
Size Oblivious Programming with InfiniMem?

Sai Charan Koduru, Rajiv Gupta, Iulian Neamtiu

Department of Computer Science and Engineering
University of California, Riverside

{scharan,gupta,neamtiu}@cs.ucr.edu

Abstract. Many recently proposed BigData processing frameworks make
programming easier, but typically expect the datasets to fit in the mem-
ory of either a single multicore machine or a cluster of multicore ma-
chines. When this assumption does not hold, these frameworks fail. We
introduce the InfiniMem framework that enables size oblivious processing
of large collections of objects that do not fit in memory by making them
disk-resident. InfiniMem is easy to program with: the user just indicates
the large collections of objects that are to be made disk-resident, while
InfiniMem transparently handles their I/O management. The InfiniMem

library can manage a very large number of objects in a uniform manner,
even though the objects have di↵erent characteristics and relationships
which, when processed, give rise to a wide range of access patterns re-
quiring di↵erent organizations of data on the disk. We demonstrate the
ease of programming and versatility of InfiniMem with 3 di↵erent prob-
abilistic analytics algorithms, 3 di↵erent graph processing size oblivious

frameworks; they require minimal e↵ort, 6–9 additional lines of code.
We show that InfiniMem can successfully generate a mesh with 7.5 mil-
lion nodes and 300 million edges (4.5 GB on disk) in 40 minutes and it
performs the PageRank computation on a 14GB graph with 134 million
vertices and 805 million edges at 14 minutes per iteration on an 8-core
machine with 8 GB RAM. Many graph generators and processing frame-
works cannot handle such large graphs. We also exploit InfiniMem on a
cluster to scale-up an object-based DSM.

1 Introduction
BigData processing frameworks are an important part of today’s data science
research and development. Much research has been devoted to scale-out per-
formance via distributed processing [8,12,13,17] and some recent research ex-
plores scale-up [1,6,11,15,16,21]. However, these scale-up solutions typically as-
sume that the input dataset fits in memory. When this assumption does not
hold, they simply fail. For example, experiments by Bu et al. [4] show that dif-
ferent open-source Big Data computing systems like Giraph [1], Spark [21], and
Mahout [19] often crash on various input graphs. Particularly, in one of the ex-
periments, a 70GB web graph dataset was partitioned across 180 machines (each
with 16 GB RAM) to perform the PageRank computation. However, all the sys-
tems crashed with java.lang.OutOfMemoryError, even though there was less

? This work was supported by NSF Grant CCF-1524852, CCF-1318103, CNS-1157377,
CCF-0963996, CCF-0905509, and a Google Research Award.

2 Sai Charan Koduru, Rajiv Gupta, Iulian Neamtiu

than 500MB of data to be processed per machine. In our experiments we also
found that GTgraph’s popular R-MAT generator [2], a tool commonly used to
generate power-law graphs, crashed immediately with a Segmentation Fault from
memory allocation failure when we tried to generate a graph with 1M vertices
and 400M edges on a machine with 8GB RAM.

Motivated by the above observations, in this paper, we develop InfiniMem,
a system that enables Size Oblivious Programming – the programmer develops
the applications without concern for the input sizes involved and InfiniMem
ensures that these applications do not run out of memory. Specifically, the In-
finiMem library provides interfaces for transparently managing a large number
of objects stored in files on disk. For e�ciency, InfiniMem implements di↵er-
ent read and write policies to handle objects that have di↵erent characteristics
(fixed size vs. variable size) and require di↵erent handling strategies (sequential
vs. random access I/O). We demonstrate the ease of programming with Infin-
iMem by programming BigData analysis applications like frequency estimation,
exact membership query, and Bloom filters. We further demonstrate the ver-
satility of InfiniMem by developing size oblivious graph processing frameworks
with three di↵erent graph data representations: vertex data and edges in a single
data structure; decoupled vertex data and edges; and the shard representation
used by GraphChi [11]. One advantage of InfiniMem is that it allows researchers
and programmers to easily experiment with di↵erent data representations with
minimal additional programming e↵ort. We evaluate various graph applications
with three di↵erent representations. For example, a quick and simple shard im-
plementation of PageRank with InfiniMem performs within ⇠30% of GraphChi.

The remainder of the paper is organized as follows: Section 2 motivates the
problem and presents the requirements expected from a size oblivious program-
ming system. Section 3 introduces the programming interface for size oblivious
programming. Section 4 describes the object representation used by InfiniMem
in detail. Section 5 describes the experimental setup and results of our evaluation.
Related work and conclusions are presented in Sections 6 and 7, respectively.

2 Size Oblivious Programming
The need to program processing of very large data sets is fairly common today.
Typically a processing task involves representing the data set as a large collec-
tion of objects and then performing analysis on them. When this large collection
of objects does not fit in memory, the programmer must spend considerable ef-
fort on writing code to make use of disk storage to manage the large number
of objects. In this work we free the programmer from this burden by develop-
ing a system that allows the programmer to write size oblivious programs, i.e.,
programs where the user need not explicitly deal with the complexity of using
disk storage to manage large collections of objects that cannot be held in avail-
able memory. To enable the successful execution of size oblivious programs, we
propose a general-purpose programming interface along with an I/O e�cient
representation of objects on disk. We now introduce a few motivating applica-
tions and identify requirements to achieve I/O e�ciency for our size oblivious
programming system.

