
A Cross-platform Analysis of Bugs and Bug-fixing in Open
Source Projects: Desktop vs. Android vs. iOS

Bo Zhou Iulian Neamtiu Rajiv Gupta
Department of Computer Science and Engineering

University of California Riverside, CA, USA
{bzhou003, neamtiu, gupta}@cs.ucr.edu

ABSTRACT
As smartphones continue to increase in popularity, under-
standing how software processes associated with the smart-
phone platform differ from the traditional desktop platform
is critical for improving user experience and facilitating soft-
ware development and maintenance. In this paper we focus
specifically on differences in bugs and bug-fixing processes
between desktop and smartphone software. Our study cov-
ers 444,129 bug reports in 88 open source projects on desk-
top, Android, and iOS. The study has two main thrusts:
a quantitative analysis to discover similarities and differ-
ences between desktop and smartphone bug reports/pro-
cesses; and a qualitative analysis where we extract topics
from bug reports to understand bugs’ nature, categories, and
differences between platforms. Our findings include: during
2011–2013, iOS bugs were fixed three times faster compared
to Android and desktop; top smartphone bug fixers are more
involved in reporting bugs than top desktop bug fixers; and
most frequent high-severity bugs are due to build issues on
desktop, concurrency on Android, and application logic on
iOS. Our study, findings, and recommendations are poten-
tially useful to smartphone researchers and practitioners.

1. INTRODUCTION
Smartphones and the applications (“apps”) running on

them continue to grow in popularity [26] and revenue [16].
This increase is shifting client-side software development and
use, away from traditional desktop programs and towards
smartphone apps [13,15].

Smartphone apps are different from desktop programs on
a number of levels: novelty of the platform (the leading plat-
forms, Android and iOS, have become available in 2007),
construction (sensor-, gesture-, and event-driven [9]), con-
cerns (security and privacy due to access to sensitive data),
and constraints (low memory and power consumption).

Empirical bugs and bug-fixing studies so far have mostly
focused on traditional software; few efforts [5, 17] have in-
vestigated the differences between desktop and smartphone
software. Therefore, in this paper we analyzed the similari-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EASE ’15, April 27 - 29, Nanjing, China
Copyright 2015 ACM 978-1-4503-3350-4/15/04 ...$15.00.

ties and differences in bug reports and bug-fixing processes
between desktop and smartphone platforms. Our study cov-
ers 88 projects (34 on desktop, 38 on Android, 16 on iOS)
encompassing 444,129 bug reports. We analyzed bugs in a
time span beginning in 1998 for desktop and 2007 for An-
droid/iOS, and ending at the end of December 2013.

In particular, we studied the bug-fix process features, bug
nature and the reporter/fixer relationship to understand how
bugs, as well as bug-fixing processes, differ between desktop
and smartphone. Section 2 describes our methodology, in-
cluding how we selected projects, the steps and metrics we
used for extracting bug reports, process features, and topics.

The study has two thrusts. First, a quantitative thrust
(Section 3) where we compare the three platforms in terms
of attributes associated with bug reports and the bug-fixing
process, how developer profiles differ between desktop and
smartphone, etc. Second, a qualitative thrust (Section 4)
where we apply LDA to extract topics from bug reports on
each platform and gain insights into the nature of bugs, how
bug categories differ from desktop to smartphone, and how
these categories change over time.

We now present some highlights of our findings:

• Bug-fixing process features (e.g., fix time, comments)
differ between desktop and the two smartphone plat-
forms, but are similar for Android and iOS.

• The most important issues differ across platforms: the
most frequent high-severity bugs are due to compila-
tion and validation failures on desktop (56%), whereas
on Android they are due to concurrency (66%), and
on iOS due to application crashes (52%).

• Concurrency bugs are much more prevalent on An-
droid than on iOS.

• Despite the attention they have received in the re-
search community, we found that issues commonly as-
sociated with smartphone apps such as energy, security
and performance, are not very prevalent.

In light of our findings, in Section 5 we provide a set of
recommendations for improvement.

Reproducibility: the complete datasets used in our anal-
yses, as well as supplementary materials, are available online
at http://www.cs.ucr.edu/~bzhou003/cross_platform.html.

2. METHODOLOGY
We first provide an overview of the examined projects, and

then describe how we extracted bug features and topics.

