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SUMMARY

Software evolution is a fact of life. Over the past 30 years, researchers have proposed hypotheses on how
software changes and provided evidence that both supports and refutes these hypotheses. To paint a clearer
image of the software evolution process, we performed an empirical study on long spans in the lifetime of
nine open-source projects. Our analysis covers 705 official releases and a combined 108 years of evolution.
We first tried to confirm Lehman’s eight laws of software evolution on these projects using statistical
hypothesis testing. Our findings indicate that only the laws of continuing change and continuing growth
are confirmed for all programs, whereas the other six laws are violated by some programs, or can be both
confirmed and invalidated, depending on the laws’ operational definitions. Second, we analyze the growth
rate for projects’ development and maintenance branches, and the distribution of software changes. We find
similarities in the evolution patterns of the programs we studied, which brings us closer to constructing
rigorous models for software evolution. Copyright © 2011 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Software continues to evolve long after the first version has been shipped. Numerous estimates indicate
that the costs associated with software maintenance and evolution range from 50 to 90 per cent of total
costs [21,40,9], whereas others place it at several times the cost of the initial software version [42]. As
yearly global software revenues have recently amounted to over $495 billion [41], any factor that can
reduce evolution costs is going to have a significant beneficial impact. To reduce software production
costs, both managers and developers must understand the factors that drive software evolution and take
proactive steps that facilitate changes and ensure that software does not decay.

We now have access to the repositories of large open-source applications with lifetimes that exceed
20 years. Our work leverages software evolution data contained in historic program versions and tries
to paint a clearer image of the software evolution process. To this end, we analyzed the complete
release histories of Bison, Bash, BIND 9, OpenSSH, Samba, SQLite, and Vsftpd, as well as the past
15 years of Sendmail and the past 5 years of Quagga. In total, our study covers 705 official releases
and over 108 years of cumulative program evolution.

In the first part of our paper, we set out to confirm whether existing software evolution models apply
to our test programs. In particular, we are interested in Lehman’s eight laws of software evolution. First
formulated in the early 1970s, in Belady and Lehman’s study on the evolution of OS/360 [3], these
laws essentially characterize the software evolution process as a self-regulating and self-stabilizing
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system, subject to continuing growth and change [23,24,26]. The laws are named after traits of the soft-
ware evolution process: “I - Continuing change,” “II - Increasing complexity,” “III - Self regulation,”
“IV - Conservation of organizational stability,” “V - Conservation of familiarity,” “VI - Continuing
growth,” “VII - Declining.

We use metrics derived from source code, project and defect information to operationalize each law
(e.g., analyze software growth, characterize software changes, and assess software quality), and
statistical hypothesis testing to verify whether the law is confirmed or not. For most laws, we used
multiple metrics to reduce threats to construct validity. The results of our study indicate that laws I
and VI are confirmed, whereas for the remaining six laws, we either found evidence to the contrary,
or a more precise operational definition is needed. We present details on our findings in Section 5.
To our knowledge, ours is the first study (outside of Lehman et al.’s work) to explicitly consider each
of the eight laws and test each law using a variety of measures on long spans of program evolution.
Moreover, we try to address a challenge mentioned by Lehman et al. [25], that is, separating the char-
acterizations of system growth and system change.

In the second part of the paper (Section 6), we present our own observations on how software
evolves, based on similarities in the evolution patterns of the programs we studied. In particular,
when analyzing both the development and maintenance branches for each application, we found
that, for those applications where the growth rate is super linear on the main development branch,
growth is at most linear on maintenance branches. When analyzing program changes at a fine-
grained level, we found that distribution of changes largely follows power laws, that is, the majority
of changes are concentrated to a small fraction of the source code. Finally, we found that changes to
interfaces are, on average, an order of magnitude less frequent than changes to implementation.

The remainder of the paper first puts our work in context by presenting related work (Section 2),
then presents an overview of the applications (Section 3) and the methodology—data collection,
metrics and hypothesis testing—we followed in our study (Section 4); next, we provide an
examination of Lehman’s laws (Section 5), offer some of our observations on software evolution
outside the framework of Lehman’s laws (Section 6), discuss possible threats to validity (Section 7),
and present several consequences for researchers and practitioners that emerge from our study
(Section 8).

2. RELATED WORK

Fernández-Ramil et al. [5] performed a meta-analysis on several empirical studies of how open-source
software evolves, and whether Lehman’s laws, derived from analyzing proprietary software evolution,
apply to open-source evolution. They concluded that three of Lehman’s laws (“I - Continuing change”,
“VI - Continuing growth”, and “VIII - Feedback system”) apply to open source software evolution,
whereas for the other laws, there is evidence to the contrary, or the laws are difficult to verify. Our study
also finds that laws I and VI apply to all the programs we examined, and that for some laws, there is
evidence to the contrary (or the law is difficult to verify); however, we could not confirm law VIII.

In a study similar to ours, Lawrence [22] analyzed the evolution of nine projects, four operating
systems and three batch processing systems, over 3–9 years. Their goal was to verify Belady and
Lehman’s evolution laws [3], that is, the first five laws in our study. Using metrics such as number
of modules, modules changed per release, and number of modification requests, their study found little
evidence in support of the laws, except for the first law, Continuing growth. They indicate that more
precise operational definitions for the laws are needed. We used a variety of metrics in an attempt to
improve the precision of these definitions. They concluded that, part of the reason why the laws cannot
be validated is the lack of precise operational definitions for “complexity” and “changes,” which leaves
it up to the designer of the study to come up with precise metrics for measuring these. Our study is
similar in that we studied large programs over a long time, and we found that some of the laws are
not validated. However, in addition to metrics on modules, we also use more fine-grained metrics
for measuring change (functions, types, and variables rather than the number of modules), which we
believe strengthens the results.
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Antoniol et al. [1] have studied the evolution of program lexicon (identifiers) and the evolution of
structural stability (based on similarity metrics for program entities). Their analysis covers Eclipse
(19 versions, 5 years), Mozilla (24 versions, 15 years), and CERN/Alice (13 versions, couple of years);
Eclipse is written in Java whereas the other two programs are in C++. They found, just like us, that
initial versions are more unstable and subject to changes of a large amplitude, but as software matures,
the number and amplitude of changes decrease.

German [8] used a thorough evolution analysis method to recover multi-faceted information on how
the Ximian Evolution mail client has changed over time. Their time span covers 1997–2003 (although
Ximian Evolution proper started in 2000). Their method looked at source code versions, CVS logs,
mailing list, and ChangeLog files. Just like us, they plot the number of files and LOC evolution; their
analysis reveals that Ximian Evolution grows at sub-linear rate. They also study howMRs were distrib-
uted across time, which MRs affect which modules, which developer contributes to which modules.
We studied ChangeLogs, but only to recover defect information, for example, number of bugs associ-
ated with each release. Our study is limited to validating Lehman’s laws, rather than aiming to be a
comprehensive recovery of all the software trails left during evolution.

Gyimóthy et al. [13] performed an empirical study on object-oriented software written in C++,
aimed to validate several hypotheses that link source code metrics for a class (e.g., number of member
functions, depth in the inheritance hierarchy, degree of coupling, degree of cohesion, lines of code) to
how fault-prone that class is. Their study was based on source code and bugs in Mozilla (June 2002–
June 2004). They found that high coupling, low cohesion, and high lines of code (LOC) for a class are
good predictors for high defect density in that class. Our work was focused on C, rather than C++, and
we did not aim to construct predictor model, hence we did not correlate coupling, cohesion, or LOC
with defects.

