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Abstract
Software-based thread-level parallelization has been widely stud-
ied for exploiting data parallelism in purely computational loops to
improve program performance on multiprocessors. However, none
of the previous efforts deal with efficient parallelization of hybrid
loops, i.e., loops that contain a mix of computation and I/O oper-
ations. In this paper, we propose a set of techniques for efficiently
parallelizing hybrid loops. Our techniques apply DOALL paral-
lelism to hybrid loops by breaking the cross-iteration dependences
caused by I/O operations. We also support speculative execution of
I/O operations to enable speculative parallelization of hybrid loops.
Helper threading is used to reduce the I/O bus contention caused by
the improved parallelism. We provide an easy-to-use programming
model for exploiting parallelism in loops with I/O operations. Par-
allelizing hybrid loops using our model requires few modifications
to the code. We have developed a prototype implementation of our
programming model. We have evaluated our implementation on a
24-core machine using eight applications, including a widely-used
genomic sequence assembler and a multi-player game server, and
others from PARSEC and SPEC CPU2000 benchmark suites. The
hybrid loops in these applications take 23%–99% of the total exe-
cution time on our 24-core machine. The parallelized applications
achieve speedups of 3.0x–12.8x with hybrid loop parallelization
over the sequential versions of the same applications. Compared
to the versions of applications where only computation loops are
parallelized, hybrid loop parallelization improves the application
performance by 68% on average.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Constructs and Features – Concurrent program-
ming structures

General Terms Languages, Performance

Keywords DOALL Parallelization, Speculative Parallelization,
Helper Threading, I/O contention

1. Introduction
Uncovering parallelism is crucial for improving an application’s
performance on shared memory multiprocessors. Software-based
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thread-level parallelization has been widely studied for exploiting
parallelism on multiprocessors. Many parallel programming mod-
els have been proposed to facilitate the development of parallel ap-
plications on shared memory multiprocessors. The shared-memory
paradigm used by these programming models makes them easy-to-
use for the programmer.

A majority of the parallel programming models (e.g., Thread-
ing Building Blocks [20], OpenMP [8], Galois [14], SpiceC [10])
focus on exploiting data parallelism in loops including DOALL,
DOACROSS, pipelined, and speculatively parallelized loops. How-
ever, these programming models only target loops that contain pure
computations, i.e., they are free of I/O operations. Since many ap-
plications contain loops with I/O operations, they fail to yield much
speedup due to these loops still being sequential. Therefore, it is
highly desirable to support parallel programming models which al-
low parallel execution of hybrid loops, i.e., loops with both compu-
tation and I/O operations. For example, Velvet [30] is a popular
bioinformatics application. In its version 1.1 (i.e., the latest version
when we conducted this work), 18 pure computation loops have
been parallelized using OpenMP. However, since OpenMP lacks
support for parallelizing loops with I/O operations, none of the hy-
brid loops in Velvet have been parallelized. Actually, Velvet has
39 hybrid loops, out of which 26 loops can be parallelized by the
approach presented in this paper. These hybrid loops take a sig-
nificant portion (27%–53%) of the total execution time in our ex-
periments on a 24-core machine. Therefore, to further improve the
performance of Velvet, developers must exploit the parallelism in
hybrid loops. Interestingly, while we were writing this paper, the
developers of Velvet were working independently on manually
parallelizing the hybrid loops, which only confirms our observation
of the need to parallelize hybrid loops.

In a few of the previous efforts [10, 26] where hybrid loops
are parallelized, DOACROSS parallelism is used (i.e., synchroniza-
tion is imposed to deal with cross-iteration dependences) even if
the computation part of the loop can be performed using DOALL
(i.e., no cross-iteration dependence in the computation part). How-
ever, DOACROSS execution is not as efficient as DOALL. Because
DOACROSS execution assigns only one iteration per scheduling
step, it results in significant synchronization and scheduling over-
head. In addition, the speculation-based loop parallelization tech-
niques proposed in these works are not applicable when the loop
contains I/O operations. While the work on parallel I/O [22, 24, 25]
provides a set of low-level techniques that change the I/O subsys-
tem to improve the performance of multiple simultaneous I/O op-
erations, it does not provide any means for programmers to paral-
lelize hybrid loops.

In this paper, we propose compiler techniques for efficiently
parallelizing hybrid loops, i.e., loops that contain I/O operations in
addition to computation. Our techniques break the cross-iteration



dependences involving I/O operations. Therefore, we are able to
employ DOALL parallelism whenever there is no cross-iteration
dependence in the computation part of the loop. Our techniques
also support speculative execution of I/O operations to enable spec-
ulative parallelization of hybrid loops. We observe increased I/O
bus contention with aggressive parallelization of hybrid loops. For
performance scalability, we propose the use of helper threading to
reduce the I/O bus contention. The helper thread enables the work-
ing threads to refill their input buffers and flush their output buffers
so that the I/O traffic is spread out and not bursty. Unlike Parallel
I/O work, our techniques do not require changes in the I/O subsys-
tem.

We provide an easy-to-use programming model for exploiting
parallelism in hybrid loops. The programming model contains two
I/O related pragmas. Programmers can parallelize hybrid loops
by merely inserting the pragmas preceding the loops in sequen-
tial code. Similarly, to enable speculative parallelization of hybrid
loops, programmers just need to use one of the proposed pragmas
at the beginning of the loop. Employing helper threading in parallel
loops simply requires calling helper threading APIs preceding the
loops.

We have developed a prototype implementation of our program-
ming model. The core components of the implementation con-
sist of a source-to-source translator and a user-level runtime li-
brary. We evaluate our implementation on a 24-core Dell Pow-
erEdge R905 server using eight benchmarks from PARSEC [3]
and SPEC CPU2000 benchmark suites, and two real applications.
These benchmarks are parallelized via DOALL and speculative
parallelism. Our implementation achieves 3.0x–12.8x speedup in
these benchmarks. In comparison to the parallelized versions of
benchmarks without hybrid loop parallelization, our technique im-
proves the performance by 30% to 272%.