Size Oblivious Programming with InfiniMem 3

Motivating applications: Consider an application that is reading continuously
streaming input into a Hash Table in heap memory (lines 1–3, Algorithm 1); a
website analytics data stream is an excellent example of this scenario. When the
memory gets full, the insert on line 3 could fail, resulting in an application
failure. Similarly, consider the GTGraph [2] graph generator which fails to gen-
erate a graph with 1M edges and 400M vertices. Consider a common approach
to graph generation which assumes that the entire graph can be held in memory
during generation, as illustrated by lines 8–15 in Algorithm 1. First, memory for
NUM-VERTICES is allocated (line 8) and then the undirected edges are generated
(lines 11-13). Note that the program can crash as early as line 8 when memory
allocation fails due to a large number of vertices. Finally, consider the problem
of graph processing, using SSSP as a proxy for a large class of graph process-
ing applications. Typically, such applications have three phases: (1) input, (2)
compute, and (3) output. The pseudocode for SSSP is outlined in lines 16–31 in
Algorithm 1, highlighting these three phases. Note that if the input graph does
not fit in memory, this program will not even begin execution.

Algorithm 1: Motivating applications: Membership Query, Mesh Gener-
ation and Graph Processing.

1 HashTable ht;

2 while read(value) do

3 ht.insert(value);

4 while more items do

5 if ht.find(item) then

6 print(“Item found”);

7 —————————————————
8 Mesh m(NUM-VERTICES)

9 foreach node n in Mesh m do

10 i rand(0, MAX);
11 for j=0; j < i; j++ do

12 n.addNeighbor(m[j]);
13 m[j].addNeighbor(n);

14 foreach Node n in Mesh m do

15 Write(n)

16 Graph g;
17 while not end of input file do

18 read next;
19 g.Add(↵(next));

20 repeat

21 termCondition true;
22 forall the Vertices v in g do

23 for int i=0; i<v.nbrs(); i++ do

24 Vertex n = v.neighbors[i];
25 if v.dst>n.dst+v.wt[i] then

26 v.dst (n.dst+v.wt[i]);

27 if NOT converged then

28 termCondition false;

29 until termCondition is true;

30 foreach Node n in Graph g do

31 Write(n);

Our solution: We focus on supporting size oblivious programming for C++
programs via the InfiniMem C++ library and runtime. Examples in Algorithm
1 indicate that the data structures that can grow very large are represented as
collections of objects. Size Oblivious Programming with InfiniMem simply re-
quires programmers to identify potentially large collections of objects using very
simple abstractions provided by the library and these collections are transpar-
ently made disk-resident and can be e�ciently and concurrent accessed. We now
analyze these representative applications to tease out the requirements for size
oblivious programming that have influenced the architecture of InfiniMem.

Let us reconsider the pseudocode in Algorithm 1, mindful of the requirement
of e�cient I/O. Lines 5–6 will execute for every key in the input; similarly, lines
9 and 14 indicate that lines 10–13 and line 15 will be executed for every node in
the mesh. Similarly, line 22 indicates that lines 23–26 will be performed on every

4 Sai Charan Koduru, Rajiv Gupta, Iulian Neamtiu

vertex in the graph. It is natural to read a contiguous block of data so that no
additional I/O is required for lines 24–26 for the vertices and is an e�cient disk
I/O property. Moreover, this would be useful for any application in general, by
way of decreasing I/O requests and batching as much I/O as possible. Therefore,
we have our first requirement:

Support for e�cient block-based IO.

Consider next, the example of the hash table where the input data is not
sorted; then, line 3 of Algorithm 1 motivates need for random access for indexing
into the hash table. As another example, observe that line 24 in Algorithm 1
fetches every neighbor of the current vertex. When part of this graph is disk-
resident, we need a way of e�ciently fetching the neighbors, much like random
access in memory. This is important because any vertex in a graph serves two
roles: (1) vertex and (2) neighbor. For the role (1), if vertices are contiguously
stored on disk block-based I/O can be used. However, when the vertex is accessed
as a neighbor, the neighbor could be stored anywhere on disk, and thus requires
an imitation of random access on the disk. Hence our next requirement is:

Support for e�cient, random access to data on disk.

To make the case for our final requirement, consider a typical definition of the
HashTable shown in Figure 1a. Each key can store multiple values to support
chaining. Clearly, each HashTableEntry is a variable sized entity, as it can hold
multiple values by chaining. As another example, consider the definition for a
Vertex shown in Figure 1b: the size of neighbors array can vary; and with the
exception of the neighborsmember, the size of a Vertex can be viewed as a fixed-
size object. When reading/writing data from/to the disk, one can devise very
fast block-based I/O for fixed-size data (Section 4). However, reading variable-
sized data requires remembering the size of the data and performing n reads of
appropriate sizes; this is particularly wasteful in terms of disk I/O bandwidth
utilization. For example, if the average number of neighbors is 10, every time
a distance value is needed, we will incur a 10x overhead in read but useless
data. As a final example, Figure 1c is an example of an arbitrary container that
showcases the need for both fixed and variable sized data. Hence we arrive at
our final requirement from InfiniMem:

Support to speed up I/O for variable-sized data.

template <typename K, typename V>
struct HashTableEntry {

K key;
V* values; /* for chaining */

};

(a) Hash Table

struct Vertex {
int distance;
int* weights; /*Edge weights*/
Vertex* neighbors; /*Array*/

};

(b) Graph Vertex

template<typename T>
struct Container{

T stackObjects[96]; /* Fixed */
T *heapObjects; /* Variable */

};

(c) Arbitrary container

Fig. 1: Common data structure declarations to motivate the need for explicit
support for fixed and variable sized data, block based and random IO.

Size Oblivious Programming with InfiniMem 5

The goal of InfiniMem is to transparently support disk-resident versions of
object collections so that they can grow to large sizes without causing programs
to crash. InfiniMem’s design allows size oblivious programming with little e↵ort
as the programmer merely identifies the presence and processing of potentially
large object collections via InfiniMem’s simple programming interface. The de-
tails of how InfiniMem manages I/O (i.e., uses block-based I/O, random access
I/O, and I/O for fixed and variable sized data) during processing of a disk-
resident data structure are hidden from the programmer.

