
A
l

P
D

a

A
R
R
A
A

K
B
B
M
E

1

b
t
2
t
o
2
t
v
t
a

i
B
p
c
g

(

0
h

The Journal of Systems and Software 85 (2012) 2275– 2292

Contents lists available at SciVerse ScienceDirect

The Journal of Systems and Software

jo u rn al hom epage: www.elsev ier .com/ locate / j ss

utomated, highly-accurate, bug assignment using machine
earning and tossing graphs

amela Bhattacharya ∗, Iulian Neamtiu, Christian R. Shelton
epartment of Computer Science and Engineering, University of California, Riverside, CA 92521, USA

 r t i c l e i n f o

rticle history:
eceived 30 November 2010
eceived in revised form 23 March 2012
ccepted 23 April 2012
vailable online 8 May 2012

eywords:
ug assignment
ug tossing
achine learning

a b s t r a c t

Empirical studies indicate that automating the bug assignment process has the potential to significantly
reduce software evolution effort and costs. Prior work has used machine learning techniques to automate
bug assignment but has employed a narrow band of tools which can be ineffective in large, long-lived soft-
ware projects. To redress this situation, in this paper we employ a comprehensive set of machine learning
tools and a probabilistic graph-based model (bug tossing graphs) that lead to highly-accurate predictions,
and lay the foundation for the next generation of machine learning-based bug assignment. Our work is
the first to examine the impact of multiple machine learning dimensions (classifiers, attributes, and train-
ing history) along with bug tossing graphs on prediction accuracy in bug assignment. We validate our
approach on Mozilla and Eclipse, covering 856,259 bug reports and 21 cumulative years of development.
mpirical studies We demonstrate that our techniques can achieve up to 86.09% prediction accuracy in bug assignment
and significantly reduce tossing path lengths. We show that for our data sets the Naïve Bayes classifier
coupled with product–component features, tossing graphs and incremental learning performs best. Next,
we perform an ablative analysis by unilaterally varying classifiers, features, and learning model to show
their relative importance of on bug assignment accuracy. Finally, we propose optimization techniques
that achieve high prediction accuracy while reducing training and prediction time.

to fix it. These numbers indicate that the lack of effective, automatic
. Introduction

Software evolution has high associated costs and effort. A survey
y the National Institute of Standards and Technology estimated
hat the annual cost of software bugs is about $59.5 billion (NIST,
002). Some software maintenance studies indicate that main-
enance costs are at least 50%, and sometimes more than 90%,
f the total costs associated with a software product (Koskinen,
003; Seacord et al., 2003), while other estimates place main-
enance costs at several times the cost of the initial software
ersion (Sommerville, 2004). These surveys suggest that making
he bug fixing process more efficient would reduce evolution effort
nd lower software production costs.

Most software projects use bug trackers to organize the bug fix-
ng process and facilitate application maintenance. For instance,
ugzilla (2010) is a popular bug tracker used by many large

rojects, such as Mozilla, Eclipse, KDE, and Gnome. These appli-
ations receive hundreds of bug reports a day; ideally, each bug
ets assigned to a developer who can fix it in the least amount of

∗ Corresponding author.
E-mail addresses: pamelab@cs.ucr.edu (P. Bhattacharya), neamtiu@cs.ucr.edu

I. Neamtiu), cshelton@cs.ucr.edu (C.R. Shelton).

164-1212/$ – see front matter © 2012 Elsevier Inc. All rights reserved.
ttp://dx.doi.org/10.1016/j.jss.2012.04.053
© 2012 Elsevier Inc. All rights reserved.

time. This process of assigning bugs, known as bug assignment,1

is complicated by several factors: if done manually, assignment
is labor-intensive, time-consuming and fault-prone; moreover, for
open source projects, it is difficult to keep track of active develop-
ers and their expertise. Identifying the right developer for fixing a
new bug is further aggravated by growth, e.g., as projects add more
components, modules, developers and testers (Increase, 2009), the
number of bug reports submitted daily increases, and manually
recommending developers based on their expertise becomes dif-
ficult. An empirical study by Jeong et al. (2009) reports that, on
average, the Eclipse project takes about 40 days to assign a bug to
the first developer, and then it takes an additional 100 days or more
to reassign the bug to the second developer. Similarly, in the Mozilla
project, on average, it takes 180 days for the first assignment and
then an additional 250 days if the first assigned developer is unable
assignment and toss reduction techniques results in considerably
high effort associated with bug resolution.

1 In the software maintenance literature, “bug triaging” is used as a broader term
referring to bug assignment, bug validation, marking duplicate bugs, etc. In this
paper, by bug triaging we mean bug assignment only, i.e., given a bug report that
has been validated as a real bug, find the right developer whom the bug can be
assigned to for resolution.

dx.doi.org/10.1016/j.jss.2012.04.053
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
mailto:pamelab@cs.ucr.edu
mailto:neamtiu@cs.ucr.edu
mailto:cshelton@cs.ucr.edu
dx.doi.org/10.1016/j.jss.2012.04.053

2276 P. Bhattacharya et al. / The Journal of Systems and Software 85 (2012) 2275– 2292

F ent: b
c

s
a
a
p
t
b
b
o

e
s
a
t
e
n
t

d
a
E
t
p
p
e
w
a
i
a
v
S
t
o
t
m
o
r
a

m

bug tossing graphs from bug tossing histories. While classifiers and
ig. 1. Overview our approach to ablative analysis for automating bug assignm
orresponding sections where the attributes and their importance are discussed.

Effective and automatic bug assignment can be divided into two
ub-goals: (1) assigning a bug for the first time to a developer,
nd (2) reassigning it to another promising developer if the first
ssignee is unable to resolve it, then repeating this reassignment
rocess (bug tossing) until the bug is fixed. Our findings indicate
hat at least 93% of all “fixed” bugs in both Mozilla and Eclipse have
een tossed at least once (tossing path length ≥1). Ideally, for any
ug triage event, the bug should be resolved in a minimum number
f tosses.

In this paper, we explore the use of machine learning toward
ffective and automatic bug assignment along three dimen-
ions: the choice of classification algorithms, the software process
ttributes that are instrumental to constructing accurate predic-
ion models, and the efficiency–precision trade-off. Our thorough
xploration along these dimensions have lead us to develop tech-
iques that achieve high levels of bug assignment accuracy and bug
ossing reduction.

Similar to prior work, we test our approach on the fixed bug
ata sets for Mozilla and Eclipse. Our techniques achieve a bug
ssignment prediction accuracy of up to 85% for Mozilla and 86% for
clipse. We also find that using our approach reduces the length of
ossing paths by up to 86% for correct predictions and improves the
rediction accuracy by up to 10.78 percentage points compared to
revious approaches. We demonstrate that on average, the high-
st prediction accuracy is achieved using a Naïve Bayes classifier,
ith products/components as attributes, with bug triaging graphs,

nd with incremental learning (aka intra-fold updates) as shown
n Fig. 1. We then follow a standard machine learning ablative
nalysis2: we take our best case (top of the figure) and unilaterally
ary the underlying attributes to show their relative importance in
ection 5—the corresponding subsections are shown on the bot-
om of the figure. The primary goal of our work is to find the
ptimal set of machine learning techniques (classifiers, features,
ossing graphs and incremental learning) to improve bug assign-

ent accuracy in large projects and we show this optimal set for

ur data sets, Mozilla and Eclipse. The optimal set of techniques we
eport can change with changes in data sets for the same project or
cross other projects, or with changes in the underlying supervised

2 Ablative analysis is a methodology to quantify the effects of each attribute in a
ulti-attribute model.
est case (boxed vertical text), attributes varied (unboxed vertical text), and the

learning algorithm and we address these issues as potential threats
to validity of our approach in Section 6.

We now proceed to presenting the three main contributions of
this work.

Wide range of classification algorithms. Machine learning is used
for recommendation purposes in various areas such as climate
prediction, stock market analysis, or prediction of gene interac-
tion in bioinformatics (Witten and Frank, 2005). Machine learning
techniques, in particular classifiers,3 have also been employed
earlier for automating bug assignment. These automatic bug assign-
ment approaches (Anvik et al., 2006; Cubranic and Murphy, 2004;
Bettenburg et al., 2008; Canfora and Cerulo, 2006) use the history
of bug reports and developers who fixed them to train a classifier.
Later, when keywords from new bug reports are given as an input
to the classifier, it recommends a set of developers who have fixed
similar classes of bugs in the past and are hence considered poten-
tial bug-fixers for the new bug. Prior work that has used machine
learning techniques for prediction or recommendation purposes
has found that prediction accuracy depends on the choice of clas-
sifier, i.e., a certain classifier outperforms other classifiers for a
specific kind of a problem (Witten and Frank, 2005). Previous stud-
ies (Jeong et al., 2009; Anvik et al., 2006; Cubranic and Murphy,
2004; Bettenburg et al., 2008) only used a subset of text classifiers
and did not aim at analyzing which is the best classifier for this
problem. Our work is the first to examine the impact of multiple
machine learning dimensions (classifiers, attributes, and training
history) on prediction accuracy in bug assignment and tossing. In
particular, this is the first study in the area of bug assignment to
consider, and compare the performance of, a broad range of clas-
sifiers along with tossing graphs: Naïve Bayes Classifier, Bayesian
Networks, C4.5 and Support Vector Machines.

Effective tossing graphs. Jeong et al. (2009) have introduced
tossing graphs for studying the process of tossing, i.e., bug reas-
signment; they proposed automating bug assignment by building
tossing graphs are effective in improving the prediction accuracy
for assignment and reducing tossing path lengths, their accuracy

3 A classifier is a machine learning algorithm that can be trained using input
attributes (also called feature vectors) and desired output classes; after training,
when presented with a set of input attributes, the classifier predicts the most likely
output class.

ystem

i
d
w
h
s
t
d
t
c
p
a
t
o
w
s
g
s
a
i
e
c
a

2
c
c
e
e
i
u
f
t
n
r
p
p
o
j
c
u
t
a
r

w
t
o
W
w

2

2

o
m
m
o
a
t
t
2
a
a

P. Bhattacharya et al. / The Journal of S

s threatened by several issues: outdated training sets, inactive
evelopers, and imprecise, single-attribute tossing graphs. Prior
ork (Jeong et al., 2009) has trained a classifier with fixed bug
istories; for each new bug report, the classifier recommends a
et of potential developers, and for each potential developer, a
ossing graph – whose edges contain tossing probabilities among
evelopers – is used to predict possible re-assignees. However, the
ossing probability alone is insufficient for recommending the most
ompetent active developer (see Section 4.6.3 for an example). In
articular, in open source projects it is difficult to keep track of
ctive developers and their expertise. To address this, in addition
o tossing probabilities, we label tossing graph edges with devel-
per expertise and tossing graph nodes with developer activity,
hich help reduce tossing path lengths significantly. We demon-

trate the importance of using these additional attributes in tossing
raphs by performing a fine-grained per-attribute ablative analy-
is which reveals how much each attribute affects the prediction
ccuracy. We found that each attribute is instrumental for achiev-
ng high prediction accuracy, and overall they make pruning more
fficient and improve prediction accuracy by up to 22% points when
ompared to prediction accuracy obtained in the absence of the
ttributes.