The rest of the paper is organized as follows. Section 2 illus-
trates our approach to parallelizing hybrid loops. Section 3 presents
our programming model and its implementation. Section 4 presents
the evaluation. Section 5 discusses related work and Section 6 con-
cludes this paper.

2. Parallelizing Hybrid Loops
We begin by discussing the challenges in parallelizing hybrid loops
and then describe our approach to overcoming these challenges.
First, we discuss why existing techniques for DOALL paralleliza-
tion and speculative loop parallelization cannot be directly applied
if a loop also contains I/O operations. Our goal is to generalize
these techniques so that they can be applied to hybrid loops. Sec-
ond, we show that parallelization of hybrid loops can lead to I/O
contention which must be effectively handled to realize the full
benefits of parallelization.

Enabling DOALL Parallelization of Hybrid Loops. Figure 1(a)
shows a typical loop with I/O operations that can be found in many
applications (e.g., bzip2, parser [12], and stream encoder/decoder).
Each loop iteration first checks if the end of the input file has
been reached. If not, data is read from the file, computation on
the data is performed, and finally results are written to the output
file. When the computation within a loop does not involve cross-
iteration dependences, maximum parallelism can be exploited via
DOALL parallelization where all loop iterations can be executed
in parallel. However, in a hybrid loop, even when the computa-
tion does not involve cross-iteration dependences, DOALL paral-
lelization is not possible because the file read/write operations in-
troduce cross-iteration dependences due to the movement (in our
example, advancement) of the file pointer. In prior work, e.g., [10],
such loops are parallelized using DOACROSS parallelism which

incurs high scheduling and synchronization overhead—see Figure
1(b) for DOACROSS loop execution.
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Figure 1. Execution of the loop example.

To fully exploit the parallelism in the loop, we need to find a
way to break the cross-iteration dependences due to I/O operations.
In this paper we develop solutions to enable DOALL parallelization
which leads to the execution shown in Figure 1(c). With DOALL
parallelization we can eliminate the synchronization between con-
secutive iterations and employ more efficient scheduling polices
such as Guided Self Scheduling [17]. Figure 2 compares the perfor-
mance of DOACROSS with the performance of DOALL on a mi-
crobenchmark constructed based on the example loop type. In the
microbenchmark, the compute function is composed of a loop. We
can adjust the ratio of I/O workload vs. computation workload by
varying the loop size. The figure shows the performance compar-
ison for both I/O-dominant workload and computation-dominant
workload. In the I/O-dominant workload, the I/O calls take around
75% of the execution time of the sequential loop while in the
computation-dominant workload the I/O calls take only 25% of
the loop execution time. In both cases, DOALL performs better
than DOACROSS, especially with large number of parallel threads.
Therefore, the first challenge addressed in this work is to efficiently
parallelize hybrid loops by enabling DOALL parallelization.
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Figure 2. Performance comparison of DOACROSS and DOALL
on the example loop.

Performing Speculative Parallelization of Hybrid Loops. Now
let us consider the situation in which cross-iteration dependences
exist in the computation part of the loop. We cannot perform
DOALL parallelization of such loops even if we break the de-
pendences introduced by I/O operations. Recent works have shown
that an effective approach to handling cross-iteration dependences
in the computation part is to employ speculative paralleliza-
tion of loops. This approach is very effective when the cross-
iteration dependences manifest themselves infrequently. Previous
works [9, 26] have shown that speculative parallelization works
better than non-speculative DOACROSS parallelization; however,
these works also assume that the loops do not contain I/O oper-
ations. To apply speculative parallelization to the loops with I/O
operations, we need to enable the speculative execution of the I/O
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Figure 3. Performance of reading a 1 GB file using different num-
bers of parallel I/O requests.

operations. Therefore, the second challenge of efficiently paralleliz-
ing hybrid loops is to develop solutions for speculative execution
of I/O operations.

I/O Contention due to Parallelization. Once DOALL and spec-
ulative parallelization of hybrid loops have been achieved, we are
faced with yet another challenge. By increasing parallelism we also
increase I/O bus contention. Figure 3 shows the performance of
a microbenchmark that reads a 1 GB file from the disk. The mi-
crobenchmark creates multiple parallel threads, each of which then
sends an I/O request to read a portion of the file. We varied the
number of parallel threads (i.e., number of parallel I/O requests)
to examine the impact of I/O bus contention. We can see that the
I/O performance degrades quickly with more than 7 parallel I/O re-
quests due to the I/O bus contention. With more than 16 parallel I/O
requests, we actually get a slowdown compared to the performance
with just one I/O request. Figure 2 also shows that the DOALL
performance of the example loop degrades slightly with large num-
ber of parallel threads. Therefore, to effectively parallelize hybrid
loops, we must develop techniques for reducing I/O bus contention.

2.1 DOALL Parallelization of Hybrid Loops
To apply DOALL parallelization to a hybrid loop we need to break
the cross-iteration dependences introduced by the I/O operations in
the loop. Our dependence-breaking strategies for input operations
differ from those for output operations. Thus, we discuss them
separately below.

Cross-iteration dependences caused by the input operations.
These dependences arise because the starting file position for an it-
eration depends on the input operations performed in the previous
iteration. The DOALL parallelization assigns each parallel thread
a chunk of consecutive iterations for execution. Therefore to break
the dependences we identify the starting file position corresponding
to each parallel thread by directly calculating it before the execution
of the loop. The method for computing the starting file positions de-
pends upon the file access pattern used in the loop. Our examination
of Velvet [30] and the programs in two benchmark suites, SPEC
CPU 2000 and PARSEC [3], has identified three commonly-used
file access patterns which are described next.

FSB: Fixed Size Blocks. The first access pattern, shown in Fig-
ure 4(a), is called the fixed-size blocks pattern as in this pattern
each loop iteration reads a fixed-size block of data. The stride of
the file pointer is equal to the size of the data block read by each
iteration. Since we know the stride of the file pointer before en-
tering the loop, we can easily calculate the size of data to be read
by each parallel thread. Thus the starting file position of a parallel
thread can be calculated by summing up the size of data to be read
by previous parallel threads. Given the starting file position of each
parallel thread, the time complexity of moving the file pointer to
the starting file position via a seek operation is O(1).