Herraiz et al. [17] have analyzed the evolution (LOC, number of changes, and number of files) for
3821 libre projects in SourceForge.net; median values for project age (last versus first commit) was
29months, median LOC was 21,168, and median number of files was 142. Their goal was to test
whether the evolution of libre projects is governed by self-organized criticality (SOC) dynamics, that
is, whether there are long-range correlations (persisting influences) in the time series of changes made
to each project. Their findings suggest that libre projects do not follow the SOC dynamics, but rather
the correlations are mostly short-term. The SOC hypothesis is somewhat similar to our test for Law
VIII (Feedback System), which we found did not hold. Their methods (time series) are different, they
have a breadth-oriented focus and a statistically sounder method (3821 projects); our study has a depth-
oriented focus (more metrics for nine long-lived projects).

In another work, Herraiz et al. [15] have tried to construct software evolution size predictor models
based on time series. They analyzed three large projects: FreeBSD (13 years, 1.4MLOC in the last
release), NetBSD (13 years, 2MLOC in the last release) and PostgreSQL (10 years, 290KLOC in the
last release). They show that a linear growth model, for example, Size (LOC) / days-since-inception
is very appropriate for these projects, similar to our findings for several projects (Section 6.1). They
show that predicting size using time series works better than predicting size using a linear model.

Kim et al. [20] analyzed the evolution of function signatures in seven large, long-lived C projects:
Apache 1.3 (9 years), Apache 2.0 (4 years), Apache Portable Runtime (6 years), APR Utility (6 years),
CVS (9 years), GCC (5 years), and Subversion (4 years). They introduced a taxonomy of possible sig-
nature changes to C functions, showed that complex type name changes are the most frequent kind of
signature change, and found evidence that signature changes induce bugs, more so than non-signature
changing changes. Just like us, they compute the body-to-signature change ratio and found this to be
between 3.5 and 14.9. For our projects, this ratio was higher, between 15.5 and 30.3, most likely
because we study projects long after they’ve matured, a period where signature change becomes less
frequent. Similar to us (Section 6.2), they compute the distribution of changes to function signatures
(we compute the distribution of changed to function bodies), and found this to be similar to a power law.

Fernández-Ramil et al. [4] studied the evolution of 11 large programs written in a variety of
programming languages: Blender (6 years), Eclipse (6.9 years), FPC (3.4 years), GCC (19.9 years),
GCL (8.8 years), GDB (9.5 years), GIMP (10.9 years), GNUBinUtils (9.4 years), NCBITools
(15.4 years), WireShark (10 years), and XEmacs (12.2 years). Their evolution metrics were LOC, num-
ber of files, committers-month, and number of distinct contributors. Their goal was to determine
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whether effort estimation, as computed by the COCOMO model, matches actual effort, as measured by
committers-month; it turns out it does not. In their study, they observe, just like us, that source code
size tends to increase over time, whether measured by LOC or number of files; they compute the
growth rate for number of files and found this to be sub-linear, linear, or super-linear, depending on
the project.

Kemerer and Slaughter [19] performed an evolution study by analyzing fine-grained changes (more
than 25,000 changes to a system about 3,800 modules over more than twenty years) to financial soft-
ware written in COBOL. Their study focused more on a taxonomy of changes (e.g., corrective, adap-
tive, perfective) whereas our study focuses on code metrics; technically, they collect some code-level
metrics but do not analyze the evolution of these metrics over time. Also, our analysis does not con-
sider individual commits, but rather official releases, because some code is never actually integrated.
Finally, we studied programs written in C because a large base of long-lived open-source software is
written in C.

Wu and Holt [46] used a linker-based analysis method to study the evolution of PostgreSQL (85
versions, 7 years) and the Linux kernel (368 versions, 7 years). They employed metrics similar to ours
(common couplings, calls per function, functions additions/deletions, references to global variables)
and found that the two systems clearly observe the laws of continuing growth and continuing change.
Whereas PostgreSQL shows signs of increasing complexity, for Linux, the results were inconclusive.
Whereas one of their systems (the Linux kernel) was larger than any of the programs we analyzed, we
used a larger variety of programs, with longer release histories, which can provide additional insights
and a broader perspective. Also, our study tries to verify all Lehman’s laws.

Izurieta and Bieman [18] examined 8 years in the lifetime of FreeBSD and 11 years in the lifetime of
Linux, but they separate their analysis into stable and development branches. Their conclusion is that
growth on individual branches is at most linear, but when considering multiple branches, growth can
appear super-linear as a result of abrupt transitions between the size of a development (or stable)
branch and the size of the branched it forked off from. We provide further support for their conclusion.

Godfrey and Tu [10] examined the evolution of the Linux kernel between 1994 and 2000, compris-
ing 96 releases. Their study used LOC as a metric, and focused on the growth of the kernel, as well as
the growth rates of individual subsystems. Their conclusion, just like ours, is that Lehman’s fourth law
(invariant work rate) does not hold of open-source software; in particular, they found Linux’s size to
grow quadratically with time. Just like us, they used LOC to measure growth, rather than the number
of modules (the measure used by Lehman et al.) because there is a lot of variation between module
sizes, and using LOC captures intra-module growth. Just like us, they use time on the x-axis rather than
version number. Our approach differs in that we also looked at system change in terms of program ele-
ments, that is, functions, types and variables, which we believe can provide additional insights. Their
study can provide better insights about growth of large programs (the Linux kernel in their study grew
from 200 kLOC to more than 2000 kLOC) whereas we studied nine smaller programs, the largest of
which grew to about 1000 kLOC.

Scacchi [39] first surveys the existing literature on evolution of free/open-source software (FOSS),
then examines how each of Lehman’s laws fares in relation to FOSS evolution, and finally outlines
possible future directions. The conclusions drawn in their work are consistent with our findings: it is
harder to validate Lehman’s laws on FOSS than on the commercial software on which they were for-
mulated. This difficulty has multiple causes: (i) the variety of change patterns observed in FOSS evo-
lution; (ii) imprecise operational definitions for metrics, for example, complexity, activity rate, or
quality; and (iii) fundamental differences in development philosophy and incentives when comparing
commercial development subject to market forces versus FOSS development. Our work addresses
some of the questions and future work challenges outlined in their paper.

Gall et al. [7] studied the evolution of a 10-MLOC telecommunication switch software over 20
releases and 21months. They found that system size, in a number of modules, grows linearly, but
modules exhibit vastly different growth rates; in particular, one module grows at a much higher rate
than others, which is masked when looking at the whole system. This underscores the importance of
studying the evolution of individual modules, an aspect we plan to consider in future work.

Paulson et al. [35] compared the evolution of three open-source programs (Apache, Linux kernel,
and GCC) with those of three closed-source (commercial) programs. Although not explicitly
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mentioned, the evolution time frame for each program seems to be at most 5 years. They found the
growth of each project to be linear when studying major releases only, and using LOC and number
of functions as size metrics. Our study reaches a different conclusion (super-linear growth rate) albeit
for different projects and by analyzing all the releases; this suggests that more studies are needed. They
also found that, for the projects they analyzed, the complexity of the open-source software projects was
higher than the complexity of closed-source software.

Grechanik et al. [12] have conducted a 32-question empirical investigation on 2080 randomly
chosen Java projects from Sourceforge; they pose four software evolution research questions (number
of versions, number of fields/methods/classes added or deleted), and 28 research questions on non-
evolutionary aspects (e.g., class metrics, use of language constructs, inheritance hierarchies). Their
evolution study spans 2427 versions (on average 1.5 versions per application), so it has more breadth
and less depth than our study. Their Java-programs findings are similar to our C-programs findings,
and indicate that Java applications tend to add fields/methods/classes more than they delete them.

Our own prior work [32] presents the implementation of ASTdiff (an AST differencing tool for C)
as well as results of running a small-scale evolution study on several open-source programs: first
5 years in the lifetime of OpenSSH, first 3 years of Vsftpd, and several snapshots of BIND, Apache,
and the Linux kernel. The main goal of that work (as with other AST differencing tools [6]) was to col-
lect and classify source code changes. The scope of our current work is a multi-faceted empirical evo-
lution study, hence much broader. We look at much more data (108 years vs 15 years in that study), we
analyze many more software aspects (e.g., metrics for growth, complexity), and we draw conclusions
based on a more rigorous statistical analysis.