3 The InfiniMem Programming Interface

InfiniMem is a C++ template library that allows programmers to identify size
oblivious versions of fixed- and variable-sized data collections and enables trans-
parent, e�cient processing of these collections. We now describe InfiniMem’s
simple application programming interface (API) that powers size oblivious pro-
gramming. InfiniMem provides a high-level API with a default processing strat-
egy that hides I/O details from the programmer; however the programmer has
the flexibility to use the low-level API to implement any customized processing.

template<typename T>
struct Container: public Box<T> { // or Bag<T>

T data;
void update() { /* for each T */

...
}

void process();
};

typedef Container<int> intData;

typedef Container<MyObject> objData;

int main() {
Infinimem<intData> idata;
idata.read("/input/file");
idata.process();

Infinimem<objData> odata;
odata.read("/input/data/");
odata.process();

}

template<typename T>
T Box::fetch(ID);

template<typename T>
T* Box::fetchBatch(ID, count);

template<typename T>
void Box::store(ID, const T*);

template<typename T>
void Box::storeBatch(ID, count);

template<typename T>
T Bag::fetch(ID);

template<typename T>
T* Bag::fetchBatch(ID, count);

template<typename T>
void Bag::store(ID, const T*);

template<typename T>
void Bag::storeBatch(ID, count);

Fig. 2: Programming with InfiniMem: the Box and Bag interfaces are used for
fixed size and variable sized objects; process drives the computation using the
user-defined update() methods and the low-level fetch() and store() API.

Identifying Large Collection of Objects: In InfiniMem, the programmer
identifies object collections that potentially grow large and need to be made disk-
resident. In addition, the programmer classifies them as fixed or variable sized.
This is achieved by using the Box and Bag abstractions respectively. The Box
abstraction can be used to hold fixed-size data, while the Bag holds flexible-sized
data. Figure 2 illustrates an example and lists the interface. The programmer
uses the Box or Bag interface by simply inheriting from the Box (or Bag) type and
provides an implementation for the update() method to process each object in
the container. Here, Container is the collection that can potentially grow large,

6 Sai Charan Koduru, Rajiv Gupta, Iulian Neamtiu

as identified by the programmer. Infinimem is the default processing engine;
InfiniMem’s process() function hides the details of I/O and fetches objects as
needed by the update() method, thereby enabling size oblivious programming.

Processing Data: The process() method is the execution engine: it imple-
ments the low-level details of e�ciently fetching objects from the disk, applies the
user-defined update() method and e�ciently spills the updated objects to disk.
Figure 3 details the default process(). By default, the process()-ing engine
fetches, processes and store-es data in batches of size BATCH_SIZE which is
automatically determined from available free memory such that the entire batch
fits and can be processed in memory.

// SZ = SIZEOF_INPUT; BSZ = BATCH_SIZE;
Box<T>::process() { // or Bag<T>
for(i=0; i<SZ; i+=BSZ) {
// fetch a portion of Box<T> or Bag<T>
cache = fetchBatch(ID(i), BSZ);
for(j=0; j<BSZ; j++)

cache[j].update();
}

}

Fig. 3: InfiniMem’s generic batch process()-ing.

While InfiniMem pro-
vides the default implemen-
tation for process() shown
in Figure 3, this method
can be overridden: pro-
grammers can use the acces-
sors and mutators exposed
by InfiniMem (Figure 2) to
write their own processing
frameworks. Notice that In-
finiMem natively supports both sequential/block-based and random accessors
and mutators, satisfying each of the requirements formulated earlier. For block-
based and random access, InfiniMem provides the following intuitively named
fetch and store APIs: fetch(), fetchBatch(), store() and storeBatch().

Illustration of InfiniMem for graph processing: We next demonstrate
InfiniMem’s versatility and ease of use by programming graph applications using
three di↵erent graph representations. We start with the standard declaration of
a Vertex as seen in Figure 1b. An alternate definition of Vertex separates the
fixed sized data from variable sized edgelist for IO e�ciency, and used in many
vertex centric frameworks [12,11]. Finally, we program GraphChi’s [11] shards.

Figure 4a declares the Graph to be a Bag of vertices, using the declaration
from Figure 1b. With this declaration, the programmer has identified that the
collection of vertices is the potentially large collection that can benefit from size
oblivious programming. The preprocess() phase partitions the input graph
into disjoint intervals of vertices to allow for parallel processing. These examples
use a vertex-centric graph processing approach where the update() method of
Vertex defines the algorithm to process each vertex in the graph. The process()
method of Graph uses the accessors and mutators from Figure 2 to provide a
size oblivious programming experience to the programmer. Figure 4b declares
a Graph as the composition of a Box of Vertex and a Bag of EdgeLists, where
EdgeList is an implicitly defined list of neighbors. Finally, Figure 4c uses a
similar graph declaration, with the simple tweak of creating an array of N shard
partitions; a shard imposes additional constraints on the vertices that are in the
shard: vertices are partitioned into intervals such that all vertices with neighbors
in a given vertex interval are all available in the same shard [11], enabling fewer

Size Oblivious Programming with InfiniMem 7

random accesses by having all vertices’ neighbors available before processing
each shard. Note that representing shards in InfiniMem is very simple.

void Vertex::update() {
foreach(neighbor n)

distance = f(n.distance);
}

template <typename V>
class Graph {

Bag<V> vertices;

public:
void process();

};

int main() {
Graph<Vertex> g;
g.read("/path/to/graph");
g.preprocess(); //Partition
g.process();

}

(a) Graph for Vertex in Fig-
ure 1b.

void Vertex::update() {
foreach(neighbor n)

distance = f(n.distance);
}

template <typnam V,typnam E>
class Graph {

Box<V> vertices;
Bag<E> edgeLists;

public:
void process();

};

int main() {
Graph<Vertex, EdgeList> g;
g.read("/path/to/graph");
g.preprocess(); //Partition
g.process();

}

(b) Decoupling Vertices
from Edgelists.

void Vertex::update() {
foreach(neighbor n)

distance = f(n.distance);
}

template <typename V,typename E>
class Graph {

Box<V> vertexShard[N];
Bag<E> edgeShard[N];

public:
void processShard(int);

};

int main() {
Graph<Vertex, EdgeList> g;
g.read("/path/to/graph");
g.createShards(N);//Preprocess
for(int i=0; i<N; i++)

g.processShard(i);
}

(c) Using Shard representa-
tion of graphs.