FLS: Fixed Loop Size. In the second pattern, as shown in Figure
4(b), the loop first reads the total number of blocks from the file and
then accesses one delimited block during each loop iteration. Since
the blocks are of variable size, delimiters are used to separate them
(e.g., in a text file, the delimiter is ‘\n’). From the total number of
blocks, we can calculate the number of blocks, n, to be read by each
parallel thread. Using a scan operation, we can locate the starting
file position of parallel thread i by skipping n ∗ i occurrences of
the delimiter. The time complexity is O(N), where N is the file size.
This strategy is slow because it requires a scan as opposed to a seek.

FCS: Fixed Cumulative Size. In the third pattern, shown in
Figure 4(c), each loop iteration accesses one delimited block that
is encountered after skipping data blocks whose cumulative size
reaches a given number. Because the data blocks are of variable
size, delimiters are used to separate them. Since we know the total
size of data to be read by the loop and the total number of parallel
threads (T ), we can locate the starting file position of parallel
thread i by first skipping the i/T fraction of the data and then
looking for the first occurrence of the delimiter. In this case, we
actually assign equal amount of data instead of equal number of
iterations to each parallel thread, which is different from typical
DOALL parallelization. This strategy requires two operations—a
seek and a scan. This scan is faster than the scan performed in FLS
since it only scans to the first occurrence of the delimiter. The time
complexity of this strategy is O(L), where L is the maximum length
of a data block. This time complexity is much lower than that of
assigning equal number of iterations to every thread—O(N), where
N is the file size.

Cross-iteration dependences caused by the output opera-
tions. Simply computing the starting file position cannot help break
cross-iteration dependences caused by output operations. This is
because the calculated file position does not exist until all previous
output operations have completed. Therefore, to break these depen-
dences, we propose a different approach. We create an output buffer
for each parallel thread. Each thread writes the outputs into its out-
put buffer during the parallel execution of the loop. As a result, the
output operations in one thread no longer depend on those in other
threads. Flushing these buffers can be performed in parallel with
the sequential code following the loop, as shown in Figure 5(a).

2.2 Speculative Parallelization of Hybrid Loops
Speculative parallelization is a way to efficiently exploit potential,
but not guaranteed, parallelism in loops. Software speculative exe-
cution of non-I/O code has been studied in previous work [9, 26].
However, I/O operations cannot be executed speculatively in the
same way because they use system calls. The code executed by the
system calls is hidden from the compiler and runtime library, which
thus cannot monitor the execution of system calls. Moreover, the
results of I/O operations cannot be simply reversed once they are
done. Therefore, to efficiently parallelize loops with I/O operations
using speculative parallelism, we need support for speculative exe-
cution of I/O operations.

Speculative execution of input operations. Speculative execu-
tion of the input operations in each iteration is enabled by creating
a copy of the file pointer at the start of each iteration and then using
the copy to perform all input operations in the iteration. If specu-
lation succeeds, the original file pointer is discarded and the copy
is used in the subsequent iterations. If speculation fails, we simply
discard the copy. One way of creating the copy is to instantiate a
new file pointer and then seek to the current file position.

Speculative execution of output operations. Speculative ex-
ecution of a loop iteration that contains output operations should
satisfy the atomicity semantics, i.e., either all output operations oc-
cur or none occur. Therefore, the output operations in the loop it-
eration should not actually write to the file since that cannot be
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Figure 4. Commonly used file access patterns of loops and strategies for locating the starting file position for each parallel thread.

Programming constructs Description
#pragma SpiceC parallel doall|doacross|pipelining specify a parallel loop and the form of parallelism

in which the loop is to be executed
#pragma SpiceC subregion [regionname] [after(iteration, region)] specify a subregion in the parallel loop that is executed

under the order specification
#pragma SpiceC commit [atomicity] [after(iteration, region)] perform a commit operation with specified atomicity

check and execution order

Table 1. SpiceC programming constructs.
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Figure 5. Strategies for flushing the output buffer.

reversed. Speculative execution of the output operations in an it-
eration can be realized by using the output buffering described in
the previous section. If speculation succeeds, we keep the buffered
output. If speculation fails, we simply discard the buffered output.
We flush the output buffer at the end of each iteration as shown in
Figure 5(b). Flushing the buffer at the end of each iteration requires
small amount of memory since the buffer does not need to hold the
outputs from the entire loop, but it incurs synchronization overhead
because the flush operations need to be performed sequentially. The
flush operation in an iteration needs to wait for the completion of
the flush operation in the previous iteration as shown in Figure 5(b).

2.3 I/O Contention Reduction via Helper Threading
Parallelizing hybrid loops can lead to increased contention on the
I/O bus. We propose the use of helper threading to reduce this I/O
contention. Before entering a hybrid loop, we create a helper thread
which monitors the file buffers of the associated file pointers and
performs the following tasks. For an input file pointer, the helper
thread refills the file buffer when the size of remaining data in
the buffer is less than a predefined threshold. For an output file
pointer, it flushes the file buffer when the size of buffered output
is larger than a predefined threshold. The use of a helper thread
actually causes the I/O requests sent to the I/O bus to be serialized.
Therefore, it eliminates the slowdown caused by the bursty nature

of I/O requests. Moreover, since the parallel threads only access the
buffer in the memory instead of the file on the disk, the I/O latency
is also hidden by the helper thread. The helper threading can also
be used in sequential loops to reduce I/O latency.

3. Our System for Parallelizing Hybrid Loops
The strategies described to enable parallelization of hybrid loops
have been incorporated into the SpiceC [10] system. We chose
SpiceC because it already supports programming constructs, in the
form of compiler directives, that can be used to express DOALL,
DOACROSS, pipelining, and speculative parallelism. We have ex-
tended the SpiceC programming model to allow parallelization of
hybrid loops. This section first presents our approach to program-
ming parallel loops in the presence of I/O and illustrate it using
several examples from real applications. Next we describe our im-
plementation of the programming model.