Accurate yet efficient classification. Anvik’s dissertation (Anvik,
007) has demonstrated that choosing a subset of training data
an reduce the computation time during the classification pro-
ess, while achieving similar prediction accuracies to using the
ntire data set; three methods—random, strict and tolerant, were
mployed for choosing a subset of training data set as we explain
n Section 2. In our work, in addition to classification, we also
se a probabilistic ranking function based on bug tossing graphs
or developer recommendation. Since bug tossing graphs are
ime-sensitive, i.e., tossing probabilities change with time, the tech-
iques used by Anvik are not applicable in our case (where bug
eports were not sorted by time for selection). Therefore, in this
aper, we propose to shorten the time-consuming classification
rocess by selecting the most recent history for identifying devel-
per expertise. As elaborated in Section 5.7 we found that by using
ust one third of all bug reports we could achieve prediction accura-
ies similar to the best results of our original experiments where we
sed the complete bug history. Therefore, our third contribution in
his paper is showing how, by using a subset of bug reports, we can
chieve accurate yet efficient bug classification that significantly
educes the computational effort associated with training.

Our paper is structured as follows. In Section 2 we discuss prior
ork and how it relates to our approach. In Section 3 we define

erms and techniques used in bug assignment. In Section 4 we elab-
rate on our contributions, techniques and implementation details.
e present our experimental setup and results in Section 5. Finally,
e discuss threats to validity of our study in Section 6.

. Related work

.1. Machine learning and information retrieval techniques

Cubranic and Murphy (2004) were the first to propose the idea
f using text classification methods (similar to methods used in
achine learning) to semi-automate the process of bug assign-
ent. They used keywords extracted from the title and description

f the bug report, as well as developer ID’s as attributes, and trained
 Naïve Bayes classifier. When presented with new bug reports,
he classifier suggests one or more potential developers for fixing

he bug. Their method used bug reports for Eclipse from January 1,
002 to September 1, 2002 for training, and reported a prediction
ccuracy of up to 30%. While we use classification as a part of our
pproach, in addition, we employ incremental learning and tossing
s and Software 85 (2012) 2275– 2292 2277

graphs to reach higher accuracy. Moreover, our data sets are much
larger, covering the entire lifespan of both Mozilla (from May 1998
to March 2010) and Eclipse (from October 2001 to March 2010).

Anvik et al. (2006) improved the machine learning approach
proposed by Cubranic et al. by using filters when collecting train-
ing data: (1) filtering out bug reports labeled “invalid,” “wontfix,”
or “worksforme,” (2) removing developers who no longer work
on the project or do not contribute significantly, and (3) filtering
developers who fixed less than 9 bugs. They used three classifiers,
SVM, Naïve Bayes and C4.5. They observed that SVM (Support Vec-
tor Machines) performs better than the other two classifiers and
reported prediction accuracy of up to 64%. Our ranking function
(as described in Section 4) obviates the need to filter bugs. Similar
to Anvik et al., we found that filtering bugs which are not “fixed”
but “verified” or “resolved” leads to higher accuracy. They report
that their initial investigation in incremental learning did not have
a favorable outcome, whereas incremental learning helps in our
approach; in Section 5 we explain the discrepancy between their
findings and ours.

Anvik’s dissertation (Anvik, 2007) presented seminal work
in building recommendation systems for automating the bug
assignment process using machine learning algorithms. His work
differentiated between two kinds of triage decisions: (1) repository-
oriented decisions (determining whether a bug report is meaningful,
such as if the report is a duplicate or is not reproducible), and
(2) development-oriented decisions (finding out whether the prod-
uct/component of a bug report determines the developer the
report is assigned to). They used a wide range of machine learn-
ing algorithms (supervised classification: Naïve Bayes, SVM, C4.5,
Conjunctive Rules, and Nearest Neighbor and unsupervised classi-
fication: Expectation Maximization) for evaluating the proposed
model and suggested how a subset of the bug reports chosen
randomly or user-selected threshold could be used for classifier
training. Similar to Anvik, we show how using four supervised
classifiers (Naïve Bayes, Bayesian Networks, SVM, and C4.5) and
a subset of training data can be used to improve bug assignment
accuracy. In addition to classification, we also use a ranking func-
tion based on bug tossing graphs for developer recommendation
and perform an ablative analysis to determine the significance of
the attributes in the ranking function; Anvik’s dissertation nei-
ther employ bug tossing graphs nor performs any ablative analysis.
Anvik proposed three types of subset training data selection: ran-
dom (100 bug reports where chosen in each iteration until desired
prediction accuracy was achieved), strict (number of bug reports
for each developer where determined depending on his lifetime
contribution) and tolerant (number of bug reports were chosen
randomly and was proportional to a developer’s contribution); in
contrast, we used a chronologically-backtracking method to find
out the subset of bug reports that can be used to efficiently pre-
dict bug triagers instead of random selection. For evaluating their
framework, they used bug reports from 5 projects: Firefox, Eclipse,
gcc, Mylyn, Bugzilla. Their prediction accuracy is as follows: 75% for
Firefox (by using 6356 bug reports for training and 152 bug reports
for validation) and 70% for Eclipse (by using 3338 bug reports for
training and 64 bug reports for validation). Our work differs sig-
nificantly from theirs in two ways: first, we use a different data
set for our training and validation and we use all Mozilla prod-
ucts instead of Firefox alone, and second, we propose incremental
machine learning based and probabilistic graph-based approach for
bug assignment. By using all products in Mozilla and Eclipse, we can
prune developer expertise further by our ranking function which
leads to higher prediction accuracy.
Canfora and Cerulo used probabilistic text similarity (Canfora
and Cerulo, 2006) and indexing developers/modules changed due
to bug fixes (Canfora and Cerulo, 2005) to automate bug assign-
ment. When using information retrieval based bug assignment,

2 System

t
s
r

c
m
v

m
b
a
t
6
o
fi

s
o
a
s

v
m
b
w
t
d

2

a
i
m
s
h
u
i
a
m
t
p

2

g
T
r
u
a
n
i
d
y
i

3

c

3

d

278 P. Bhattacharya et al. / The Journal of

hey report up to 50% Top 1 recall accuracy and when indexing
ource file changes with developers they achieve 30–50% Top 1
ecall for KDE and 10–20% Top 1 recall for Mozilla.

Podgurski et al. (2003) also used machine learning techniques to
lassify bug reports but their study was not targeted at bug assign-
ent; rather, their study focused on classifying and prioritizing

arious kinds of software faults.
Lin et al. (2009) conducted machine learning-based bug assign-

ent on a proprietary project, SoftPM. Their experiments were
ased on 2576 bug reports. They report 77.64% average prediction
ccuracy when considering module ID (the module a bug belongs
o) as an attribute for training the classifier; the accuracy drops to
3% when module ID is not used. Their finding is similar to our
bservation that using product–component information for classi-
er training improves prediction accuracy.

Lucca et al. (2002) used information retrieval approaches to clas-
ify maintenance requests via classifiers. However, the end goal
f their approach is bug classification, not bug assignment. They
chieved up to 84% classification accuracy by using both split-
ample and cross-sample validation techniques.

Matter et al. (2009) model a developer’s expertise using the
ocabulary found in the developer’s source code. They recom-
end potential developers by extracting information from new

ug reports and looking it up in the vocabulary. Their approach
as tested on 130,769 Eclipse bug reports and reported predic-

ion accuracies of 33.6% for top 1 developers and 71% for top 10
evelopers.

.2. Incremental learning

Bettenburg et al. (2008) demonstrate that duplicate bug reports
re useful in increasing the prediction accuracy of classifiers by
ncluding them in the training set for the classifier along with the

aster reports of those duplicate bugs. They use folding to con-
tantly increase the training data set during classification, and show
ow this incremental approach achieves prediction accuracies of
p to 56%; they do not need tossing graphs, because reducing toss-

ng path lengths is not one of their goals. We use the same general
pproach for the classification part, though we improve it by using
ore attributes in the training data set; in addition, we evaluate

he accuracy of multiple text classifiers; and we achieve higher
rediction accuracies.

.3. Tossing graphs

Jeong et al. (2009) introduced the idea of using bug tossing
raphs to predict a set of suitable developers for fixing a bug.
hey used classifiers and tossing graphs (Markov-model based) to
ecommend potential developers. We use fine-grained, intra-fold
pdates and extra attributes for classification; our tossing graphs
re similar to theirs, but we use additional attributes on edges and
odes as explained in Section 4. The set of attributes we use help

mprove prediction accuracy and further reduce tossing lengths, as
escribed in Sections 5.2 and 5.3. We also perform an ablative anal-
sis to demonstrate the importance of using additional attributes
n tossing graphs and tossee ranking.

. Preliminaries

We first define several machine learning and bug assignment
oncepts that form the basis of our approach.
.1. Machine learning for bug categorization

Classification is a supervised machine learning technique for
eriving a general trend from a training data set. The training data
s and Software 85 (2012) 2275– 2292

set (TDS) consists of pairs of input objects (called feature vectors),
and their respective target outputs. The task of the supervised
learner (or classifier) is to predict the output given a set of input
objects, after being trained with the TDS. Feature vectors for which
the desired outputs are already known form the validation data set
(VDS) that can be used to test the accuracy of the classifier. A bug
report contains a description of the bug and a list of developers
that were associated with a specific bug, which makes text classifi-
cation applicable to bug assignment. Machine learning techniques
were used by previous bug assignment works (Anvik et al., 2006;
Cubranic and Murphy, 2004; Bettenburg et al., 2008): archived bug
reports form feature vectors, and the developers who fixed the bugs
are the outputs of the classifier. Therefore, when a new bug report
is provided to the classifier, it predicts potential developers who
can fix the bug based on their bug fixing history.

Feature vectors. The accuracy of a classifier is highly dependent
on the feature vectors in the TDS. Bug titles and summaries have
been used earlier to extract the keywords that form feature vectors.
These keywords are extracted such that they represent a specific
class of bugs. For example, if a bug report contains words like “icon,”
“image,” or “display,” it can be inferred that the bug is related to
application layout, and is assigned to the “layout” class of bugs.
We used multiple text classification techniques (tf-idf, stem-
ming, stop-word and non-alphabetic word removal; Manning et al.,
2008) to extract relevant keywords from the actual bug report;
these relevant keywords constitute a subset of the attributes used
to train the classifier.

3.1.1. Text classification algorithms
We now briefly describe each classifier we used.
Naïve Bayes Classifier. Naïve Bayes is a probabilistic technique

that uses Bayes’ rule of conditional probability to determine the
probability that an instance belongs to a certain class. Bayes’ rule
states that “the probability of a class conditioned on an observa-
tion is proportional to the prior probability of the class times the
probability of the observation conditioned on the class” and can be
denoted as follows:

P(class|observation) = P(observation|class) × P(class)
P(observation)

(1)

For example, if the word concurrency occurs more frequently in
the reports resolved by developer A than in the reports resolved by
developer B, the classifier would predict A as a potential fixer for
a new bug report containing the word concurrency. “Naïve Bayes”
is so called because it makes the strong assumption that features
are independent of each other, given the label (the developer who
resolved the bug). Even though this assumption does not always
hold, Naïve Bayes-based recommendation or prediction performs
well in practice (Domingos and Pazzani, 1996).

Bayesian Networks. A Bayesian Network (Koller and Friedman,
2009) is a probabilistic model that is used to represent a set of
random variables and their conditional dependencies by using a
directed acyclic graph (DAG). Each node in the DAG denotes a vari-
able, and each edge corresponds to a potential direct dependence
relationship between a pair of variables. Each node is associated
with a conditional probability table (CPT) which gives the proba-
bility that the corresponding variable takes on a particular value
given the values of its parents.