2.1 Examined Projects
We chose 88 open source projects for our study, spread

across the three platforms: 34 desktop projects, 38 Android

Table 1: Projects examined, bugs reported, bugs fixed, and time span.
Desktop Android iOS

Project Bugs Time span Project Bugs Time span Project Bugs Time span
Reported Fixed (FixRate) Reported Fixed (FixRate) Reported Fixed (FixRate)

Mozilla Core 247,376 101,647 (41.09%) 2/98-12/13 Android

Platform

64,158 3,497 (5.45%) 11/07-12/13 WordPress

for iPhone

1,647 892 (54.16%) 7/08-9/13

OpenOffice 124,373 48,067 (38.65%) 10/00-12/13 Firefox for

Android

11,998 4,489 (37.41%) 9/08-12/13 Cocos2d for

iPhone

1,506 628 (41.70%) 7/08-5/13

Gnome Core 160,825 42,867 (26.65%) 10/01-12/13 K-9 Mail 6,079 1,200 (19.74%) 6/10-12/13 Core Plot 614 218 (35.50%) 2/09-12/13
Eclipse plat-

form

100,559 42,401 (42.17%) 2/99-12/13 Chrome for

Android

3,787 1,601 (42.28%) 10/08-12/13 Siphon 586 162 (27.65%) 4/08-11/11

Eclipse JDT 50,370 22,775 (45.22%) 10/01-12/13 OsmAnd

Maps

2,253 1,018 (45.18%) 1/12-12/13 Colloquy 542 149 (27.49%) 12/08-12/13

Firefox 132,917 19,312 (14.53%) 4/98-12/13 AnkiDroid

Flashcards

1,940 746 (38.45%) 7/09-12/13 Chrome for

iOS

365 129 (35.34%) 6/09-12/13

SeaMonkey 91,656 18,831 (20.55%) 4/01-12/13 CSipSimple 2,584 604 (23.37%) 4/10-12/13 tweetero 142 109 (76.76%) 8/09-6/10
Konqueror 38,156 15,990 (41.91%) 4/00-12/13 My Tracks 1,433 525 (36.64%) 5/10-12/13 BTstack 360 106 (29.44%) 2/08-12/13
Eclipse CDT 17,646 10,168 (57.62%) 1/02-12/13 Cyanogen-

Mod

788 432 (54.82%) 9/10-1/13 Mobile Ter-

minal

311 82 (26.37%) 8/07-3/12

WordPress 26,632 9,995 (37.53%) 6/04-12/13 Andro-

minion

623 346 (55.54%) 9/11-11/13 MyTime 247 101 (40.89%) 7/11-11/13

KMail 21,636 8,324 (38.47%) 11/02-12/13 WordPress

for Android

532 317 (59.59%) 9/09-9/13 VLC for iOS 188 80 (42.55%) 8/07-12/13

Linux Kernel 22,671 7,535 (33.24%) 3/99-12/13 Sipdroid 1,149 300 (26.11%) 4/09-4/13 Frotz 214 78 (36.45%) 9/10-9/12
Thunder-

bird

39,323 5,684 (14.45%) 4/00-12/13 AnySoft-

Keyboard

1,144 229 (20.02%) 5/09-5/12 iDoubs 164 74 (45.12%) 9/07-7/13

Amarok 18,212 5,400 (29.65%) 11/03-12/13 libphone-

number

389 219 (56.30%) 11/07-12/13 Vnsea 173 58 (33.53%) 4/08-10/10

Plasma

Desktop

22,187 5,294 (23.86%) 7/02-12/13 ZXing 1,696 218 (12.85%) 5/09-12/12 Meta-

syntactic

145 50 (34.48%) 7/08-4/12

Mylyn 8,461 5,050 (59.69%) 10/05-12/13 SL4A 701 204 (29.10%) 10/09-5/12 Tomes 148 51 (34.46%) 8/07-5/08
Spring 15,300 4,937 (32.27%) 8/00-12/13 WebSMS-

Droid

815 197 (24.17%) 7/10-12/13 Total 7,352 2,967 (37.40%)

Tomcat 11,332 4,826 (42.59%) 11/03-12/13 OpenIntents 553 188 (34.00%) 12/07-6/12
MantisBT 11,484 4,141 (36.06%) 2/01-12/13 IMSDroid 502 183 (36.45%) 6/10-3/13
Hadoop 11,444 4,077 (35.63%) 10/05-12/13 Wikimedia

Mobile

261 166 (63.60%) 1/09-9/12

VLC 9,674 3,892 (40.24%) 5/05-12/13 OSMdroid 494 166 (33.60%) 2/09-12/13
Kdevelop 7,824 3,572 (45.65%) 8/99-12/13 WebKit 225 157 (69.78%) 11/09-3/13
Kate 7,058 3,326 (47.12%) 1/00-12/13 XBMC

Remote

729 129 (17.70%) 9/09-11/11

Lucene 5,327 3,035 (56.97%) 4/02-12/13 Mapsforge 466 127 (27.25%) 2/09-12/13
Kopete 9,824 2,957 (30.10%) 10/01-9/13 libgdx 384 126 (32.81%) 5/10-12/13
Hibernate 8,366 2,737 (32.72%) 10/00-12/13 WiFi Tether 1,938 125 (6.45%) 11/09-7/13
Ant 5,848 2,612 (44.66%) 4/03-12/13 Call Meter