3.1 Programming Parallel Hybrid Loops
Let us first consider our programming model for parallelizing hy-
brid loops. We show how parallel hybrid loops are programmed and
describe the use of I/O helper threads to boost the I/O performance
on multicores. We use the C standard I/O library (stdio) for illus-
trating our programming model. All the proposed APIs can be used
for other I/O libraries, e.g., the C++ I/O library (iostream). The
SpiceC [10] programming constructs used to express parallelism in
this section are summarized in Table 1.

3.1.1 Parallelizing Loops with Input Operations
To enable DOALL parallelization of loops with input operations,
we introduce the pinput clause:

#pragma SpiceC parallel doall \
pinput(file, stride, start, end)

The pinput clause is designed to be used with the SpiceC DOALL
construct. To parallelize a loop with input operations, programmers
just need to insert the DOALL construct combined with the pinput
clause. The pinput clause has four parameters: file, stride, start,



and end. Parameter file is the input file pointer that causes cross-
iteration dependences. Parameter stride gives the stride of file in the
loop; it can be either the size of data block read by each iteration
or the delimiter between data blocks. We distinguish between them
based on the parameter’s type. Parameter start is the initial position
of file at the beginning of the loop. By default (i.e., when this
parameter is empty), the current position pointed by file is used
as the initial position. Parameter end is the ending position that file
will reach at the end of the loop. The end should be left empty
if the ending position of file is unknown before entering the loop
(e.g., the FLS file access pattern shown in Figure 4(b)). Given these
parameters, the compiler can then calculate the starting file position
for each parallel thread using the strategies described in Section 2.1.

Pattern Pragma Example
FSB pinput(file, size, 0, EOF)
FCS pinput(file, delimiter, 0, EOF)
FSB pinput(file, size)
FLS pinput(file, delimiter)

Table 2. Examples of the pinput clause.

Table 2 shows four examples of the pinput clause covering four
different file input patterns. In the first two examples, the loop
reads the whole file. We use 0 as the initial file position so that
the compiler knows that the file pointer starts from the beginning
of the file. The use of EOF as the ending file position tells the
compiler that the file pointer will reach the end of the file. In the
last two examples, the loop reads a fixed number of data blocks
from the current file position. The initial file position is not given
in the pinput clause since the current file position is used as the
initial position. The ending file position is left empty because it
is unknown. The first and third examples exhibit the FSB pattern
(as shown in Figure 4(a)) since they use a constant block size as
the stride of the file pointer. In the second example, a delimiter
is used as the stride and the total data size read by the loop can
be calculated by the initial and ending file position. Therefore,
it exhibits the FCS pattern (as shown in Figure 4(c)). The last
example exhibits the FLS pattern (as shown in Figure 4(b)) since a
delimiter is used as the stride and the loop size is fixed.

file=fopen(“input”, “r”);
fscanf(file, “%d”, &ntuples);
#pragma SpiceC parallel doall pinput(file, “\n”) {

for( i=0; i<ntuples; i++) {
fgets(line, maxsize, file);
read line(line, &index, &x, &y);
tuples[index] = create tuple(x,y,0);
}

}

Figure 6. An input loop of benchmark DelaunayRefinement.

Figure 6 shows a real example of DOALL input loop that is
similar to the fourth case given in Table 2. The original input
loop is from the DelaunayRefinement benchmark [16]. Although
the computation part of this benchmark has been parallelized in
various ways [14, 21], its input loop, which contains I/O, has never
been parallelized. The input loop reads an array of ntuples tuples
from the file. Each iteration reads a line from the file and then
creates a tuple structure from the input. In the example, the pragmas
inserted to parallelize the loop are highlighted in bold. The SpiceC
DOALL construct is used to identify the parallel region and type
of parallelism. The pinput clause is used to specify the file input
pattern. Since each iteration reads one line from the file, we give
“\n” as the delimiter in the pinput clause.

3.1.2 Parallelizing Loops with Output Operations
To parallelize a loop with output operations using DOALL paral-
lelism, we need to buffer the output of each iteration. Program-
mers can achieve this by using the boutput clause with the SpiceC
DOALL construct as follows.

#pragma SpiceC parallel doall \
boutput(file, isparallel)

The boutput clause tells the compiler that the output to file in the
loop is written into its buffer. The buffer will not be flushed until
the end of the loop, as shown in Figure 5(a). The boutput clause
has two parameters: file and isparallel. Parameter file is the file
pointer whose output needs to be buffered. Parameter isparallel
specifies whether buffer flushing is performed in parallel with the
computation threads or in a sequential fashion.

#pragma SpiceC parallel doall boutput(outfile, true) {
for (index = 0; index<length; index++) {

nucleotide = getNucleotide(descriptor, index);
switch (nucleotide) {

case ADENINE:
fprintf(outfile, “A”);
break;

case CYTOSINE:
fprintf(outfile, “C”);
break;

. . .
}
}

}

Figure 7. An output loop of bioinformatics application Velvet.

Figure 7 shows an output loop of Velvet [30], a widely-
used bioinformatics application (genomic sequence assembler).
Although the computationally-intensive part of Velvet has re-
cently been parallelized with OpenMP, its hybrid loops have not
been parallelized. In the original output loop, each iteration of the
loop gets a nucleotide from the descriptor and outputs a character
based on the type of the nucleotide. The pragmas used to paral-
lelize the loop are highlighted in bold. The SpiceC pragma is used
to mark the parallel region and the boutput clause is used to buffer
all outputs of fprintf so that the output operations do not cause any
cross-iteration dependence on the file pointer. Buffer flushing is
programmed to be performed in parallel with the sequential code
after the loop.