C4.5. The C4.5 algorithm (Quinlan, 1993) builds a decision tree
based on the attributes of the instances in the training set. A predic-
tion is made by following the appropriate path through the decision
tree based on the attribute values of the new instance. C4.5 builds

the tree recursively in a greedy fashion. Each interior node of the
tree is selected to maximize the information gain of the decision
at that node as estimated by the training data. The information
gain is a measure of the predictability of the target class (developer

P. Bhattacharya et al. / The Journal of Systems and Software 85 (2012) 2275– 2292 2279

Training

Testing

Fold 2 Fold 3Split

Training

Training

Run 10

Run 2

Fixed bug reports

Testing

Fold 1

Run 1

Fold 10

Testing

sorted chronologically

Fold 11

w
p
n
a

B
a
e
a
s
i
r
f
B
a
t

3

2
s
h
f
o
v
F
T
o
1
t
a
f
F
r
l
o
t
i
t
b
l
t
T

d

d

Table 1
Tossing paths and probabilities as used by Jeong et al.

Tossing paths

A → B → C → D
A → E → D → C
A → B → E → D
C → E → A → D
B → E → D → F

Developer who
tossed the bug

Total tosses Developers who fixed the bug

C D F

Pr # Pr # Pr

A 4 1 0.25 3 0.75 0 0
B 3 0 0 2 0.67 1 0.33
C 2 – – 2 1.00 0 0
Fig. 2. Folding techniques for classification as used by Bettenburg et al.

ho will resolve the bug report) from the decisions made along the
ath from the root to this node in the tree. The sub-trees end in leaf
odes at which no further useful distinctions can be made and thus

 particular class is chosen.
Support Vector Machines. An SVM (Support Vector Machine;

oser et al., 1992) is a supervised classification algorithm that finds
 decision surface that maximally separates the classes of inter-
st. That is, the closest points to the surface on each side are as far
s possible from the decision surface. It employs kernels to repre-
ent non-linear mappings of the original input vectors. This allows
t to build highly non-linear decision surfaces without an explicit
epresentation of the non-linear mappings. Four kinds of kernel
unctions are commonly used: Linear, Polynomial, Gaussian Radial
asis Function (RBF) and Sigmoid. In our study we use Polynomial
nd RBF functions as they have been found to be most effective in
ext classification.

.2. Folding

Early bug assignment approaches (Jeong et al., 2009; Anvik et al.,
006; Cubranic and Murphy, 2004) divided the data set into two
ubsets: 80% for TDS and 20% for VDS. Bettenburg et al. (2008)
ave used folding (similar to split-sample validation techniques

rom machine learning (Witten and Frank, 2005)) in the context
f detecting duplicate bug reports. In a folding-based training and
alidation approach, also known as cross-validation, (illustrated in
ig. 2), the algorithm first collects all bug reports to be used for
DS, 4 sorts them in chronological order (based on the fixed date
f the bug) and then divides them into n folds. In the first run, fold

 is used to train the classifier and then to predict the VDS. 5 In
he second run, fold 2 bug reports are added to TDS. In general,
fter validating the VDS from fold n, that VDS is added to the TDS
or validating fold n + 1. To reduce experimental bias (Witten and
rank, 2005), similar to Bettenburg et al., we chose n = 11 and car-
ied out 10 iterations of the validation process using incremental
earning. Note that incremental learning is not a contribution of
ur work; incremental learning is a standard technique to improve
he prediction accuracy in any supervised or unsupervised learn-
ng algorithms in machine learning (Kohavi, 1995). Rather, we show
hat, similar to other software maintenance problems like duplicate
ug detection (Bettenburg et al., 2008), fine-grained incremental
earning is important for improving bug assignment accuracy, i.e.,
o have the classifier trained with most recent data (or bug reports).
herefore, we only use folding to compare our work with prior

4 Training Data Set (TDS) used to train the classifier; see Section 3.1 for more
etails.
5 Validation Data Set (VDS) used to validate the classifier; see Section 3.1 for more

etails.
D 2 1 0.50 – – 1 0.50
E 4 1 0.25 2 0.50 1 0.25

studies in automatic bug assignment where split-sample validation
was used; though our best result was achieved using fine-grained
incremental learning.

3.3. Goal-oriented tossing graphs

When a bug is assigned to a developer for the first time and she
is unable to fix it, the bug is assigned (tossed) to another developer.
Thus a bug is tossed from one developer to another until a developer
is eventually able to fix it. Based on these tossing paths, goal-
oriented tossing graphs were proposed by Jeong et al. (2009); for
the rest of the paper, by “tossing graph” we refer to a goal-oriented
tossing graph. Tossing graphs are weighted directed graphs such
that each node represents a developer, and each directed edge from
D1 to D2 represents the fact that a bug assigned to developer D1
was tossed and eventually fixed by developer D2. The weight of an
edge between two developers is the probability of a toss between
them, based on bug tossing history. We denote a tossing event from
developer D to Dj as D ↪→ Dj. The tossing probability (also known as
the transaction probability) from developer D to Dj is defined by the
following equation where k is the total number of developers who
fixed bugs that were tossed from D:

Pr(D ↪→ Dj) = #(D ↪→ Dj)
∑k

i=1#(D ↪→ Di)
(2)

In this equation, the numerator is the number m of tosses from
developer D to Dj such that Dj fixed the bug, while the denomina-
tor is the total number of tosses from D to any other developer Di
such that Di fixed the bug. Note that if k = 0 for any developer D,
it denotes that D has no outgoing edge in the bug tossing graph.
To illustrate this, in Table 1 we provide sample tossing paths and
show how toss probabilities are computed. For example, developer
A has tossed four bugs in all, three that were fixed by D and one
that was fixed by C, hence Pr(A ↪→ D) = 0.75, Pr(A ↪→ C) = 0.25, and
Pr(A ↪→ F) = 0. Note that developers who did not toss any bug (e.g.,
F) do not appear in the first column, and developers who did not
fix any bugs (e.g., A) do not have a probability column. In Fig. 3,
we show the final tossing graph built using the computed tossing
probabilities. It is common in open source projects that when a bug
in a module is first reported, the developers associated with that
module are included in the list of assignees by default. The purpose
of our automatic bug assignment approach is, given a bug report, to

predict developers who could be potential fixers and email them,
so that human intervention is reduced as much as possible.

Prediction accuracy. If the first developer in our prediction list
matches the actual developer who fixed the bug, we have a hit for

2280 P. Bhattacharya et al. / The Journal of System

F
0.33

0.5

0.5

1

0.75

D

C

B

A

E

0.25

0.5
0.25

0.25

0.67

t
p
h
1
i
f
6

4

4

l
fi

4

p
t
k
s
a
a
t
b
e
s
t
b
b
g
t
i
c
a
a
p

4

t
C
w
(
a
f

Fig. 3. Tossing graph built using tossing paths in Table 1.

he Top 1 developer count. Similarly, if the second developer in our
rediction list matches the actual developer who fixed the bug, we
ave a hit for the Top 2 developer count. For example, if there are
00 bugs in the VDS and for 20 of those bugs the actual developer

s the first developer in our prediction list, the prediction accuracy
or Top 1 is 20%; similarly, if the actual developer is in our Top 2 for
0 bugs, the Top 2 prediction accuracy is 60%.

. Methodology

.1. Choosing effective classifiers and features

In this section we discuss appropriate selection of machine
earning algorithms and feature vectors for improving the classi-
cation process.

.1.1. Choosing the right classifier
Various approaches that use machine learning techniques for

rediction or recommendation purposes have found that predic-
ion accuracy depends on the choice of classifier, i.e., for a specific
ind of a problem, a certain classifier outperforms other clas-
ifiers (Witten and Frank, 2005). Previous bug classification and
ssignment studies (Jeong et al., 2009; Anvik et al., 2006; Cubranic
nd Murphy, 2004; Bettenburg et al., 2008) only used a subset of
ext classifiers and did not aim at analyzing which classifier works
est for bug assignment. Our work is the first study to consider an
xtensive set of classifiers which are commonly used for text clas-
ification: Naïve Bayes Classifier, Bayesian Networks, C4.5 and two
ypes of SVM classifiers (Polynomial and RBF). We found that for
ug assignment it is not possible to select one classifier which is
etter than the rest, either for a specific project or for any project in
eneral. Since classifier performance is also heavily dependent on
he quality of bug reports, in general we could not propose choos-
ng a specific classifier a priori for a given project. Interestingly,
omputationally-intensive classification algorithms such as C4.5
nd SVM do not consistently outperform simpler algorithms such
s Naïve Bayes and Bayesian Networks. We provide details of our
rediction accuracy using each classifier in Section 5.2.

.1.2. Feature selection
Classifier performance is heavily dependent on feature selec-

ion (Witten and Frank, 2005). Prior work (Anvik et al., 2006;
ubranic and Murphy, 2004; Bettenburg et al., 2008) has used key-

ords from the bug report and developer name or ID as features

attributes) for the training data sets; we also include the product
nd component the bug belongs to. For extracting relevant words
rom bug reports, we employ tf-idf, stemming, stop-word and
s and Software 85 (2012) 2275– 2292

non-alphabetic word removal (Manning et al., 2008). We use the
Weka toolkit (Weka Toolkit, 2010) to remove stop words and form
the word vectors for the dictionary (via the StringtoWordVector
class with tf-idf enabled).

4.2. Incremental learning

Prior work (Jeong et al., 2009; Bettenburg et al., 2008) has used
inter-fold updates, i.e., the classifier and tossing graphs are updated
after each fold validation, as shown in Fig. 4(a). With inter-fold
updates, after validating the VDS from fold n, the VDS is added
to the TDS for validating fold n + 1. However, consider the exam-
ple when the TDS contains bugs 1–100 and the VDS contains bugs
101–200. When validating bug 101, the classifier and tossing graph
are trained based on bugs 1–100, but from bug 102 onwards, the
classifier and tossing graph are not up-to-date any more because
they do not incorporate the information from bug 101. As a result,
when the validation sets contain thousands of bugs, this incom-
pleteness affects prediction accuracy. Therefore, to achieve high
accuracy, it is essential that the classifier and tossing graphs be
updated with the latest bug fix; we use a fine-grained, intra-fold
updating technique (i.e., incremental learning) for this purpose.

We now proceed to describing intra-fold updating. After the first
bug in the validation fold has been used for prediction and accuracy
has been measured, we add it to the TDS and re-train the classifier
as shown in Fig. 11(b). We also update the tossing graphs by adding
the tossing path of the just-validated bug. This guarantees that for
each bug in the validation fold, the classifier and the tossing graphs
incorporate information about all preceding bugs.

4.3. Multi-featured tossing graphs

Tossing graphs are built using tossing probabilities derived by
analyzing bug tossing histories, as explained in Section 3.3. Jeong
et al. (2009) determined potential tossees as follows: if developer
A has tossed more bugs to developer B than to developer D, in
the future, when A cannot resolve a bug, the bug will be tossed
to B, i.e., tossing probabilities determine tossees. However, this
approach might be inaccurate in certain situations: suppose a new
bug belonging to class K1 is reported, and developer A was assigned
to fix it, but he is unable to fix it; developer B has never fixed any bug
of type K1, while D has fixed 10 bugs of type K1. The prior approach
would recommend B as the tossee, although D is more likely to
resolve the bug than B. Thus, although tossing graphs reveal tossing
probabilities among developers, they should also contain informa-
tion about which classes of bugs were passed from one developer
to another; we use multi-feature tossing graphs to capture this
information.

