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Abstract—Determining contributors’ expertise, role, and indi-
vidual importance are fundamental for assessing their impact on
a software project. Currently-used expertise metrics are agnostic
to contributor roles and can lead to incorrect characterizations.
To address these issues, we operationalize contributor expertise
and role. First, we revisit current expertise metrics and show
that their use bundles many different aspects, creating ambiguity.
Second, we introduce clearly-defined contributor roles, which
capture multiple project facets. Third, we propose a graph
model, based on contributor collaborations, that captures the
hierarchical structure of the contributor community in a concise
yet informative way. We demonstrate the model’s usefulness in
two ways: (a) for identifying the structure and evolution of
contributor interactions; (b) for predicting contributor roles. We
substantiate our study using two large open-source projects,
Firefox and Eclipse. Our systematic approach clarifies and
isolates contributor role and expertise, and sheds light onto the
dynamics of contributors within software projects.

I. INTRODUCTION

Our work is motivated by the fundamental need—present in
both free [1]–[5] and commercial [6] software projects—to
have a quantitative basis for assessing, and characterizing the
evolution of, developers’ role, contributions, impact and status.
In particular, we are interested in providing a quantitative yet
intuitive way of answering questions such as: Who are the
most “valuable” (competent, efficient) developers in a software
project? Who are the best bug fixers? Who knows best who the
right person is to fix a bug? Can the contributions of X and
Y be compared? Are contributors promoted on merit? Where
does X stand in the contributor hierarchy, and what is the
number and nature of X’s contributions?

Specifically, given the evolution history of a project, our
goal is to determine and assess the contributions, as well
as the expertise, of each developer in the project. While
software repositories contain a wealth of data, extracting
actionable information on developer role and expertise from
these repositories is hard. For example, only larger projects
record structured bug activity information, e.g., the list of
developers a bug has been assigned to, who has triaged a bug,
and who has ultimately fixed it; when projects use separate
systems for version control and bug tracking, as Mozilla and
Eclipse do, entity resolution is required; and even for open-
source projects, privacy concerns might prevent the release
of contributors and their access level [7]. All these factors
hinder the reconstruction of a complete picture of the nature
and specifics of a developer’s contributions, which is essential
for determining role and expertise.

Previous work: Despite the significant number of stud-
ies on assessing contributor expertise, authorship, and owner-
ship in software projects, very few studies have really focused
on the problem at hand. Some studies evaluate metrics to
deduce expertise [8], [9], which is slightly different from our
focus. Others examine expertise as an absolute value [10]–
[14] but as we point out, expertise is multi-faceted. Contributor
collaboration as a form of social networking has been studied
[15]–[20], but extracting a hierarchy structure of collaborations
has not been investigated so far. We discuss previous work in
more detail in Section VII.

Example 1: Simply using metrics for characterizing
contributions without regards to role can be misleading, as
illustrated next. Consider two Mozilla contributors, D1 and
D2.1 Using widely-used metrics, we find that D1 and D2

have roughly the same percentage of bugs fixed from those
assigned to them, with 49.15% and 53.09% respectively. Both
D1 and D2 have similar seniority, having been with the
project for 8 and 10 years, respectively. These numbers would
lead someone to believe that D1 and D2 exhibit comparable
expertise and play similar roles in the project. However, upon
closer examination, with more refined role definitions, we find
that D1 serves the role of triager (an individual who assigns
a new bug to a developer) while D2 serves the role of patch
tester (an individual who reviews and tests patches submitted
for fixing a bug). Our approach is able to make this distinction,
as we discuss later.

Example 2: Large open-source projects are founded,
and operate, on the basis that these projects are meritocracies,
with their governing documents explicitly stating this. In the
Eclipse project, meritocracy is a guiding principle: “Eclipse is
a meritocracy. The more you contribute the more responsibility
you will earn.” [2]. Similarly for Mozilla, the umbrella project
for Firefox: “Leadership roles are granted based on how active
an individual is within the community as well as the quality
and nature of his or her contributions. This meritocracy is [...]
resilient and effective [...]” [1]. Other projects adopt the same
strategy. For example, Ubuntu’s Governance document says
“This is not a democracy, it’s a meritocracy” [3]; Debian has
a similar charter: “The Debian Project [...] is a meritocracy
with [...] meritocratic key functional positions.” [4]; Apache
operates on the same principle [5].

Therefore, accurately assessing developers’ contributions is
essential for ensuring the operational integrity of such projects;
our approach facilitates such assessments.

1We withhold actual names for privacy reasons.



Contributions: In this paper, we operationalize (i.e.,
develop a systematic approach for defining and determining)
contributor expertise and role.2 We start by revisiting the
whole expertise assessment process and show we can capture
it systematically. Our key novelty is defining roles that capture
fundamental software development functions and then building
a framework to assess contributions along these roles. Our
main contributions can be summarized as follows:

a. Quantifying the inadequacy of current metrics. We
revisit previous expertise metrics: we show that each metric
captures a local notion of expertise by quantifying a specific
development activity (e.g., LOC added) but when put together,
they fail to capture a global notion of expertise (Section II-B).
The crux of the problem is that these metrics are agnostic to
contributor roles, and if we simply combine them, we bundle
many different aspects creating a veil of ambiguity.

b. Defining developer roles. We propose to assess ex-
pertise and contribution along roles, which eliminates the
aforementioned confusion. For example, an expert bug fixer
is not necessarily an expert bug triager, but both are equally
important for a project. We introduce a set of roles: Patch
tester, Assist, Triager, Bug analyst, Core developer, Bug fixer,
Patch-quality improver. We also provide ways to define these
roles rigorously (Section III).

c. Proposing an intuitive graph-based model of devel-
oper contribution named Hierarchical Contributor Model
(HCM). HCM concisely represents contributor interactions
in a way that captures hierarchy, role and “importance” of
contributors (Section IV), which is hard to do with previously-
defined expertise metrics. We then show the benefits of HCM:
we first use it as a framework for identifying the structure and
evolution of contributor interactions, and then show that it can
help us predict the contributor roles (Section V).