3. APPLICATIONS

We ran our empirical study on nine open-source applications written in C. We used several criteria for
selecting our test applications. First, because we are interested in long-term software evolution, the
applications had to have a long release history (5+ years, although some of our programs have in
excess of 10 years’ worth of releases). Second, applications had to be sizable, so we can understand
the issues that appear in the evolution of realistic, multi-developer software. Third, the applications
had to be actively maintained (e.g., several major releases in the last year we considered).

Table I presents high-level data on application The second column contains the number of official
releases for each program, whereas the rest of the columns present information (version, date, size in
LOC, and size in number of modules) for the first and last releases.

We aimed at analyzing complete lifespans for each application. For two applications, Sendmail and
Quagga, however, their initial versions are old and could not be analyzed (pre-process or compiled)
with our tools, because they use antiquated headers, libraries, or they rely on old versions of GCC.

Table I. Application information.

Program Releases

First release Last release

Version Date Size Version Date Size

LOC Modules LOC Modules

Bash 19 1.14 06/1994 36,351 65 4.1 12/2009 93,506 136
BIND 168 9.0.0b1 02/2000 169,306 179 9.6.1b1 03/2009 321,689 249
Bison 33 1.00 05/1988 6873 17 2.4.3 08/2010 41,165 80
OpenSSH 78 1.0pre2 10/1999 12,819 34 5.2p1 02/2009 52,284 106
Quagga 29 0.96 08/2003 41,623 45 0.99.11 09/2008 47,511 52
Samba 89 1.5.14 12/1993 5514 2 3.3.1 02/2009 1,045,928 479
Sendmail 57 8.6.4 10/1993 25,912 30 8.14.4a 01/2009 87,842 98
SQLite 172 1.0 08/2000 17,273 14 3.6.11 02/2009 65,108 59
Vsftpd 60 0.0.9 01/2001 6774 23 2.1.0 01/2009 15,711 38
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We now provide an overview of each application; in each case, we identify the main program in that
application’s distribution that constitutes the focus of our study (the rationale for focusing on the main
program is described in detail in Section 4).

Bash is the popular Unix shell. According to its change log, the first release available on FTP
was 1.14.0 (June 1994). We analyzed its entire lifetime. The Bash source distribution includes the
readline library, but we omitted this library, as it is also distributed separately from Bash, so we
did not consider it an integral part of the shell.

BIND is the leading DNS server on the Internet; we analyzed the main server program in the
distribution, called named. According to its official history (https://www.isc.org/software/bind/his-
tory), BIND development goes back to the early 1980s, with BIND 8, now deprecated, being the last
major line of development. The current line, BIND 9, is a major rewrite. We analyzed all the BIND 9
versions.

Bison is the GNU parser generator. Bison had the longest lifetime across all the programs we
analyzed, more than 22 years. We analyzed its entire lifetime, from version 1.00 to 2.4.3.

OpenSSH is the standard open-source suite of the widely used secure shell protocols. The suite
contains a server, called sshd, and various clients and utilities. In our study, we focused on sshd.
The first official release we could find was 1.0pre2, dating back to October 1999. Since then,
OpenSSH has grown more than fourfold, from 12,819 LOC to 52,284 LOC over 78 official releases.

Quagga is a tool suite for building software routers that support the RIP, OSPF, and BGP protocols
on top of IPv4. Quagga started as a fork of the existing Zebra routing software. Whereas the suite
contains several executables (protocol daemons), we focused on the main server, called quagga. Sim-
ilar to Sendmail, we had to stop our analysis at version 0.96 (Aug. 2003) because of configuration and
pre-processing problems with earlier versions.

Samba is a tool suite that facilitates Windows-UNIX interoperability. According to its change log
and history files, initial development for the program that would eventually become Samba was on
and off between Dec. 1991 and Dec. 1993. However, the first officially announced release, then
called “Netbios for Unix” was version 1.5.00, on 1 Dec. 1993. The first official release we could
find was 1.5.14, dated 8 Dec. 1993. We analyzed 89 official releases of Samba’s main program (the
SMB server). As shown in Table I, over the past 15 years, the server grew from 5514 LOC to more than
1,000,000 LOC.

Sendmail is the leading email transfer agent today; we analyzed the main server, sendmail.
Whereas its initial development goes back to the early 1980s, we had to stop at version 8.6.4 (Oct.
1993) because of configuration and pre-processing problems associated with 17-year-old software.

SQLite is a popular library implementation of a self-contained SQL database engine. While intended
to be used as library, it also ships with a “shell” that can be used for command–line interaction.
Therefore, we analyzed the evolution of the standalone SQL server that consists of merging the shell
and the library. Starting from its initial version, 1.0 (Aug. 2000), comprising 17,723 LOC, SQLite
has grown to 65,108 LOC in version 3.6.11 (Feb. 2009).

Vsftpd stands for “Very Secure FTP Daemon” and is the FTP server in major Linux distributions.
The source package only contains the daemon (main program) itself. The first beta version, 0.0.9,
was released on 28 January 2001.

As we can see in Table I, excepting Quagga, all programs have grown considerably relative to their
initial versions.

4. METHODOLOGY

4.1. Data collection

For each application, we followed the same procedure. We first downloaded all publicly available
official releases, starting with the most recent one and going back as far as we could. We then
configured and preprocessed the main program in each release, excluding test programs, or, for server
programs, various clients that ship with the server. Finally, we “merged” all the source code that goes
into building the program into a single .c file, using the CIL merger tool [34], however retaining
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module information. This strategy ensured that we focused on the evolution of one self-contained,
standalone program. Note that the LOC numbers in Table I show the source code size for the pro-
gram we analyzed, rather than LOC for the entire application. The LOC numbers for the entire appli-
cation (e.g., including clients or testing infrastructure) are certainly larger, but they do not constitute
our focus, and we do not present them here. We tried to keep the configuration (compiler flags, module
options) consistent from version to version. For each version, we made sure we could compile and link
the program. We separated overlapping versions that occur because of parallel evolution (the develop-
ment branch versus maintenance branches), and always considered the development versions for our
analysis; however, we do an analysis of growth rate on parallel evolving branches in Section 6.1.

4.2. Metric value computation

We ran two source code analysis tools, ASTdiff and RSM, to compute metric values on the program’s
evolution. ASTdiff is a tool we developed that compares C programs by matching their abstract syntax
trees. ASTdiff collects a variety of change metrics, for example, changes to types, global variables,
function signatures and bodies. Whereas the core algorithm and some case studies are presented in
our previous work [32], for this work, we enhanced ASTdiff to support collecting information about
code complexity (e.g., common coupling, function calls per function) and modules. Resource Standard
Metrics [38]) is a commercial tool that we used for computing cyclomatic complexity.

4.3. Hypothesis testing

We used statistical hypothesis testing to validate our analyses and the conclusions we draw. We
performed four kinds of statistical analysis, depending on the nature of each hypothesis:

• Increase/decrease test: To test whether a certain metric grows (or decreases) over time, we per-
form a univariate linear regression where the dependent variable is the metric value for a release.
The independent variable is the number of days since the beginning of the project for that release,
or the release sequence number, depending on the particular law we are testing. We then test the b
(slope) of the regression; the increase (or decrease, respectively) hypothesis is validated if b> 0
(and b< 0, respectively) and p-value < 0.05.

• Non-zero test: To test whether a certain metric distribution has non-zero values, we perform a one-
sample t-test where the specified value is 0; here our null hypothesis is that the distribution has a
mean equal to 0; if we are able to reject the null hypothesis (p-value < 0.05), our conclusion is that
the distribution has non-zero values.

