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ABSTRACT
Billions of dollars are spent every year for building and maintain-
ing software. To reduce these costs we must identify the key factors
that lead to better software and more productive development. One
such key factor, and the focus of our paper, is the choice of pro-
gramming language. Existing studies that analyze the impact of
choice of programming language suffer from several deficiencies
with respect to methodology and the applications they consider. For
example, they consider applications built by different teams in dif-
ferent languages, hence fail to control for developer competence, or
they consider small-sized, infrequently-used, short-lived projects.
We propose a novel methodology which controls for development
process and developer competence, and quantifies how the choice
of programming language impacts software quality and developer
productivity. We conduct a study and statistical analysis on a set of
long-lived, widely-used, open source projects—Firefox, Blender,
VLC, and MySQL. The key novelties of our study are: (1) we only
consider projects which have considerable portions of development
in two languages, C and C++, and (2) a majority of developers in
these projects contribute to both C and C++ code bases. We found
that using C++ instead of C results in improved software quality
and reduced maintenance effort, and that code bases are shifting
from C to C++. Our methodology lays a solid foundation for fu-
ture studies on comparative advantages of particular programming
languages.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—complexity measures; D.2.9
[Software Engineering]: Management—productivity

General Terms
Languages, Measurement
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Software quality; developer productivity; software evolution; high-
level languages; empirical studies
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1. INTRODUCTION
Building and maintaining software is expensive. Studies indi-

cate that maintenance costs are at least 50%, and sometimes more
than 90%, of the total costs associated with a software product [23,
38]. A NIST survey estimated that the annual cost of software bugs
is about $59.5 billion [33]. These findings indicate that there is
a pressing need in understanding factors associated with building
and maintaining software. At the same time, we are currently wit-
nessing a shift in the language choice for new applications: with
the advent of Web 2.0, dynamic, high-level languages are gaining
more and more traction [10, 40]; these languages raise the level of
abstraction, promising faster development of higher-quality soft-
ware. However, the lack of static checking and the lack of mature
analysis and verification tools makes software written in these lan-
guages potentially more prone to error and harder to maintain, so
we need a way to quantitatively assess whether they indeed improve
development and maintenance.

To that end, in this paper we present a methodology for assessing
the impact of programming language on development and mainte-
nance, a long-standing challenge [27]. We first introduce an ap-
proach for attributing software quality and ease of maintenance to
a particular programing language, then exemplify the approach by
comparing C and C++. C++ was designed extending C to include
features—object-oriented constructs, overloading, polymorphism,
exception handling, stronger typing—aimed at faster construction
of less error-prone software. To understand whether using C++
instead of C leads to better, easier to maintain software, we an-
swer several questions directly related to software construction and
maintenance: Are programs written in C++ easier to understand
and maintain than programs written in C? Are C++ programs less
prone to bugs than C programs? Are seasoned developers, with
equal expertise in C and C++, more productive in C++ than in C?
Are code bases shifting from C to C++?

We answer these questions via an empirical study; we are now
in a good position to conduct such a study because both C and C++
are mature, and have been used in large projects for a time long
enough to study the effects of using one language versus the other.

Prior efforts on analyzing the impact of choice of programming
language suffer from one or more deficiencies with respect to the
applications they consider and the manner they conduct their stud-
ies: (1) they analyze applications written in a combination of two
languages but these applications are small-sized and have short
lifespans, or (2) they consider software built entirely using a sin-
gle language, rather than performing a cross-language evaluation,
or (3) they examine applications that are written in different lan-
guages by different teams. Using such methodologies often results
in analyses which cannot be generalized to large real-world appli-
cations. We aimed to address all these shortcomings.



First, we consider four large, long-lived, open source applica-
tions: Mozilla Firefox, VLC Media Player, Blender Animation
Software and MySQL; our analysis covers 216 official releases and
a combined 40 years of evolution. All these applications are ma-
ture, stable, have large code bases in both C and C++, and have
large user bases; their long histories help us understand issues that
appear in the evolution of multi-developer widely-used software.

Second, we ensure the uniformity of software development pro-
cess when comparing C and C++ code. Prior work has compared
languages by considering applications written exclusively in a sin-
gle language, e.g., by implementing the same small task in C, C++,
Fortran, or Visual Basic [1, 34, 18, 25, 19]. We only studied
projects that contain both C and C++ code, to guarantee uniformity
in the development process of the application.

Third, we effectively control for developer competence to ensure
that changes to software facets, e.g., quality, can be attributed to the
underlying programming language. We use a statistical analysis
of committer distribution to show that the majority of developers
contribute to both C and C++ code bases (Section 3.2); we confirm
this with the developers as well (Section 5).

We present our research hypotheses in Section 2, followed by
data collection and statistical methodology in Section 3. We first
investigated whether code bases are shifting from C to C++ and
found that this shift occurs for all but one application (Section 4.1).
We then compared internal qualities for code bases in each lan-
guage and could confirm that C++ code has higher internal quality
than C code (Section 4.2). We found the same trend for external
quality, i.e., that C++ code is less prone to bugs than C code (Sec-
tion 4.3). Finally, we found that C++ code takes less maintenance
effort than C code (Section 4.4).