Fig. 4: Variations of graph programming, showcasing the ease and versatility of
programming with InfiniMem, using its high-level API.

// SZ = SIZEOF_INPUT;
// BSZ = BATCH_SIZE;
// vb = vertices;

Graph<V>::process() {
for(i=0; i<SZ; i+=BSZ) {
// fetch a batch
vb=fetchBatch(ID(i), BSZ);

for(j=0; j<BSZ; j++)
vb[j].update();

storeBatch(vb, BSZ);
}

}

(a) process()-ing graph
in Figure 1b.

// SZ = SIZEOF_INPUT;
// BSZ = BATCH_SIZE;
// v = vertices;
// e = edgeLists;

Graph<V, E>::process() {
for(i=0; i<SZ; i+=BSZ) {
// fetch a batch
vb=v.fetchBatch(ID(i), BSZ);

// fetch corr. edgelist
eb=e.fetchBatch(ID(i), BSZ);

for(j=0; j<BSZ; j++)
vb[j].update(eb[j]);

storeBatch(vb, BSZ);
}

}

(b) process() for decou-
pled Vertex.

// NS = NUM_SHARDS;
// SS = SIZEOF_SHARD;
// vs = vertexShard;

Graph<V, E>::process() {
for(i=0; i<NS; i++) {
// fetch entire memory shard
mshrd = vs[i].fetchBatch(..,SS);

// fetch sliding shards
for(j=0; j<NS; j++)
sshrd += vs[j].fetchBatch(.,.);

sg = buildSubGraph(mshrd,sshrd);

foreach(v in sg)
v.update();

storeBatch(mshrd, SS);
}

}

(c) Custom process() for
shards.

Fig. 5: Default and custom overrides for process() via low-level InfiniMem API.

Figure 5a illustrates the default process(): objects in the Box or Bag are
read in batches and processed one at a time. For graphs with vertices decoupled
from edgelists, vertices and edgelists are read in batches and processed one vertex
at a time (Figure 5b); batches are concurrently processed. Figure 5c illustrates

8 Sai Charan Koduru, Rajiv Gupta, Iulian Neamtiu

custom shard processing: each memory shard and corresponding sliding shards
build the subgraph in memory; then each vertex in the subgraph is processed [11].

4 InfiniMem ’s I/O E�cient Object Representation
We now discuss the I/O e�cient representation provided by InfiniMem. Specifi-
cally, we propose an Implicitly Indexed representation for fixed-sized data (Box);
and an Explicitly Indexed representation for variable-sized data (Bag).

!"

!"#$%&

!"#$%&

!
"
"

0xFA

+

sizeof(object) * ID
n

!"#$%&'()'%#*+('"*,%

0xFA

!#$%&'&(%)*&+,-.-,

!"#$%&

!"#$%&

!
"
"

/.$%&'&(%)*&+,-.-,

'(()$&

012&13%-*

4&5-,*637-'(4

8&.-,

4&5-,*637-'(4

Box<T> Bag<S>

Fig. 6: Indexed disk representation of fixed- and
variable-sized objects.

As the number of
objects grows beyond
what can be accommo-
dated in main memory,
the frequency of object
I/O to/from disk stor-
age will increase. This
warrants an organiza-
tion of the disk stor-
age that reduces I/O
latency. To allow an
object to be addressed
regardless of where it
resides, it is assigned
a unique numeric ID
from a stream of non-negative, monotonically increasing integers. Figure
6 shows the access mechanism for objects using their IDs: fixed-sized
data is stored at a location determined by its ID and its fixed size:
FILE_START + (sizeof(Object)*ID). For variable-sized data, we use ametafile
whose fixed-sized address entries store the o↵set of the variable-sized data into
the datafile. The Vertex declared in Figure 4a for example, would only use the
explicitly indexed Bag notation to store data, while the representations in Figure
4b and Figure 4c use both the Box and Bag for the fixed size Vertex and the vari-
able sized EdgeList respectively. Thus, fixed-sized data can be fetched/stored
in a single logical disk seek and variable-sized data in two logical seeks. This en-
sures fetch and store times are nearly constant with InfiniMem and independent
of the number of objects in the file (like random memory access), and enabling:

– E�cient access for Fixed-Sized objects: Using the object ID to index into
the datafile, InfiniMem gives fast access to fixed-sized objects in 1 logical seek.
– E�cient access for Variable-Sized objects: The metafile enables fast,
random-access access to objects in the datafile, in at most 2 logical seeks.
– Random Access Disk I/O: The indexing mechanism provides an imitation
of random access to both fixed and variable sized objects on disk.
– Sequential/Batch Disk I/O: To read n consecutive objects, we seek to the
start of the first object. We then read sizeof(obj)*n bytes and up to the end of
the last object in the sequence for fixed- and variable-sized objects, respectively.
– Concurrent I/O: For parallel processing, di↵erent objects in the datafile
must be concurrently and safely accessed. Given the large number of objects, in-
dividual locks for each object would be impractical. Instead, InfiniMem provides

Size Oblivious Programming with InfiniMem 9

locks for groups of objects: to decrease lock conflicts, we group non-contiguous
objects using modulo ID modulo a MAX_CONCURRENCY parameter set at 25.