Scope: This work is motivated by both practical soft-
ware engineering concerns and the need to model software
development as an evolving complex system. First, managers
may want to assess developer contribution in objective ways,
for, say, rewarding key people; the counterpart in the open-
source world is “promoting” developers based on merit, as
meritocracy is a fundamental tenet (cf. prior Example 2).
Second, software managers can use our approach to identify
weaknesses in the development process, e.g., single nodes of
failure, imbalance in the flow of development. Third, the HCM
level (a simple 1–4 number) acts as a proxy for identifying
where a developer stands in the hierarchy; this information is
useful to both researchers in general and contributors within
that project, though Mozilla and Eclipse have declined to
provide us with the access level for their contributors due
to privacy concerns [7], [22]. Finally, we tackle a long-
standing challenge in software maintenance: detecting intrinsic
emerging patterns in large, long-term projects [23]–[25].

II. DATA COLLECTION AND PROCESSING
A. Data Collection

We used data from the Eclipse and Firefox projects: source
code, patches, change logs, and bug reports. We analyzed their
histories from inception (2001 for Eclipse, 1998 for Firefox)

2Our discussions with senior developers and managers from the Mozilla
and Eclipse projects [21] indicate that operationalizing and determining roles
is an important problem in open source project management.

TABLE I. DATA COLLECTION SOURCES AND USES.

Source Raw Data Expertise Role HCM
Profile Profile

(Sec. II-B) (Sec. III) (Sec. IV)
Bug
tracker

Contributor ID X X X

Timestamp X X X
(Bug Severity X
report, Task: triaged X
Bug Task: tested X
activity) Task: assisted X

Task: analyzed X
Type (bug/enhancement) X

Source Committer ID X X X
Code Log message X
Repository LOC added X

Timestamp X X X
(Commit Files changed X X X
logs) Bug/Enhancement ID X

up to April 2010. We use source code information, available
in the version control system, to construct source code-based
expertise profiles. For each source file, we extract its contrib-
utors along with the timestamps of their contributions, and
diffs (patches) for each commit. For source code, we analyzed
Eclipse versions 1.0 to 3.6.1; for Firefox we analyzed versions
0.8 to 3.6. We use bug report information, available in the
bug tracker, to construct bugfix-based expertise profiles. For
each bug report, we extract the sequence of assignees and
comments. We considered Eclipse Platform bug numbers 1
to 306,296 and Firefox bug numbers 37 to 549,999 (from
Mozilla’s Bugzilla bug tracker). In Table I, we present a quick
overview of data collection and usage.

B. Expertise Profiles and Metrics
In this section, we introduce expertise profiles and provide

details on the process and metrics we used to construct these
profiles for each contributor. For each member D of a project,
we define two kinds of expertise profiles: a bug-fixing profile,
and a source code profile. The rationale for using two profiles
is to capture the two major ways of contributing—bug-fixing or
development—especially in open source projects. Since many
open source projects use separate systems for version control
and bug tracking, we performed entity resolution to determine
when version control id CD and bug tracker id BD′ correspond
in fact to the same individual, i.e., D = D′.

We define the bug-fixing expertise profile of a contrib-
utor D as a tuple (bugcountD, bugsevD, bugseniorityD,
bugsfixedD) where bugcountD is the total number of bugs D
has been associated with, i.e., D was assigned to fix at some
point in time; bugsevD is the average severity score of all
bugs D has fixed;3 bugseniorityD represents the first and last
times D has fixed a bug, as recorded in the bug tracker, and
bugsfixedD is the percentage of bugs D could fix, relative to
the total number of bugs assigned to D.

We define the source-code expertise profile of a contrib-
utor D as a tuple: (codelinesD, filesD , codeseniorityD,
ownershipD) where the contents are defined as follows:
codelinesD is the number of lines of code D has committed—
we identify all the patches D has submitted, and from each
patch we extract the number of source code lines added
or changed. The rationale for using this metric is that the
more source code D has contributed, the higher D’s expertise

3Firefox and Eclipse use a 1-to-7 scale for bug severity (1=Enhancement,
2=Trivial, 3=Minor, 4=Normal, 5=Major, 6=Critical, 7=Blocker).



level is; filesD is the number of files D has worked on.
The rationale for using this metric is that the more files
D has worked on, the higher D’s expertise level is. We
define codeseniorityD as the time difference D’s first and
last commits, as recorded in the project’s version control
system. Note that if D has only committed once, in our
definition D’s seniority is zero. A contributor to a software
module is someone who has made commits to the module.
To quantify the level of involvement between a contributor
D and a module C, we define ownership ratio as the ratio
RDC = LOCcommittedD(C)

LOCcommittedtotal(C) , i.e., the percentage of lines of
code committed by D to C relative to the total number of lines
of code committed to C. Note that our definition of ownership
is different from Bird et al.’s [13] (which uses the proportion
of number of commits) because in the projects we studied we
found very low correlation, 0.1403, between the number of
commits and the lines of code committed. For each module,
based on the ownership ratio RDC we define D’s ownership
profile (owner, major or minor contributor) in the following
table; the first line indicates the ratio, the second line indicates
the profile.

RDC < 5% 5% ≤ RDC < Highest Highest
Minor contributor Major contributor Owner

We have chosen the 5% cut-off based on the cumulative
distribution function (CDF) observed in our projects.

C. Feature Selection
We now present statistical evidence that our expertise

attribute selection is precise (i.e., all constituent attributes of
expertise profiles defined in Section II-B are relevant and
there are no redundant attributes). Correlation-based feature
selection is a standard machine learning method for filtering
out features (attributes) which have strong correlation between
them, thus retaining only those features that are independent
[26]. We ran a Pearson’s correlation test between all pairs
of source-code based and bug-fix based expertise attributes,
including ownership (Section II-B), and report the results
in Tables II and III respectively. We found low pairwise
correlation between most features at a statistically significant
p-value of 0.01, hence we conclude that, for the projects we
considered, feature selection is precise.