• Invariance test: As some laws stipulate that a certain metric is invariant over time, we test the
invariance hypothesis using Levene’s test for equality of variance in two samples: one sample
contains the actual metric values for all releases, the other sample has the same mean, size, and
no variance, that is, all elements are equal to the mean of the first set; we confirm the hypothesis
if Levene’s test returns that the two sets have equal variance (i.e., values in the first set are
statistically invariant) and p-value < 0.05.

• Non-linear growth test: To test whether a certain metric has a non-linear growth model, (e.g., that
LOC is proportional to the square root of time since first release) we perform a univariate linear
regression where the dependent variable is the metric value for a release (e.g., LOC), and the
independent variable is the growth model (e.g., square root of time, where time is the number of days
since the beginning of the project for that release). The hypothesis is validated if p-value < 0.05.

The data sets we collected for this study, that is, the results of all analyses, metric values, sources for
figures, are available online at http://www.cs.ucr.edu/neamtiu/lehman-data.

5. LEHMAN’S LAWS OF SOFTWARE EVOLUTION

As explained in our comparative analysis in Section 2, the main contribution of our study is that we
investigate all eight of Lehman’s laws, and, to increase construct validity, we use multiple metrics
for each law. In Table II, we summarize the findings of our examination; the first two columns contain
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the laws, the third column shows the hypothesis ID and metrics that we used for each law, and the
remaining columns show whether, for a specific metric and a specific application, the law is confirmed
(“Y”) or not (“N”); by “confirmed,” we mean the law is validated according to the statistical hypothesis
testing procedure described in Section 4. We could only validate laws I and VI on all applications. The
remaining laws are not necessarily contradicted; rather, more precise definitions are needed, or the laws
do not apply in the context of open-source development, as we shall explain in the remainder of this
section.

We now proceed to presenting, for each law, a detailed account of the hypotheses and metrics we
used, and our observations on whether the law is validated, invalidated, or a more precise definition
is needed.

5.1. Continuing change

The first law postulates that a program must continually adapt to its environment, otherwise, it becomes
progressively less useful [24]. All our projects are widely used and actively maintained, so if the law
holds, we should observe that programs are continually undergoing change. To characterize change,
prior approaches have used the number of modules handled in each release [3,22,7], system and
module size [25,18,10], function modifications, and complexity [35]. As a metric for this law, we
use the cumulative number of changes to program elements (i.e., functions, types, and global variables).
Therefore, our hypothesis is:

Hypothesis (H1): cumulative number of changes to program elements in each release is non-zero.

As shown in Table II, we could validate this hypothesis for all applications (using the non-zero test
described in Section 4). To illustrate program change over time, in Figure 1 we present the cumulative
number of changes over the lifetime of Samba (more than 15 years). The “modification” graph shows
the cumulative number of changes to function bodies and signatures, type definitions, as well as
changes to global variable types and definitions. The “addition” graph shows the cumulative number
of function, types, and global variables added to the program. Finally, the “deletion” graph shows
the cumulative number of function, types, and global variables deleted from the program.

Figure 2 shows how Samba changes are split among functions, types, and global variables, for each
release. We found that the majority of changes are made to functions, a reason why other researchers
only consider functions when presenting system change and growth [35,7]. To save space, we only
present these graphs for Samba; however, the trends are similar for the other programs; the interested
reader is referred to our online data repository (Section 4).

We make several observations on how the nine programs have changed over time. First, the figure
clearly shows that applications continue to change over time; in fact, the total number of changes (not
pictured) is the sum of the three graphs for each application. Whereas the rate of change subsides for
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Figure 1. Samba: cumulative changes.
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later versions, this only shows that change happens at a slower pace. Second, we observe that additions
are more common than deletions, a factor that will help us test the “continuing growth” law later on, in
Section 5.6. Third, changes to interfaces are much less frequent than changes to implementation, an
aspect we will return to in Section 6.3.

Therefore, we conclude that Lehman’s first law is confirmed for our test programs.

5.2. Increasing complexity

The second law postulates that as a program evolves, its complexity increases, unless proactive
measures are taken to reduce or stabilize the complexity [24].

In an early work by Lehman [3], complexity was defined as the percentage of modules handled
relative to the total number of modules; Lawrence [22] uses this definition, as well as programmer
productivity. Later work by Kemerer and Slaughter [19] suggests normalized cyclomatic complexity
by LOC as a metric, Paulson et al. [35] use average function complexity, whereas Wu and Holt [46]
employ metrics such as function calls per function and common coupling. To reduce the threat of
construct validity, we measure complexity using the average number of function calls per function,
McCabe’s cyclomatic complexity, and common coupling. For the latter two metrics, we use both
absolute and normalized values; the normalized values are computed by dividing the absolute values
by the number of possible couplings between modules, that is, N(N� 1)/2 where N is the number of
modules in that version. Therefore, our hypotheses are:

Hypothesis (H2a): average number of calls per function decreases over time.

Hypothesis (H2b): absolute cyclomatic complexity decreases over time.

Hypothesis (H2c): normalized cyclomatic complexity decreases over time.

Hypothesis (H2d): absolute common coupling decreases over time.

Hypothesis (H2e): normalized common coupling decreases over time.

For all hypotheses, H2a�H2e, we used the increase test described in Section 4, that is, b> 0. As
shown in Table II, the results differ among applications. In addition to Y/N results, in Table III we
present the outcome of our linear regression (slope and p-value) where the independent variable is
the number of days since the initial release, and the dependent variable is the value of each complexity
metric. In several places, p-values above our 0.05 threshold prevent us from validating the law.
Regarding function calls per function, for those programs where the p-value is low, for example,
BIND, OpenSSH, Sendmail, SQLite and Vsftpd, we observe both negative and positive bs, which

Table III. Slope and p-values showing how program complexity changes over time; p-values less than 0.001
are represented as “0”.

Program

Calls per function
(average)

Cyclomatic complexity Common coupling

Absolute Normalized Absolute Normalized

b p-val. b p-val. b p-val. b p-val. b p-val.

Bash �2.1e-5 0.567 0.15 0 �3.0e-4 0.001 0.078 0 �6.7e-6 0
BIND 1.7e-4 0 0.39 0 �3.6e-4 0 0.16 0.001 �5.2e-7 0
Bison �2.2e-4 0.035 0.01 0 5.8e-4 0.002 0.028 0 �1.6e-5 0
OpenSSH �1.1e-3 0 0.26 0 7.7e-4 0 0.17 0 �1.3e-5 0
Quagga �2.8e-4 0.003 0.13 0 2.6e-4 0.652 0.044 0 4.4e-6 0
Samba �9.1e-5 0.137 1.89 0 �1.5e-3 0 0.67 0 �3.6e-5 0
Sendmail �6.7e-4 0 0.12 0 �3.7e-5 0.367 0.17 0 �3.5e-5 0
SQLite �1.6e-03 0 0.36 0 3.6e-3 0 0.12 0 �1.6e-5 0
Vsftpd 6.4e-4 0 0.07 0 �4.0e-3 0 0.025 0 �2.9e-5 0
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suggests both decreasing and increasing trends. Unsurprisingly, we found that the absolute values for
cyclomatic complexity and common coupling increase, because program size increases. However,
when normalizing common coupling by the number of possible couplings between modules, we get
the negative b values in column 10, which suggests that the relative complexity of our test programs
(as measured by common coupling) decreases.

Lawrence [22] was the first to point out the necessity of a precise operational definition for testing
this law, as, even with commit logs or release notes at hand, it is hard to pinpoint those efforts specif-
ically meant to reduce complexity. In prior work focused entirely to understanding how software
complexity changes over time [43], we showed that programmers rarely take steps meant to reduce
code complexity; rather, complexity-reducing releases are a by-product of large-scale architectural
changes or re-engineering. Moreover, we found that mean module size—an additional complexity
metric we used in our related work but not presented here [43]—displays increasing trends as well,
for the programs studied.