Another problem with the classifier- and tossing graph-based
approaches is that it is difficult to identify retired or inactive devel-
opers. This issue is aggravated in open source projects: when
developers work voluntarily, it is difficult to keep track of the cur-
rent set of active developers associated with the project. Anvik et al.
(2006) and Jeong et al. (2009) have pointed out this problem and
proposed solutions. Anvik et al. use a heuristic to filter out develop-
ers who have contributed fewer than 9 bug resolutions in the last 3
months of the project. Jeong et al. assume that, when within a short
time span many bugs get tossed from a developer D to others, lead-
ing to an increase in the number of outgoing edges in the tossing
graph from D’s node, D is a potentially retired developer. They sug-
gest that this information can be used in real-world scenarios by

managers to identify potentially inactive developers. Therefore, in
their automatic bug assignment approach they still permit assign-
ment of bugs to inactive developers, which increases the length
of the predicted tossing paths. In contrast, we restrict potential

P. Bhattacharya et al. / The Journal of Systems and Software 85 (2012) 2275– 2292 2281

each v

a
n

t
t
t
w
o
d

4

g
n

i
p

Fig. 4. Comparison of training and validation techniques. (a) Updates after

ssignees to active developers only, and do so with a minimum
umber of tosses.

The tossing graphs we build have additional labels compared
o Jeong et al.: for each bug that contributes to an edge between
wo developers, we attach the bug class (product and component)6

o that edge; moreover, for each developer in the tossing graph,
e maintain an activity count, i.e., the difference between the date

f the bug being validated and the date of the last activity of that
eveloper.

.3.1. Building multi-feature tossing graphs

As discussed earlier in Section 4.3, tossing probabilities are a

ood start toward indicating potential bug fixers, but they might
ot be appropriate at all times. Therefore, the tossing graphs we

6 Products are smaller projects within a large project. Components are sub-modules
n a product. For example, Firefox is a product in Mozilla and Bookmarks is a com-
onent of Firefox.
alidation set (Bettenburg et al.) (b) Updates after each bug (our approach).

generate have three labels in addition to the tossing probability:
bug product and bug component on each edge, and number of days
since a developer’s last activity on each node. For example, con-
sider three bugs that have been tossed from D1 to D2 and belong to
three different product–component sets: {P1, C1}, {P1, C3}, and {P2,
C5}. Therefore, in our tossing graph, the product–component set for
the edge between D1 and D2 is {{P1, C1}, {P1, C3}, {P2, C5}}. Main-
taining these additional attributes is also helpful when bugs are
re-opened. Both developer expertise and tossing histories change
over time, hence it is important to identify the last fixer for a bug
and a potential tossee after the bug has been re-opened.

We now present three examples that demonstrate our approach
and show the importance of multi-feature tossing graphs. The
examples are based on the tossing paths, the product–component
the bug belongs to, and the developer activity, as shown in Table

2. Suppose that at some point in our recommendation process for
a specific bug, the classifier returns A as the best developer for fix-
ing the bug. However, if A is unable to resolve it, we need to use
the tossing graph to find the next developer. We will present three

2282 P. Bhattacharya et al. / The Journal of Systems and Software 85 (2012) 2275– 2292

Table 2
Example of tossing paths, associated tossing probabilities and developer activity.

Product Component Tossing paths

P1 C1 A → B → C
P1 C3 F → A → B → E
P2 C5 B → A → D → C
P1 C3 C → E → A → D
P1 C1 A → B → E → C
P1 C3 B → A → F → D

Developer bug
assigned

Total tosses Developers who fixed the bug

C D E

Pr # Pr # Pr

A 6 3 0.5 2 0.33 1 0.17

Developer Last activity (in days)

A 20
C 70
D 50
E 450

A

{P1,C3}
0.33

0.17
{P1,C3}

450 Days
{P1,C1,

0.5

D C

E

P2,C5}

e
s
i
p
p
n
d

p
b
e
c

p
p
P
c

4
a
t
e
p
p

t
r

bugzilla

{Firefox,General}
0.437 0.196

ddahl bryner38 days12 days

{Firefox,Bookmarks} {Firefox,Bookmarks}

Fig. 6. Actual multi-feature tossing graph extracted from Mozilla.
50 Days 70 Days

Fig. 5. Multi-feature tossing graph (partial) derived from data in Table 2.

xamples to illustrate which neighbor of A to choose, and how the
election depends on factors like bug source and developer activity,
n addition to tossing probability. For the purpose of these exam-
les, we just show a part of the tossing graph built from the tossing
aths shown in Table 2; we show the node for developer A and its
eighbors in the tossing graph in Fig. 5, as the tossee selection is
ependent on these nodes alone.

Example I. Suppose we encounter a new bug B1 belonging to
roduct P1 and component C5, and the classifier returns A as the
est developer for fixing the bug. If A is unable to fix it, by consid-
ring the tossing probability and product–component match, we
onclude that it should be tossed to C.

Example II. Consider a bug B2 belonging to product P1 and com-
onent C3. If A is unable to fix it, although C has a higher transaction
robability than D, because D has fixed bugs earlier from product
1 and component C3, he is more likely to fix it than C. Hence in this
ase the bug gets tossed from A to D.

Example III. Based on the last active count for E in Fig. 5, i.e.,
50 days, it is likely that E is a retired developer. In our approach, if

 developer has been inactive for more than 100 days,7 we choose
he next potential neighbor (tossee) from the reference node A. For

xample, consider bug B3 which belongs to product P1 and com-
onent C3, which has been assigned to A and we need to find a
otential tossee when A is unable to resolve it. We should never

7 Choosing 100 days as the threshold was based on Anvik et al. (2006)’s observa-
ion that developers that have been inactive for three months or more are potentially
etired.
choose E as a tossee as he is a potential retired developer and
hence, in this particular case, we choose C as the next tossee. We
also use activity counts to prune inactive developers from classifier
recommendations. For example, if the classifier returns n recom-
mendations and we find that the ith developer is probably retired,
we do not select him, and move on to the (i + 1)th developer.

4.3.2. Ranking function
As explained with examples in Section 4.3.1, the selection of a

tossee depends on multiple factors. We thus use a ranking function
to rank the tossees and recommend a potential bug-fixer. We first
show an example of our developer prediction technique for a real
bug from Mozilla and then present the ranking function we use for
prediction.

Example (Mozilla bug 254,967). For this particular bug, the first
five developers predicted by the Naïve Bayes classifier are {bugzilla,
fredbezies, myk, tanstaafl, ben.bucksch}. However, since bryner is the
developer who actually fixed the bug, our classifier-only prediction
is inaccurate in this case. If we use the tossing graphs in addition
to the classifier, we select the most likely tossee for bugzilla, the
first developer in the classifier ranked list. In Fig. 6, we present the
node for bugzilla and its neighbors.8 If we rank the outgoing edges
of bugzilla based on tossing probability alone, the bug should be
tossed to developer ddahl. Though bryner has lower probability,
he has committed patches to the product “Firefox” and compo-
nent “General” that bug 254,967 belong to. Therefore, our algorithm
will choose bryner as the potential developer over ddahl, and our
prediction matches the actual bug fixer. Our ranking function also
takes into account developer activity; in this example, however,
both developers ddahl and bryner are active, hence comparing
their activities is not required. To conclude, our ranking function
increases prediction accuracy while reducing tossing lengths; the
actual tossing length for this particular Mozilla bug was 6, and our
technique reduces it to 2.

We now describe our algorithm for ranking developers. Similar
to Jeong et al., we first use the classifier to predict a set of developers
named CP (Classifier Predicted). Using the last-activity information,
we remove all developers who have not been active for the past 100
days from CP. We then sort the developers in CP using the fix counts
from the developer profile (as described in Section 4.6.1).
8 For clarity, we only present the nodes relevant to this example, and the labels
at the point of validating this bug; due to incremental learning, label values will
change over time.

P. Bhattacharya et al. / The Journal of Systems and Software 85 (2012) 2275– 2292 2283

Table 3
Sample developer profiles: developer IDs and number of bugs they fixed in each
product–component pair.

Developer ID Product–component Fix count

Ti {P1, C1} 3
{P1, C7} 18
{P9, C6} 7

Tj {P1, C1} 13

C
u

(
u
o
1
p
o
r
t
t
a
s
D
t

a
t
d
t
n
p
a
b
s
t
(
a

4

i
t
t
w
a
i
i
t
w
f
p
a
p

Table 4
Sample developer profile.

Developer ID Product–component Fix count

D {P , C } 3

developers who could fix the bug. We describe the classification
{P4, C6} 11

Suppose the CP is {D1, D2, D3, . . ., Dj}. For each Di in the sorted
P, we rank its tossees Tk (outgoing edges in the tossing graph)
sing the following ranking function:

Rank(Tk) = Pr(Di ↪→ Tk)+
MatchedProduct(Tk)+
MatchedComponent(Tk)+
LastActivity(Tk)

The tossing probability, Pr(Di ↪→ Tk), is computed using Eq. (2)
Section 3). The function MatchedProduct(Tk) returns 1 if the prod-
ct the bug belongs to exists in developer Tk’s profile, and 0
therwise. Similarly, the function MatchedComponent(Tk) returns

 if the component the bug belongs to exists in developer Tk’s
rofile. Note that the MatchedComponent(Tk) attribute is computed
nly when MatchedProduct(Tk) returns 1. The LastActivity function
eturns 1 if Tk’s last activity was in the last 100 days from the date
he bug was reported. As a result, 0 < Rank(Tk) ≤ 4. We then sort the
ossees Tk by rank, choose the developer Ti with highest rank and
dd it to the new set of potential developers, named ND. Thus after
electing Ti, where i = 1, 2, . . ., j, the set ND becomes {D1, T1, D2, T2,
3, T3, . . ., Dj, Tj}. When measuring our prediction accuracy, we use

he first 5 developers in ND.
If two potential tossees Ti and Tj have the same rank, and both

re active developers, and both have the same tossing probabili-
ies for bug B (belonging to product P and component C), we use
eveloper profiles to further rank them. There can be two cases in
his tie: (1) both Ti and Tj’s profiles contain {P, C}, or (2) there is
o match with either P or C. For the first case, consider the exam-
le in Table 3: suppose a new bug B belongs to {P1, C1}. Assume Ti
nd Tj are the two potential tossees from developer D (where D has
een predicted by the classifier) and suppose both Ti and Tj have the
ame tossing probabilities from D. From developer profiles, we find
hat Tj has fixed more bugs for {P1, C1} than Ti, hence we choose Tj
case 1). If the developers have the same fix count, or neither has P
nd/or C in their profile (case 2), we randomly choose one.

.4. Ablative analysis for tossing graph attributes

As explained in Section 4.3.2, our ranking function for toss-
ng graphs contains additional attributes compared to the original
ossing graphs by Jeong et al. Therefore, we were interested
o evaluate the importance of each attribute; to measure this,
e performed another ablative analysis. We choose only two

ttributes out of three (product, component and developer activ-
ty) at a time and compute the decrease in prediction accuracy
n the absence of the other attribute. For example, if we want
o measure the significance of the “developer activity” attribute,
e use only product and component attributes in our ranking

unction described in Section 4.3.2 and compute the decrease in

rediction accuracy. In Section 5.5 we discuss the results of our
blative analysis and argue the importance of the attributes we
ropose.
1 1 2

{P1, C 7} 18
{P9, C 6} 7

4.5. Accurate yet efficient classification

One of the primary disadvantages of fine-grained incremental
learning is that it is time consuming (Osuna et al., 1997; Platt, 1999;
C. time in cross validation, 2010). Previous studies which used fine-
grained incremental learning for other purposes (Lamkanfi et al.,
2010) found that using a part of the bug repository history for clas-
sification might yield comparable and stable results to using the
entire bug history. Similarly, we intended to find how many past
bug reports we need to train the classifier on in order to achieve a
prediction accuracy comparable to the highest prediction accuracy
attained when using fold 1–10 as the TDS and fold 11 as the VDS.