NG/3G

904 116 (12.83%) 2/10-11/13

Apache Cas-

sandra

3,609 2,463 (68.25%) 8/04-12/13 GAOSP 529 114 (21.55%) 2/09-5/11

digikam 6,107 2,400 (39.30%) 3/02-12/13 Open GPS

Tracker

391 114 (29.16%) 7/11-9/12

Apache

httpd

7,666 2,334 (30.45%) 2/03-10/13 CM7 Atrix 337 103 (30.56%) 3/11-5/12

Dolphin 7,097 2,161 (30.45%) 6/02-12/13 Transdroid 481 103 (21.41%) 4/09-10/13
K3b 4,009 1,380 (34.42%) 4/04-11/13 MiniCM 759 101 (13.31%) 4/10-5/12
Apache

Maven

2,586 1,332 (51.51%) 10/01-12/13 Connectbot 676 87 (12.87%) 4/08-6/12

Portable

OpenSSH

2,206 1,061 (48.10%) 3/09-12/13 Synodroid 214 86 (40.19%) 4/10-1/13

Total 1,259,758 422,583 (33.54%) Shuffle 325 77 (36.56%) 10/08-7/12
Eyes-Free 322 69 (21.43%) 6/09-12/13
Omnidroid 184 61 (33.15%) 10/09-8/10
VLC for An-

droid

151 39 (25.83%) 5/12-12/13

Total 112,894 18,579 (27.28%)

projects, and 16 iOS projects. We used several criteria for
choosing these projects and reducing confounding factors.
First, the projects we selected had large user bases, e.g., on
desktop we chose 1 Firefox, Eclipse, Apache, KDE, Linux ker-

nel, WordPress, etc.; on Android, we chose Firefox for Android,
Chrome for Android, Android platform, K-9 Mail, WordPress for An-

droid; on iOS we chose Chrome for iOS, VLC for iOS, WordPress

for iOS, etc. Second, we chose projects that are popular, as
indicated by the number of downloads and ratings on app
marketplaces. For the Android projects, the mean number
of downloads, per Google Play, was 1 million, while the mean
number of user ratings was 7,807. For the iOS projects, the
mean number of ratings on Apple’s App Store was 3,596;
the store does not provide the number of downloads. Third,
we chose projects that have had a relatively long evolution
history (“relatively long” because the Android and iOS plat-
forms emerged in 2007). Fourth, to reduce selection bias, we

1Many of the desktop projects we chose have previously been
used in empirical studies [3, 4, 8, 12,18,34].

choose projects from a wide range of categories—browsers,
media players, utilities, infrastructure.

Table 1 shows a summary of the projects we examined.
For each platform, we show the project’s name, the number
of reported bugs, the number of closed and fixed bugs, the
FixRate (i.e., the percentage of fixed bugs in the total num-
ber of reported bugs), and finally, the dates of the first and
last bugs we considered.

2.2 Collecting Bug Reports
We now describe the process used to collect data. All 88

projects offer public access to their bug tracking systems.
The projects used various bug trackers: desktop projects
tend to use Bugzilla, Trac, or JIRA, while smartphone projects
use mostly Google Code, though some use Bugzilla or Trac.
We used Scrapy,2 an open source web scraping tool, to crawl
and extract bug report features from bug reports located in
each bug tracking system.

2http://scrapy.org

For bug repositories based on Bugzilla, Trac, and JIRA,
we only considered bugs with resolution RESOLVED or FIXED,
and status CLOSED, as these are confirmed bugs; we did not
consider bugs with other statuses, e.g., UNCONFIRMED and
other resolutions, e.g., WONTFIX, INVALID. For Google Code
repositories, we selected bug reports with type defect and
status fixed, done, released, or verified.

2.3 Quantitative Analysis
To find quantitative differences in bug-fixing processes we

performed an analysis on various features (attributes) of the
bug-fixing process, e.g., fix time, severity, comment length.
We now provide definitions for these features.

FixTime: the time required to fix the bug, in days, com-
puted from the day the bug was reported to the day the
bug was closed. Severity is an indicator of the bug’s poten-
tial impact on customers. Since severity levels differ among
trackers, we mapped severity from different trackers to a
uniform 10-point scale, as follows: 2=Trivial/Tweak, 5=Mi-
nor/Low/Small, 6=Normal/Medium, 8=Major/Crash/High,
9=Critical, 10=Blocker. BugTitle: the text content of the
bug report title. BugDescription: the text content of the
bug summary/description. DescriptionLength: the num-
ber of words in the bug summary/description. TotalCom-
ments: the number of comments in the bug report. Com-
mentLength: the number of words in all the comments at-
tached to the bug report.