Therefore, our conclusion is that, as long as complexity appears to increase (which is not the case for
all of our test applications), the software structure appears to be deteriorating. The solution would be to
provide more precise operational definitions for this law, that is, measures of complexity and
identification of complexity-reducing steps.

Because complexity does not appear to always increase over time, our study suggests that this law is
not confirmed for all of our test applications.

5.3. Self-regulation

Lehman et al. [25] suggest that the evolution of large software systems is a self-regulating process, that
is, the system will adjust its size throughout its lifetime. This translates to observing “ripples”—small
negative and positive adjustments—in the growth trend of a system. To verify this law, we analyzed
the incremental module growth and function growth for each system. Therefore, our hypotheses are:

Hypothesis (H3a): number of releases with negative adjustments to number of modules is non-zero.

Hypothesis (H3b): number of releases with negative adjustments to number of functions is non-zero.

In Table II, we present the hypothesis testing results (via the non-zero test) for each program; in
Table V, we present the exact number of shrinking releases (i.e., releases that have negative adjust-
ments). We also present a visual assessment of incremental module growth: Figure 3 shows the module
increment on the y-axis, whereas the x-axis is release number, for each program. We observe that the
aforementioned ripples exist indeed, and positive adjustments are more frequent than negative adjust-
ments, for all programs but Vsftpd. The same behavior is observed when considering the number of
functions as metric for system size, but in this case, the only program the law was not confirmed on
was Quagga. Note that the reason Vsftpd and Quagga do not abide by this law is the absence of
negative adjustments in number of modules or number of functions.

Therefore, we conclude that the law of self-regulation is not confirmed for all our test programs.

5.4. Conservation of organizational stability

This law, also known as “invariant work rate,” stipulates that the rate of productive output tends to stay
constant throughout a program’s lifetime. Lehman et al. [25,24] point out the importance of finding
accurate metrics for work rate, especially for large projects where communication costs are high. They
suggest [25] using the number of changes per release as possible work rate indicator, but leave this to
future work. Therefore, we analyze the programs using three definitions for work rate: (i) the average
number of changes per day, that is, for each release i, we divide the total number of changes introduced
in i by the number of days between release i-1 and i (which has the advantage of being invariant to
release intervals); (ii) change rate [7], that is, the number of function changes divided by the total
number of functions; and (iii) growth rate, that is, the number of function additions divided by the total
number of functions.
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Therefore, our hypotheses are:

Hypothesis (H4a): average number of changes per day is invariant.

Hypothesis (H4b): change rate decreases over time.

Hypothesis (H4c): growth rate decreases over time.

We tested H4a using the invariance test described in Section 4; for H4b and H4c we used the decrease
test, i.e., b< 0. We found that H4a is not confirmed, i.e., work rate is not invariant. We also found that
H4b and H4c are not confirmed, that is, the change and growth rates do not subside (for an example, see
Samba’s rates in Figure 4), which suggests larger efforts as programs grow. Intuitively, these trends
make sense because the programs are open source, and the number of developers tends to increase over
a program’s lifetime [29]. Note that, in accordance with Lehman’s original formulation, we are com-
puting the per-project work rate, rather than the per-developer work rate—the invariant work rate
law, in its original version, was formulated in the context of commercial software development with
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presumably limited resources and a constant team size. Computing the per-developer work rate would
require computation of, and normalization by, developer activity.

Because our domain is open-source software development with increasing team sizes, the fact that
this law does not hold is not surprising.

5.5. Conservation of familiarity

This law suggests that incremental system growth tends to remain constant (statistically invariant) or to
decline, because developers need to understand the program’s source code and behavior. A corollary is
often presented, stating that releases that introduce many changes will be followed by smaller releases that
correct problems introduced in the prior release, or restructure the software to make it easier to maintain [25].

Prior work by Lawrence [22] used the net module growth as a metric and found the growth to be
statistically random; we used this as a first metric. A second metric we used was the growth rate,
expressed as the percentage of new functions added to a release. The third metric we used was the total
number of changes to program elements (i.e., changes to functions, global variables and types), to be
able to capture finer-grained changes that do not result in an increasing or decreasing number of
modules. Therefore, our hypotheses are:

Hypothesis(H5a): net module growth is invariant.

Hypothesis (H5b): function growth rate decreases over time.

Hypothesis (H5c): number of changes decreases over time.

We tested H5a using the invariance test described in Section 4; for H5b and H5c, we used the
decrease test, that is, b< 0. We found that none of these hypotheses, H5a�H5c, are confirmed. As
mentioned in Section 5.3, the net module growth for our programs, shown in Figure 3, is neither invariant
nor decreasing. The “function additions” graph in Figure 4 illustrates that the growth rate does not sub-
side. In Figure 5, we plot the total number of changes against release number for Sendmail; we omit
showing this kind of graph for other applications, but the trends are similar across all programs (indeed,
we find that releases containing many changes tend to be followed by smaller releases). However, we
could not detect any decrease in incremental absolute growth. For some programs, this is a by-product
of super-linear growth, as we will discuss in detail in Sections 5.6 and 6.1.

To conclude, the conservation of familiarity law is not confirmed for all our test programs.

1.5.27 2.2.3 3.2.8
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Figure 4. Change and growth rates for Samba.
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5.6. Continuing growth

This law stipulates that programs usually grow over time to accommodate pressure for change and
satisfy an increasing set of requirements. In previous work, different research teams have used
different metrics for measuring system size and growth. Lehman et al. [25,23], Lawrence [22], and
Gall [7] have used a number of modules to quantify program size and measure growth. Paulson
et al. [35], Godfrey and Tu [10], Fernández-Ramil et al. [4], and Izurieta and Bieman [18] have used
LOC. We use both these metrics, plus the number of definitions.

Lines of code is a widely used metric for program size; it has the advantage that it accounts for
varying module sizes and captures intra-module growth. Figure 6 shows the evolution (in kLOC) of
our applications; each point in the graph corresponds to an official release. When computing LOC,
we excluded comments, empty lines, #pragmas containing line number information, and so on,
and only kept actual code.

To determine a size evolution model for each application, we used fitting to construct growth trends
using the following formula:

Size xð Þ ¼ axn þ b

where x is the number of days since the project started and Size(x) is the application size, in LOC. In
Table IV, we present both the n and the goodness of fit, R2; we omit as and bs for brevity. For example,
Bash’s growth is best approximated by the equation:

Size xð Þ ¼ ax0:368 þ b

For BIND and Samba, because of parallel evolution, we show the trends for the development
branch, “dev.” (our focus), and branches, such as 9.1.X and 2.2.X; the reader can ignore the branch
data for now; we will come back to it in Section 6.1. We can see from the table that all programs
except Bison and Samba have sub-linear growth models (although we explain in Section 6.1 why
we believe BIND’s evolution consists of two segments, one of which is super-linear).

Number of modules was a metric originally used by Lehman et al. when formulating the continuing
growth law; hence, we also analyzed the growth of each program in terms of number of modules. We
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have already covered module growth in Section 5.3; Figure 3 presents the incremental module growth
for each release. The number of modules shows a generally increasing trend, with some exceptions, as
detailed next.

Number of definitions. This metric characterizes program evolution in terms of how the total
number of program elements (types, global variables, and functions) changes over time. For
example, in Figure 1, we can observe system growth because the cumulative number of additions
grows faster than the cumulative number of deletions.

Therefore, our hypotheses are:

Hypothesis (H6a): LOC increases over time.

Hypothesis (H6b): number of modules increases over time.

Hypothesis (H6c): number of definitions increases over time.

For each hypothesis, we used the increase test described in Section 4 and found that the hypotheses
are confirmed for all programs (Table II).