D. Contributor Distribution
We now proceed to showing how the breadth and depth of

expertise profiles form a firm basis for conducting empirical
studies on developer expertise. In particular, we focus on
answering two questions.

When do contributors join a project, and for how
long do they stay associated with a project? Figure 1
shows the distributions for bugfix- and source code-based
seniorities in our examined projects. In each graph, the x-axis
shows seniority, in years, and the y-axis shows the number of
contributors that have that seniority. Figures 1(a) and 1(b) show
bugfix-induced seniority distributions in Eclipse and Firefox.
Eclipse Platform has had 8,856 bug fixers over its lifetime;
80.79% of those have seniority less than one year. Firefox has
had 19,286 bug fixers over its lifetime; 75.18% of those have
seniority less than one year. Note how these values reveal high
turnover rate in our examined projects. Figures 1(c) and 1(d)
show source code-based seniority distributions in Eclipse and

Firefox. Eclipse has had 210 contributors over its lifetime;
58.57% of those have seniority less than one year; Firefox has
had 519 contributors over its lifetime; 58.54% of those have
seniority less than one year.

What is the contribution distribution in large projects?
To ensure that data sets used for our analysis are representative
of collaborative software projects, we conducted a contribution
distribution analysis. We report three relevant observations
about these distributions for Firefox and Eclipse. First, on av-
erage, 16.26% (Firefox) and 21.91% (Eclipse) of contributors
work on the same file. Second, a contributor on average works
on 2.58% (Firefox) and 3.71% (Eclipse) of all project files
during their tenure. Third, 27.56% and 18.15% contributors
for Firefox and Eclipse respectively have been owners of at
least one file; and 16.72% and 7.32% contributors for Firefox
and Eclipse respectively have been authors of at least one file.
These numbers demonstrate that Firefox and Eclipse are large
projects with a wide range of contribution in terms of major–
minor contribution and authorship. Similarly, Figure 1 shows
that there is significant variation in seniority which helps us
understand the effects of seniority on quality of contribution.

In this section, we have defined a range of expertise metrics
and showed that they are not correlated. While metrics indicate
contribution quantity, they are not a good indicator of the
nature of contributions; therefore, we will proceed to define
seven different types of contribution called roles, and show
how a hierarchy model is an effective predictor of roles.

III. CONTRIBUTOR ROLES
In software projects, an individual’s contributions involve

more than adding code or fixing bugs. In this section, we
operationalize seven roles that capture several aspects of soft-
ware engineering. Although we do not claim that they capture
all facets of open source software engineering, we argue that
they are a good start towards a systematic framework, that we
develop here. Role operationalization is based on the nature
and timing of developer contributions. For now, we do not
assign any threshold to the frequency of contribution to mark
a contributor as an active participant for a specific role; in the
future, we intend to vary the threshold and evaluate its effect
on our analysis.4 The roles are not mutually exclusive, and
a contributor can serve multiple roles during her association
with a project. Next, we define each of these roles that form
the bug- and source-code based profiles.

Triagers: Contributors who triage bugs are indispens-
able in large projects that receive hundreds of new bug reports
every day [27]. A triager’s role ranges from marking duplicate
bugs, to assigning bugs to potential contributors, to ensuring
that re-opened bugs are re-assigned, and to closing bugs after
they have been resolved. In our case, by triaging we refer to
contributors who inspect the bug report and identify potential
bug fixers (i.e., other contributors who could fix the bug). As
shown in our previous work [27], choosing the right bug fixer
is both important and non-trivial: when a bug assignee cannot
fix the bug, the bug is “tossed” (re-assigned), which prolongs
the bug-fixing process. Jeong et al. [28] introduced the concept
of tossing graphs, where nodes represent developers and edges
represent bugs being tossed; a bug’s lifetime (assignment, toss-
ing, and fixing) can be reconstructed from its corresponding

4We list this as a potential threat to validity in Section VI.
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Fig. 1. Bugfix-induced and source code-induced seniority.

TABLE II. CORRELATION BETWEEN BUG-FIXED PROFILE ATTRIBUTES (P-VALUE ≤ 0.01 IN ALL CASES).

Pairwise correlation values
bugseniority bugsev bugcount bugsfixed

Eclipse Firefox Eclipse Firefox Eclipse Firefox Eclipse Firefox
bugseniority 1 0.2728 0.2540 0.1481 0.2531 0.0068 -0.0362
bugsev 1 0.3731 0.4264 0.1137 0.0182
bugcount 1 0.0028 0.0604

TABLE III. CORRELATION BETWEEN SOURCE-CODE PROFILE ATTRIBUTES (P-VALUE ≤ 0.01 IN ALL CASES).

Pairwise correlation values
codeseniority codelines files owner major minor

Eclipse Firefox Eclipse Firefox Eclipse Firefox Eclipse Firefox Eclipse Firefox Eclipse Firefox
codeseniority 1 0.4722 0.3637 0.2604 0.3119 0.3114 0.0138 0.1434 0.0525 0.0107 0.1155
codelines 1 0.4231 0.7063 0.1781 0.4578 0.0248 0.0978 0.0034 0.0218
files 1 0.1620 0.1751 0.0766 0.0439 0.1178 0.2796
owner 1 0.0593 0.1584 0.1396 0.0037
major 1 0.0446 0.0895

tossing path in the tossing graph. We identify a triager as the
first contributor in the tossing path to “assign” a bug to another
contributor. Note that bugs with assignee status “Nobody’s OK
to work on it” might have contributors assigning themselves as
the bug-fixer. We do not consider self-assignment as triaging.