We now present the procedure we used for finding how much
history is enough to yield high accuracy. We first built the toss-
ing graphs using the TDS until fold 10; building tossing graphs
and using them to rank developers is not a time consuming task,
hence in our approach tossing graphs cover the entire TDS. We then
incrementally started using sets of 5,000 bug reports from fold 10
downwards, in descending chronological order, as our TDS for the
classifier, and measured our prediction accuracy for bugs in fold
11 (VDS); we continued this process until addition of bug reports
did not improve the prediction accuracy any more, implying stabi-
lization. Note that by this method our VDS remains constant. We
present the results of our optimization in Section 5.7.

4.6. Implementation

In Fig. 7 we compare our approach to previous techniques. Initial
work in this area (Fig. 7(a)) used classifiers only (Anvik et al., 2006;
Cubranic and Murphy, 2004; Bettenburg et al., 2008; Canfora and
Cerulo, 2006); more recent work by Jeong et al. (2009) (Fig. 7(b))
coupled classifiers with tossing graphs. Our approach (Fig. 7(c))
adds fine-grained incremental learning and multi-feature tossing
graphs. Our algorithm consists of four stages, as labeled in the fig-
ure: (1) initial classifier training and building the tossing graphs,
(2) predicting potential developers, using the classifier and tossing
graphs, (3) measuring prediction accuracy, (4) updating the training
sets using the bugs which have been already validated, re-running
the classifier and updating the tossing graphs. We iterate these four
steps until all bugs have been validated.

4.6.1. Developer profiles
We maintain a list of all developers and their history of bug

fixes. Each developer D has a list of product–component pairs {P,
C} and their absolute count attached to his or her profile. A sample
developer profile is shown in Table 4, e.g., developer D1 has fixed 3
bugs associated with product P1 and component C2. This informa-
tion is useful beyond bug assignments; for example, while choosing
moderators for a specific product or component it is a common
practice to refer to the developer performance and familiarity with
that product or component.

4.6.2. Classification
Given a new bug report, the classifier produces a set of potential
process in the remainder of this subsection.
Choosing fixed bug reports. We use the same heuristics as Anvik

et al. (2006) for obtaining fixed bug reports from all bug reports

2284 P. Bhattacharya et al. / The Journal of Systems and Software 85 (2012) 2275– 2292

Fixed Bug

Supervised ML
Classifier

History

Predict
Developers

bugClassifier-based(a)

assignment

Fixed Bug

Supervised ML
Classifier

History

Developers
Predict

Tossing Graphs
(with tossing probabilities only)

tossingwithcoupledClassifiers(b)

graphs

Fixed Bug

Supervised ML
Classifier

History

Developers
Predict

(with tossing probabilities,
Tossing Graphs

product−component label,
developer activity)

2

1

1

4

3

after each bug validation
Update classifier and tossing graphs

Re−iterate

toss-multi-featureandlearningIncremental(c)

approach)(ourgraphsing

F ent, (
f

i
“
“
o

C
w
f
p
b
a

o
n
h
t
i
d
fi
h
K

ig. 7. Comparison of bug assignment techniques. (a) Classifier-based bug assignm
eature tossing graphs (our approach).

n Bugzilla. First, we extract all bugs marked as “verified” or
resolved”; next, we remove all bugs marked as “duplicate” or
works-for-me,” which leaves us with the set containing fixed bugs
nly.

Accumulating training data. Prior work (Anvik et al., 2006;
ubranic and Murphy, 2004; Bettenburg et al., 2008) has used key-
ords from the bug report and developer name or ID as attributes

or the training data sets; we also include the product and com-
onent the bug belongs to. For extracting relevant words from
ug reports, we employ tf-idf, stemming, stop-word and non-
lphabetic word removal (Manning et al., 2008).

Filtering developers for classifier training. Anvik et al. refine the set
f training reports by using several heuristics. For example, they do
ot consider developers who fixed a small number of bugs, which
elps remove noise from the TDS. Although this is an effective way
o filter non-experts from the training data and improve accuracy,
n our approach filtering is unnecessary: the ranking function is

esigned such that, if there are two developers A and B who have
xed bugs of the same class K, but the number of K-type bugs A
as fixed is greater than the number of K-type bugs B has fixed, a
-type bug will be assigned to A.
b) classifiers coupled with tossing graphs and (c) incremental learning and multi-

4.6.3. Multi-feature tossing graphs
With the training data and classifier at hand, we proceed to

constructing tossing graphs as explained in Section 4.3.1. We use
the same bug reports used for classification to build the tossing
graphs.

Filtering developers for building tossing graphs. We do not prune
the tossing graphs based on a pre-defined minimum support (fre-
quency of contribution) for a developer, or the minimum number of
tosses between two developers. Jeong et al. (2009) discuss the sig-
nificance of removing developers who fixed less than 10 bugs and
pruning edges between developers that have less than 15% transac-
tion probability. Since their approach uses the probability of tossing
alone to rank neighboring developers, they need the minimum sup-
port values to prune the graph. In contrast, the multiple features in
our tossing graphs coupled with the ranking function (as explained
in Section 4.3.2) obviate the need for pruning.
4.6.4. Predicting developers
For each bug, we predict potential developers using two meth-

ods: (1) using the classifier alone, to demonstrate the advantages of
incremental learning, and (2) using both the classifier and tossing

ystem

g
W
a
w
c
f
g
p
r
t
l
c
fi
c
c

4

f
a
g
h
m
p
o

5

5

o
a
t
b
M
i
c
1

d

1

2

3

4

5

d
c
P
t
fi
H

f

P. Bhattacharya et al. / The Journal of S

raphs, to show the significance of multi-feature tossing graphs.
hen using the classifier alone, the input consists of bug keywords,

nd the classifier returns a list of developers ranked by relevance;
e select the top five from this list. When using the classifier in

onjunction with tossing graphs, we select the top three developers
rom this list, then for developers ranked 1 and 2 we use the tossing
raph to recommend a potential tossee, similar to Jeong et al. For
redicting potential tossees based on the tossing graph, our tossee
anking function takes into account multiple factors, in addition
o the tossing probability as proposed by Jeong et al. In particu-
ar, our ranking function is also dependent on (1) the product and
omponent of the bug, and (2) the last activity of a developer, to
lter retired developers. Thus our final list of predicted developers
ontains five developer id’s in both methods (classifier alone and
lassifier + tossing graph).

.6.5. Folding
After predicting developers, similar to the Bettenburg et al.’s

olding technique (Bettenburg et al., 2008), we iterate the training
nd validation for all folds. However, since our classifier and tossing
raph updates are already performed during validation, we do not
ave to update our training data sets after each fold validation. To
aintain consistency in comparing our prediction accuracies with

revious approaches, we report the average prediction accuracy
ver each fold.

. Results

.1. Experimental setup

We used Mozilla and Eclipse bugs to measure the accuracy of
ur proposed algorithm. We analyzed the entire life span of both
pplications. For Mozilla, our data set ranges from bug number 37
o 549,999 (May 1998 to March 2010). For Eclipse, we considered
ugs numbers from 1 to 306,296 (October 2001 to March 2010).
ozilla and Eclipse bug reports have been found to be of high qual-

ty (Jeong et al., 2009), which helps reduce noise when training the
lassifiers. We divided our bug data sets into 11 folds and executed
0 iterations to cover all the folds.

Data collection. We used the bug reports to collect four kinds of
ata:

. Keywords: we collect keywords from the bug title, bug descrip-
tion and comments in the bug report.

. Bug source: we retrieve the product and component the bug has
been filed under from the bug report.

. Temporal information: we collect information about when the
bug has been reported and when it has been fixed.

. Developers assigned: we collect the list of developer IDs assigned
to the bug from the activity page of the bug and the bug routing
sequence.

.2. Prediction accuracy

In Tables 5 and 6 we show the results for predicting potential
evelopers who can fix a bug for Mozilla and Eclipse using five
lassifiers: Naïve Bayes, Bayesian Networks, C4.5, and SVM using
olynomial and RBF kernel functions. In our experiments, we used

he classifier implementations in Weka for the first three classi-
ers (Weka Toolkit, 2010) and WLSVM for SVM (EL-Manzalawy and
onavar, 2005).9

9 The details of the parameters used for the classifiers in the experiments can be
ound at: http://www.cs.ucr.edu/ neamtiu/bugassignment-params/.
s and Software 85 (2012) 2275– 2292 2285

Classifier alone. To demonstrate the advantage of our fine-
grained, incremental learning approach, we measure the prediction
accuracy of the classifier alone; column “ML only” contains the
classifier-only average prediction accuracy rate. We found that,
for Eclipse and Mozilla, our approach increases accuracy by 8.91
percentage points on average compared to the best previously-
reported, no-incremental learning approach, by Anvik et al. (2006).
This confirms that incremental learning is instrumental for achiev-
ing a high prediction accuracy. Anvik et al. report that their initial
investigation of incremental learning did not yield highly accu-
rate predictions, though no details are provided. Note that we use
different data sets (their experiments are based on 8655 reports
for Eclipse and 9752 for Firefox, while we use 306,297 reports for
Eclipse and 549,962 reports for Mozilla) and additional attributes
for training and validation.

Classifier +tossing graphs. Columns “ML + tossing graphs” of
Tables 5 and 6 contain the average accurate predictions for each
fold (Top 2 to Top 5 developers) when using both the classifier
and the tossing graph; the Top 1 developer is predicted using the
classifier only. Consider row 2, which contains prediction accuracy
results for Top 2 in Mozilla using the Naïve Bayes classifier: column
4 (value 39.14) represents the percentage of correct predictions for
fold 1; column 5 (value 44.59) represents the percentage of correct
predictions for folds 1 and 2; column 14 (value 54.49) represents
the average value for all iterations across all folds. Column 15 repre-
sents the percentage improvement of prediction accuracy obtained
by our technique when compared to using tossing graphs with
tossing probabilities only. Our best average accuracy is achieved
using Naïve Bayes (77.87% for Mozilla and 77.43% for Eclipse).
We found that this prediction accuracy is higher than the predic-
tion accuracy we obtained in our earlier work (Bhattacharya and
Neamtiu, 2010) where we used Naïve Bayes and Bayesian Networks
only. When compared to prior work (Jeong et al., 2009) (where
Naïve Bayes and Bayesian Networks were used as ML algorithms
and tossing probabilities alone were used in the tossing graphs)
our technique improved prediction accuracy by up to 11.02 per-
centage points. However, when measuring across the average of
all ten folds, our model achieved highest prediction accuracy of
77.87% for Mozilla using Naïve Bayes and 75.89% for Eclipse using
Bayesian Networks. The last column shows the percentage increase
in prediction accuracy from using single-attribute tossing graphs
with tossing probability alone (Jeong et al., 2009) compared to our
approach in which we used a ranking function based on the multi-
attribute tossing graphs we proposed.

Classifier selection. In Section 4.1.1 we discussed that one of the
objectives of using a broad range of classifiers for evaluating our
framework is to analyze if a particular classifier is best suited for
the bug assignment problem. Our results in Tables 5 and 6 reveal
that the answer is complex. Generally, Naïve Bayes works best for
early VDS folds (when there are fewer data) and when considering
Top 4 or Top 5 accuracies. The polynomial-kernel SVM performs
fairly poorly. The other three are comparable, without an obvious
pattern.