We also computed, for each program, the number of releases (called “shrinking”) that violate this
law, that is, the number of releases that have a smaller LOC/number of modules/number of
definitions than their immediate preceding release. Table V presents our findings. We can see that
the only programs abiding by this law (number of shrinking releases equals 0) are Bash for LOC,
Vsftpd for number of modules, and Quagga for number of definitions.

To understand why the law of continuing growth is violated in several releases, we have manually
analyzed (source code, change logs) some of these shrinking releases. We have found that, in several
instances, a new release is slightly smaller than the previous release as a result of minor cleanups [43].
The only major drop was in the transition from BIND 9.1.0 to 9.2.0a1; the program shrank consider-
ably, from 254 kLOC to 206 kLOC, because the developers completely rewrote two components, the
OMAPI protocol handler and the configuration parser. Another example is Quagga: in the transition
from version 0.96.5 to 0.97.1, Quagga sheds 3000 LOC as a result of the elimination of debugging
statements.

In summary, we found that the law of continuing growth is confirmed for all our test programs.

5.7. Declining quality

This law stipulates that over time, software quality appears to be declining, unless proactive measures
are taken to adapt the software to its operational environment. To understand how software quality
changes as software evolves, we use both internal and external quality metrics.

Table IV. Growth model coefficients.

Program n R2

Bash 0.368 0.908
BIND
dev. 0.251 0.828
9.1.X 0.214 0.755
9.2.X 0.127 0.754
9.3.X 0.184 0.831
Bison 1.649 0.938
OpenSSH 0.432 0.987
Quagga 0.063 0.190
Samba
dev. 2.335 0.978
2.2.X 0.794 0.796
3.0.X 1.036 0.978
Sendmail 0.559 0.960
SQLite 0.348 0.977
Vsftpd 0.367 0.948
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External quality refers to users’ perception and acceptance of the software. To quantify perception
and acceptance, we rely on the number of defects as a proxy for external quality—an alternative would
be conducting interviews with the users of the applications and measuring how their perception and
acceptance have changed over time. Note that using the number of defects as external quality proxy
threatens construct validity, because a rise in the number of bugs does not necessarily mean a decline
in quality—rather, it could be caused by an increased user base, hence an increased number of testers
and bug reporters.

Three of our programs (OpenSSH, Samba, and Quagga) use Bugzilla as their defect tracking
system. For each version, we retrieved the Bugzilla data and classified bugs into defects, as
described next. To avoid counting spurious defects, we only considered those bugs whose statuses
are “verified,” “assigned,” or “closed,” because these have been confirmed by developers. For the
defects whose status is “closed,” we only consider those marked as “to be fixed,” “fix later,” or
“won’t fix” (i.e., the bug manifestation is caused by bugs in other system components). SQLite has
its own, custom, ticket tracking system; to identify defects, we considered the tickets tagged
“Active,” “Fixed,” “Tested,” or “Deferred”. Bash, Bison, Vsftpd, Sendmail, and BIND do not have
dedicated defect tracking systems; therefore, for these programs, we had to manually inspect their
release notes/change logs and count the number of defects for each version.

With the defect information in hand, we used several metrics for measuring the external quality of a
release. The first metric, the number of known defects associated with a certain release, is shown in
Figure 7 (Sendmail is in Figure 8). The only consistent trend across all applications was that major
releases tend to have a relatively high number of defects, and the minor releases that succeed them
eliminate a certain number of these defects. However, when adjusting for program size, as described
next, all programs show increasing quality.

Another external quality metric is defect density, which we illustrate with Sendmail in Figure 8. We
computed defect density for each release i using the standard definition, Defectsi/LOCi, and found that
it decreases for all programs. When using a defect density definition suggested by Mockus et al. [29]
that eliminates bias against new, untested code, (Defectsi/Changesi), we found the same decreasing
trend.

As a proxy for defects, Paulson et al. [35] use the percentage of functions whose bodies have
changed—the rationale being that over time, as defects are found and fixed, less and less functions
need to change. We computed this percentage (change rate) for each release, as discussed in Section
5.4. For Samba, the evolution of this ratio is illustrated in Figure 4; graphs for the rest of the programs
show a slightly declining ratio. Note that Paulson et al. [35] have found that this ratio declines for the
open-source programs they analyzed (Linux, Apache, and GCC).

Internal quality Whereas many metrics have been proposed for assessing internal quality, we limit
our study to a characterization of software complexity. Because complex software is difficult to
change/extend and is prone to errors [28,13], we are trying to find out if the software’s internal quality
is declining by measuring how its complexity changes over time. In Section 5.2, we showed that
absolute values for complexity tend to increase, whereas normalized values decline.

Table V. Number of shrinking (smaller than their predecessor) releases.

Program

Metric

LOC Modules Definitions

Bash 0 2 1
BIND 12 1 4
Bison 4 2 4
OpenSSH 13 2 6
Quagga 6 2 0
Samba 4 4 4
Sendmail 0 2 5
SQLite 18 2 10
Vsftpd 5 0 6
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Therefore, our hypotheses are:

Hypothesis (H7a): number of defects increases over time.

Hypothesis (H7b): defect density (by LOC) increases over time.
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Figure 8. Defects and defect density for Sendmail.

2.05b1.14.0 4.1
0

200

400

600

1.00

9.0.0b2 9.3.0beta2 9.6.0t-P1
0

20

40

1.30 2.4.3

0

100

200

300

1.0 3.4p1 5.1p1
0

10

20

30

0.96 0.98.0 0.99.11
0
2
4
6
8

1.9.17 3.0.6 3.2.8
0

50

100

2.4.4 3.1.5 3.6.11
0

20
40
60
80

100

0.0.12 1.1.3 2.1.0
0

10

20

30

Figure 7. Defects (number of bugs) associated with each release.

TOWARDS A BETTER UNDERSTANDING OF SOFTWARE EVOLUTION 209

Copyright © 2011 John Wiley & Sons, Ltd. J. Softw.: Evol. and Proc. 2013; 25:193–218
DOI: 10.1002/smr



Hypothesis (H7c): defect density (by ΔLOC) increases over time.

Hypothesis (H7d): internal quality decreases over time.

For hypotheses H7a�H7c, we used the increase test described in Section 4, that is, b> 0. As shown
in Table II, these hypotheses were invalidated by all applications. For hypothesis H7d, we reuse the
results from Law II (Section 5.2), which also indicate the law is not confirmed.

To conclude, when considering both external and internal quality metrics for our test programs, the
law of declining quality is not confirmed.

5.8. Feedback system

Starting from the law of self-regulation (Section 5.3), Turski [44] came up with a model of system
growth similar to feedback in system dynamics. Lehman et al. [23] then formulated the law that soft-
ware projects are self-regulating systems with feedback. More precisely, this law states that Si, the size
of system in modules, can be described in terms of Si� 1, the size of the previous release, and Ei, the
effort for that release: Si ¼ Si�1 þ Ei

S2i�1
.

Later, Turski [45] showed that, assuming the rate of growth is inversely proportional to system
complexity, we can obtain a closed-form solution of this equation that expresses the number of modules,
S as a function of release sequence number: S ¼ a

ffiffiffiffiffiffiffiffiffi

RSN3
p þb. Put simply, this feedback dynamic can be

expressed as “the system growth slows down over time”.
Therefore, our hypotheses are:

Hypothesis (H8a): number of modules / ffiffiffiffiffiffiffiffiffi

RSN3
p

.

Hypothesis (H8b): ΔS
Δt / t�2=3, where S = number of modules.

Hypothesis (H8c): ΔS
Δt / t�2=3, where S =LOC.

Hypothesis (H8d): ΔS
Δt / t�2=3, where S = number of functions.