Bug analysts: Contributors who help in analyzing the
bugs play an important role in the bug-fix process. In our
study we label contributors as bug analysts if they perform
one of the following decision-making tasks: (1) prioritizing
bugs, (2) deciding when to assign “won’t fix” status to bugs,
(3) labeling a feature enhancement for future release, (4)
identifying duplicate and invalid bugs, and (5) confirming a
new bug as a valid bug by reproducing the errors as per
the description in the bug report. To find bug analysts, we
text-mined the activity page of each bug to find the list of
developers who have performed one or more of the tasks
(1)–(5) described above.

Assists: Contributors who have found the right person
to fix a bug at least once are defined as assists in our
model. This role captures the “who knows who knows what”
relationship in a social network. In our case, an assist is the
second-to-last person in the bug tossing path, i.e., D is an
assist if D assigned the bug to a contributor E (after it was
tossed among other contributors) and E finally fixed the bug.
Note that, to identify assists, we only consider bugs whose
the tossing path length is greater than 1. We identify assists
automatically by extracting the second-to-last contributor on
each tossing path.

Patch tester: After a patch (potential fix) for a bug
has been submitted, certain contributors test the patch, to
ensure that the bug has been correctly resolved. We identify
these contributors, i.e., patch testers, from bug report comment
sections where they report their results from testing the newly-

submitted patch.5 Additionally, a tester may also suggest ways
of improving the code quality. Patch testers are mined from
the activity page (where an individual is explicitly assigned as
the patch-reviewer) and the comment section of a bug report
(where they suggest appropriate changes for improvement). In
our model, a patch tester is a developer who has reported
patch testing results at least once.

Patch-quality improvers: These contributors improve
the quality of bug-fixing patches submitted by other contribu-
tors using either manual inspection or automatic code review
tools (e.g., Mozilla uses JST Review Simulacrum) to maintain
a level of consistency in design and implementation practices
as set by project managers.6 Improvements involve adding
documentation, cleaning up the code, ensuring compliance
with coding standards, etc. We label a contributor D as
a patch-quality improver if we find that D has modified
newly-submitted patches and the log message contained strings
such as “cleaned patch”, “added documentation”, “simplified
string definition”, “changed incorrect use of variable”, etc.
Identifying such messages automatically for large source-code
repositories like Firefox and Eclipse is a non-trivial task. We
used a text mining technique to extract such messages: (1)
identify all log messages that are submitted with the same bug-
ID for the same file, (2) sort the log messages chronologically,
and (3) check if the log messages submitted after the initial
patch contain words like “added”, “changed”, “simplified”,
“removed”, “reverted”, “replaced”, “rewrote”, “updated”, “re-
named”, etc. In our model, a patch-quality improver is a
developer whose log messages contain the aforementioned
keywords at least once.

5For example, Mozilla bug 50212 (https://bugzilla.mozilla.org/show bug.
cgi?id=50212) shows how a contributor X plays the role of tester for
contributor Y (comment 4).

6Mozilla coding guidelines:https://developer.mozilla.org/en-US/
docs/Developer Guide/Coding Style; Eclipse coding guidelines:http:
//wiki.eclipse.org/Development Conventions and Guidelines.
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Fig. 2. Role frequency.

3"

Tr
ia
ge
r% Analyst%

Assist%

13"

4"

8"

21"

10"

12"

5"

4"

3"

2"

1"
1" 1"

Tester%

(a) Bug-based roles

Seven"roles"

2"

Patch%quality%improver%%
Co

re
%D
ev
.% Bug%Fixer%

10" 6"

9"

10"

17" 32" 15"

(b) Source-based roles

Fig. 3. Role distribution in Firefox; numbers indicate percentages.

 0

 200

 400

 600

Patch-QualityBugFixerCoreDev.

F
re

q
u
e
n
c
y

Role

(a) Eclipse (source-based)

 0

 200

 400

 600

 800

BugAnalystTriagerAssistTester

Role

(b) Eclipse (bug-based)

 0

 100

 200

 300

 400

Patch-QualityBugFixerCoreDev.

F
re

q
u
e
n
c
y

Role

(c) Firefox (source-based)

 0

 400

 800

 1200

BugAnalystTriagerAssistTester

Role

(d) Firefox (bug-based)

Fig. 4. Frequency of contribution for each role.

Core developers: We define as core developer a con-
tributor who has added new code to the source code repository
in response to a feature enhancement request or has added
code that does not correspond to a bug-fix. This way we
ensure separation between contributors who perform adap-
tive/perfective maintenance and those who perform corrective
maintenance (bug-fixers, described below). A contributor is
labeled as a core developer if the log message of the code
churn he has committed contains a feature enhancement ID.

Bug fixers: We tag a contributor D as a bug-fixer if
D has added code for fixing a bug. In other words, a bug
fixer performs corrective maintenance. A commit is identified
as corrective maintenance by cross-referencing the bug ID
associated with the log message with the bug type (i.e., defect
or enhancement) in the bug database. A contributor is labeled
as a bug fixer if the log message of the code churn he has
committed contains a bug ID.

Analysis of role distributions: To illustrate how con-
tributors serve multiple roles in a project, we provide three
analyses. In Figure 2 we show the absolute number of con-
tributors (y-axis) who have served one or more roles (x-axis);

as expected, the bulk of contributors have only served one
role, with much smaller numbers serving all 4 bug-based
roles or all 3 source-based roles. In Figure 3 we show the
distribution and overlap of roles, in percentages, for Firefox7

we now proceed to explain the graph. For example, among
those developers who have ever served source-based roles:
17% have only served as core developers, 32% have served
as both core developers and bug fixers, and 10% have served
all three roles. In Figure 4 we characterize the frequency
distributions for each role, across all contributors for that
role. Each candlestick represents the minimum, first quartile,
second quartile, third quartile and maximum; the black bar
is the median. For example, for core developers in Eclipse
(leftmost candlestick in Figure 4(a)): the minimum number
of role servings was 9, the median number was 275, and the
maximum number was 512.

Role profile: We define two kinds of role profiles of a
contributor D: bug-based role profile and source code-based
role profile.