To our knowledge, this is the first study that compares program-
ming languages while controlling for variations in both developer
expertise and development process, and draws statistically signifi-
cant conclusions. In summary, our main contributions are:
• A novel way to analyze factors that impact software quality

while controlling for both developer expertise and the soft-
ware development process.
• A multi-faceted software evolution study of four large appli-

cations, measuring software quality, development effort, and
code base shifts between languages.
• A formulation of four hypotheses and statistical analyses de-

signed to capture whether a particular language leads to bet-
ter software.

2. RESEARCH HYPOTHESES
Our study is centered around four research hypotheses designed

to determine whether C++ (a higher-level programming language)
produces better software than C (a lower-level language):

H1: C++ is replacing C as a main development lan-
guage. At the beginning of the development process for an appli-
cation, the best-suited language is chosen as the primary language.
Later on, developers might decide to replace the primary language,
e.g., if the potential benefits of migrating to a new language out-
weigh the costs. Our hypothesis is that, as the advantages of C++
become apparent, applications that have started with C as their pri-
mary language are shifting to C++. To verify this, we measured the
change in percentage of C and C++ code over an application’s life-
time; if the C++ percentage increases over time, we can conclude
that C is being replaced by C++.

H2: C++ code is of higher internal quality than C
code. One of the trademarks of high-level languages is that they
enable the construction of software that displays higher internal

quality than software written in low-level language, i.e., software
that is less complex, easier to understand and easier to change. To
test this hypothesis, for each application, we computed normalized
code complexities for C and C++ using several metrics. If the hy-
pothesis held, we should observe that, on average, C++ code is less
complex than C code.

H3: C++ code is less prone to bugs than C code. Soft-
ware bugs are due to a variety of reasons, e.g., misunderstood re-
quirements, programmer error, poor design. The programming lan-
guage plays a key role in preventing bugs; for example, polymor-
phic functions can avoid code cloning and copy-paste errors, and
strongly-typed language eliminate many potential runtime errors.
We use this reasoning to postulate our next hypothesis: due to the
higher-level features, C++ code is less bug-prone than C code.

H4 : C++ code requires less effort to maintain than C
code. Computing the effort that goes into software development
and maintenance is difficult, especially for open-source projects,
where the development process is less structured than in commer-
cial settings [28]. Our findings indicate that even when there is
no explicit allocation of tasks to developers, most developers con-
tribute to both the C and C++ code bases. Our hypothesis is that the
effort required to maintain and extend the C++ code base is lower
than the effort associated with the C code base.

3. METHODOLOGY AND DATA SOURCES
We ran our empirical study on four popular open source appli-

cations written in a combination of C and C++. We used several
criteria for selecting our test applications. First, since we are inter-
ested in long-term software evolution and pursue statistically sig-
nificant results, the applications had to have a long release history.
Second, applications had to be sizable, so we can understand the
issues that appear in the evolution of realistic, production-quality
software. Third, the applications had to be actively maintained by a
large number of developers. Fourth, the applications had to be used
by a wide number of users who report bugs and submit patches.

Table 1 presents high-level data on application evolution. The
second and third columns show the time span we considered for
each application and the number of official releases. The rest of the
columns contain information (version, date and size) for the first
and last releases. The period in column 2 is different from the time
interval between the first and last release dates of the application
(as reported in columns 6 and 9), because we could find bug and
file change information that predate the first official releases.

3.1 Applications
We now provide a brief overview of each application.
Firefox (http://www.mozilla.com/firefox) is the sec-

ond most widely-used web browser [14]. Originally named Phoenix,
it was renamed to Firebird, and then renamed to Firefox in 2004.
We considered Phoenix and Firebird in our study because the ap-
plication’s source code remained unchanged after the renamings.
Firefox is mostly written in C and C++; it also contains HTML and
JavaScript code that contribute to less than 3% of the total code.

Blender (http://www.blender.org) is a 3D content cre-
ation suite, available for all major operating systems. It is mostly
written in C and C++; it also has a Python component that con-
tributes to less than 2% of the total code. We used the source code
available in the svn repository for our analyses [6].

VLC (http://www.videolan.org) is a popular [42], cross-
platform open-source multimedia framework, player and server main-
tained by the VideoLAN project.

MySQL (http://www.mysql.com) is a popular [31] open

http://www.mozilla.com/firefox
http://www.blender.org
http://www.videolan.org
http://www.mysql.com


Application Period Releases First official release Last official release
Version Date Size Version Date Size

(years) (LOC) (LOC)
Firefox 1998-2010 92 0.1 (Phoenix) 02/09/2000 1,976,860 3.6 1/21/2010 3,780,122
Blender 2001-2009 28 2.27 09/25/2003 253,972 2.49b 09/03/2009 1,144,641
VLC Media Player 1998-2009 83 0.1.9 03/06/2000 144,159 1.0.2 09/19/2009 293,736
MySQL 2000-2009 13 3.23 10/01/2001 815,627 6.0 12/05/2009 991,326

Table 1: Application information.

source relational DBMS. MySQL was first released internally in
1995, followed by a publicly available Windows version in 1998. In
2001, with version 3.23, the source code was made available to the
public. Therefore, for measuring internal quality and maintenance
effort, we consider 13 major and minor releases since 3.23. Our
external quality measurements depend on the bug databases of the
applications; for MySQL, the database stores bug and patch reports
for major releases 3.23, 4.1, 5.0, 5.1, and 6.0 only, thus our external
quality findings for MySQL are confined to major releases only.