5 Evaluation
We now evaluate the programmability and performance of InfiniMem. This eval-
uation is based upon three class of applications: probabilistic web analytics,
graph/mesh generation, and graph processing. We also study the scalability of
size oblivious applications written using InfiniMem with degree of parallelism
and input sizes. We programmed size oblivious versions of several applications
using InfiniMem and are listed in Table 1. We begin with data analytics bench-
marks: frequency counting using arrays, membership query using hash tables, and
probabilistic membership query using Bloom filters. Then, in addition to mesh
generation, in this evaluation, we use a variety of graph processing algorithms
from diverse domains like graph mining, machine learning, etc. The Connected
Components (CC) algorithm finds nodes in a graph that are connected to each
other by at least one path, with applications in graph theory. Graph Coloring
(GC) assigns a color to a vertex such that it is distinct from those of all its
neighboring vertices with applications in register allocation etc. In a web graph,
PageRank (PR) [14] iteratively ranks a page based on the ranks of pages with in-
bound links to the page and is used to rank web search results. NumPaths (NP)
counts the number of paths between a source and other vertices. From a source
node in a graph, Single Source Shortest Path (SSSP) finds the shortest path to
all other nodes in the graph with applications in logistics and transportation.

5.1 Programmability

Application Additional LoC Application Additional LoC

Probabilistic Web Analytics Graph Processing
Freq. Counting 2 + 3 + 3 = 8 Graph Coloring

1 + 3 + 2 = 6
Member Query 2 + 3 + 3 = 8 PageRank
Bloom Filter 2 + 4 + 3 = 9 SSSP

Graph/Mesh Generation Num Paths
Mesh Generation 2 + 2 + 2 = 6 Conn. Components

Table 1: Between 6 and 9 additional lines of code are needed to make these
applications size oblivious. Graph processing uses decoupled version (Figure 4b).

Writing size oblivious programs with InfiniMem is simple. The programmer
needs to only: (a) initialize the InfiniMem library, (b) identify the large collec-
tions and Box or Bag them as necessary, and (c) use the default process()-ing
engine or provide a custom engine. Table 1 quantifies the ease of programming
with InfiniMem by listing the number of additional lines of code for these tasks
to make the program size oblivious using the default processing engine. At most
9 lines of code are needed in this case and InfiniMem does all the heavy lifting
with about 700 lines for the I/O subsystem, and about 900 lines for the run-
time, all of which hides the complexity of making data structures disk-resident
from the user. Even programming the shard processing framework was rela-
tively easy: about 100 lines for simplistic shard generation and another 200 lines
for rest of the processing including loading memory and corresponding sliding
shards, building the subgraph in memory and processing the subgraph; rest of
the complexity of handling the I/O etc., are handled by InfiniMem.

10 Sai Charan Koduru, Rajiv Gupta, Iulian Neamtiu

5.2 Performance

Input Graph |V | |E| Size

Pokec 1,632,804 61,245,128 497M
Live Journal 4,847,571 68,993,773 1.2G
Orkut-2007 3,072,627 223,534,301 3.2G
Delicious-UI 33,778,221 151,772,443 4.2G
RMAT-536-67 67,108,864 536,870,912 8.8G
RMAT-805-134 134,217,728 805,306,368 14G

Table 2: Inputs used in this evaluation.

We now present the run-
time performance of applica-
tions programmed with In-
finiMem. We evaluated In-
finiMem on a Dell Inspiron
machine with 8 cores and
8GB RAM with a commod-
ity 500GB, 7200RPM SATA
3.0 Hitachi HUA722050CLA330
hard drive. For consistency, the disk cache is fully flushed before each run.

Size Oblivious Graph Processing: We begin with the evaluation of graph
processing applications using input graph datasets with varying number of ver-
tices and edges, listed in Table 2. Orkut, Pokec, and LiveJournal graphs are
directed graphs representing friend relationships. Vertices in the Amazon graph
represent products, while edges represent purchases. The largest input in this
evaluation is rmat-805-134 at 14GB on disk, 805M edges and 134M vertices.

 3%

 4%

 5%

 6%

 7%

PR CC NP GC SSSP

%
 o

f
D

e
co

u
p

le
d

 o
ve

r
C

o
u

p
le

d IO Time
Total Time

 0%

 1%

 2%

Fig. 7: Percentage(%) of IO and execu-
tion time for decoupled over coupled
representations for various applications
on the ‘Delicious-UI’ input.

We first discuss the benefits of de-
coupling edges from vertices. When
vertex data and edgelists are in the
same data structure, line 22 in Algo-
rithm 1 requires fetching the edgelists
for the vertices even though they are
not used in this phase of the compu-
tation. Decoupling the edgelists from
vertex data has the benefit of avoiding
wasteful I/O as seen in Table 3. The
very large decrease in running time
is due to the extremely wasteful I/O
that reads the variable sized edgelists
along with the vertex data even though only the vertex data is needed.

Figure 7 shows the I/O breakdowns for various benchmarks on the moder-
ately sized Delicious-UI input. While the programming e↵ort with InfiniMem is
already minimal, switching between representations for the same program can
be easier too: with as little as a single change to data structure definition (figures
4a-4b), the programmer can evaluate di↵erent representations.

Tables 4 and 5 show the frequencies and percentage of total execution time
spent in various I/O operations for processing the decoupled graph representation
with InfiniMem, as illustrated in Figure 4b. Observe that the number of batched
vertex reads and writes is the same in Table 4 since both vertices and edgelists are
read together in batches. There are no individual vertex writes since InfiniMem
only writes vertices in batches. Moreover, the number of batched vertex writes
is less than the reads since we write only updated vertices and as the algorithm
converges, in some batches, there are no updates. Observe in Table 5 that as
described earlier, the maximum time is spent in random vertex reads.