Data preprocessing: feature values and trends. We com-
puted per-project values at monthly granularity, for sev-
eral reasons: (1) to also study differences between projects
within a platform; (2) to avoid data bias resulting from over-
representation, e.g., Mozilla Core bugs account for 24% of to-
tal desktop bugs, hence conflating all the bug reports into a
single “desktop” category would give undue bias to Mozilla;
and (3) we found monthly to be a good granularity for study-
ing trends. For each feature, e.g., FixTime, we compute the
mean 3 and the trend (slope) as follows:

Input: Feature value per bug
for each project do

for i = start month to last month do
feature[i] = geometric.mean(input)

end for
FeatureMean = geometric.mean(feature)
FeatureBeta = slope(feature ∼ time)

end for
Output: FeatureMean, FeatureBeta

We employed three statistical tests in our analysis:
Trend test. To test whether a feature increases/decreases

over time, we build a linear regression model where the in-
dependent variable is the time and the dependent variable
is the feature value for each project. We consider that the
trend is increasing (or decreasing, respectively) if the slope β
of the regression model is positive (or negative, respectively)
and p < 0.05.

Non-zero test. To test whether a set of values differs sig-
nificantly from 0, we perform a one-sample t-test where the
specified value was 0; if p < 0.05, we consider that the sam-
ples differ from 0 significantly.

Pairwise comparison test. To check whether feature values
differ significantly between platforms, we conducted pairwise

3Since the distributions are skewed, we used the geometric
instead of arithmetic mean.

comparisons (desktop v. Android; desktop v. iOS; and An-
droid v. iOS) using the Wilcoxon-Mann-Whitney test.

2.4 Qualitative Analysis
For the second thrust of our paper, we used a qualitative

analysis to understand the nature of the bugs by extracting
topics from bug reports. We used the bug title, bug descrip-
tion and comments for topic extraction. We applied several
standard text retrieval and processing techniques for mak-
ing text corpora amenable to text analyses [30] before ap-
plying LDA: stemming, stop-word removal, non-alphabetic
word removal, programming language keyword removal. We
then used MALLET [22] for topic training. The parameter
settings are presented in Section 4.1.

3. QUANTITATIVE ANALYSIS
The first thrust of our study takes a quantitative ap-

proach to investigating the similarities and differences be-
tween bug-fixing processes on desktop and smartphone plat-
forms. Specifically, we are interested in how bug-fixing pro-
cess attributes differ across platforms; how the contributor
sets (bug reporters and bug owners) vary between platforms;
how the bug-fix rate varies and what factors influence it.

3.1 Bug-fix Process Attributes
We start with the quantitative analysis of bug character-

istics and bug-fixing process features. We show the results,
as beanplots, in Figures 1 through 5. The shape of the bean-
plot is the entire density distribution, the short horizontal
lines represent each data point, the longer thick lines are the
medians, and the white diamond points are the geometric
means. We now discuss each feature.
FixTime. Several observations emerge. First, desktop bugs
took longer to fix than smartphone bugs: 99 days on desk-
top, 28 days on Android, 24 days on iOS (Figure 1a). The
pairwise comparison test indicates that FixTime on desktop
differs from Android and iOS (p � 0.01 for both); there is
no statistical difference between Android and iOS (p = 0.8).
This is due to multiple reasons, mainly low severity and large
number of comments. According to previous research [4,12],
FixTime is correlated with many factors, e.g., positively
with number of comments or bug reports with attachments,
and negatively with bug severity. As can be seen in Fig-
ure 1d, the number of comments for desktop is larger. The
severity of desktop bugs is lower, as shown in Figure 1b. We
have also observed (as have Lamkanfi and Demeyer [18]) that
on desktop many bugs are reported in the wrong component
of the software system, which prolongs fixing.

Second, bug-fix time tends to decrease over time on desk-
top and iOS. In fact, FixTime is the only feature where
the non-zero test for β’s turned out significant or suggestive
for all platforms (p < 0.01 for desktop, p = 0.124 for An-
droid, p = 0.095 for iOS). As Figure 1f shows, most desktop
projects (29 out of 34) and iOS projects (11 out of 16) have
decreasing trends, i.e., negative β’s, on FixTime. For An-
droid, only half of the projects (19 out of 38) have the same
trends. The reasons are again multiple.

The first reason is increasing developer experience: as de-
velopers become more experienced, they take less time to
fix bugs. The second reason is increased developer engage-
ment. High overlap of bug reporters and bug owners results
in shorter bug fixing time, since project developers are more
familiar with their own products.

Figure 2 shows the percentage of owners who have also

0
10
0

20
0

30
0

desktop Android iOS

FixTime

(a)
4

5
6

7
8

desktop Android iOS

Severity

(b)

0
50

10
0

15
0

20
0

desktop Android iOS

DescriptionLength

(c)

0
5

10
15

desktop Android iOS

TotalComments

(d)

0
50

10
0

20
0

30
0

desktop Android iOS

CommentLength

(e)

-2
0

-1
0

0
10

desktop Android iOS

bFixTime

(f)

-0
.0
8

-0
.0
4

0.
00

0.
04

desktop Android iOS

bSeverity

(g)

-4
-2

0
2

4
6

8

desktop Android iOS

bDescriptionLength

(h)

-0
.4

-0
.2

0.
0
0.
1
0.
2
0.
3

desktop Android iOS

bTotalComments

(i)

-4
-2

0
2

4
6

8

desktop Android iOS

bCommentLength

(j)
Figure 1: Beanplot of feature distributions (Figure 1a–1e) and corresponding
trends (Figure 1f–1j) per project.