3.2 Data Collection
We now describe our data collection methodology. We first checked

out the source code of all official releases from the version con-
trol management systems the applications use, then collected file
change histories, and finally extracted bug information from the
application-specific bug databases.

Committer distribution. An explicit goal of our study was to
look at C and C++ code that was part of the same project, to keep
most factors of the software development process constant. One
such factor is developer expertise; anecdotal evidence suggests that
expertise greatly affects software quality [7]. Ideally, to understand
the difference between the C and C++ languages, we need to study
code written by developers who are proficient in both C and C++.
In Figure 1 we plot the percentages of developers who contribute
to C++ code base only (top area), C code base only (bottom area)
and to both C and C++ code bases (middle area). We observe that a
large percentage of developers contribute to both C and C++ code.
To verify that developers in the middle area commit in equal mea-
sures to both code bases, we selected random versions from each
application. We then compared the mean values for the C com-
mits and C++ commits for all those developers who commit to
both code bases. We found that the mean values for C and C++
commits are comparable (using Welch’s t-test as explained in Sec-
tion 3.3), i.e., most developers commit in equal measures to both
code bases. This ensures that we effectively control for developer
competence, and any changes to software attributes (e.g., quality)
can be attributed to the underlying programming language only. In
Section 5 we present further evidence against selection bias, i.e.,
that perceived task difficulty and developer competence do not de-
termine language choice.

Dividing source code into C and C++ groups. Identi-
fying whether a file belongs to the C code base or the C++ code
base is not trivial, because header files often use the extension “.h”
for both C and C++ headers, while “.hpp” or “.hh” extensions are
reserved for C++ headers. We considered a header file as a C++
header file if and only if all the files it is included in are C++ files;
otherwise we consider it as a C header file. The implementation
files were divided based on extension: “.c” for C files, and “.cpp”
or “.cc” for C++ files.

Collecting file change histories. For testing hypotheses 3
and 4 we need precise information about bugs and code changes

(a) Firefox

(b) Blender

(c) VLC

(d) MySQL

Figure 1: Committer Distribution.

associated with each version. We obtain this information by ana-
lyzing change logs associated with source files, after dividing files
into C and C++ groups. Note that it is not sufficient to extract
change histories for files in the last version only, because some files
get deleted as the software evolves; rather, we need to perform this
process for each version.

Accurate bug counting. We use defect density to assess ex-
ternal quality. Collecting this information is non-trivial, due to in-
complete information in bug databases. As we explain shortly, to
ensure accuracy, we cross-check information from bug databases1

with bug information extracted from change logs. One problem
arises from bugs assigned to no particular version; for instance,
33% of the fixed bugs in Firefox are not assigned to a specific Fire-

1Defect tracking systems vary: Firefox uses the Bugzilla
database [8], Blender uses it own tracker [4], VLC uses Trac [41],
and MySQL uses Bazaar [2] and Launchpad [24].



fox version in the Bugzilla database. This problem is compounded
in applications which exhibit parallel evolution, as the co-existence
of two or more parallel development branches makes version as-
signment problematic. Another problem is that, often, for bug fixes
that span several files, the bug databases report only a partial list of
changed files. However, if we search for the bug ID in the change
logs, we get the complete list of files that were changed due to a par-
ticular bug fix. Therefore, we used both bug databases and change
logs as bug data sources. We used a two-step approach for bug
counting. First, we searched for keywords such as “bug”, “bugs”,
“bug fixes”, and “fixed bug”, or references to bug IDs in log files;
similar methods have been used by other researchers for their stud-
ies [39, 15, 29]. Second, we cross-checked our findings from the
log files with the information in the databases to improve accuracy,
similar to techniques used by other researchers for computing de-
fect density or fault prediction [20, 39]). With the bug information
at hand, we then associate a certain bug to a certain version: we
used release tags, dates the bug was reported, and commit mes-
sages to find the version in which the bug was reported in, and we
attributed the bug to the previous release.

Extracting effort information. To measure maintenance ef-
fort, we counted the number of commits and the churned eLOC 2

(sum of the added and changed lines of code) for each file for a re-
lease, in a manner similar to previous work by other researchers [32,
13]. This information is available from the log files.