The boutput clause can also be used to program DOACROSS
loops with output operations. For DOACROSS parallelism, the
buffer is flushed at the end of each iteration, as shown in Figure
5(b). Figure 8 shows the kernel of the benchmark Parser. Each iter-
ation first reads a line from stdin and then parses the line. Because
of the cross-iteration dependences in the parse portion of the loop,
the loop cannot be parallelized using DOALL parallelism. How-
ever, since these dependences rarely manifest themselves at run-
time, the loop can be parallelized using speculative DOACROSS
parallelism. Because the parse portion of the loop calls printf to
output the results, programmers need the boutput clause when ap-
plying speculative execution to the parse portion. In the figure,
the pragmas inserted to speculatively parallelize the loop are high-
lighted in bold. The first SpiceC pragma is used to identify the par-
allel region and type of parallelism. The loop is divided into two
subregions by the rest of the SpiceC pragmas. The first subregion,
READ, performs the input operations. The pinput clause is used at
the beginning of the loop to tell the compiler the file input pattern.



#pragma SpiceC parallel doacross \
pinput(infile, “\n”, 0, EOF) boutput(stdout, false) {
for(index=0; !feof(infile); index++) {

#pragma SpiceC subregion READ {
fgets(line, max line, infile); }

#pragma SpiceC subregion PARSE {
if ( special command(line) ) continue;
first prepare to parse(1);
while ( !success ) {

/* parser code here */
printf(“ Linkage %d”, index+1);
/* parser code here */
}
#pragma SpiceC commit atomicity \

after(ITER-1, PARSE)
}
}

}

Figure 8. Speculative parallelization of a kernel from Parser.

The compiler can then calculate the starting position of infile for
each iteration and break the cross-iteration dependences introduced
by fgets. The second subregion, PARSE, parses the input; it is ex-
ecuted speculatively as specified by the commit pragma at the end
of the PARSE subregion. Since printf cannot be executed specula-
tively, the boutput clause is used with the DOACROSS construct to
buffer the outputs to stdout in the loop. This enables speculative ex-
ecution. Buffer flushing is performed at the end of each iteration in
sequential order, as specified by parameter isparallel in the boutput
clause.

3.1.3 Programming I/O Helper Threads
We use helper threading to reduce the I/O contention caused by
the hybrid loop parallelization. Table 3 summarizes our API for
programming I/O helper threads. Function inithelper is used to
create a new I/O helper thread; it returns the handle of the created
helper thread which can then be bound to a file pointer using the
function sethelper. Once bound to a file pointer, the helper thread
continues to monitor the buffer corresponding to that file pointer.

API Description
inithelper() initialize a I/O helper thread
sethelper(file, helper) bind a helper thread to a file pointer

Table 3. APIs for programming I/O helper thread.

Figure 9 shows an example of using I/O helper threading in a
parallel loop taken from DelaunayRefinement as shown in Figure
6. We create a helper thread and bind it to the input file pointer
before entering the loop. Upon entering the parallel thread, the
helper thread will automatically monitor the buffer corresponding
to the file pointer copy in each parallel thread. Programmers do not
need to code the binding of the helper thread to each copy of the
file pointer.

I/O helper threading can also be used in sequential loops to re-
duce the I/O latency. Similar to the example of parallel loop, use of
I/O helper thread in sequential loops is straightforward: program-
mers just need to call inithelper and sethelper before entering the
loop.

3.2 Implementation
Figure 10 presents the overview of our implementation of the
programming model. The core components of the implementation

file=fopen(“input”, “r”);
fscanf(file, “%d”, &ntuples);
helper = inithelper();
sethelper(file, helper);
#pragma SpiceC parallel doall pinput(file, “\n”) {

for( i=0; i<ntuples; i++) {
fgets(line, maxsize, file);
read line(line, &index, &x, &y);
tuples[index] = create tuple(x,y,0);
}

}

Figure 9. Example of using I/O helper threads.
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Figure 10. Implementation overview.

consist of a source-to-source translator and a user-level runtime
library. The translator analyzes the hybrid loops parallelized with
SpiceC directives and our APIs and translates them into explicitly
parallel C/C++ code. We implemented the analysis by extending
ROSE [18], a compiler infrastructure to build source-to-source
code translators. The explicitly parallel code is compiled by the
GCC compiler and linked with our runtime library. The runtime
library implements output buffering and helper threading. Next,
we describe the code transformation performed by the source-
to-source translator and then elaborate how output buffering and
helper threading are implemented.

3.2.1 Loop Transformation

API Description
bwrite(index, data, size, file) write data of size into the

buffer of file in iteration index
bputs(index, string, file) write string into the buffer of

file in iteration index
bprintf(index, file, format, ...) write formatted data into the

buffer of file in iteration index
bflush(file, ALL/index, ispar) flush the buffer of file using a

separate thread or not

Table 4. Low-level functions for buffering outputs.

The code transformation from DOALL hybrid loops to C/C++
code is done automatically in our implementation. Figure 11 shows
an example of the code transformation. Figure 11(a) shows a
DOALL hybrid loop parallelized by our extended SpiceC direc-
tives. Each iteration of the loop reads 100 bytes from the input
file, then processes them, and finally outputs them into the out-
put file. Figure 11(b) shows the transformed main program. We
insert initialization of the parallel threads at the beginning of the
program and close the parallel threads at the end of the program.
The DOALL loop is outlined into function wrapper. All variables
used in the DOALL loop are wrapped into a structure which is
then passed as a parameter to the outlined loop. We call func-
tion start doall to execute the outlined loop in the parallel threads.
Function join doall is a synchronization method that waits until all
parallel threads finish their work. Function bflush is called after the



. . .
in = fopen(“input”, “r”);
out = fopen(“output”, “w”);
#pragma SpiceC parallel doall \

pinput(in, 100, 0, EOF) boutput(out, true) {
for( ; !feof(in); )

fread(buf, 1, 100, in);
process(buf);
fputs(buf, out);

}
. . .