Bug-based role profile is a tuple 〈Triager,BugAnalyst,
Assist, PatchTester〉 and source code-based profile is a tuple
〈CoreDeveloper,BugFixer, PatchQualityImprover〉.
Each metric can have a integer value; if the value is zero,
it indicates that the contributor have never served the role or
else any non-zero value would indicate number of times she
has served the role (frequency of contribution). For example, a
bug-based role profile (D) = 〈2, 0, 3, 5〉 implies that contributor
D has served the role of triager twice, never served the role
of bug analyst, served the role of assist 3 times and the role
of patch tester 5 times.

IV. HCM: OUR GRAPH-BASED MODEL
With the contributor role definitions in hand, we now

proceed to defining a hierarchical contributor model (HCM)
that emerges from the collaboration among contributors in
the course of source- and bug-based collaboration. The model
has several key advantages: (a) it captures the hierarchy and
“importance” of contributors, in a way that was hard or
impossible to do with conventional expertise metrics, (b) we
show how, by using our model, we can in fact infer roles
and contributions with relatively high accuracy using raw data:
source-code repository and bug database, without the need of
the role profiles, which is not always available for all software
projects, (c) it captures the stability of developer interaction.
The model is based on two collaboration graphs, which we
describe next.

Bug-based collaboration graph: GBug = (V,E) where V ,
the set of vertices, represents contributors involved in fixing
bugs, and an edge e(u, v) indicates that contributors u and
v have worked on the same bug, for at least one bug. A
contributor u is involved in fixing a bug if he was assigned the
bug, or changed the bug severity or priority, or added infor-
mation about the bug, or has tested a patch. This information
is available from the activity page of each bug in Bugzilla.8

Source-code based collaboration graph: GSource = (V,E)
where V , the set of vertices, represents contributors who have
edited a source-code file, and an edge e between two vertices

7Eclipse role distribution percentages are similar; we omit them for brevity.
8Bug-based collaboration graphs are not the same as bug-tossing graph,

which capture who passed a bug to whom [28].
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u and v implies that they have worked on at least one file.
The file modification can be: (a) addition of code for a new
feature or (b) fixing a bug in that file. Note that, as defined
above, the graphs are undirected, and this is how we use them
in this section. In section V-A1, where we analyze the graphs’
topology, we add edge directions.

The emerging structure: hierarchy and tiers. We want to
identify structure in our two types of collaboration graphs. The
graph mining literature offers many ways to analyze graphs
structure, e.g., in terms of node clusters or node importance.
Given our interest in identifying “importance” of contributors,
we use the following insight: important contributors are likely
collaborating with many other contributors. With this in mind,
we follow the process below, which was also used successfully
in a different context [29].

1. Determining the “center.” Intuitively, we want to identify
the largest clique with the highest-degree nodes in the graph.
The process starts from the highest-degree node, and includes
all nodes that are connected with all the other nodes in the
clique. We refer to the nodes in the clique as Tier 1, as shown
in Figure 5.

2. Determining tiers recursively. Given the definition of tier
1, we define subsequent tiers using connectivity to the previous
tier. Specifically, we use the following recursive procedure: a
node belongs in tier k if and only if it is connected with at
least one node in tier k − 1.

3. Distinguishing one-degree nodes. In an additional step,
we add more information to our model by reporting one-degree
nodes (nodes with only one edge) within each tier.

Compact and informative representation. The above
process leads to a compact representation of our graphs;
Figure 5 shows the HCMs for bug-based and source-code-
based collaboration graphs. To convey more information, we
introduce two features. First, we use darker shades to indicate
tighter connectivity internally within each box: black signifies
the clique, while the one-degree hanging nodes to the right are
white, which represents no connectivity. Second, the width of
the edges between two tiers is proportional to the number of
edges across these tiers.

Why is the HCM useful? The advantage of the HCM
lies in its simplicity and the amount of information it can
“encode”: intuitively, it maximizes the ratio of information
over model complexity. The HCM level (a simple 1–4 number)
is an effective indicator of where a developer stands in the
hierarchy—this information is useful to both project insiders
and outsider, e.g., researchers. Some observations emerge from
examining the model: (a) there exists a clique of non-trivial

size (12–27 or 0.26%–9.44% of the nodes), (b) there are
relatively few tiers, between 3 and 4 in our graphs, even though
the graphs have more than 10,000 nodes, (c) there is a non-
trivial number of one-degree nodes (12%, 24%, and 10%, for
the graphs, except a really small one for Eclipse source-code),
and (d) many one-degree nodes connect to the tier 1 nodes.9

The model structure is “aligned” with contributor ex-
pertise and contribution. High-performing contributors tend
to be in lower (numerically) tiers and thus higher in the hierar-
chy. In Figure 6, we present the results of contributor expertise
distribution across the various tiers formed for selected metrics.
We find that tier 1 nodes (the clique) have high-values of
expertise attributes and the values decrease as we move on
from tier i to tier i + 1. In other words, tier 1 contributors
are among the most active and experienced contributors for
a project. We argue that the tier of a contributor is a good
estimate of his expertise and contributions: a member of the
clique is likely a senior contributor, who has fixed high-severity
bugs, many bug types, and owns many files; conversely, we
expect a contributor from tiers 3–4 to be a junior contributor
with low expertise. We substantiate this claim in Section V.

An interesting observation is that nodes in tier 2 are
strongly connected with nodes in tier 1. For example, in
Firefox, 68.79% of tier 2 nodes connect to 74.07% of the clique
(tier 1) nodes. We believe that this strong connectivity indicates
two collaboration traits: (1) tier 2 contributors work very
closely with senior contributors for maintaining the project,
and (2) tier 2 contributors are stable10 members of the project.

Validity. We manually inspected the profile of each clique
member to validate the legitimacy of their presence in tier
1. For Mozilla, we used the super-review status as cross-
check.11 We found that, out of 28 super-reviewers, 21 are
in the source-code based clique and 24 are in the bug-based
clique. The remaining super-reviewers who are not in the
clique belong to the second tier and have high in- and out-
degrees. For Eclipse we cross-checked the clique against the
list of Foundation Council members.12 We found that 23 out
of 54 council members are in the bug-based clique while all
12 members of the source-code clique are part of the council.