3.3 Statistical Analysis
Variations in release frequency. Our applications have dif-
ferent release frequencies: Firefox, VLC, and Blender have pre-
releases (alpha or beta) before a major release, while MySQL has
major releases only. Differences in release frequency and num-
ber of official versions (more than 80 for Firefox and VLC, 27 for
Blender and 13 for MySQL) lead to an imbalance while perform-
ing statistical analyses across all applications and could affect our
study. In particular, if we allowed the values for Firefox and VLC
to dominate the sample size, then the net results would be biased
towards the mean of the values in the Firefox and VLC sample sets.
To preserve generality and statistical significance, we equalize the
sample set sizes as follows: for each official release date, we con-
struct an observation for each application; the value for each ob-
servation is either actual, or linearly interpolated from the closest
official releases, based on the time distance between the actual re-
lease and the day of the observation. This procedure ensures that
we have an equal number of observations for all applications and
eliminates bias due to varying release frequencies. To ensure that
the interpolated values do not introduce noise in our sample, we
tested whether the original sample sets are normally distributed by
using the Kolmogorov–Smirnov normality test. 3 We found that
most of our original data sets are normally distributed and hence
we can safely add the interpolated values to our sample.

Hypothesis testing. We perform statistical hypothesis testing
to validate our analyses and the conclusions we draw. We use the
t-test method to analyze our samples. For instance, if we have two
sample sets, A and B, the t-test predicts the probability that a ran-
domly chosen value from set A will be greater, lesser or equal to
a randomly chosen value in set B. Although our sample sizes are
equal, their variances differ, and therefore we use a special case

2Effective lines of code (eLOC) are those lines that are not com-
ments, blanks or standalone braces or parentheses.
3The Kolmogorov–Smirnov test is used for testing the normality of
a distribution.

Application First release Last release
C C++ C C++

(%) (%) (%) (%)
Firefox 25.08 74.91 20.13 79.86
Blender 47.84 52.15 77.52 22.47
VLC 98.65 1.35 79.86 20.14
MySQL 49.82 50.17 40.35 59.64

Table 2: Percentage of C and C++ code.

of t-test called Welch’s t-test [43]. For the rest of the paper, by t-
test we mean Welch’s t-test. The t-test returns a t-value for a fixed
level of statistical significance and the mean values of each of the
sample sets. In our study we only consider 1% statistically signif-
icant t-values, to minimize chances of Type I error.4 According to
standard t-test tables, the results are statistically significant at the
1% level if t-value ≥ 2.08. In our case, we compute the values
for a particular metric for both C and C++ code bases and perform
a t-test on the individual sample sets. For example, if for a cer-
tain metric, the t-test returns a t-value ≥ 2.08 and the mean of the
C sample set is greater than the mean of the C++ sample set, we
claim a statistical significance of 1%; that is, if a value is chosen
randomly from the C sample set, there is a 99% probability that
the value of the random variable chosen will be closer to the mean
of the C sample set than to the mean value of the C++ sample set.
For each hypothesis testing, we report the mean of each sample set
from C and C++ code bases, the t-values and the degrees of free-
dom, df.5 We perform regression analysis for testing hypothesis
H1, where we report the p-value, which is analogous to the t-value
for the t-tests. For 1% statistically significant results, we must have
p-value ≤ 0.01.

4. STUDY
In this section we discuss each hypothesis, the metrics we use

to test it, as well as our findings. For conciseness, we only present
selected graphs for each hypothesis; however, interested readers
can refer to our technical report [3] for the complete set of graphs.

4.1 Code Distribution
Hypothesis (H1

A): C++ is replacing C as a main development
language.

Metrics. To test this hypothesis we study how the percentages of
C and C++ code change as an application evolves. We measure the
eLOC of C and C++ code for each version using the Resource Stan-
dard Metrics (RSM) tool [36]. If the hypothesis holds, we should
find that C++ percentages increase over an application’s lifetime.

Results. In Figure 2 and Table 2 we show the changes in C and
C++ code percentages. To verify whether, over time, the code base
is shifting from C to C++, we perform a statistical hypothesis test-
ing. Our null hypothesis, H1

0 , is that, over time, the code base divi-
sion between C and C++ either remains constant, or the percentage
of C code increases. We perform a two-step statistical analysis to
verify this: (1) we measure the difference δ in the percentages of
both C and C++ code (δ = %C++ − %C), and (2) we perform a
linear regression analysis, where the independent variable is time
(number of days since first release) and the dependent variable is

4A Type I error occurs when an acceptable hypothesis is rejected.
5Degrees of freedom is the number of independent observations in
a sample of data that are available to estimate a parameter of the
population from which that sample is drawn.
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Figure 2: eLOC distribution per language.

δ. If H1
0 is true, we should find that β ≤ 0; if H1

0 is rejected,
we should have β > 0. We first perform this hypothesis testing
across all applications (as described in Section 3.3) and then for
each individual application. We present the results of the hypothe-
sis testing in Table 3 when measured across all applications. Since
we have β > 0 and p-value ≤ 0.01, we reject the null hypothesis
H1

0 . Therefore, when performing the analysis across all applica-
tions, we observe that the primary code base is shifting from C to
C++, i.e., H1

A is confirmed. In Table 4, we present the results for
applications when tested in isolation. We observe that we can reject
H1

0 for all applications except Blender. The p-values presented for
H1

0 do not imply that, for a given version of an application, the per-
centage of C++ code in that version is higher than the percentage
of C code; rather, they imply that if a version of an application is
chosen at random, there is a 99% probability that the percentage of
C++ code in that version will be higher than in previously released
versions of the same application.