For all hypotheses, H8a�H8d, we used the non-linear growth test described in Section 4. For exam-
ple, for H8a in our linear regression, the independent variable is

ffiffiffiffiffiffiffiffiffi

RSN3
p

, and the dependent variable is
system size in modules.

For H8b�H8d, we compute the growth rate as the derivative of size with time (note that we use time
here instead of release sequence number to account for variance in the intervals between releases). We
use S to denote size, so the growth rate is ΔSΔt. If H

8c�H8d were validated, then the growth rate ΔS
Δt should

be proportional to the first derivative of a
ffiffi

t3
p þb, that is, ΔS

Δt / t�2=3 (the results of running a linear
regression between ΔS

Δt and t� 2/3 would show they are related). We used three metrics for S: number
of modules, LOC, and number of functions. We found, using the non-linear growth test, that H8a is
validated on all programs, whereas H8b�H8d could not be validated for all programs. To illustrate
the goodness of fit for H8a, in Table VI, we present the slope and R2 when correlating system size in
modules, with

ffiffiffiffiffiffiffiffiffi

RSN3
p

(the p-values, not shown, are all less than 0.001; note that univariate regression
analysis is the same as correlation analysis).

To provide a visual assessment of this law, in Figure 9, we plot ΔSΔt for all applications, with S being
the number of modules. The only curve that is somewhat similar to t� 2/3 is BIND, in Figure 9(c). The
rest of the graphs indicate a largely varying, mostly positive first derivative; this suggests a steady
growth rate and certainly violates our expectation that the graph should have a sub-linear, steady
decline, which is the expected behavior of t� 2/3. Whereas here we use number of modules for system
size, the graphs that use LOC and the number of functions look similar.

To conclude, whereas the system size ripples mentioned in Section 5.3 are consistent with the
behavior of dynamic systems with feedback, the growth rate is not; so, we could not confirm this
law for all the applications we examined.
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5.9. Lehman’s laws: conclusions

In Table II, we have presented the findings of our examinations of Lehman’s laws for each metric and
each application. Note that excepting laws I and VI, for all other laws, we could find evidence to the
contrary. However, we refrain from making a sweeping generalization, that is, that the other six laws
are invalid, in general, as our study has threats to validity (Section 7). To lend this study more statistical
rigor, we would need more projects across a more diverse range, for example, as in Herraiz’s work on

Table VI. Slope and correlation coefficients showing how system size correlates with
ffiffiffiffiffiffiffiffiffi

RSN3
p

.

Program

System size (modules)

b R2

Bash 47.065 0.955
BIND 21.377 0.747
Bison 7.358 0.903
OpenSSH 26.721 0.781
Quagga 4.193 0.712
Samba 176.806 0.824
Sendmail 36.747 0.671
SQLite 9.939 0.735
Vsftpd 4.212 0.766
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Figure 9. Module growth rate (ΔModules/ΔTime).
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3821 projects from Sourceforge [17,16], or 13,116 FreeBSD ports [14]; or Grechanik et al [12]’s
empirical investigation on 2080 randomly chosen Java projects from Sourceforge.

Nevertheless, we believe that presenting a fine-grained account of validating each metric on each
application will be valuable to researchers. In addition, as pointed out by Fernández-Ramil et al. [5]
in their meta-analysis on the applicability of Lehman’s laws to open source software evolution, multi-
ple reasons (e.g., the different nature—less structured and more ad hoc—of open source development
compared with proprietary development, informal law formulation, discontinuities), prevent the direct
application and confirmation of Lehman’s laws on open-source systems.

6. OBSERVATIONS

We now present our own observations on software evolution, based on analyzing the nine applications
outside of the framework of Lehman’s laws.

6.1. Parallel evolution

All our applications have points in their history where the development “forks” into a development
branch and a stable (maintenance) branch. The development branch forms the “bleeding edge”
where new ideas and features are introduced and tested. The stable branch will mostly incorporate
bug fixes. Periodically, the development branch becomes subject to forking itself. Whereas parallel
evolution requires more effort than having a single line of development, maintenance branches are
popular with users that prefer stability.

Nakakoji et al. [31] actually show that open-source software projects exhibit a variety of develop-
ment and co-evolution models from using a single branch (e.g., the GNU family) to parallel branches
that co-evolve (e.g., the Linux kernel). Godfrey and Tu [10] found that, when considering the develop-
ment releases only, the size of the Linux kernel in LOC grows quadratically with time. On the other
hand, Izurieta and Bieman [18], looking at the evolution of stable branches in FreeBSD and Linux,
found the growth (within a branch) to be linear. Fernández-Ramil et al. [4] found the growth of the
development branches (in number of files, not LOC) for 10 large programs to be sub-linear, linear,
or super-linear, depending on the program.

To reconcile these different growth models, we have tried to verify the following hypothesis: for
programs where the development branch grows super-linearly, growth on the maintenance branch is
still at most linear. Our findings confirm this hypothesis. Two programs have significant activity on
maintenance branches: BIND and Samba. As we have shown in Table IV, Samba grows super-linearly
on the development branch (n = 2.335). We computed BIND’s growth in isolation for its two segments,
before and after the large code deletion in version 9.2.0a1. We found that the growth factors for these
two segments were n = 0.8949 (versions 9.0.0b1–9.1.0 s-P1) and n = 1.2581 (versions 9.20a1–9.6.1b1).
Note from Table IV that Samba’s maintenance branches grow at most linearly: n = 0.794 and n= 1.036,
respectively, whereas BIND’s maintenance branches have ns in the range 0.127–0.214, which supports
our hypothesis.

We illustrate this parallel evolution on BIND’s development and maintenance branches in Figure 10
and Samba’s in Figure 11. The fork points are marked with the release number where the development
branch splits. At a fork point, by following the circled line, we find the development branch, whereas to
the right of the fork point, we have the maintenance branch, that is, 9.X.0 are development versions,

9.0.0

9.1.0-P1

9.2.0-P1

9.3.0-P1

9.4.0-P1 9.5.0-P2

2000 2003 2006 2009

200
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kL
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Figure 10. BIND: parallel evolution of development and maintenance branches.
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whereas 9.X.1, 9.X.2, and so on are maintenance versions. We can see that the growth of the develop-
ment versions (circles) tends to be super-linear, whereas the growth of maintenance versions (ticks) is
at most linear. The other five programs employ parallel evolution, but to a lesser extent.

On the surface, the development for a project that exhibits super-linear growth will require an ever-
increasing amount of resources and cannot continue ad infinitum, but open source projects seem to be
able to cope with this quite well: Fernández-Ramil et al. [4] point out that open-source teams seem to
be effective at managing system complexity and keep the project growing super-linearly even after 1
million LOC. Mockus et al. [29] point out that the usual solution to this high rate of growth is to split
the project, or move certain parts into smaller, satellite projects.

6.2. Distribution of changes

One important factor in program evolution is understanding which parts analyzing the reasons that lead
to “hot spots,” that is, parts that change frequently, can facilitate evolution. For example, if one such
hot spot is caused by poor design, the developers might decide to perform a redesign that facilitates
future changes. Moreover, concentrated changes harm parallel development, because developers
have to work concurrently on the same functions or modules. Finally, code that changes a lot has
been shown to be error prone [30,2,11,27].

In Figure 12, we present the distribution of changes to functions (signature and body) for all pro-
grams. As we can see, SQLite and Quagga are the extremes. SQLite makes every two thirds of all changes.
On the other hand, in Quagga, two thirds of those programs that reveal a more unequal change distribution
(SQLite, OpenSSH, Samba, and Sendmail) are likely to contain more hot spots.