-2
0

0
20

40
60

80
10
0

desktop Android iOS

(a)

-6
0

-4
0

-2
0

0
20

desktop Android iOS

(b)
Figure 2: Percentage of bug
owners who have reported bugs
(a) and their trends (b).

reported at least one bug for each project and their corre-
sponding trend—the graph reveals higher engagement over
time for desktop and iOS, but not for Android (for Android,
23 out of 38 projects show lower engagement over time).

Other researchers had similar findings: Giger et al. [8]
found that older bugs (e.g., Mozilla bugs opened before 2002
or Gnome bugs opened before 2005) were likely to take more
time to fix than recently-reported bugs; and more recent
bugs were fixed faster because of the increasing involvement
of external developers and the maturation of the project [23].
Severity. High-severity bug reports indicate those issues
that the community considers to be of utmost priority on
each platform. Figure 1b shows that desktop bug sever-
ity is lower than smartphone bug severity. When looking
at severity trends, as Figure 1g indicates, severity is steady
at level 6 (Normal/Medium) for Android and iOS and has
a small increasing trend for desktop (22 out of 34 projects
on desktop have increasing trend). The pairwise compari-
son indicates severity on desktop differs from Android and
iOS (p � 0.01 for both), and no statistical difference be-
tween Android and iOS (p = 0.769). Upon investigation,
we found that in desktop, over time, the frequency of high-
severity bugs (e.g., crashes or compilation issues) increases,
which raises the mean severity level. We examined projects’
release frequency, and saw an increasing frequency for desk-
top, meaning for desktop there is less time for validating
new releases and a higher incidence of severe bugs. We in-
vestigate the nature of high-severity bugs in Section 4.3.
DescriptionLength. The number of words in the bug de-
scription reflects the level of detail in which bugs are de-
scribed. A higher DescriptionLength value indicates a higher
bug report quality [4], i.e., bug fixers can understand and
find the correct fix strategy easier. The pairwise test indi-
cates there is no statistical significant difference in Descrip-
tionLength among platforms (p > 0.659 for all three cases).
DescriptionLength stays constant on desktop and iOS (Fig-
ure 1h), but on Android increased significantly (p = 0.003).
We found that the increase on Android is due to more strin-
gent reporting requirements (e.g., asking reporters to pro-
vide steps-to-reproduce [1]).
TotalComments. Bugs that are controversial or difficult
to fix have a higher number of comments. The number of

comments can also reflect the amount of communication be-
tween application users and developers—the higher the num-
ber of people interested in a bug report, the more likely it
is to be fixed [10]. The means differ (4.6 for desktop, 4.14
for Android, 3.5 for iOS, as shown in Figure 1d) but not sig-
nificantly (all p > 0.07); TotalComments also tends to stay
constant on all three platforms (non-zero test p > 0.46 in
each case). For iOS, TotalComments starts lower and stays
lower than for desktop and Android; we found that this is
due to a smaller number of reporters and owners (which
reduces the amount of communication), as well as overlap
between reporters and owners (Figure 2), which reduces the
need for commenting; we will provide an example shortly,
from the Colloquy project.
CommentLength. This measure, shown in Figures 1e
and 1j, bears some similarity with TotalComments, in that
it reflects the complexity of the bug and activity of contrib-
utor community. Results were similar to TotalComments’.
However, iOS has smaller CommentLength values (33) than
desktop (63) and Android (40). The pairwise tests show
that desktop differs with Android and iOS (p = 0.005 and
0.01, respectively), but there is no statistical difference be-
tween Android and iOS (p = 0.48). Upon examining iOS
bug reports we found that fewer users are involved in iOS
apps’ bug-fixing—bug fixers frequently locate the bug by
themselves and close the report, with little or no comment-
ing. For instance, the mean CommentLength in the Colloquy

project is just 9.63 words. Even for high-severity bugs such
as Colloquy bug #3442 (an app crash, with severity Blocker)
there is no communication between the bug reporter and
bug owner—rather, the developer has just fixed the bug and
closed the bug report.
Generality. We also performed a smaller-scale study where
we control for process, and to a smaller extent developers,
by using cross-platform projects. The study, which will be
presented in Section 3.4, has yielded findings similar to the
aforementioned ones.