Conclusion. Using linear regression, we confirmed that the per-
centage of C code is decreasing over time. However, when consid-
ering Blender in isolation, we notice a decrease in the percentage of
C++ code, which is also evident from Figure 2(b) and Table 2. The
reason behind the increase in the percentage of C code in Blender,
as explained by one of the main developers [5], is that the devel-
opers “try to keep sections in the same code they were originally
developed in.”

Criterion Conclusion
H1

0 H1
0 is rejected at 1% significance level

(β = 0.0036, p-value = 0.0002, df = 702)
H1

A H1
A is accepted (% of C code is decreas-

ing over time, while % of C++ code is in-
creasing)

Table 3: Hypothesis testing for shift in code distribution (H1).

Application β p-value df Conclusion
(1% sig- for
nificance) H1

0

Firefox 0.0019 0.00049 97 Rejected
Blender −0.0196 0.00001 27 Not rejected
VLC 0.0118 0.0007 72 Rejected
MySQL 0.0041 0.00262 11 Rejected

Table 4: Application-specific hypothesis testing for shift in code
distribution (H1).

4.2 Internal Quality
Hypothesis (H2

A): C++ code is of higher internal quality than C
code.

Metrics. Internal quality is a measure of how easy it is to under-
stand and maintain an application. For each file in each applica-
tion version, we use RSM to compute two standard metrics: cy-
clomatic complexity 6 and interface complexity. 7 As pointed out
by Mockus et al. [28], normalizing the absolute value of a metric
by dividing it by total eLOC is problematic. Since only a fraction
of the code changes as the application evolves, normalized values
become artificially lower as the size of the source code increases.
In our case, we found that the distributions of complexity values
(across all files, for a particular application version) are skewed,
thus arithmetic mean is not the right indicator of an ongoing trend.
Therefore, to measure complexity for a specific version, we use the
geometric mean computed across the complexity values for each
file in that version. These geometric mean values constitute the
sample sets for our hypothesis testing.

Results. Our null hypothesis is that C code has lower or equal
code complexity compared to C++. To test this, we formulate two
null sub-hypotheses corresponding to each complexity metric:

Hc1
0 : The cyclomatic complexity of C code is less than or equal to

the cyclomatic complexity of C++ code.

Hc2
0 : The interface complexity of C code is less than or equal to

the interface complexity of C++ code.

If we reject hypotheses Hc1
0 and Hc2

0 , we conclude that the cyclo-
matic and interface complexities of C code are greater than those
of C++ code. We perform two t-tests on each hypothesis: across
all applications, and on individual applications. The results of both
t-tests are presented in Tables 5, 6, and 7. Since the t-values are
greater than 2.08, both when measured across all applications and
when considering the projects in isolation, we could reject both null
sub-hypotheses. Moreover, as can be seen in Tables 5, 6, and 7,
the mean values for the C sets are significantly higher than the mean
values for the C++ sets.
6Cyclomatic complexity is the number of logical pathways through
a function [26].
7Interface complexity is the sum of number of input parameters to
a function and the number of return states from that function [37].



(a) Interface complexity (geometric mean)

(b) Cyclomatic complexity (geometric mean)

Figure 3: Internal Quality in Firefox.

(a) Interface complexity (geometric mean)

(b) Cyclomatic complexity (geometric mean)

Figure 4: Internal Quality in VLC.

We now discuss application-specific changes we noticed during
this analysis. For VLC (Figure 4)8 we find that, although initially
both C and C++ have similar complexity values, starting in 2005,
the interface complexity of C++ code decreases, while the inter-
face complexity for C increases. However, for Firefox (Figure 3),
Blender, and MySQL, the complexity of C code is always greater
than that of C++ code.

Conclusion. For all the applications we consider, we could con-
firm that C++ code has higher internal quality than C code.

4.3 External Quality
Hypothesis (H3

A): C++ code is less prone to bugs than C code.

Metrics. External quality refers to users’ perception and accep-
tance of the software. Since perception and acceptance are difficult
to quantify, we rely on defect density as a proxy for external qual-
ity. Similar to Mockus et al. [28], we use two metrics for defect
density: number of defects divided by the total eLOC and number
of defects divided by the change in eLOC (∆eLOC). As discussed

8To increase legibility, we deleted the markers for some minor or
maintenance releases from Figures 3–8. The actual values are re-
flected in graph curves, hence this does not affect our results and
analyses.

Criterion Conclusion
Hc1

0 Hc1
0 is rejected at 1% significance level

(|t| = 5.055 when df = 354)
Mean values: C = 16.57 , C++ = 11.02

Hc2
0 Hc2

0 is rejected at 1% significance level
(|t| = 3.836 when df = 387)
Mean values: C = 16.52 , C++ = 12.63

H2
A H2

A is accepted (C++ code is of higher in-
ternal quality than C.)

Table 5: t-test results for code complexities (H2) across all ap-
plications.