Size Oblivious Programming with InfiniMem 11

Input Graph
PageRank Conn Comp Numpaths Graph Coloring SSSP

Co DeCo Co DeCo Co DeCo Co DeCo Co DeCo

Pokec 2,228 172 352 60 37 8 277 28 48 7
Live Journal 8,975 409 1,316 122 106 14 602 58 133 70
Orkut 3,323 81 3,750 277 459 11 3,046 140 660 154
Delicious-UI 32,743 1,484 15,404 904 1,112 67 9,524 365 1,453 65
rmat-536-67 23,588 3,233 12,118 2,545 1,499 861 5,783 1,167 1,853 584
rmat-805-134 25,698 3,391 >8h 3,380 3,069 1,482 11,332 2,071 >8h 2,882

Table 3: Decoupling vertices and edgelists avoids wasteful I/O (runntime time
shown is in seconds). ‘Co’ and ‘DeCo’ refer to coupled and decoupled respectively.
I/O Operation LiveJournal Orkut Delicious-UI rmat-536-67 rmat-805-134

Vertex Batched Reads 7,891 421 40,578 12,481 24,052
Edge Batched Reads 7,891 421 40,578 12,481 24,052
Vertex Individual Reads 865e+6 188e+6 2.8e+9 1.8e+9 2.5e+9
Vertex Batched Writes 7,883 413 40,570 12,473 24,044

Table 4: Frequencies of operations for various inputs for PageRank.
I/O Operation LiveJournal Orkut Delicious-UI rmat-536-67 rmat-805-134

Vertex Batched Reads 0.05% 0.02% 0.31% 0.12% 0.13%
Edge Batched Reads 8.48% 2.75% 11.25% 7.75% 9.72%
Vertex Individual Reads 54.80% 71.59% 76.96% 86.47% 81.73%
Vertex Batched Writes 0.12% 0.03% 0.37% 0.04% 0.10%
Total IO 63.45% 74.39% 88.89% 94.38% 91.68%

Table 5: Percentage of time for I/O operations for various inputs for PageRank.

Sharding with InfiniMem: In the rest of this discussion, we always use the
decoupled versions of Vertex and EdgeLists. We now compare various versions
of graph processing using InfiniMem. Table 6 compares the performance of the
two simple graph processing frameworks we built on top of InfiniMem with that
of GraphChi-provided implementations in their 8 thread configuration. Infin-
iShard refers to the shard processing framework based on InfiniMem. In general,
the slowdown observed with InfiniMem is due to the large number of random
reads generated, which is O(|E|). For PageRank with Orkut, however, we see
speedup for the following reason: as the iterations progress, the set of changed
vertices becomes considerably small: ⇠50. So, the number of random reads gen-
erated also goes down considerably, speeding up PageRank on the Orkut input.
With Connected Components, our InfiniMem runs slower primarily because the
GraphChi converges in less than half as many iterations on most inputs. Table
6 also presents the data for PageRank that processes shards with our InfiniMem
library as compared to the very fine-tuned GraphChi library. The speedup ob-
served in Table 6 from InfiniMem to InfiniShard is from eliminating random
reads enabled by the shard format. Notice that even with our quick, unopti-
mized ⇠350 line implementation of sharding, the average slowdown we see is
only 18.7% for PageRank and 22.7% for Connected Components compared to
the highly tuned and hand-optimized GraphChi implementation. Therefore, we
have shown that InfiniMem can be used to easily and quickly provide a size
oblivious programming experience along with I/O e�ciency for quickly evaluat-
ing various representations of the same data.

12 Sai Charan Koduru, Rajiv Gupta, Iulian Neamtiu

Input Graph
PageRank Time (sec) Conn. Comp. Time (sec)

InfiniMem InfiniShard

GraphChi
InfiniMem InfiniShard

GraphChi
(speedup) (speedup) (speedup) (speedup)

Pokec 172 (0.72) 121 (1.02) 124 60 (0.40) 26 (0.92) 24
LiveJournal 409 (0.90) 488 (0.76) 371 122 (0.49) 80 (0.75) 60
Orkut 81 (1.91) 190 (0.82) 156 277 (0.44) 142 (0.87) 123
Delicious-UI 1,484 (0.43) 730 (0.89) 652 904 (0.17) 191 (0.78) 149
rmat-536-67 3,233 (0.36) 1,637 (0.70) 1,146 2,545 (0.21) 746 (0.71) 529
rmat-805-134 3,391 (0.44) 2,162 (0.69) 1,492 3,380 (0.30) 1,662 (0.61) 1,016

Table 6: InfiniMem (decoupled) vs. InfiniShard ; Speedups over GraphChi.

Size-Oblivious Programming of Probabilistic Apps: Here, we present the
throughput numbers for the probabilistic applications in Table 7. We evaluated
these applications by generating uniformly random numeric input. Frequency
counting is evaluated by counting frequencies of random inserts while member-
ship query and Bloom filter are evaluated using uniformly generated random
queries on the previously generated uniformly random input. Jenkins hashes are
used in Bloom filter. Bloom filter achieves about half the throughput of Fre-
quency Counting since Bloom filter generates twice as many writes.

Application Throughput (qps)

Frequency Counting 635,031
Membership Query 446,536
Bloom Filter 369,726

Table 7: QPS for the probabilistic apps.

We also experimented with query-
ing. We searched for entries using
the Orkut input file (3.2GB on disk)
as an input file. Using a naive, se-
quential scan and search took 67
seconds. Using InfiniMem with 1
thread took 15 seconds, while using 4 threads took 5 seconds for the same naive
implementation. The highly optimized GNU Regular Expressions utility took an
average of 4.5 seconds for the same search. This shows that in addition to ease of
programming, InfiniMem performs well even with very simple implementations.

5.3 Scalability

Next, we present data to show that InfiniMem scales with increasing parallelism.
Figure 8a shows the total running times for various applications on the 14GB
rmat-805-134 input: for most applications InfiniMem scales well up to 8 threads.