6.3. Interface versus implementation

We are also interested in how the ratio of interface changes to implementation changes evolves over
time, because changes to the interface indicate an actively evolving system. For each version, we
computed the ratio interface changes

interface changesþimplementation changes using data on changes to function signatures and

function bodies, and found this ratio to be small. We also computed the mean ratio across all versions
of each application, and found that the mean suggests that the interface is much more stable than the
implementation. Moreover, we found that, for all programs except SQLite, this ratio is higher in the
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Figure 11. Samba: parallel evolution of development and maintenance branches.
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initial phases of a program’s evolution and decreases later on. This suggests that the architecture of
SQLite is still actively evolving, whereas the other program’s architectures have stabilized.

7. THREATS TO VALIDITY

We now discuss possible threats to the validity of our study. The conclusions we draw from our
empirical study are subject to several threats: construct validity, content validity, internal validity,
and external validity [36,18].

Construct validity (i.e., independent and dependent variables accurately model the hypotheses)
relies on the assumption that our metrics actually capture the intended characteristic, for example, that
LOC, the number of program elements, or the number of modules, accurately model system size. We
intentionally used multiple metrics for each law to reduce this threat.

We tried to ensure content validity by only considering official releases, and analyzing as long a time
span in a program’s lifetime as possible. We believe that considering individual commits, rather than
official releases, would threaten content validity because it exposes “jitter,” that is, experimental fea-
tures that never make it into official releases, or debugging statements. We acknowledge that for Quagga
and Sendmail, our inability to process early versions of the software affects content validity—perhaps in
the early stages of development, these programs’ evolution trends are different than trends observed later.

Internal validity (i.e., changes in dependent variables can be safely attributed to changes in the in-
dependent variables) relies on our ability to attribute any change in system characteristics, for example,
size, to the time lapse between releases, rather than accidentally including or excluding files, modules,
and so on. We tried to mitigate this threat by: (i) making sure we can compile and run each release we
are analyzing; and (ii) manually inspecting the releases showing large gains (or drops) in the value of a
metric, to make sure the change is legitimate.

External validity (i.e., the results generalize to other systems) is also threatened in our study. We
have only looked at open-source software written in C. We have considered servers, a database library,
a shell, and a parser generator to broaden the range of application domains for our studied programs;
prior work has pointed out that evolution trends might differ significantly across different types of soft-
ware [47]. However, it is difficult to claim that the results generalize to proprietary software, or soft-
ware written in other languages.

8. CONSEQUENCES

The main purpose of our study was to examine and report program evolution over long periods of time,
rather than provide recommendations for researchers or developers. Nevertheless, we believe it is
useful to point out several consequences that emerge from our study. In particular, we focus on two
questions: (i) what can researchers do to help construct a better theory of software evolution? and
(ii) how can practitioners benefit from the findings of our study and other studies like this?

8.1. Researchers

Laws violations as case studies. In Table II, we have presented the findings of our study for each law,
application, and metric. We believe that investigating the reasons why certain laws are violated (the
“N” entries) will likely constitute a fruitful research effort. In particular, our study could help research-
ers choose certain programs as interesting case studies, such as: What led to, and what were the
consequences of BIND’s large source code drop in version 9.2.0a1? How does Samba manage to
sustain a quadratic growth? Why is Vsftpd never deleting modules, or Quagga never deleting definitions?

Closed-source software. The first among Lehman et al.’s laws were formulated in the early 1970s,
based on data from development of OS/360 at IBM; follow-up studies, for example, by Lawrence [22]
looked at commercial software from IBM and other vendors. Replicating our study on closed-source
(commercial) software would expand the analysis over more (and very different) development pro-
cesses, hence increase validity. Paulson et al. [35] compared several closed-source and open-source

214 I. NEAMTIU, G. XIE AND J. CHEN

Copyright © 2011 John Wiley & Sons, Ltd. J. Softw.: Evol. and Proc. 2013; 25:193–218
DOI: 10.1002/smr



programs and found that closed-source projects exhibited higher internal quality (less complex) but
lower external quality (more defects) than open-source ones. Moreover, adherence to process standards
within a commercial software development organization might result in a wealth of process data (e.g.,
effort for each release) that are not available in open-source development.

Other programming languages. One of the threats to the validity of our study is that we only looked
at programs written in C. To get a better perspective, we should also look at long-term evolution for
programs written in other languages, and compare those observations with the ones presented here.
For example, the interface/implementation boundary for C programs is not clear, as opposed to lan-
guages where modularity is strictly enforced, such as Java or ML.

Fine-grained change detection. Our study confirms the law of continuing change. However, we
have limited the granularity of change detection to analyzing how many functions, types, and global
variables have changed. We have not measured, or tried to characterize in detail, how types (e.g.,
structs or typedefs) change, or how functions change (which kinds of statements, e.g., if or
switch are mostly frequently added, deleted, or changed). In previous work [32], we performed such
a fine-grained study, but that study was limited to detecting fine-grained changes to types, and analyzed
three programs only. Detecting fine-grained changes is potentially beneficial to a wide array of research
areas: bug mining [37], dynamic software updating [33], or constructing IDEs that facilitate software
evolution.

8.2. Practitioners

In addition to opening new research avenues, we believe that our study can help and project managers
to produce better software that is easier to evolve.

Software developers. The complexity increases and changed hot-spots revealed in our study present
evidence that developers should take proactive action to prevent software decay and avoid producing
software that is difficult, if not impossible, to repair and evolve. Developers can prevent the trend of
ever-increasing code complexity (which, as pointed out in Section 5.2, unfortunately, is the rule, rather
than the exception, for the programs we analyzed). By continuously monitoring code complexity and tak-
ing proactive steps (e.g., restructuring or refactoring), maintenance costs can be reduced. Similarly, code hot
spots (functions or modules that make up the majority of changed entities) lead to poor parallelization and
hamper team efforts; and numerous studies show hot-spot code to be error prone [30,2,11,27].

Project managers. This study also helps managers plan their projects more judiciously; as pointed
out in Sections 5.6, 5.1, and 5.2, software tends to grow a lot, change a lot, and become more complex.
By provisioning resources to accommodate growth and by taking aggressive steps to avoid software
decay and prevent complexity build-up, managers can stay on time and on budget. Moreover, as the
parallel evolution curves in Section 6.1 show, managers (for commercial or open-source projects)
should be prepared to “split” their development in multiple software lines that evolve in parallel. In
fact, a study on the evolution of Apache and Mozilla shows that splitting a large project into loosely
connected modules is essential for taming complexity and keeping communication costs in check [29].

Finally, we underscore the importance of managers and developers continuously monitoring software
quality (e.g., using tools that measure complexity or distribution of changes) to keep the software.

9. CONCLUSIONS

In this paper, we conduct an empirical study on the evolution of nine long-lived, popular open-source
programs. The first part of our study investigates Lehman’s evolution laws, some of which were
formulated by Lehman et al. more than 30 years ago in the context of proprietary software. The results
indicate that Continuing change and Continuing growth are still applicable to the evolution of today’s
open-source software. We could not validate Increasing complexity, Self-regulation, and Conservation
of organizational stability, Conservation of familiarity, Declining quality, and Feedback system for
two reasons: (i) lack of process data for the open-source projects we examined; and (ii) imprecise op-
erational definitions for hypotheses, relying on proxy measurements and yielding inconclusive results
or results that invalidate the hypotheses.
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The second part of our study investigates open-source evolution aspects outside the framework of
Lehman’s laws. We find that different branches of open-source programs evolve in parallel, which
confirms the parallel evolution hypothesis proposed by other researchers. In addition, all examined
programs exhibit “change hot spots,” that is, a high percentage of changes are concentrated to a
small percentage of code. Finally, we found that interface changes are much less frequent than
implementation changes, and tend to occur towards the initial phases of program evolution.

We believe that our study leads to a better understanding of software evolution, and hence has the
potential to advance the state of research and practice in software development and maintenance. In
future work, we plan to focus on understanding the underlying reasons why some hypotheses hold
whereas others do not, and on proposing solutions for coping with the continuous increases in
program size and program complexity that characterize software evolution.
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