Our results are consistent with the standard statistical learn-
ing theory of bias-variance (Hastie et al., 2009). In particular, with
fewer data (or more noise in the data) better results are achieved
by using a less flexible classifier (one with fewer parameters and
more bias). This supports the performance of Naïve Bayes: it does
better for small sample sizes and in case where the testing met-
ric does not match the training metric as well (Top 5, for instance)
which looks like noisier data. Additionally, if the bias is too far from
the true answer, the method will not work well. The polynomial-

kernel SVM probably has such a mismatch: its bias is too far from
the correct bug triage classifier. In particular, it is a global classifier
in that all training data affect the classifications for all inputs. By
contrast, C4.5 and RBF SVM both are local classifiers: only training

http://www.cs.ucr.edu/~neamtiu/bugassignment-params/

2286
P.

 Bhattacharya
 et

 al.
 /

 The
 Journal

 of
 System

s
 and

 Softw
are

 85 (2012) 2275– 2292

Table 5
Bug assignment prediction accuracy (percents) for Mozilla.

ML algorithm (classifier) Selection ML only (avg) ML + tossing graphs (average prediction accuracy for VDS fold)

2 3 4 5 6 7 8 9 10 11 Avg. across all folds Improv. vs prior work
(Jeong et al., 2009)

Top 1 27.67 13.33 20.67 22.25 25.39 24.58 30.09 30.05 33.61 35.83 40.97 27.67 -
Top 2 42.19 39.14 44.59 47.72 49.39 52.57 57.36 59.46 62.37 64.99 67.23 54.49 8.16

Naïve Bayes Top 3 54.25 51.34 62.77 66.15 57.50 63.14 61.33 64.65 77.54 71.76 74.66 65.09 11.02
Top 4 59.13 64.20 75.86 79.57 70.66 69.11 69.84 67.68 82.87 68.77 69.71 71.82 6.93
Top 5 65.66 74.63 77.69 81.12 79.91 76.15 72.33 75.76 83.62 78.05 79.47 77.87 9.22
Top 1 26.71 13.54 14.16 20.21 22.05 25.16 28.47 32.37 35.1 37.11 38.94 26.71 -
Top 2 44.43 36.98 38.9 37.46 40.89 43.53 48.18 51.7 54.29 57.57 60.43 46.99 7.24

Bayesian Network Top 3 49.51 47.19 49.45 46.42 51.42 53.82 49.59 53.63 59.26 61.91 63.9 53.65 2.27
Top 4 58.37 54.31 57.01 54.77 59.88 61.7 63.47 62.11 67.64 68.81 66.08 61.59 8.07
Top 5 62.19 59.22 59.44 61.02 68.29 64.87 68.3 71.9 76.38 77.06 78.91 68.54 10.78
Top 1 25.46 10.8 14.2 18.3 26.21 24.85 28.77 30.7 32.29 33.64 34.87 25.46
Top 2 31.03 29.17 34.16 40.34 45.92 51.67 56.35 59.41 62.04 65.26 69.49 51.38

C4.5 Top 3 38.97 33.2 38.39 43.37 51.05 56.47 62.68 66.44 69.92 73.41 75.62 57.05 N/A
Top 4 46.43 41.16 46.15 51.05 59.16 64.56 69.43 73.4 76.31 80.52 83.84 64.72
Top 5 59.18 47.04 50.49 56.67 64.25 69.07 74.68 78.74 80.37 81.59 84.82 68.77
Top 1 23.82 8.26 13.01 18.54 20.69 22.97 27.14 29.46 32.36 32.69 33.08 23.82
Top 2 28.66 18.94 21.49 26.63 31.29 31.81 37.24 36.87 40.24 43.47 48.06 33.6

SVM (polynomial kernel
function, degree = 2)

Top 3 34.04 23.85 23.11 27.44 32.46 39.11 32.52 41.92 44.62 45.37 48.85 35.93 N/A

Top 4 43.92 26.74 30.78 35.99 28.82 34.77 40.05 46.89 53.47 59.03 63.7 42.02
Top 5 51.17 34.83 32.85 41.14 44.4 46.94 53.76 60.3 62.69 61.01 70.95 50.89
Top 1 30.98 17.37 20.27 28.56 30.46 31.98 34.86 31.56 38.69 33.09 42.97 30.98
Top 2 39.27 41.51 42.4 49.1 53.02 52.04 59.33 59.24 62.13 66.1 68.29 55.32

SVM (RBF kernel function) Top 3 45.52 43.7 44.26 49.6 53.96 61.69 54.79 62.79 66.82 67.25 69.75 57.38 N/A
Top 4 53.42 48.21 51.51 57.15 51.62 56.95 61.08 67.63 74.23 80.59 84.12 63.31
Top 5 62.49 56.07 53.99 62.2 66.13 68.54 76.23 80.74 84.69 83.04 82.71 71.43

P.
 Bhattacharya

 et
 al.

 /
 The

 Journal
 of

 System
s

 and
 Softw

are
 85 (2012) 2275– 2292

2287

Table 6
Bug assignment prediction accuracy (percents) for Eclipse.

ML algorithm
(classifier)

Selection ML only (avg) ML + tossing graphs (average prediction accuracy for VDS fold)

2 3 4 5 6 7 8 9 10 11 Avg. across all folds Improv. vs prior work
(Jeong et al., 2009)

Top 1 32.35 12.2 21.09 24.7 23.43 25.17 33.04 38.73 42.03 49.59 53.69 32.36 -
Top 2 48.19 39.53 38.66 36.03 39.16 39.29 41.82 43.2 47.94 51.65 54.18 43.15 5.99

Naïve Bayes Top 3 54.15 47.95 50.84 48.46 49.52 59.45 62.77 61.73 68.19 74.95 69.07 59.30 2.76
Top 4 58.46 56.29 61.16 59.88 60.81 69.64 69.37 75.64 75.3 78.22 77.31 68.37 6.69
Top 5 67.21 66.73 69.92 74.13 77.03 77.9 81.8 82.05 80.63 82.59 81.44 77.43 5.98
Top 1 38.03 24.36 29.53 31.04 36.37 34.09 40.97 40.22 43.99 48.88 50.85 38.03 -
Top 2 41.43 36.11 41.49 41.13 44.81 46.34 47.4 48.61 53.84 59.18 63.69 48.26 3.97

Bayesian Network Top 3 59.50 51.16 52.8 54.62 57.38 56.39 63.26 66.68 70.34 76.72 77.34 62.67 8.88
Top 4 62.72 62.92 59.03 63.09 68.27 68.33 71.79 73.37 74.15 76.94 77.04 69.50 5.58
Top 5 68.91 74.04 72.41 70.92 71.52 73.5 75.61 79.28 79.68 80.61 81.38 75.89 6.93
Top 1 28.97 11.43 21.35 24.88 28.33 25.12 30.56 31.57 35.19 38.37 42.97 28.97
Top 2 36.33 31.07 37.65 42.24 48.23 51.75 55.54 58.13 59.44 62.61 62.98 50.96

C4.5 Top 3 48.17 37.95 44.47 48.29 55.82 58.45 62.73 65.28 66.32 69.34 69.57 57.82 N/A
Top 4 54.62 44.62 51.11 55.36 61.47 65.62 69.3 71.06 72.39 75.23 76.44 64.26
Top 5 65.98 51.27 57.15 62.44 68.52 71.77 75.95 78.51 79.64 82.36 86.09 71.37
Top 1 22.45 9.43 13.3 15.59 20.12 24.6 24.65 26.46 30.12 31.71 29.93 22.45
Top 2 26.52 19.51 21.4 27.1 32.02 31.04 37.33 37.24 40.13 44.1 47.29 33.72

SVM (polynomial
kernel function,
degree = 2)

Top 3 30.08 21.7 23.26 27.6 32.96 39.69 32.79 41.79 48.11 45.25 50.75 36.39 N/A

Top 4 33.17 26.21 30.51 35.15 29.62 34.95 40.08 46.63 53.23 59.59 63.12 41.91
Top 5 42.92 35.07 32.99 41.2 45.13 46.54 54.23 59.74 62.69 61.04 71.71 51.03
Top 1 29.23 16.54 22.06 22.29 28.29 26.58 31.86 31.48 33.84 36.01 43.18 29.21
Top 2 37.5 38.4 42.85 43.39 44.41 47.2 46.98 48.29 49.49 48.8 46.68 45.65

SVM (RBF kernel
function)

Top 3 47.04 46.65 54.17 51.1 55.66 61.41 62.66 66.63 72.46 68.87 72.93 61.25 N/A

Top 4 53.46 48.64 49.76 55.96 54.18 59.76 64.61 70.32 74.43 74.83 78.67 63.12
Top 5 64.77 63.5 63.68 59.9 69.52 71.98 75.97 78.24 83.33 80.38 82.02 72.85

2288 P. Bhattacharya et al. / The Journal of Systems and Software 85 (2012) 2275– 2292

1%

68%

26%

5%

0

1−5

6−12

13 or higher

Mozilla(a)

7%

69%

18%

6%

0

1−5

6−12

13 or higher

Eclipse(b)

n for

d
c
d

n
s
t
t
m
o
t
o
t

5

i
m
N
a
a
H
n
b
b
(
t
c
l
o
t

Fig. 8. Original tossing length distributio

ata near the testing point have a large influence on the resulting
lassification. This suggests that local classification methods will
o best on bug assignment.

Among the more flexible (less biased) local classifiers (Bayesian
etworks, C4.5, and RBF SVM), there is not a clear winner—all
eem equally well suited for bug assignment. On any particular
ask, one will do better than the others, but a systematic predic-
ion about other tasks cannot be made from these experiments:

uch will depend on the amount of data, and the noise present. All
f these methods have “regularization parameters” that can adjust
he amount of bias. Picking a suitable value based on the amount
f data and noise is more important for achieving good results than
he exact classifier used.

.3. Tossing length reduction

We compute the original tossing path lengths for “fixed” bugs
n Mozilla and Eclipse, and present them in Fig. 8; we observe that

ost bugs have tossing length less than 13 for both applications.
ote that tossing length is zero if the first assigned developer is
ble to resolve the bug. Ideally, a bug assignment model should be
ble to recommend bug fixers such that tossing lengths are zero.
owever, this is unlikely to happen in practice due to the unique
ature of bugs. Though Jeong et al. measured tossing lengths for
oth “assigned” and “verified” bugs, we ignore “assigned” bugs
ecause they are still open, hence we do not have ground truth
we do not know the final tossing length yet). In Fig. 9, we present
he average reduced tossing lengths of the bugs for which we could

orrectly predict the developer. We find that the predicted tossing
engths are reduced significantly, especially for bugs which have
riginal tossing lengths less than 13. Our approach reports reduc-
ions in tossing lengths by up to 86.67% in Mozilla and 83.28% in

0 10 20 30
0

1

2

3

4

Original Tossing Length

Pr
ed

ic
te

d
T

os
si

ng
 L

en
gt

h

Mozilla(a)

Fig. 9. Average reduction in tossing lengths for correctly predicted bugs when us
“fixed” bugs. (a) Mozilla and (b) Eclipse.

Eclipse. For correctly-predicted bugs with original tossing length
less than 13, prior work (Jeong et al., 2009) has reduced tossing
path lengths to 2–4 tosses, while our approach reduces them to an
average of 1.5 tosses for Mozilla and 1.8 tosses for Eclipse, hence
multi-feature tossing graphs prove to be very effective.