init parallel threads();
. . .
in = fopen(“input”, “r”);
out = fopen(“output”, “w”);
args->in = in;
args->out = out;
start doall(wrapper, args);
join doall();
bflush(out, ALL, true);
. . .
close parallel threads();

void wrapper(void* args) {
in = args->in;
out = args->out;
tid = get thread id();
f = local start(tid, in, 100, 0, EOF);
c = local count(tid, in, 100, 0, EOF);
for( i=0; i<c; i++ )

fread(buf, 1, 100, f);
process(buf);
bputs(i, buf, out);

}
(a) Original code with SpiceC pragmas (b) Transformed main program (c) Transformed parallel loop

Figure 11. Example of code transformation.

loop to flush the buffer of file pointer out. Figure 11(c) shows the
outlined loop. Before the loop, three functions are called to prepare
the workload for the current thread. Function get thread id is used
to get the ID of the current thread. Function local start is called to
calculate the starting file position of the current thread. Function
local count is called to calculate the number of iterations to be per-
formed in the current thread. Function fputs is replaced with our
function bputs for buffering the outputs. Table 4 lists our substi-
tute for the C standard I/O functions. They are designed to buffer
and flush the outputs for breaking the cross-iteration dependences
introduced by the output operations.

3.2.2 Output Buffering
To enable output buffering (e.g., bputs, bflush), we create an output
buffer for each parallel thread. The structure of each output buffer
is a linked list, as shown in Figure 12. Each node in the linked list
is a buffer of predefined length which can typically hold the output
from several iterations. Once a node is full, a new node is created
and appended to the linked list.

Flushing the output buffers takes O(n) time, where n is the total
size of all output buffers. Figure 12(a) shows the data layout of the
output buffers for a DOALL loop with two parallel threads. The
output buffer of thread 1 stores the output from iteration 1 to 6 and
the output buffer of thread 2 stores the rest. It is straightforward
to flush the output buffers with this data layout. We can flush the
output buffers starting from the first thread and ending with the
last thread, which takes O(n) time. Figure 12(b) shows the data
layout of the output buffers for a DOACROSS loop. The output
buffer of thread 1 stores the output from odd iterations and the
output buffer of thread 1 stores the output from even iterations. In
this case, we can flush the output buffers in a round-robin manner,
which also takes O(n) time. The output of the current iteration in a
DOACROSS loop can be flushed efficiently (as shown in Figure 8)
since the output of the current iteration is always pointed to by the
tail pointer of the output buffer.

Figure 12. Buffer layout.

3.2.3 I/O Helper Threading
To enable I/O helper threading, our runtime library implements an
extended version of the standard file pointer by dividing the file
buffer into two parts of equal size: the f-buffer and the h-buffer,
where the f-buffer is used as the file buffer directly accessed by
the I/O operations and the h-buffer is the helper buffer used by the
helper thread.

For input file pointers, all input operations read data from the
f-buffer. Once the f-buffer is empty, it is switched with the h-buffer.
The helper thread keeps monitoring the h-buffer. If the h-buffer is
empty, it refills it by calling I/O system calls. Output file pointers
work in a similar way.

In our implementation, we typically do not put the helper thread
to sleep to minimize the refilling latency. However, when the num-
ber of parallel threads is equal to the number of processor cores in
the system, the helper thread will compete with the parallel threads
for CPU resources. Therefore in this case, instead of busy idling
the helper thread, we put the helper thread to sleep when it does not
find any buffer that needs refilling. The helper thread is then woken
when an f-buffer is switched with the h-buffer in a buffer pair.

4. Evaluation
This section evaluates the prototype implementation of our pro-
gramming model. The experiments were conducted on a 24-core
DELL PowerEdge R905 machine. Table 5 lists the machine details.

Processors 4×6-core 64-bit AMD Opteron 8431
Processor (2.4GHz)

L1 cache Private, 128KB for each core
L2 cache Private, 512KB for each core
L3 cache Shared among 6 cores, 6144KB
Memory 32GB RAM
OS Ubuntu server, Linux kernel version 2.6.32

Table 5. Dell PowerEdge R905 machine details.

4.1 Benchmarks
Our programming model was applied to eight applications. Two are
real-world applications, while the others are from the PARSEC [3]
and SPEC CPU2000 suites. We selected these applications using
the following criteria: (1) the applications must have at least one
hybrid loop that can be efficiently parallelized (i.e., there is no
frequent cross-iteration dependence in the computation part); and
(2) the hybrid loop(s) must take a significant portion of execution
time. Applying our techniques on applications that do not satisfy
these criteria would diminish our capacity to measure and evaluate
our approach. We applied DOALL parallelism to the hybrid loops



Name Source Loops Input Output? Speculation? Helper? % runtime # stmts
velveth real application 8 FCS Yes No Yes 53% 18
velvetg real application 18 FCS Yes No Yes 27% 46
spacetyrant real application 4 – Yes No No 95% 8
DelaunayRefinement lonestar 3 FLS No No Yes 23% 7
bzip2 SPEC CPU2000 1 FSB Yes No Yes 99% 13
parser SPEC CPU2000 1 FCS Yes Yes No 99% 8
blackscholes PARSEC 1 FLS No No Yes 45% 6
fluidanimate PARSEC 3 FLS Yes No Yes 36% 10

Table 6. Benchmark summary. From left to right: benchmark name, source of the benchmark, number of parallelized hybrid loops, input file
access pattern, whether output buffering is used, whether speculative parallelization is used, whether helper threading is used, percentage of
total execution time taken by the hybrid loops, number of statements added or modified for parallelization.

in seven applications except parser (speculative parallelism was
required to parallelize parser). Table 6 shows the details of the
benchmarks.