3.2 Management of Bug-fixing
Resource allocation and management of the bug-fixing

process have a significant impact on software development [34];
for example, traditional software quality is affected by the
relation between bug reporters and bug owners [3]. We de-

0
20
00

40
00

60
00

desktop Android iOS

TotalReporters

(a)
0

10
0
20
0
30
0
40
0
50
0
60
0

desktop Android iOS

TotalOwners

(b)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

desktop Android iOS

ReporterTurnover

(c)

-0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

desktop Android iOS

OwnerTurnover

(d)

-5
0

0
50

desktop Android iOS

bTotalReporters

(e)

-5
0

5
10

desktop Android iOS

bTotalOwners

(f)

-0
.2

0.
0

0.
2

0.
4

desktop Android iOS

bReporterTurnover

(g)

-0
.4

-0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

desktop Android iOS

bOwnerTurnover

(h)

Figure 3: Owners, reporters, their turnover and trends.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

desktop Android iOS

ReporterFixed

(a)

0.
0

0.
2

0.
4

0.
6

desktop Android iOS

OwnerFixed

(b)

0
10

20
30

40
50

desktop Android iOS

Reporter/Owner

(c)

-0
.4

-0
.2

0.
0

0.
2

0.
4

desktop Android iOS

bReporterFixed

(d)

-0
.4

-0
.2

0.
0

0.
2

0.
4

desktop Android iOS

bOwnerFixed

(e)

-1
0

-5
0

5

desktop Android iOS

bReporter/Owner

(f)

Figure 4: Beanplot of fixed developer metrics.

fined the two roles in Section 2.3 and now set out to ana-
lyze the relationship between bug reporters and bug owners
across the different platforms.

We examined the distribution and evolution of bug re-
porters, as well as bug owners, for the three platforms. To
investigate how reporters (or owners) change overtime, we
introduce a new metric, Turnover, i.e., the percentage of
bug reporters (or owners) changed compared to the previ-
ous year. In Figures 3a, 3b, 3e and 3f we plot the numbers
of bug reporters and owners for each project; we will dis-
cuss the evolution of the numbers of reporters and owners
shortly. Figures 3c, 3d, 3g and 3h show the turnover per
project for each platform. We make several observations.

First, desktop projects have larger sets of bug reporters
and bug owners. Desktop projects also have a more hierar-
chical structure with front accounts for filing and fixing bugs
(e.g., “issues@www” in OpenOffice for reporters, “Konqueror
Developers”, “Tomcat Developers Mailing List” for owners).

Second, owner turnover is lower than reporter turnover,
echoing one of our findings on bug reporting ramping up
and down faster than bug owning (end of Section 3.2). The
turnover of bug reporters differs significantly between desk-
top and smartphone (p � 0.01 for both), but not between
Android and iOS (p = 0.917). Furthermore, the turnover of
bug owners differs between desktop and iOS (p = 0.015) as
well as Android and iOS (p = 0.018); the difference is not
significant between desktop and Android (p = 0.644).

The number of fixed bugs differs across platforms, so to be
able to compare reporter and owner activity between plat-
forms, we use the number of bug reporters and bug owners
in each month divided by the number of fixed bugs in that
month (which we name ReporterFixed, OwnerFixed and Re-
porter/Owner, respectively). Figures 4 shows the result.

According to Figures 4a and 4d, ReporterFixed values for
Android and iOS are higher than for desktop, which we be-
lieve is due to two reasons: higher user base and popularity
of smartphone apps, and a lower effort/barrier for reporting
bugs (e.g., no need to provide steps-to-reproduce as required
on desktop [1]). Pairwise test results show significant dif-
ferences between Android and desktop/iOS (p � 0.01 for
both), but not between desktop and iOS (p = 0.715).

OwnerFixed is lower on desktop (Figure 4b); this mea-
sures the inverse of workload and effort associated with bug-
fixing (high ratio = low workload); given the low Owner-
Turnover rates for all platforms, it is unsurprising that Own-

0.
0

0.
2

0.
4

0.
6

0.
8

desktop Android iOS

FixRate

Figure 5: Bug fix rate.

erFixed (workload) tends to stay constant for all platforms
(Figure 4e). The pairwise test shows that desktop differs
from smartphone platforms (p < 0.01) but the difference is
not significant between Android and iOS (p = 0.323).

The ratio of reporters to owners (Figures 4c and 4f) changes
in an interesting way on all platforms—increase, then decrease—
which is due to users adopting applications (and finding/re-
porting bugs) at a faster pace than the development team
is growing, hence the initial increase; eventually, as applica-
tions mature, their reporter base decreases at a faster pace
than their owner base. There are no significant differences
between platforms (p > 0.19 in all cases).

3.3 Bug Fix Rate Comparison
The bug fix rate is an indication of the efficiency of the

bug-fixing process: a low fix rate can be due to many spuri-
ous bug reports being filed, or when reports are legitimate,
developers are unable to cope with the high workload re-
quired for addressing the issues. Figure 5 shows the fix rate.

The mean bug fix rate for Android (27.28%) is lower than
for desktop (36.56%) and iOS (37.40%). Our investigation
has revealed that this is due to differences in bug reporter
profiles and developer workloads.