Application Mean values |t| df
C C++ (1% significance)

Firefox 6.44 4.46 3.19 146
VLC 31.64 20.41 8.73 144

Blender 7.19 4.11 5.29 54
MySQL 28.17 21.52 2.11 12

Table 6: Application-specific t-test results for cyclomatic com-
plexity.

by Mockus et al., number of defects per total eLOC is potentially
problematic as only a fraction of the original code changes in the
new version of an application. Measuring defects over ∆eLOC is
thus a good indicator of how many bugs were introduced in the
newly added code.

Results. Our null hypothesis is: “C code has lower or equal de-
fect density than C++ code.” Based on the metrics we use to mea-
sure defect density, we divide the main hypothesis into two null
sub-hypotheses:

Hd1
0 : The defect density (measured over ∆eLOC) for C code is

less than or equal to defect density in C++ code.

Hd2
0 : The defect density (measured over total eLOC) for C code is

less than or equal to defect density in C++ code.

Similar to t-tests for code complexity, we perform two sets of t-
tests: one across all applications, and another, for each application
individually, using the original values. We present the results of
the two tests in Tables 8, 9, and 10. From the t-values and differ-
ences in the mean defect densities of C and C++, we could reject
both null sub-hypotheses when measured across all applications.
When we apply the t-test using absolute values of defect densities
for individual applications, we reject the null hypothesis at a sta-
tistically significant level for all programs except MySQL. This is
caused by the unavailability of bug information for minor MySQL
releases (which results in a small sample size for MySQL only) and
does not affect the statistical significance of our conclusions, i.e.,
accepting H3

A. As can be seen in Tables 8, 9, and 10, the mean de-
fect density values for the C sets can be up to an order of magnitude
higher than the mean values for the C++ sets.

In Figure 5 we present the evolution of defect densities in VLC
(Firefox is similar [3]), and note that these values tend to oscillate.
The oscillations are due to bugs in major releases; these bugs tend
to be subsequently fixed in maintenance releases. In MySQL we
found that, for the first version only, the defect density of C++ code
is slightly higher than the defect density of C code (when measured
over total eLOC, see Figure 6(b)); this is not the case for subse-
quent versions. In Blender, we found that C code had higher defect



(a) Defect Density over ∆eLOC (b) Defect Density over total eLOC

Figure 5: Defect Density in VLC.

(a) Defect Density over ∆eLOC (b) Defect Density over total eLOC

Figure 6: Defect Density in MySQL.

Application Mean values |t| df
C C++ (1% significance)

Firefox 6.78 6.18 9.45 188
VLC 28.20 22.92 3.61 144

Blender 13.80 5.86 16.63 54
MySQL 27.71 17.13 3.41 22

Table 7: Application-specific t-test results for interface com-
plexity.

Criterion Conclusion
Hd1

0 Hd1
0 is rejected at 1% significance level

(|t| = 4.77 when df = 482)
Mean values: C = 0.109 , C++ = 0.015

Hd2
0 Hd2

0 is rejected at 1% significance level
(|t| = 4.82 when df = 489)
Mean values: C = 0.04 , C++ = 0.006

H3
A H3

A is accepted (C++ code is less prone
to bugs than C code.)

Table 8: t-test results for defect density (H3) across all applica-
tions.

density than C++, for both metrics; we omit the graphs for brevity.

Conclusion. Based on the t-test results, we could confirm H3
A,

that is, C++ code is less prone to bugs than C code.

4.4 Maintenance Effort
Hypothesis (H4

A): C++ code requires less effort to maintain than
C code.

Metrics. Prior work [13, 22, 21] has indicated that measuring
software maintenance effort, or building effort estimation models
for open source software is non-trivial, due to several reasons, e.g.,
the absence of organizational structure, developers working at their
leisure. A widely used metric for effort is the number of commits
divided by total eLOC [16, 21]. To avoid considering those parts
of code which remain unchanged in a new release (similar to the

Application Mean values |t| df
C C++ (1% significance)

Firefox 0.02607 0.01939 1.0417 139
VLC 0.00178 0.00093 5.0455 87

Blender 0.03246 0.01981 1.7077 54
MySQL 0.00012 0.00007 0.6080 4

Table 9: Application-specific t-test results for defect density
over ∆eLOC.

Application Mean values |t| df
C C++ (1% significance)

Firefox 0.43246 0.16294 2.6412 106
VLC 0.00119 0.0001 9.8210 49

Blender 0.00551 0.00128 4.5520 30
MySQL 0.00046 0.00036 0.5190 3

Table 10: Application-specific t-test results for defect density
over total eLOC.

argument presented for measuring defect density in Section 4.3),
we also measure number of commits divided by ∆eLOC.

Results. Our null hypothesis is: “C files require less or equal ef-
fort to maintain than C++ files.” We divide this into two null sub-
hypotheses using the effort metrics we discussed:

He1
0 : The maintenance effort (measured over ∆eLOC) for C files

is less than, or equal to, the maintenance effort for C++ files.

He2
0 : The maintenance effort (measured over total eLOC) for C

files is less than, or equal to, the maintenance effort for C++
files.