9We found that our graphs’ assortativity is negative or around zero (between
-0.3 and 0.011) which contradicts a natural inclination to assume that high
degree nodes are in higher tiers.

10It is important for managers in open source projects to identify which
project members are stable. Our techniques can help managers identify these
stable contributors easily, as they are nodes with high in- and out-degrees.

11The super-reviewers group is a set of senior, experienced contributors who
can add value across the codebase in some specific ways separate from domain
expertise [30]. At the time this work was carried out, only 28 contributors were
assigned super-review status.

12Eclipse Foundation Council, http://eclipse.org/org/foundation/council.php



Disconnected nodes. We use connectivity to establish our
model, and we find that more than 95% of the nodes form
a large connected component, and thus represented in our
model. The remaining nodes (<5%) are disconnected from
this connected component, and form mini-graph structures with
2–13 nodes each. We found that all these nodes have seniority
one year, which is the lowest, and their expertise profiles are
low (e.g., bugseniority ≤ 2, bugcount ≤ 7, bugsev ≤ 1.44).

V. USING THE HCM MODEL
In this section, we show how HCM can help us conduct

studies that reveal interesting properties in terms of structure
and evolution of the collaboration relationships. We also show
how we can use the concise information encoded in the model
to predict the roles of contributors.

A. Collaboration and HCM Evolution
1) Intensity of Collaboration: We refine our HCM by

moving to directed graphs with weighted edges: the edge
weight is the number of times two contributors have interacted
for bug-fix or code-changes. Intuitively, this weight represents
the intensity of the collaboration between contributors: if
contributor v acted on a file (or bug) before contributor w
did, then their common edge is directed, v → w; if there is a
common file that contributor w acted on first, then the reverse
edge w → v is also represented in the graph. We analyze
how strongly the graph is connected considering collaboration
intensity. We define a weight threshold tcut, which we use to
filter out all the edges with weight w ≤ tcut. When setting
tcut = 1, we found that 72.77% nodes in Firefox and 64.93%
of nodes in Eclipse become disconnected from the initial HCM
graph. We then increased our threshold tcut = 2, 3, . . . and
observed an interesting phenomenon. The original connected
component shrinks significantly if we remove edges with
w < 3 for Firefox and w < 5 for Eclipse, but after that,
even if we increase tcut, (until tcut = 118 for Eclipse and
tcut = 206), the connected component do not change. We find
that the connected component consists of contributors only
from tier 1 and tier 2, which are connected with high-weight
edges. This shows that the majority of collaborations take
place between the top two layers of the network model. This
agrees with our results in section IV, where we found that
apart from fixing bugs, contributors from these layers serve
multiple non-technical roles.

2) Evolution of collaboration graphs: To understand how
the collaboration graphs evolve over time, we built three
snapshots for years 2006, 2008, 2010 for both Firefox and
Eclipse.13 We found that between 2006–2010, the size of the
graphs doubled for Firefox and tripled for Eclipse. By further
studying the HCM model of each instance, we find three
interesting aspects:

The clique grew significantly: In Firefox, the clique
grew from 4 to 11 to 27 contributors. In Eclipse, the clique
size grew from 9 to 16 to 28. Note that this growth rate is
much higher than the theoretical growth rate of a clique in
a scale-free network (log logN with the size of the network
[31]).

13Firefox and Eclipse had their first official releases in 2004, and the number
of contributors has increased steadily since then. We chose 2006 as starting
point to ensure the samples are sizable and representative of contributors from
all components.

The clique is stable over time: We observed that only
3 contributors in Firefox and 1 contributor in Eclipse were
discarded from the clique (tier 1), i.e., were present in the 2006
snapshot but not anymore in the 2008 and 2010 snapshots. This
indicates the stability of the clique and strengthens our claim
that contributors in the clique serve all possible roles. If we
found that contributors in the clique are unstable, it would have
reduced the confidence level of our role-prediction accuracy.

Climbing up in the hierarchy requires work: We find
that contributors who advance to an upper tier show a sig-
nificant increase in their expertise profile metrics (number of
bugs fixed, eLOC added, etc.) from the previous snapshot of
the graph. This observation validates our claim that the tier
a contributor belongs to is an indicator of her expertise level
and that promotion from a lower-level tier to higher-level tier
would require demonstration of significant contributions. Ad-
ditionally, this demonstrates that the promotion of a contributor
in the expertise hierarchy is merit-based. In the future, we plan
to study how and when this promotion or tier change occurs,
and factors that determine the threshold of this promotion.

3) Expertise Breadth vs. Depth: We analyze how exper-
tise breadth (i.e., familiarity with multiple components in a
large project) is different from depth (i.e., familiarity with
a single component). We hypothesize that contributors who
gain familiarity with multiple components of the same project
gain expertise quicker than those contributors familiar with
a single component. To validate this hypothesis, we update
each contributor’s profile with a list of components they have
worked on in Firefox and Eclipse. We found that contributors
in the clique have worked on at least 80.71% (Firefox) and
69.88% (Eclipse) of sub-components. Also, within the clique
we see two different distributions for both projects: (1) breadth-
experts: contributors who have worked on at least 52.31%
(Firefox) and 44.55% (Eclipse) of the components, and (2)
depth-experts: the remaining contributors who have worked
on a single component only. We found that people who are
breadth-experts are senior contributors, as opposed to depth-
experts who are junior members. This indicates that when
contributors join a project, they start gaining expertise in a
single component; as their expertise grows over time, their
familiarity (and therefore breadth-expertise) broadens.

These findings confirm the utility of our approach in
determining whether these projects are indeed meritocracies
as stipulated in their charters.