In Android, two projects have much lower fix rates than
others: Android platform (5.45%) and Wifi Tether (6.45%).
When examining their workload compared to other projects,
we found it to be very high (Android platform has 2,433 bug
reporters and 130 bug owners, while Wifi Tether has 117 re-
porters but only 3 owners), which results in a low fix rate.
On the other hand, WebKit, the project with the highest fix
rate (69.78%), has 29 bug reporters and 18 bug owners—the
high fix rate is unsurprising, given the lighter workload.

For desktop, the fix rate for Firefox (14.53%) and Thunder-

bird (14.45%) are the lowest. In contrast, Cassandra (68.25%),

Table 2: Mean feature values for cross-platform projects.
Project FixTime Severity Description Total Comment Fix Reporter Owner Reporter Owner Reporter

Length Comments Length Rate Turnover Turnover Fixed Fixed Owner

Chrome
Android 20.82 5.82 57.69 7.95 61.12 42.28% 0.61 0.22 0.40 0.26 1.50
iOS 14.11 5.94 50.61 6.05 41.73 35.34% 0.30 0.10 0.79 0.58 1.44

Firefox
Desktop 86.20 5.61 45.19 8.59 86.30 14.53% 0.28 0.45 0.36 0.16 2.56
Android 28.29 6.16 40.50 8.64 68.41 37.41% 0.52 0.24 0.30 0.21 1.79

WordPress

Desktop 9.54 5.79 38.37 3.38 42.01 37.53% 0.27 0.46 0.34 0.04 8.82
Android 9.70 7.22 22.12 1.87 12.20 59.59% 0.48 0.17 0.16 0.12 2.17
iOS 6.03 6.97 26.34 2.84 27.12 54.16% 0.76 0.34 0.25 0.13 2.04

VLC

Desktop 23.20 6.21 36.77 2.48 15.76 40.24% 0.21 0.39 0.40 0.08 5.00
Android 18.40 6.27 22.02 2.82 11.52 25.83% 1.00 0.00 0.80 0.22 3.76
iOS 8.96 6.77 22.30 2.24 12.02 42.55% 0.67 0.00 0.33 0.09 3.73

Mylyn (59.69%) and Eclipse CDT (57.62%) have much higher
fix rates. The high rate of duplicate bug reports (27.18%
for Firefox and 32.02% for Thunderbird) certainly plays a role
in the low fix rate. Note, however, that Firefox and Thunder-

bird, a Web browser and email client respectively, are used
by broad categories of people that have varying levels of ex-
pertise. In contrast, Mylyn is a task management system,
Eclipse CDT is an IDE, Cassandra is a distributed database
management system; their users have higher levels of exper-
tise. Hence we believe that users of the latter applications
are more adept at filing and fixing bugs than Firefox and
Thunderbird users, leading to a higher fix rate.

For iOS, no application stands out as having a much lower
fix rate than others. While Chrome for iOS has a low fix rate
(35.34%), it is comparable with Chrome for Android (42.28%);
tweetero has the highest fix rate (76.76%), understandably so
as the project has 14 bug reporters and 5 bug owners.

Pairwise tests for fix rates show that the rates for desktop
and Android projects differ (p = 0.010), as do Android and
iOS projects (p = 0.039); the difference in fix rate between
desktop and iOS projects is not significant (p = 0.673).

3.4 Case Study: Cross-platform Projects
We now present a method and case study for comparing

process features in a more controlled setting, using cross-
platform projects. We chose four apps, Chrome, Firefox, Word-

Press and VLC: the first two are dual-platform, while the
last two are present on all three platforms. This compar-
ison method is somewhat orthogonal to our approach so
far: on one hand, it compares desktop, Android and iOS
while eliminating some confounding factors, as within each
project, processes and some developers4 are common across
platforms; on the other hand it uses a small set of projects.

4For Chrome, there are 337 bug reporters and 218 bug own-
ers for Android, while the iOS version has 62 bug reporters
and 38 bug owners. We found that 16 bug reporters and 13
bug owners contribute to both platforms; in fact, 6 of them
reported and fixed bugs on both Android and iOS. For Fire-

fox, we found 3,380 and 423 bug reporters for desktop and
Android, respectively; 216 of them reported bugs on both
platforms. We also found that Firefox has 911 and 203 bug
owners on desktop and Android, respectively, with 80 own-
ing bugs on both platforms. Finally, there were 58 develop-
ers that have reported and owned bugs on both platforms.
In charge of WordPress bugs, there were 2,352, 37 and 99 bug
reporters (in desktop, Android and iOS, respectively) and
205, 8 and 31 bug owners (in desktop, Android and iOS).
We found that 3 reporters open bug reports on all three
platforms. For bug owners, we did not find developers who
contribute to both desktop and Android; though 4 develop-
ers fixed bugs in both Android and iOS, while 3 developers
fixed bugs for desktop and iOS. For VLC, there were 1,451,
28 and 27 bug reporters and 98, 4 and 5 bug owners in desk-
top, Android and iOS, respectively; only one developer has
contributed to all the platforms as bug reporter and owner.