When we perform the t-test across all applications, we could not
reject our null hypothesisHe1

0 at 1% significance level, as shown in
Table 11. This is due to the very small difference between the mean
values of effort for C and C++ files when measured over ∆eLOC.
However, we could reject our null hypothesisHe2

0 and confirm that
the effort to maintain C files (when measured over total eLOC) is
higher than the effort for C++ files. Note that we could reject He1

0



(a) Effort over ∆eLOC (b) Effort over total eLOC

Figure 7: Maintenance Effort for Blender.

(a) Effort over ∆eLOC (b) Effort over total eLOC

Figure 8: Maintenance Effort for VLC.

Criterion Conclusion
He1

0 He1
0 is not rejected at 1% significance

level (|t| = 1.218 when df = 147)
Mean values: C = 1.07 , C++ = 0.999

He1
0 is rejected at 10% significance level

He2
0 He2

0 is rejected at 1% significance level
(|t| = 2.455 when df = 102)
Mean values: C = 0.594 , C++ = 0.26

Table 11: t-test results for maintenance effort (H4) across all
applications.

Application Mean values |t| df
C C++ (1% significance)

Firefox 4.1780 2.9626 1.0824 15
VLC 0.1719 0.0154 5.4499 49

Blender 0.1026 0.0919 1.7077 54
MySQL 0.0004 0.0002 0.6080 4

Table 12: Application-specific t-test results for maintenance ef-
fort over ∆eLOC.

at a weaker level of significance (10%), but, to retain uniformity
and reduce the probability of introducing errors in our conclusions,
we employ 1% level of significance across all hypothesis testing.

In Tables 12 and 13 we present our t-test results on He1
0 and

He2
0 for individual applications. While we could only reject the

null sub-hypotheses for VLC, note that the mean values for C are
higher than the mean values for C++ for all applications.

From Figures 7 and 8 we notice how the file maintenance ef-
fort changes over time for VLC and Blender. As evident from the
mean values from Tables 12 and 13, even though for one version
the absolute value for effort for C++ files might be higher than C,
across the whole evolution period, the maintenance effort values
for C files is higher than the effort required to maintain C++ files.

Conclusion. We could confirm our hypothesis only when mea-
suring maintenance effort over total eLOC. When measuring main-
tenance effort over ∆eLOC, even though the mean values for C++

Application Mean values |t| df
C C++ (1% significance)

Firefox 2.4110 0.9217 4.9284 12
VLC 0.0119 0.0104 0.5180 95

Blender 0.0114 0.0069 1.2568 9
MySQL 0.0017 0.0012 1.0737 3

Table 13: Application-specific t-test results for effort mainte-
nance over total eLOC.

files are less than the mean values for C files, we could not validate
our hypothesis at a statistically significant level.

5. THREATS TO VALIDITY
Selection Bias. An important trait of our study is aiming to re-
duce selection bias, i.e., making sure that high-level languages do
not appear to be “better” because they are favored by more compe-
tent developers, or are used for easier tasks. Therefore, following
our quantitative analysis, we also asked developers several ques-
tions to determine whether there is bias in language selection. For
example, a key VLC developer stated [11] that “developers are ex-
pected to know C and C++” when they join the project and per-
ceived difficulty of implementing a task “does not really [play a
role in selecting the language].” Moreover, for the VLC project,
LUA, a high-level language, is preferable to C: “LUA is used most
for text processing, where performance is not critical, and C would
be too prone to programming errors [...] Where performance is not
an issue [...] C code has and will continue to be replaced with LUA
code.” Perceived task difficulty does not play a role in language
selection in Blender either, as indicated in Section 4.1.

Empirical Studies. The empirical nature of our study exposes
it to construct, content, internal and external threats to validity.

Construct validity relies on the assumption that our metrics ac-
tually capture the intended characteristic, e.g., defect density ac-
curately models external quality, source code metrics accurately
model internal quality. We intentionally used multiple metrics for
each hypothesis to reduce this threat. We randomly chose several
versions from each application and verified that, for those devel-



opers who commit to both code bases, the number of C commits
and C++ commits are comparable. This balance indicates devel-
opers have no selection bias towards which code base they want to
commit to—an assumption confirmed by developers.

To ensure content validity we selected applications that contain
both C and C++ code, written by developers who contribute to both
code bases, and we analyzed as long a time span in a program’s
lifetime as possible. For Firefox, we do not count bugs labeled
as “invalid bugs,” though we found 7 instances (out of 5786 Fire-
fox bugs) where these bugs were re-opened in subsequent versions.
There is a possibility that invalid bugs might be re-opened in the
future, which will very slightly change our results.

Internal validity relies on our ability to attribute any change in
system characteristics (e.g., metric values or eLOC) to changes in
the source code, rather than accidentally including or excluding
files, inadvertently omitting bugs or commits. We tried to miti-
gate this threat by (1) manually inspecting the releases showing
large gains (or drops) in the value of a metric, to make sure the
change is legitimate, and (2) cross-checking the change logs with
information from bug databases as described in Section 3.2. When
we group committers by the code base they are contributing to, we
use committer IDs to assign developers to the C code base, to the
C++ code base, or to both code bases. Since we cannot differen-
tiate among committers who have multiple IDs, we run the risk of
over-reporting or under-reporting the number of committers.