B. Predicting Role Profiles Using HCM
The HCM encodes significant information concisely, and

an indication of this is that it can be used to predict the
role profile of a developer D. This ability to predict role
profiles from the HCM is crucial, since, as we explained in
Section IV, the HCM can be constructed even for projects
where certain source code and bug information might be
unavailable. Figure 7 shows an overview of the process used
for constructing and validating our predictor model—note how
constructing HCM requires only a subset of bug and source
data. We now proceed to defining our model, then evaluating
its accuracy, and finally showing that predictors constructed
using standard expertise metrics have poor prediction accuracy.

Defining the prediction model. We refine the initial
graphs to be directed (Section V-A1) and thus to each node
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(developer) D, in addition to level TierD we associate in-
and out-degrees, InDegreeD and OutDegreeD. With that in
hand, we construct a role predictor based on the HCM, i.e., a
function f that, given HCM data for developer D, outputs the
role profile of D:

< RoleProfileD >= f(TierD, InDegreeD, OutDegreeD)

The definition of function f for bug-based roles is shown in
Algorithm 1, while for source-based roles in Algorithm 2; we
now proceed to explain these definitions. The cases TierD = 1
are based on the observation that contributors in the upper
hierarchy (clique) are likely to have participated in all roles.
Similarly, TierD ≥ 3 indicates that contributors at the bottom
of the hierarchy are not likely to have participated in any role.

We derived the middle cases, i.e., TierD = 2, based on
analyzing the CDF of the in- and out-degrees and choos-
ing an 80 percentile “high” threshold14 for InDegreeD and
OutDegreeD. We observed that both Assists and Triagers
accept bugs from others (from the previous assignee in the
case of Assists, and from bug reporters in case of Triagers)
therefore these contributors have high InDegreeD; they also
assign or pass bugs to other contributors, therefore they have

14The 80 percentile cutoff might vary across projects (Section VI).

Algorithm 1 Definition of f for predicting bug-based role
profile of contributor D
Input: T ierD , InDegreeD , OutDegreeD
Output: RoleProfileD
Description:

if T ierD = 1 then
D has served ALL Roles

else if T ierD=2 then
if InDegreeD ≥ 80% & OutDegreeD ≥ 80% then

D has served as an Assist and Triager
if InDegreeD ≥ 80% & OutDegreeD < 80% then

D has served as a Patch Tester
if InDegreeD < 80% & OutDegreeD ≥ 80% then

D has served as an Assist
if InDegreeD < 80% & OutDegreeD < 80% then

D has served as a Bug analyst
else if T ierD ≥ 3 then

D has served NO Roles

high OutDegreeD. Hence, in Algorithm 1, if InDegreeD ≥
80% & OutDegreeD ≥ 80% then D has served as an Assist
and Triager . Patch Testers are assigned lots of patches to test
(high InDegreeD) but do not usually re-assign patches (low
OutDegreeD). The other cases follow by a similar argument.

For Algorithm 2, note that Core developers and Fixers
are assigned new features or bug fixes by others (therefore
high InDegreeD) and then they pass on their code to either
Patch-quality improvers or Testers (hence high OutDegreeD)
Patch-quality improvers accept code improvement requests
from others (high InDegreeD) but do not re-assign code (low
OutDegreeD). The other cases follow similarly.

We now evaluate the effectiveness of the HCM-based
predictor model. As shown in Figure 7, we use the function
f defined above to predict the role profile of D, and then
compare this predicted role profile with the role profiles we
computed in Section III (i.e., the latter serves as reference
output). Specifically, prediction accuracy is the ratio of two
numbers: the number of developers we correctly predict have
served role R over the total number of contributors that we
have identified to have role R. We report prediction accuracy
in columns 2 and 3 of Table IV. We found that the highest
prediction accuracy (75.98%) was achieved when predicting
Assists in Firefox. The lowest prediction accuracy (47.22%)



Algorithm 2 Definition of f for predicting source-based role
profile of contributor D
Input: T ierD , InDegreeD , OutDegreeD
Output: RoleProfileD
Description:

if T ierD = 1 then
D has served ALL Roles

else if T ierD=2 then
if InDegreeD ≥ 80% & OutDegreeD ≥ 80% then

D has served as Core developer and Bug fixer
if InDegreeD ≥ 80% & OutDegreeD < 80% then

D has served as a Patch-quality improver
if InDegreeD < 80% & OutDegreeD ≥ 80% then

D has served as Bug fixer
if InDegreeD < 80% & OutDegreeD < 80% then

D has served NO Roles
else if T ierD ≥ 3 then

D has served NO Roles

TABLE IV. ROLE PROFILE PREDICTION ACCURACY USING HCM.
Role Prediction accuracy (%)

Eclipse Firefox
Patch tester 69.62 66.28
Assist 67.73 75.98
Triager 59.06 60.37
Bug analyst 53.18 69.45
Core developer 70.96 62.89
Bug fixer 65.71 58.25
Patch-quality improver 61.80 47.22

was attained when predicting Patch-quality improvers in Fire-
fox. Note that, even though 47.22% seems low, it is by no
means comparable to coin-tossing: per Figure 3, serving or
not serving a role are not equally probable.

Clustering contributors: We also investigated whether
expertise metric values can be used to predict roles: can we
form clusters based on expertise metric values that would
correspond to roles? To answer this question, we first used
the contributor expertise profiles (the tuples described in Sec-
tion II-B) as input to the EM clustering algorithm [32].15 After
EM has determined clusters, we measured the fit between EM
clusters and roles as the ratio between the number of pairs
of contributors D1, D2 who serve role R and are in the same
cluster over the total number of pairs of contributors D1, D2

who serve role R. Put another way, this ratio tells us how
many developers D with similar role R are within a cluster.
For brevity we omit details, but we found the fit to be low
(minimum 6.36%, median 15.62%, maximum 30.92%) for all
roles in both Firefox and Eclipse. These findings suggest that
standard expertise metrics do not make good role indicators.

Discussion: The main point of comparing roles deter-
mined via EM cluster with roles determined from HCM is
to show the inadequacy of determining roles using the initial
graphs or the raw contributor activity data. The fact that HCM
can provide more than 50% precision is a good indication that
the model captures our intended characteristics.