Velvet [30] is a popular genomic sequence assembler. It con-
tains two applications—velveth and velvetg. Velveth con-
structs the dataset and calculates what each input sequence rep-
resents. Velvetg manipulates the de Bruijn graph that is built
on the dataset. 18 computation loops in velveth and velvetg
have already been parallelized using OpenMP. In the experiment,
we parallelized the hybrid loops in them. All parallelized input
loops have the FCS pattern. We use output buffering to parallelize
the loops that contain output operations. We used nucleotide se-
quence SRR027005 [1] as input. SpaceTyrant [2] is an online
multi-player game server. We parallelized its backup thread which
executes the backupdata function to backup game data. The back-
updata function has 4 output loops for storing different types of
data. Output buffering was used to parallelize these loops. In the
experiments, we assume that every data block is dirty and needs
to be written to the file. DelaunayRefinement [16] is a mesh-
ing algorithm for two-dimensional quality mesh generation, orig-
inally written in JAVA; we ported it to C++. Its computation loop
has been parallelized in previous work [14]. We parallelized the
three input loops in the read function. The three loops read dif-
ferent aspects of the input graph. They all have the FLS pattern.
We applied DOALL parallelism to them by breaking the I/O de-
pendences. Bzip2 is a tool used for data compression and de-
compression. In the experiments, we parallelized its compression
loop using DOALL. There are many superfluous cross-iteration
dependences on global variables in bzip2. To remove these de-
pendences, we replicated buffers for each iteration and made many
global variables local to each iteration. Some of the local variables
are summarized into global variables after the loop. Parser is a
syntactic parser for English. We used speculative parallelism to
parallelize its batch process function which reads and parses the
sentences in the input filed. The function contains a FCS loop. We
broke the I/O dependences by calculating the starting file position
for each iteration and using output buffering. We need to speculate
on dependences for control variables which may be altered by the
special commands in the input file. Blackscholes is a compu-
tational finance application. We parallelized the input loop in the
main function. The loop is a FLS loop that contains only input
operations. Fluidanimate is designed to simulate an incompress-
ible fluid in parallel. In its original Parsec version, the number of
threads supplied by users must be a power of 2. We modified the
workload partitioning to enable an arbitrary number of threads. For
the PARSEC benchmarks used in the experiments, we use their
pthread-based parallel versions.

4.2 Performance
Figure 13 shows the absolute speedup of the parallelized applica-
tions over their sequential versions for varying number of paral-
lel threads. Figure 13(a) shows the speedup when applying our
hybrid loop parallelization techniques—we achieve 3.0x–12.8x
speedup. On average, we improve the performance of these ap-
plications by 6.6x on the 24-core machine. For some benchmarks,
the performance degrades with 24 parallel threads. This is caused
by the contention between the helper thread and parallel threads.
Fluidanimate has unstable performance across varying the num-
ber of parallel threads because its workload cannot be evenly
partitioned with certain numbers of threads. The performance of
SpaceTyrant goes down with larger number of threads. This
is caused by the dynamic memory allocation for output buffer-
ing. For comparison, Figure 13(b) shows the speedup of these
parallelized applications without hybrid loop parallelization. The
speedup of SpaceTyrant is always 1 since its backup thread can-
not be parallelized without hybrid loop parallelization. The speedup
of these applications without hybrid loop parallelization is between
2.3x–8.8x which is significantly lower than the speedups with hy-
brid loop parallelization.

Figure 14(a) shows the relative speedup of hybrid loops with
parallelization vs. without parallelization. For seven applications,
hybrid loop parallelization improves the hybrid loop performance
by factors greater than 5x. On average, hybrid loop parallelization
improves the loop performance by a factor of 7.54x. Figure 14(b)
shows the relative parallelized full application speedups with hy-
brid loop parallelization vs. without hybrid loop parallelization. On
average, hybrid loop parallelization improves the application per-
formance by 68%.

4.3 Impact of Helper Threading
Figure 15 shows the impact of I/O helper threading. On average,
I/O helper threading improves the performance of parallelized
hybrid loops by 11.9%. I/O helper threading usually provides
more benefit with larger number of threads except 24 parallel
threads where the I/O parallel thread competes with the parallel
threads for processing resources. Figure 16 shows the impact of
the buffer size of the helper thread in two applications—velveth
and DelaunayRefinement. I/O helper threading achieves higher
speedup with larger buffer sizes.

The buffer size is a critical factor that determines whether a
helper thread can efficiently load data for multiple threads. We use
the following example to show how we set the proper buffer size for
a helper thread. Figure 17 compares the computation time with the
data load time for different numbers of iterations in DelaunayRe-
finement. The trend of the curves is similar for hybrid loops in other
applications. We define tck as the computation time of k iterations
and tlk as the time of loading data for k iterations. From the figure,
tck increases much more quickly than tlk with the increase of k.
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Figure 13. Absolute parallelized application speedup over sequential programs.
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For a helper thread that loads data for p parallel threads, its buffer
for each parallel thread should be able to hold data for n iterations
where tcn > p ∗ tln since loading data should be finished before
the data in the buffer is used up. Since tck increases much more
quickly than tlk, there always exists n satisfying tcn > p ∗ tln.

4.4 Overhead
Figure 18 shows the breakdown of the hybrid loop execution time
for the parallelized applications. The time is divided into four cat-
egories: computation, I/O, speculation, and synchronization. For
5 out of 8 applications, most time is spent on the computation.
SpaceTyrant and Blackscholes spend most time on I/O opera-
tions since their hybrid loops contain very little computation. Since
most loops are parallelized using DOALL parallelism, very little

synchronization overhead was introduced. Parser has the highest
synchronization overhead since it is parallelized speculatively. I/O
operations take a higher percentage of execution time with larger
number of parallel threads due to I/O bus contention. Figure 19
shows the memory overhead incurred by hybrid loop paralleliza-
tion. For 5 out of 8 benchmarks, the memory overhead is smaller
than 10MB. Velveth and velvetg have high memory overhead
since their output, which needs to be buffered in the memory dur-
ing loop execution, is large.