External validity, i.e., the results generalize to other systems, is
also threatened in our study. We have looked at four open-source
projects written in a combination of C and C++ to keep factors
such as developer competence or software process uniform. There-
fore we cannot claim that arbitrary programs written in C++ are of
higher quality than arbitrary programs written in C; nevertheless,
we show that all other factors being equal, the choice of program-
ming language does affect quality. It is also difficult to conclude
that our proposed hypotheses hold for proprietary software, or for
software written in other combinations of lower- and higher-level
languages, e.g., C and Java or C and Ruby.

6. RELATED WORK
Myrtveit et al. [30] performed an empirical study to test if us-

ing C++ (as the primary programming language) increased devel-
oper productivity when compared to using C. They used projects
written either in C or C++ (no description of the projects were pro-
vided), computed effort as the number of hours a developer worked
on a project and found that language choice has no effect on pro-
ductivity. Phipps [35] conducted a study using two different small
projects (one in Java and the other in C++, developed by the author
himself) to compare the effects of programming language on defect
density and developer productivity. This study found that defect
density was unaffected by the programming language and using
Java the author was twice as productive as when using C++ (even
though he is more experienced in C++ than Java). Paulk [34], Jones
et al. [19], and Lipow et al. [25] studied factors that affect software
quality; they infer that there is no correlation between software
quality and the programming language used in building software;
we now discuss how our study differs, and why our conclusions are
different from theirs. Jones et al. [19] used a functionality-based
size measure (the eLOC required to implement a function point)
and concluded that the only factor that affects software quality is
the number of function points in a program. We choose interface
complexity as one of the metrics for internal code quality, e.g., if
file A has more function calls with more parameters than file B, A’s
interface complexity is higher than B’s. Thus, similar to Jones et
al., our metric effectively relates functions to code complexity and

software quality. Lipow et al. [25] found that program size affects
software quality, but code quality is unaffected by the choice of
the programming language. The authors studied applications writ-
ten in different languages but implementing the same functionality;
they do not control for programmer expertise. Jones et al. and
Lipow et al. do not provide a measure of goodness of fit for their
analyses. Paulk [34] compared small applications written in differ-
ent languages by graduate and upper undergraduate students and
found that, in these applications, software quality was more depen-
dent on programmer abilities than on the programming language.
Their conclusion strengthens our case, i.e., the need to control for
programmer competence. In contrast to all these studies, our study
examines real-world, large applications, written and maintained by
seasoned developers competent in both languages.

Fateman [12] discusses the advantages of Lisp over C and how
C itself contributes to the “pervasiveness and subtlety of program-
ming flaws.” The author categorizes flaws into various kinds (log-
ical, interface and maintainability) and discusses how the very de-
sign of C, e.g., the presence of pointers and weak typing, makes
C programs more prone to flaws. Using Lisp obviates such errors,
though there exists a (much smaller) class of bugs specific to Lisp
programs. The author concludes that Lisp is still preferable to C.
We consider C and C++ to study the difference between a lower-
level, and (comparatively) higher-level, language. Our goal was not
to identify those C features that are more error prone and how C++
helps avoid such errors. Rather, our analysis is at a higher level, i.e.,
we analyze which language (C or C++) helps produce code that is
less complex, less buggy and requires less effort to maintain.

Holtz et al. [17] compare four languages (C, Pascal, Fortran 77,
and Modula-2) to identify how language syntax and semantics af-
fect software quality. They compare how easy it is to understand
a program written in different languages, and how this facilitates
development and maintenance. For example, various control con-
structs (e.g., recursion, while loops, etc.) offered by different
programming languages can increase or decrease code size, under-
standability and code complexity. In contrast, we study applica-
tions as a whole, rather than with respect to language constructs.
Burgess et al. [9] and Wichmann et al. [44] examine how the choice
of programming language may affect software quality, by focusing
on programming language constructs, similar to Holtz et al. How-
ever, the authors do not perform any empirical study to differentiate
between languages, and do not provide any statistical results.

Hongyu et al. [18] compared code complexity with software qual-
ity to test the influence of the language used, but their study is lim-
ited to applications written in a single language (C, C++, or Java)
by different teams of students and conclude that software quality
depends on developer expertise only. In contrast, our study looks
at complexity and quality in mixed C/C++ applications where the
same developers contribute to both C and C++ code bases, hence
developer expertise is kept constant while varying the language.

7. CONCLUSIONS
In this paper we introduce a novel methodology for quantify-

ing the impact of programming language on software quality and
developer productivity. To keep factors such as developer com-
petence or software process uniform, we investigate open source
applications written in a combination of C and C++. We formulate
four hypotheses that investigate whether using C++ leads to better
software than using C. We test these hypotheses on large data sets
to ensure statistically significant results. Our analyses demonstrate
that applications that start with C as the primary language are shift-
ing their code base to C++, and that C++ code is less complex, less
prone to errors and requires less effort to maintain.



In future work, we plan to investigate how specific language con-
structs lead to differences in software quality. We also plan to
broaden our analysis by comparing applications written in com-
binations of other languages, e.g., C and Ruby. Finally, it would be
interesting to test our hypotheses on commercial software.
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