5.4. Filtering noise in bug reports

We found that when training sets comprise bugs with reso-
lution “verified” or “resolved” and arbitrary status, the noise is
much higher than when considering bugs with resolution “veri-
fied” or “resolved” and status “fixed”. In fact, we found that, when
considering arbitrary-status bugs, the accuracy is on average 23%
lower than the accuracy attained when considering fixed-status
bugs only. Jeong et al. considered all bugs with resolution “veri-
fied” and arbitrary-status for their training and validation purposes.
They found that tossing graphs are noisy, hence they chose to prune
developers with support less than 10 and edges with transaction
probability less than 15%.

Our analysis suggests that bugs whose status changes from
“new” or “open” to “fixed” are actual bugs which have been
resolved, even though various other kinds of bugs, such as “invalid,”
“works-for-me,” “wontfix,” “incomplete” or “duplicate” may be cat-
egorized as “verified” or “resolved.” We conjecture that developers
who submit patches are more competent than developers who only
verify the validity of a bug and mark them as “invalid” or devel-
opers who find a temporary solution and change the bug status
to “works-for-me.” Anvik et al. made a similar distinction between

message repliers and contributors/maintainers; they found that
only a subset of those replying to bug messages are actually sub-
mitting patches and contributing to the source code, hence they
only retain the contributing repliers for their TDS.

0 5 10 15 20
0

1

2

3

4

Original Tossing Length

Pr
ed

ic
te

d
T

os
si

ng
 L

en
gt

h

(b) Eclipse

ing ML + tossing graphs (using both classifiers). (a) Mozilla and (b) Eclipse.

P. Bhattacharya et al. / The Journal of System

Product Component Developer Activity

5

10

15

20
%

 R
e

d
u

ct
io

n
 in

 P
re

d
ic

tio
n

 A
cc

u
ra

cy

(a) Mozilla

Product Component Developer Activity

5

10

15

20

%
 R

e
d

u
ct

io
n

 in
 P

re
d

ic
tio

n
 A

cc
u

ra
cy

(b) Eclipse

Fig. 10. Impact of individual ranking function attributes on prediction accuracy. (a)
M

5

a
w
u
c
i
t
i
d
a
t
u
t
N
i
n
p
s

5

n
r
s

Computational effort. The intra-fold updates used in our
approach are more computationally-intensive than inter-fold
updates. However, for practical purposes this is not a concern
ozilla and (b) Eclipse.

.5. Importance of individual tossing graph attributes

Since our ranking function for tossing graphs contains additional
ttributes compared to the original tossing graphs by Jeong et al.,
e were interested in evaluating the importance of each attribute
sing ablative analysis as described in Section 4.4. Therefore, we
ompute, for each fold, the reduction in accuracy caused by remov-
ng one attribute from the ranking function and keeping the other
wo. In Fig. 10 we show the minimum (bottom black bar), max-
mum (top black bar) and average (red bar) across all folds. The
ecrease in prediction accuracy shows that the removal of product
nd developer activity attributes affects the prediction accuracy
he most. These accuracy reductions underline the importance of
sing all attributes in the ranking function, and more generally,
he advantage of the richer feature vectors our approach relies on.
ote that removing developer activity affects prediction accuracy

n Mozilla more significantly than in Eclipse. Analyzing the sig-
ificance of each attribute in our ranking function for individual
rojects, i.e., build a ranking function per project, is beyond the
cope of this paper.

.6. Importance of incremental learning
To assess the significance of incremental learning in our tech-
ique, we performed two sets of experiments. We took our best
esults, obtained as shown in Fig. 1, i.e., using Naïve Bayes clas-
ifier, with tossing graphs, product–component and incremental
s and Software 85 (2012) 2275– 2292 2289

learning, and then unilaterally varied the learning procedure.10 The
best-result data has been shown in Tables 5 and 6 but for ease of
comparison we report the same data in shown column 3 of Table 7.

Intra-fold updates. To evaluate the impact of disabling of intra-
fold updates we also trained our model using folds 1 to (N − 1) and
we used fold N for prediction. The results of the average predic-
tion accuracy are presented in column 4 of Table 7. For example,
our results show that for Top 1 developers in Mozilla, the aver-
age prediction accuracy across 10 folds is 13.53%, a decrease of
14.15 percentage points when compared to the incremental learn-
ing (inter- and intra-fold updates) technique shown in column 3.

Inter-fold updates. To evaluate the importance of inter-fold
updates for each fold, we first trained our model using the first 80%
of the bug reports in that fold only. Next, we used the remaining 20%
of the bug reports in that fold only for measuring prediction accu-
racy. Note that in this case, the bug reports from folds 1 to N-1 are
not added to fold N while training the classifier. The average pre-
diction accuracy is presented in column 5 of Table 7. For example,
our results show that for Top 1 developers in Mozilla, the average
prediction accuracy across 10 folds is 7.86%, a decrease of 19.82%
when compared to the incremental learning (inter- and intra-fold
updates) technique shown in column 3.

Conclusions. The results in Table 7 suggest there is a signifi-
cant decrease in prediction accuracy (up to 42%) when incremental
learning (inter- and intra-fold updates) is removed from our algo-
rithm. This reduction in prediction accuracy suggests that indeed
incremental learning is instrumental to achieving higher prediction
accuracy for bug assignment: inter-and intra-folding lead to tossing
graphs with highly accurate transaction probabilities which, helps
improve our prediction accuracy. Note that incremental learning
(or folding) is not a contribution of our work; incremental learning
is a standard technique to improve the prediction accuracy in any
supervised or unsupervised learning algorithms in machine learn-
ing (Kohavi, 1995). Rather, these experiments were performed to
demonstrate that in comparison to prior work, where split-sample
validation was used, automatic bug assignment can benefit signif-
icantly from incremental learning.

5.7. Accurate yet efficient classification

One of the primary disadvantages of fine-grained incremental
learning is that it is very time consuming. As described in Sec-
tion 4.5, we performed a study to find how many past bug reports
we need to train the classifier to achieve approximately similar pre-
diction accuracy when compared to the highest prediction accuracy
attained when using folds 1–10 as the TDS and fold 11 as the VDS.
We used the Naïve Bayes classifier as our ML algorithm in this case.
We present our results in Fig. 11. We found that Mozilla required
approximately 14% and Eclipse required about 26% of all bug reports
(in reverse chronological order, i.e., most recent bugs) to achieve
prediction accuracies greater than 80%—within 5 percentage points
of the best results of our original experiments where we used the
complete bug history to train our classifier. Therefore, a practical
way to reduce the computational effort associated with learning,
yet maintain high prediction accuracy, is to prune the bug report
set and only use a recent subset (e.g., the most recent 14–26% of
bug reports, depending on the project).
10 We chose Naïve Bayes since the average prediction accuracy was highest for this
classifier compared to other classifiers, hence, consistent with the standard machine
learning practice of ablative analysis, we varied incremental learning to quantify its
impact.

2290 P. Bhattacharya et al. / The Journal of Systems and Software 85 (2012) 2275– 2292

Table 7
Impact of inter- and intra-folding on prediction accuracy using Naïve Bayes classifier.

Project Selection Average prediction accuracy (%)

With intra- and inter-fold
updates (best)

Without intra-fold updates Without inter-fold updates

Top 1 27.67 13.53 (−14.15) 7.86 (−19.82)
Top 2 54.49 26.59 (−27.90) 12.54 (−41.95)

Mozilla Top 3 65.09 47.20 (−17.88) 28.61 (−36.48)
Top 4 71.82 53.24 (−18.60) 36.63 (−35.2)
Top 5 77.87 62.22 (−15.66) 43.86 (−34.02)
Top 1 32.36 8.64 (−23.73) 11.43 (−20.94)
Top 2 43.15 19.18 (−23.97) 16.02 (−27.13)

b
u
b
n
e
l
a
w
r

6

6

E
g
“
t
p
w
i
f
i
i
h
s
b
i
h
w

Eclipse Top 3 59.30

Top 4 68.37

Top 5 77.43

ecause very few bugs get fixed the day they are reported. Before we
se the algorithm to predict developers, we train it with all fixed
ug reports in the history; when a new bug gets fixed, the TDS
eeds to be updated and we need to re-train the classifier. How-
ver, while about 100 bugs are reported every day for large projects
ike Mozilla and Eclipse, less than 1 bug gets fixed every day, on
verage (Jeong et al., 2009). Since we use fixed bug reports only, if
e update the TDS overnight with the new fixed bug reports and

etrain the classifier, we can still achieve high prediction accuracies.

. Threats to validity

We now present possible threats to the validity of our study.

.1. Internal validity

In our study we collected bug reports from Bugzilla for both
clipse and Mozilla. Bug reports can have various status at a
iven point in time: “unconfirmed,” “new,” “assigned,” “reopened,”
resolved,” “verified,” and “closed”. A bug which has status resolu-
ion status as “fixed” can be either “verified” or “closed” at a given
oint. For our training and validation purposes, we look at bugs
hich have the resolution status as fixed irrespective of whether

t is “verified” or “closed”. We filter our data set to fixed bugs only
or the following reasons: (1) for bugs which are unconfirmed, it
s not possible to say if they are indeed bugs, (2) for new bugs it
s not known who the developer will be who will fix that bug and
ence these bugs cannot be used for training a supervised clas-
ifier where the end-result knowledge is necessary, (3) reopened

ugs are similar to new bugs and hence are not a part of our train-

ng/validation, (4) resolved bugs are those for which a resolution
as been provided by a developer but is still in the review process
hich implies that the bug might be re-assigned (or tossed) if the

0 5 10 15
20

40

60

80

100

Fraction of TDS(%)

P
re

di
ct

io
n

A
cc

ur
ac

y

Highest Prediction Accuracy

(a) Mozilla

Fig. 11. Change in prediction accuracy when using subsets of bug re
32.82 (−26.48) 27.15 (−32.15)
44.30 (−24.07) 32.49 (−35.88)
58.33 (−19.10) 39.47 (−37.96)

resolution is not satisfactory. For accurate supervised learning, we
need to ensure that the training set includes the correct expertise of
the developers. One potential threat to validity in our study is that
a bug B which has been fixed and closed can be reopened at a later
time. In that case developer D who earlier resolved bug B might not
resolve the issues with reopening the bug again and might affect
our classification results. However, it is impossible to predict what
percentage of currently-fixed bugs will be reopened in future and
quantify the effects of bug reopening on our results. Another poten-
tial threats to validity in our study is not differentiating between
bugs and enhancement requests.

6.2. External validity

Generalization to other systems. The high quality of bug reports
found in Mozilla and Eclipse Jeong et al. (2009) facilitates the use
of classification methods. However, we cannot claim that our find-
ings generalize to bug databases for other projects. Additionally,
we have validated our approach on open source projects only, but
commercial software might have different assignment policies and
we might require considering different attribute sets.

Small projects. We used two large and widely-used open source
projects for our experiments, Mozilla and Eclipse. Both projects
have multiple products and components, hence we could use this
information as attributes for our classifier and labels in our toss-
ing graphs. For comparatively smaller projects which do not have
products or components, the lack of product–component labels on
edges would reduce accuracy. Additionally, for smaller projects the

90-days heuristic we use for pruning inactive developers might
have to change. In the future when we analyze smaller projects, we
plan to empirically study the average lifetime of a developer for the
project to determine inactive and active developers. Nevertheless,

0 10 20 30
20

40

60

80

100

Fraction of TDS(%)

P
re

di
ct

io
n

A
cc

ur
ac

y

Highest Prediction Accuracy

(b) Eclipse

ports using Naïve Bayes classifier. (a) Mozilla and (b) Eclipse.

ystem

fi
w

6

i
i
i
b
p
f
t
t
f
E
b
t

6

e
a
W
t
m

n
o
s
n
s
t
a

i
v
o
s

7

i
f
t
o
a

m
w
l
c
f
B
t
p
c
r
t

p
e
w
p

P. Bhattacharya et al. / The Journal of S

ne-grained incremental learning and pruning inactive developers
ould still be beneficial.