However, given that the performance of applications is determined by the
data representation and the number of random accesses that result in disk I/O,
we want to study how well InfiniMem scales with increasing input size. To objec-
tively study the scalability with increasing number of edges with fixed vertices
and controlling for variations in distribution of vertex degrees and other input
graph characteristics, we perform a controlled experiment where we resort to
synthetic inputs with 4M vertices and 40M, 80M, 120M, 160M and 200M edges.
Figure 8c shows the time for each of the for these inputs. We see that with in-
creasing parallelism, InfiniMem scales well for increasing number of edges in the
graph. This shows that InfiniMem e↵ectively manages the limited memory re-
source by orchestrating seamless o✏oading to disk as required by the application.
The performance on real-world graphs is determined by specific characteristics
of the graph like distribution of degrees of the vertices etc. But for a graph of a
specified size, Figure 8c can be viewed as a practical upper bound.

Size Oblivious Programming with InfiniMem 13

Figure 8b illustrates the scalability achievable with programming with In-
finiMem with parallelism for the Frequency counting, Exact membership query
and Probabilistic membership query using Bloom filters. Notice that these appli-
cations scale well with increasing number of threads as well as increasing input
sizes. The execution time for Bloom filter is significantly larger since Bloom fil-
ter generates more random writes, depending on the number of hash functions
utilized by the filter; our implementation uses two independent hashes.

 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 10000
 11000

1 2 4 6 8 10

T
o

ta
l T

im
e

 (
se

c)

Number of Threads

PageRank
Numpaths

Graph Coloring
SSSP

Conn. Comp.

(a) Scalability with parallelism for
RMAT-805-134 (14GB)

 0

 500

 1000

 1500

 2000

 2500

1 2 4 6 8

T
o

ta
l T

im
e

 (
se

c)
Number of Threads

Frequency
Bloom filter

Membership

(b) Scalability with parallelism for Prob-
abilistic Applications

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

 40 60 80 100 120 140 160 180 200

T
o

ta
l T

im
e

 (
se

c)

Number of Edges

SSSP
Conn. Comp.

Numpaths
PageRank

Graph Color

(c) Scalability with |E|; 8 threads.

 0

 500

 1000

 1500

 2000

 2500

0 1e+08 2e+08 3e+08

T
im

e
 (

se
c)

Number of edges

5M vertices

7.5M vertices

(d) Mesh gen: 7.5M|V |, 300M|E|.
Fig. 8: Scalability of InfiniMem with parallelism and input size.

Figure 8d illustrates that very large graph generation is feasible with Infin-
iMem by showing the generation of a Mesh with 7.5M vertices and 300M edges
which takes about 40 minutes (2400 seconds). We observe that up to 5M ver-
tices and 200M edges, the time for generation increases nearly linearly with the
number of edges generated after which the generation begins to slow down. This
slowdown is not due to the inherent complexity of generating larger graphs: the
number of type of disk operations needed to add edges is independent of the size
of the graph – edge addition entails adding the vertex as the neighbor’s neighbor
and accessing the desired data in InfiniMem requires a maximum of 2 logical
seeks. The reason for the observed slowdown is as follows: modifications of vari-
able sized data structures in InfiniMem are appended to the datafile on disk; this
data file, therefore, grows very large over time and the disk caching mechanisms
begin to get less e↵ective. Compare this with the fact that GTGraph crashed
immediately for a graph with just 1M vertices and 400M edges.

5.4 Integration with Distributed Shared Memory (DSM)
Next we demonstrate the applicability of Size Oblivious Programming in the
context of Distributed Shared Memory. While clusters are easy to scale out,

14 Sai Charan Koduru, Rajiv Gupta, Iulian Neamtiu

multi-tenant environments can restrict memory available to user processes or
certain inputs may not fit in the distributed memory. In either case, it would be
beneficial to have the programs run successfully without rewrites. We applied

 0

 5

 10

 15

 20

PR CC GC CD SP

%
 R

o
c
k
s
D

B
 o

v
e
r

In
fi
n
im

e
m

Fig. 9: Extra overhead of RocksDB over
InfiniMem in our DSM.

the InfiniMem framework to seam-
lessly make our object based DSM [9]
size oblivious. When the data allo-
cated to the node does not fit in
available memory, the DSM system
spills data to local disk and fetches
it back to local memory as demanded
by the application. When running
distributed software speculation with
75% of the input in memory and the
rest spilt to disk, InfiniMem has much
lower overhead as compared to an al-
ternative solution based upon RocksDB [7]: Figure 9 shows that RocksDB based
programs run up to ⇠20.5% slower than using InfiniMem. Compared to when all
the data fits in memory, InfiniMem introduces a small overhead of 5% over our
baseline DSM, i.e. at this small cost, InfiniMem makes our DSM size oblivious.
6 Related Work
The closest file organization to that used by InfiniMem and illustrated in Figure
6 is the B+ tree representation used in database systems. The primary di↵erences
in our design are the following: (1) InfiniMem uses a flat organization, with at
most one level index for variable sized data. (2) InfiniMem provides O(1) time
I/O operations for random access while the B+ trees require O(log n) time.
Out-of-core Computations– In this paper, we enable applications with very
large input data sets to e�ciently run on a single multicore machine, with mini-
mal programming e↵ort. The design of the InfiniMem transparently enables large
datasets become disk-resident while common out-of-core algorithms [5,10,20] ex-
plicitly do this. As demonstrated with shards, it should be easy to program these
techniques with InfiniMem.
Processing on a Single Machine– Traditional approaches to large-scale data
processing on a single machine involve using machines with very large amounts
of memory, while InfiniMem does not have that limitation. Examples include
Ligra [16], Galois [15], BGL [18], MTGL [3], Spark [21] etc. FlashGraph [6] is a
semi-external memory graph processing framework and requires enough memory
to hold all the edgelists; InfiniMem has no such memory requirements.

