts
of the software might change.

Kramer and Magee [14] introduced the notion of quiescence for
reasoning about, and guaranteeing, dynamic update safety (pre- and
post-update state consistency). Vandewoude et al. [24] refined this
into a notion of tranquility that is less strict than quiescence, yet
ensures state consistency. Unfortunately both quiescence and tran-
quility are too strict to be applicable to the types of applications
(large C programs with long-running event loops, large updates)
we examined in this paper or in the past [17, 15].

Acknowledgments. This research was supported in part by NSF
grant CCF-0963996. We thank the anonymous referees for their
helpful comments on this paper.

7. REFERENCES
[1] Appavoo, J. et al. Enabling autonomic behavior in systems

software with hot swapping. IBM Systems Journal, 2003.

[2] B. Cheng et al. Software engineering for self-adaptive
systems: A research road map. In Dagstuhl Seminar
Proceedings, number 08031, 2008.

[3] A. Baumann, G. Heiser, J. Appavoo, D. D. Silva, O. Krieger,
R. W. Wisniewski, and J. Kerr. Providing dynamic update in
an operating system. In USENIX ATC, pages 279–291, 2005.

[4] M. Borgerding. Kiss FFT.
http://sourceforge.net/projects/kissfft/.

[5] F. Chang and V. Karamcheti. Automatic configuration and
run-time adaptation of distributed applications. In HPDC’00,
pages 11–20.

[6] D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl, and
P. Steenkiste. Rainbow: Architecture-based self-adaptation
with reusable infrastructure. Computer, 37:46–54, 2004.

[7] C. Ghezzi, M. Pradella, and G. Salvaneschi. Programming
language support to context-aware adaptation: a case-study
with erlang. In SEAMS ’10, pages 59–68.

[8] D. Gupta, P. Jalote, and G. Barua. A formal framework for
on-line software version change. IEEE TSE, 22(2), 1996.

[9] D. R. Hipp. Compilation options for sqlite.
http://www.sqlite.org/compile.html.

[10] D. R. Hipp. Dynamic memory allocation in sqlite.
http://www.sqlite.org/malloc.html.

[11] D. R. Hipp. Sqlite. http://www.sqlite.org/.
[12] The K42 Project.

http://www.research.ibm.com/K42/.
[13] J. Kramer and J. Magee. Self-managed systems: an

architectural challenge. In FOSE ’07, pages 259–268.
[14] J. Kramer and J. Magee. The evolving philosophers problem:

Dynamic change management. IEEE TSE, 1990.
[15] I. Neamtiu and M. Hicks. Safe and timely updates to

multi-threaded programs. In PLDI’09, pages 13–24.
[16] I. Neamtiu, M. Hicks, J. S. Foster, and P. Pratikakis.

Contextual effects for version-consistent dynamic software
updating and safe concurrent programming. In POPL’08.

[17] I. Neamtiu, M. Hicks, G. Stoyle, and M. Oriol. Practical
dynamic software updating for C. In PLDI’06, pages 72–83.

[18] P. Oreizy, N. Medvidovic, and R. N. Taylor.
Architecture-based runtime software evolution. In ICSE ’98,
pages 177–186.

[19] P. Oreizy, N. Medvidovic, and R. N. Taylor. Runtime
software adaptation: framework, approaches, and styles. In
ICSE Companion ’08, pages 899–910.

[20] S. M. Sadjadi, P. K. McKinley, B. H. Cheng, and R. K.
Stirewalt. TRAP/J: Transparent generation of adaptable Java
programs. In DOA’04, pages 1243–1261.

[21] S. M. Sadjadi, P. K. McKinley, and B. H. C. Cheng.
Transparent shaping of existing software to support pervasive
and autonomic computing. DEAS ’05.

[22] C. Soules, J. Appavoo, K. Hui, et al. System support for
online reconfiguration. In USENIX ATC’03, pages 141–154.

[23] SQLite team. Most widely deployed SQL database.
http://www.sqlite.org/mostdeployed.html.

[24] Y. Vandewoude, P. Ebraert, Y. Berbers, and T. D’Hondt.
Tranquility: A low disruptive alternative to quiescence for
ensuring safe dynamic updates. IEEE TSE, 2007.

[25] R. Wisniewski. Innovations within reach: Stretching the
limits with elastic software. In IBM WebSphere Developer
Technical Journal, March 2010. http://www.ibm.com/
developerworks/websphere/techjournal/
1003_inreach/1003_inreach.html.