VI. THREATS TO VALIDITY
External Validity: Our expertise profiles and role def-

initions assume access to the source and bug repositories;
this data might not be available in all projects, hence by
selecting projects which have this information—Firefox and
Eclipse—our study might be vulnerable to selection bias. We
only studied open source projects; commercial projects might
have different ways to quantify contributor expertise and roles.

15We used the Akaike Information Criterion (a standard machine learning
metric [33]) to determine the optimal number of clusters, i.e., balance between
a good fit and a small number of clusters, to avoid over-fitting.

Internal Validity: Our bugfix-induced data relies on
bug reports collected from Bugzilla at the time the paper was
written. Future changes in bug status (e.g., if closed bugs is
re-opened) or bug severity might affect our results.

Construct Validity: We assume that our metrics actually
capture the intended characteristic, e.g., the expertise attributes
we use accurately models an individual’s expertise. We inten-
tionally used multiple bug-fix induced and source-code based
metrics to reduce this threat. The roles we operationalize do
not use cut-off points for frequency of contribution; therefore
we do not to distinguish between expert and non-expert
contributors within a specific role. We based our role thresholds
on the CCDF of in- and out-degrees which might vary with
projects. In the future, we intend to vary the threshold and
evaluate its effect on our analysis.

Content Validity: The assignee information in Bugzilla
does not contain the domain of contributors’ email addresses.
Therefore, we could not differentiate between users with the
same email username but different domains (in our technique,
bugzilla@alice.com and bugzilla@bob.com will be in the same
bucket as bugzilla@standard8.plus.com). This might poten-
tially lead to loss of prediction accuracy. Similarly, while
extracting contributor id’s from log messages, we might miss
contributors who submit patches via other committers.

VII. RELATED WORK
Contributor Roles: Teyton et al. propose XTIC, an au-

tomated apporach towards identifying developer expertise [34].
Expertise is a combination of skills and experience. While
Teyton et al. focus on the technical-skills aspect of expertise,
we focus on experience, which we define as roles. Our roles
abstract specific skills required for the role, e.g., for a tester,
we do not differentiate if they are expert in JUnit (a Java
unit test framework) or Boost (a C/C++/C# test framework).
The “core developer” and “tester” role we define in our work
consists of programmers with diverse technical skills. Using
our technique, we can differentiate developers with similar
skills but performing two different roles in the project.

Yu et al. [8] define core members and associate members
in ORAC-DR (14 members) and Mediawiki (56 developers).
Alonso et al. [9] quantify developer expertise based on the
number of associated files and differentiate between developers
and contributors in the Apache project (75 developers, 8 years
evolution). Based on keyword clouds they term developers
as “generalist” or experts, e.g., “security expert.” Our work
defines and predicts seven fine-grained, stable roles, uses a
wide range of expertise metrics, introduce a hierarchy model
and is based on larger data sets.

Developer Expertise: Zhou and Mockus [35] studied
developer productivity evolution and found that, when mea-
sured in tasks per month productivity grows in the beginning
but eventually plateaus. However, after adjusting for task
difficulty, their findings indicate that developer productivity
continues to increase. Mockus and Herbsleb [10] defined indi-
vidual expertise in terms of EA (experience atoms), basically
the number of commits. They found that new developers start
gaining expertise and after a certain period of time their
expertise tends to remain constant. Fritz et al. [11], [36]
and Schuler et al. [37] define expertise as the knowledge of
methods that a developer’s code calls. They argued that the
more developers reuse (or contribute to) existing code, the
more knowledge they have about that code. Rahman et al. [14]



categorized developers into generalized experts and specialists
based on components they have committed to while bug-fixing.
Minto et al. [12]’s EEL tool can recommend expert developers
in emerging teams. They use a recommendation algorithm that
ranks developers for a given file, and studied three open source
projects: Firefox, Bugzilla and Eclipse. Gousios et al. [38]
evaluate developer contributions based on LOC worked on, and
events associated with. Dominique et al. [39] build expertise
from bug reports vocabularies. Bird et al. [13] studied the
effects of code ownership in Windows software, and found
that code ownership is an effective indicator of developer’s
knowledge. However, they do not quantify contributor role
or expertise using a wide-range of expertise attributes or use
contributor hierarchy as a proxy for developer expertise.

Our work is significantly different in four ways: (1) we
couple the source-code and bug-based expertise of contribu-
tors while all prior studies used only one when quantifying
contributor expertise, (2) we define and differentiate a con-
tributor’s role from her expertise, (3) we demonstrate that the
collaboration-based hierarchy is an effective way to estimate
a contributor’s role from her expertise profile, and (4) we
differentiate between expertise breadth and expertise depth.

Collaboration Graphs and Hierarchy Detection: A rich
body of literature [15]–[20] explores contributor collaboration
in the context of social networks analysis (SNA). However,
there has been no research in the area of extracting expertise
hierarchy using contributor collaboration networks to quantify
contributor expertise or role. Hierarchy detection has been
widely studied in sociology [40], network sciences [41]–[44],
and online social networks [45]–[47]. O’Mahony studied
the relationship between participation and leadership positions
in non-technical tasks like mailing list management in De-
bian [48]. In contrast, in our study we do not consider leader-
ship as a role or expertise measure. Several SNA tools quantify
and qualify large networks, primarily by describing network
features through numerical or visual representation [49], [50];
the focus of our study has however been to use SNA-based
metrics to build a contributor role-based taxonomy.

VIII. CONCLUSIONS
We have studied two large, long-lived projects, Firefox

and Eclipse, to operationalize contributor role and expertise.
We show that role and hierarchy information can capture
a developer’s profile and impact in ways current expertise
metrics cannot. We have also explored how a contributor’s role,
breadth and depth expertise evolve over time. We have found
that collaboration can be an effective predictor of individuals’
roles; and that as contributors’ expertise increases, they tend
to serve multiple roles in the project.
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