.3. Construct validity

For the projects we used, we did not differentiate between var-
ous roles (e.g., developers, triagers, managers) contributors serve
n the project. Our approach neither divides contributors accord-
ng to the roles they play in the community, nor ranks them higher
ased on their familiarity with the source code. In the future, we
lan to include developer’s source code expertise in the future to
urther improve our ranking function. Additionally, it is not possible
o find out in our framework if the first developer who was assigned
he bug was a default assignee or assigned by the triager explicitly
or any projects. However, for the projects we chose—Mozilla and
clipse—developers were cc’ed by default when they are responsi-
le for a specific product or component, but they are not assigned
he bug by default for fixing it.

.4. Content validity

Information retrieval and learning tools. We used Weka for
xtracting relevant keywords after stop-word removal and tf-idf
s explained in Section 4.6. We also used the built-in classifiers of
eka and LibSVM for learning our model. Hence, another potential

hreat to validity is error in these tools or how changes in imple-
entation of these classifiers might affect our results.
Developer identity. The assignee information in Bugzilla does

ot contain the domain info of the email address for a devel-
per. Therefore, we could not differentiate between users with
ame email id but different domains. For instance, in our tech-
ique, bugzilla@alice.com, and bugzilla@bob.com will be in the
ame bucket as bugzilla@standard8.plus.com. This might poten-
ially lead to inaccurate predictions and decrease the prediction
ccuracy of our model.

Load balancing. Our technique does not consider load balanc-
ng while assigning bugs to developers. This is a potential threat to
alidity in the following sense: if our approach predicts that devel-
per D is the best match to fix a bug, he/she might be overloaded,
o assigning them another bug might increase the bug-fix time.

. Conclusions

Machine learning and tossing graphs have proved to be promis-
ng for automating bug assignment. In this paper we lay the
oundation for future work that uses machine learning techniques
o improve automatic bug assignment by examining the impact
f multiple machine learning dimensions – learning strategy,
ttributes, classifiers – on assignment accuracy.

We used a broad range of text classifiers and found that, unlike
any problems which use specific machine learning algorithms,
e could not select a specific classifier for the bug assignment prob-

em. We show that, for bug assignment, computationally-intensive
lassification algorithms such as C4.5 and SVM do not always per-
orm better than their simple counterparts such as Naïve Bayes and
ayesian Networks. We performed an ablative analysis to measure
he relative importance of various software process attributes in
rediction accuracy. Our study indicates that to avoid the time-
onsuming classification process we can use a subset of the bug
eports from the bug databases and yet achieve stable-high predic-
ion accuracy.

We validated our approach on two large, long-lived open-source

rojects; in the future, we plan to test how our current model gen-
ralizes to projects of different scale and lifespan. In particular we
ould like to find if the classifier preference should change as the
roject evolves and how source code familiarity of a developer
s and Software 85 (2012) 2275– 2292 2291

could be used as an additional attribute for ranking developers.
Similarly, when we assign tossing probabilities, we only consider
the developer who could finally fix the bug. However, it is common
that developers contribute partially to the final patch in various
ways. For example, when a bug is assigned to a developer, he might
provide insights and add notes to the bug report instead of actu-
ally fixing the bug; in fact, there are contributors who provide
useful discussions about a bug in the comment sections of a bug
report who are never associated with the fixing process directly.
These contributions are not considered in our ranking process,
though they would significantly help in understanding contributor
expertise and role in the software development community. Quan-
tifying how these useful insights (or contribution) can be attributed
towards the bug-fix based expertise of a contributor has the poten-
tial of further improving the triaging process. We also intend to test
our approach on proprietary software where developer expertise,
role, and contributions are more clearly defined.

Acknowledgement

This research was supported in part by NSF grant CCF-1149632.
We thank the anonymous referees for their helpful comments on
this paper.

References

Anvik, J.K., 2007. Assisting Bug Report Triage through Recommendation. Ph.D. Thesis.
University of British Columbia.

Anvik, J., Hiew, L., Murphy, G.C., 2006. Who should fix this bug? In: ICSE, pp. 361–370.
Bettenburg, N., Premraj, R., Zimmermann, T., Kim, S., 2008. Duplicate Bug Reports

Considered Harmful. . .Really? In: ICSM.
Bhattacharya, P., Neamtiu, I., 2010. Fine-grained incremental learning and multi-

feature tossing graphs to improve bug triaging. In: IEEE Conference on Software
Maintenance.

Boser, B.E., Guyon, I.M., Vapnik, V.N., 1992. A Training Algorithm for Optimal Mar-
gin Classifiers. In: Proceedings of the Fifth Annual Workshop on Computational
Learning Theory, pp. 144–152.

Bugzilla User Database, 2010. http://www.bugzilla.org/installation-list/.
C. time in cross validation, 2010. http://en.wikipedia.org/wiki/Cross-

validationstatisticsComputational issues.
Canfora, G., Cerulo, L., 2005. How software repositories can help in resolving a new

change request. In: Workshop on Empirical Studies in Reverse Engineering.
Canfora, G., Cerulo, L., 2006. Supporting change request assignment in open source

development. In: SAC, pp. 1767–1772.
Cubranic, D., Murphy, G.C., 2004. Automatic bug triage using text categorization. In:

SEKE.
Domingos, P., Pazzani, M., 1996. Beyond Independence: Conditions for the Optimal-

ity of the Simple Bayesian Classifier. In: Machine Learning, Morgan Kaufmann,
pp. 105–112.

EL-Manzalawy, Y., Honavar, V., 2005. WLSVM: Integrating LibSVM into Weka Envi-
ronment, Software available at http://www.cs.iastate.edu/yasser/wlsvm.

Hastie, T., Tibshirani, R., Friedman, J., 2009. The Elements of Statistical Learning: Data
Mining, Inference, and Prediction, 2nd ed. Springer.

Increase in Open Source Growth, 2009. http://software.intel.com/en-
us/blogs/2009/08/04/idc-reports-an-increase-in-open-source-growth/.

Jeong, G., Kim, S., Zimmermann, T., 2009. Improving bug triage with bug tossing
graphs. In: FSE.

Kohavi, R., 1995. A Study of Cross-Validation and Bootstrap for Accuracy Estimation
and Model Selection. Morgan Kaufmann.

Koller, D., Friedman, N., 2009. Probabilistic Graphical Models: Principles and Tech-
niques. The MIT Press.

Koskinen, J., 2003. http://users.jyu.fi/koskinen/smcosts.htm.
Lamkanfi, A., Demeyer, S., Giger, E., Goethals, B., 2010. Predicting the severity of a

reported bug. In: MSR, pp. 1–10.
Lin, Z., Shu, F., Yang, Y., Hu, C., Wang, Q., 2009. An empirical study on bug assignment

automation using Chinese bug data. In: ESEM.
Lucca, G.A.D., Penta, M.D., Gradara, S., 2002. An Approach to Classify Software Main-

tenance Requests. In: ICSM, pp. 93–102.
Manning, C.D., Raghavan, P., Schtze, H., 2008. Introduction to Information Retrieval.

Cambridge University Press.
Matter, D., Kuhn, A., Nierstrasz, O., 2009. Assigning bug reports using a

vocabulary-based expertise model of developers, MSR. http://dl.acm.org/

citation.cfm?id=1591148.

NIST, 2002. The economic impacts of inadequate infrastructure for software testing.
Planning Report.

Osuna, E., Freund, R., Girosi, F., 1997. An improved training algorithm for support
vector machines. In: IEEE Workshop on Neural Networks for Signal Processing.

http://www.bugzilla.org/installation-list/
http://en.wikipedia.org/wiki/Cross-validationstatisticsComputational_issues
http://www.cs.iastate.edu/yasser/wlsvm
http://software.intel.com/en-us/blogs/2009/08/04/idc-reports-an-increase-in-open-source-growth/
http://users.jyu.fi/koskinen/smcosts.htm
http://dl.acm.org/citation.cfm?id=1591148
http://dl.acm.org/citation.cfm?id=1591148

2 System

P

P

Q

S

S

W
W

Christian Shelton is an Associate Professor of Computer Science and Engineering
at the University of California, Riverside. He received his BS degree from Stanford
292 P. Bhattacharya et al. / The Journal of

latt, J.C., 1999. Fast training of support vector machines using sequential
minimal optimization. In: Advances in Kernel Methods: Support Vector
Learning.

odgurski, A., Leon, D., Francis, P., Masri, W., Minch, M., Sun, J., Wang, B.,
2003. Automated support for classifying software failure reports. In: ICSE,
pp. 465–475.

uinlan, J.R., 1993. C4.5: Programs for Machine Learning. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, ISBN 1-55860-238-0.

eacord, R.C., Plakosh, D., Lewis, G.A., 2003. Modernizing Legacy Systems: Software
Technologies, Engineering Process and Business Practices. Addison-Wesley,
ISBN 0321118847.
ommerville, I., 2004. Software Engineering, 7th ed. Pearson Addison Wesley, ISBN
0321210263.

eka Toolkit 3.6, 2010. http://www.cs.waikato.ac.nz/ml/weka/.
itten, I., Frank, E., 2005. Data Mining: Practical Machine Learning Tools and Tech-

niques, 2nd ed. Morgan Kaufmann.
s and Software 85 (2012) 2275– 2292

Pamela Bhattacharya is a PhD candidate in the Department of Computer Science
and Engineering at University of California, Riverside. Her research interests lie in
empirical software engineering and mining software repositories.

Iulian Neamtiu is an assistant professor in the Department of Computer Science
and Engineering at University of California, Riverside. He received his Ph.D. in Com-
puter Science from the University of Maryland at College Park. His research interests
include software engineering and programming languages.
and his PhD degree from MIT. His research concentrates in the area of statistical
machine learning and artificial intelligence.

http://www.cs.waikato.ac.nz/ml/weka/

	Automated, highly-accurate, bug assignment using machine learning and tossing graphs
	1 Introduction
	2 Related work
	2.1 Machine learning and information retrieval techniques
	2.2 Incremental learning
	2.3 Tossing graphs

	3 Preliminaries
	3.1 Machine learning for bug categorization
	3.1.1 Text classification algorithms

	3.2 Folding
	3.3 Goal-oriented tossing graphs

	4 Methodology
	4.1 Choosing effective classifiers and features
	4.1.1 Choosing the right classifier
	4.1.2 Feature selection

	4.2 Incremental learning
	4.3 Multi-featured tossing graphs
	4.3.1 Building multi-feature tossing graphs
	4.3.2 Ranking function

	4.4 Ablative analysis for tossing graph attributes
	4.5 Accurate yet efficient classification
	4.6 Implementation
	4.6.1 Developer profiles
	4.6.2 Classification
	4.6.3 Multi-feature tossing graphs
	4.6.4 Predicting developers
	4.6.5 Folding

	5 Results
	5.1 Experimental setup
	5.2 Prediction accuracy
	5.3 Tossing length reduction
	5.4 Filtering noise in bug reports
	5.5 Importance of individual tossing graph attributes
	5.6 Importance of incremental learning
	5.7 Accurate yet efficient classification

	6 Threats to validity
	6.1 Internal validity
	6.2 External validity
	6.3 Construct validity
	6.4 Content validity

	7 Conclusions
	Acknowledgement
	References