GraphChi [11] recently proposed the Parallel Sliding Window model based
on sharded inputs. Shard format enables a complete subgraph to be loaded in
memory, thus avoiding random accesses. GraphChi is designed for and works
very well with algorithms that depend on static scheduling. InfiniMem is general-
purpose and recognizes the need for sequential/batched and random input for
fixed and variable sized data and provides simple APIs for rapid prototyping.
7 Conclusion
We have presented the InfiniMem system for enabling size oblivious program-
ming. The techniques developed in this paper are incorporated in the versatile

Size Oblivious Programming with InfiniMem 15

general purpose InfiniMem library. In addition to various general purpose pro-
grams, we also built two more graph processing frameworks on top of InfiniMem:
(1) with a simple data format and (2) to process GraphChi-style shards. We have
shown that InfiniMem performance scales well with parallelism, increasing in-
put size and highlight the necessity of concurrent I/O design in a parallel set up.
Our experiments show that InfiniMem can successfully generate a graph with
7.5 million vertices and 300 million edges (4.5 GB on disk) in 40 minutes and
it performs the PageRank computation on an RMAT graph with 134M vertices
and 805M edges (14GB on disk) an 8-core machine in about 54 minutes.

References
1. Avery, C.: Giraph: large-scale graph processing infrastruction on hadoop. Proceed-

ings of Hadoop Summit. Santa Clara, USA:[sn] (2011)
2. Bader, D.A., Madduri, K.: Gtgraph: A synthetic graph generator suite. Atlanta,

GA, February (2006)
3. Berry, J., Mackey, G.: The multithreaded graph library (2014)
4. Bu, Y., Borkar, V., Xu, G., Carey, M.J.: A bloat-aware design for big data appli-

cations. In: Proc. of ISMM 2013. pp. 119–130. ACM (2013)
5. Chiang, Y.J., Goodrich, M.T., Grove, E.F., Tamassia, R., Vengro↵, D.E., Vitter,

J.S.: External-memory graph algorithms. In: Proc. of SODA ‘95. pp. 139–149
6. Da Zheng, D.M., Burns, R., Vogelstein, J., Priebe, C.E., Szalay, A.S.: Flashgraph:

processing billion-node graphs on an array of commodity ssds
7. Facebook: RocksDB Project, RocksDB.org
8. Gonzalez, J.E., Low, Y., Gu, H., Bickson, D., Guestrin, C.: Powergraph: Dis-

tributed graph-parallel computation on natural graphs. In: OSDI ‘12. pp. 17–30
9. Koduru, S-C., Vora, K., Gupta, R.: Optimizing Caching DSM for Distributed Soft-

ware Speculation. In: Proc. Cluster 2015.
10. Kundeti, V.K., et al.: E�cient parallel and out of core algorithms for constructing

large bi-directed de bruijn graphs. BMC bioinformatics 11(1), 560 (2010)
11. Kyrola, A., Blelloch, G., Guestrin, C.: Graphchi: Large-scale graph computation

on just a pc. In: Proc. of the 10th USENIX Symposium on OSDI. pp. 31–46 (2012)
12. Low, Y., Gonzalez, J., Kyrola, A., Bickson, D., Guestrin, C., Hellerstein, J.M.:

Graphlab: A new framework for parallel machine learning. arXiv:1006.4990 (2010)
13. Malewicz, G., et al.: Pregel: a system for large-scale graph processing. In: Proc. of

the 2010 ACM SIGMOD ICMD. pp. 135–146. ACM (2010)
14. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking:

Bringing order to the web. (1999)
15. Pingali, K., Nguyen, D., Kulkarni, M., Burtscher, M., Hassaan, M.A., Kaleem,

R., Lee, T.H., Lenharth, A., Manevich, R., Méndez-Lojo, M., et al.: The tao of
parallelism in algorithms. In: ACM SIGPLAN Notices. vol. 46, pp. 12–25 (2011)

16. Shun, J., Blelloch, G.E.: Ligra: a lightweight graph processing framework for shared
memory. In: Proc. PPoPP 2013. pp. 135–146. ACM (2013)

17. Shvachko, K., Kuang, H., Radia, S., Chansler, R.: The hadoop distributed file
system. In: IEEE MSST, 2010. pp. 1–10 (2010)

18. Siek, J., Lee, L., Lumsdaine, A.: The boost graph library (bgl) (2000)
19. Team, T., et al.: Apache mahout project (2014), https://mahout.apace.org
20. Toledo, S.: A survey of out-of-core algorithms in numerical linear algebra. External

Memory Algorithms and Visualization 50, 161–179 (1999)
21. Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: cluster

computing with working sets. In: Proc. HotCloud 2010. pp. 10–10 (2010)

RocksDB.org
https://mahout.apace.org

	session1_1
	Size Oblivious Programming with InfiniMem

	session1_2
	session1_3
	Efficient Support for Range Queries and Range Updates Using Contention Adapting Search Trees

	session2_1
	session2_2
	Topology-Aware Parallelism for NUMA Copying Collectors

	session2_3
	An Embedded DSL for High Performance Declarative Communication with Correctness Guarantees in C++

	session3_1
	Polyhedral Optimizations for a Data-Flow Graph Language

	session3_2
	session3_3
	session3_4
	session4_1
	session4_2
	session4_3
	Petal Tool for Analyzing and Transforming Legacy MPI Applications

	session5_1
	Practical Floating-point Divergence Detection

	session5_2
	 SMT Solving for the Theory of Ordering Constraints
	Introduction
	Motivation
	Preliminaries
	The Decision Procedure for Ordering Constraints
	Integrating DPOC into DPLL(T)
	The DPLL(T) Framework
	Theory-level Lemma Learning

	Experimental Evaluation
	Related Work
	Conclusion

	session5_3
	session6_1
	PNNU: Parallel Nearest-Neighbor Units for Learned Dictionaries

	session6_2
	session6_3