5. Related Work
Parallel programming models. Many programming models have
been proposed to enable exploitation of data parallelism in sequen-
tial programs on shared memory multiprocessors. OpenMP [8] is
a widely used programming model that provides a set of com-
piler directives for parallelizing sequential programs on shared-
memory systems. Threading Building Blocks (TBB) [20] is a pro-
gramming model that provides a set of thread-safe containers and
algorithms for expressing parallelism on shared-memory systems.
Single Program Multiple Data (SPMD) is another category of pro-
gramming models and the message passing interface (MPI) [11] is
currently the de facto standard for SPMD. Partitioned global ad-
dress space (PGAS) [6, 7] is a set of parallel programming models
which aim to combine the performance advantage of MPI with the
programmability of a shared-memory model. Galois [14, 15] in-
troduces a programming model to exploit the data parallelism in
irregular applications. SpiceC [10] is a recently proposed parallel
programming model for both multicores and manycores. SpiceC
can be used to express multiple forms of parallelisms, including
DOALL, DOACROSS, pipelining and speculative parallelism. Fi-



 25

 20

 15

 10

 5

 1
 24 20 16 12 8 4 1

S
p

e
e

d
u

p

Number of parallel threads

velveth+4KB
velveth+40KB

velveth+400KB
delaunay+10KB
delaunay+50KB

delaunay+100KB
delaunay+150KB

Figure 16. Speedup by varying buffer size.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 0  200  400  600  800  1000

T
im

e
 (

c
lo

c
k
 c

y
c
le

s
)

Number of iterations

Load time
Computation time

Figure 17. Computation time vs. data load time of benchmark
DelaunayRefinement.

  0%

  20%

  40%

  60%

  80%

  100%

2
482

2
482

2
482

2
482

2
482

2
482

2
482

2
482

P
er

ce
n
ta

g
e 

o
f 

to
ta

l 
ti

m
e

ve
lv

et
h

ve
lv

et
g

sp
ac

et
yr

an
t

de
la

un
ay

bz
ip

2

pa
rs

er

bl
ac

ks
ch

ol
es

flu
id

an
im

at
e

synchronization

speculation

I/O

computation

Figure 18. Breakdown of hybrid loop execution time.

nally, software-based thread level speculation (TLS) techniques
have been proposed for automatically parallelizing sequential pro-
grams [9, 13, 26–28]. They are all based on state separation, i.e., the
results of speculative computations are stored in a separate space
from the non-speculative state space. Speculative Decoupled Soft-
ware Pipelining (Spec-DSWP) [29] is another series of TLS works.
Software multithreaded transactional memory system [19] has been
developed to optimize the performance of Spec-DSWP.

None of the above programming models and techniques pro-
vide support for efficiently parallelizing hybrid loops. They can-
not break the cross-iteration dependences caused by I/O operations.
Therefore, they cannot perform the I/O part of loops in parallel. In
addition, the TLS techniques that focus on speculative execution of
data computation do not provide any rollback mechanism for I/O
operations in case of misspeculation.
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Parallel I/O. Parallel I/O has been proposed to improve the per-
formance of multiple I/O operations at the same time. It is mostly
designed to deal with massive amounts of data on distributed sys-
tems. Research work in parallel I/O can be mainly divided into two
different groups: parallel file systems and parallel I/O libraries. Par-
allel file systems [22] usually spread data over multiple servers for
high performance. They allow shared accesses to files from multi-
ple processes. Parallel I/O libraries such as ROMIO [24] are APIs
designed to access parallel file systems. Collective I/O [25] has
been proposed to optimize non-contiguous I/O requests from mul-
tiple processes; it coordinates accesses to files by a group of pro-
cesses in which collective I/O functions are called.

Our techniques are orthogonal to parallel I/O. Parallel I/O pro-
vides lower-level programming constructs designed to improve the
I/O throughput of large-scale systems. However, when using par-
allel I/O, programmers must be highly skilled in order to express,
and make efficient use of, parallel I/O operations. We make it easy
for programmers to parallelize hybrid loops by providing a higher-
level programming model. Our compiler techniques are designed
to support our programming model and optimize the performance
of hybrid loops written in our model.

More specifically, our approach differs in two ways. First, to
parallelize a loop with operations using MPI I/O, programmers
must write code to calculate the starting and ending offset for
each thread and explicitly set the offset using the MPI I/O APIs.
Programmers also need to take care of synchronization, scheduling,
load balancing, etc. Using our programming model, programmers
just need to insert a few pragmas. Second, Parallel I/O, such as MPI
I/O, does not provide any support for speculative parallelization,
while our techniques do.

I/O support for transactional memory. Unrestricted transac-
tional memory [4] is a hardware transactional memory technique
that has been proposed to support I/O calls in transactions. Transac-
tions usually cannot contain I/O calls because these operations can-
not easily be rolled back. Unrestricted transactional memory gives
up some concurrency in exchange for gaining the ability to perform
I/O calls within transactions by allowing only a single overflowed
transaction per application.

I/O prefetching. Helper threading has been used in software-
guided prefetching to hide I/O latency [5, 23]. To minimize I/O
latency, these techniques require timely prefetching. They rely on
the profiler or operating system to insert prefetching calls. Our
helper threading technique is designed to reduce contention on the
I/O bus instead of hiding the I/O latency. Therefore, we only require



data residing in main memories (i.e., off-chip memories) instead of
caches (i.e., on-chip memories) when they are read. Since main
memories have very large capacity nowadays, we do not require
very timely prefetching. Moreover, our helper threading is specially
designed for loops with contiguous I/O accesses. Therefore, we do
not require any support from a profiler or the operating system.

6. Conclusions
In this paper, we identified the opportunity to parallelize hybrid
loops, i.e., loops with computation and I/O operations. We pre-
sented several techniques for efficiently parallelizing hybrid loops.
We proposed an easy-to-use programming model for exploiting
parallelism in hybrid loops. Parallelizing hybrid loops using our
model requires few modifications to the code. We developed a pro-
totype implementation of our programming model. The implemen-
tation was evaluated on a 24-core machine using eight applications,
from PARSEC and SPEC CPU2000 benchmark suites, and real-
world applications. The applications with hybrid loop paralleliza-
tion achieve 3.0x–12.8x speedup while in comparison 2.3x–8.8x
speedup was observed without hybrid loop parallelization.
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