Table 2 shows the geometric mean of features and bug-fixing
management metrics for each app on different platforms; dif-
ferences between the means were significant (p < 0.01), with
few exceptions.5

We make two observations. First, several findings (e.g.,
iOS bugs are fixed faster; Android bugs have larger Re-
porterTurnover; OwnerTurnover and CommentLength are
higher on desktop) are consistent with findings in Section 3.1,
which gives us increased confidence in the generality of those
results. Second, researchers and practitioners can use these
findings to start exploring why, within a project, the sub-
project associated with a certain platform fares better than
the other platforms.

4. QUALITATIVE ANALYSIS
We now turn to a qualitative analysis that investigates

the nature of the bugs. Specifically, we are interested in
what kinds of bugs affect each platform, what are the most
important issues (high-severity bugs) on each platform, and
how the nature of bugs changes as projects evolve.

We use topic analysis; we first extract topics (sets of re-
lated keywords) via LDA from the terms (keywords) used in
bug title, descriptions and comments, as described in Sec-
tion 2.4 used each year in each platform, and then compare
the topics to figure out how topics change over time in each
platform, how topics differ across platforms, and what were
the prevalent bug topics in smartphone projects.

4.1 Topic Extraction
The number of bug reports varies across projects, as seen

in Table 1. Moreover, some projects are related in that they
depend on a common set of libraries, for instance SeaMon-

key, Firefox and Thunderbird use functionality from libraries
in Mozilla Core, e.g., handling Web content. It is possible
that a bug in Mozilla Core cascades and actually manifests as
a crash or issue in SeaMonkey, Firefox, or Thunderbird, which
leads to three separate bugs being filed in the latter three
projects. For example, Mozilla Core bug #269568 cascaded
into another two bugs in Firefox and Thunderbird.

Hence we extract topics using a sampling strategy, to re-
duce possible over-representation due to large projects and
shared dependences. 6 More concretely, we extracted topics

5We again ran a Wilcoxon-Mann-Whitney test between
feature sets on different platforms but within the same
project; non-significant features were Severity and Descrip-
tionLength for Chrome; TotalComment for Firefox; FixTime on
desktop v. Android, Severity (p = 0.873) and Description-
Length (p = 0.069) on Android v. iOS. for WordPress; and
Android v. iOS on VLC.
6We performed a similar analysis using the original data
sets in their entirety, with no sampling. As expected, the
topic analysis results were influenced by the large projects,
e.g., “Qt”, the shared library used in KDE, was the strongest
topic in 2008. We omit presenting the results on the original

Table 3: Top-5 topics in each platform per year for the sampled data set.
Year Top 5 topics (topic weight)
Desktop
1999 layout (30%) reassign (20%) application logic (15%) crash (14%) php (8%)
2000 database (22%) reassign (20%) crash (15%) layout (15%) application logic (9%)
2001 crash (16%) compilation (16%) reassign (16%) application logic (14%) php (13%)
2002 application logic (14%) compilation (14%) crash (12%) SCSI (12%) ssh (12%)
2003 compilation (21%) application logic (15%) crash (11%) config (9%) connection (9%)
2004 UI (33%) application logic (13%) crash (12%) config (9%) compilation (7%)
2005 sql (28%) application logic (15%) crash (12%) compilation (8%) php (7%)
2006 application logic (17%) Spring (16%) crash (15%) sql (9%) php (7%)
2007 crash (14%) application logic (13%) graphic (13%) php (10%) connection (9%)
2008 application logic (16%) crash (15%) component mgmt. (12%) UI (10%) php (9%)
2009 crash (17%) application logic (14%) thread (13%) UI (11%) connection (7%)
2010 crash (17%) application logic (16%) audio (11%) php (10%) video (8%)
2011 debug symbol (20%) crash (19%) application logic (14%) video (7%) php (7%)
2012 crash (21%) application logic (14%) Hadoop (12%) video (11%) connection (9%)
2013 crash (21%) Hadoop (21%) application logic (17%) video (8%) connection (7%)
Android
2008 intent (26%) sensor (22%) UI (21%) thread handler (14%) phone call (8%)
2009 UI (17%) phone call (15%) thread handler (12%) intent (10%) wifi (10%)
2010 phone call (18%) UI (16%) thread handler (13%) battery (9%) wifi (8%)
2011 thread handler (19%) UI (14%) network (12%) phone call (10%) reboot (9%)
2012 thread handler (18%) map (16%) UI (14%) phone call (10%) locale (9%)
2013 UI (21%) scale (17%) API (12%) phone call (11%) thread handler (11%)
iOS
2007 ebook (29%) screen display (29%) general (15%) UI (13%) compilation (4%)
2008 general (30%) multimedia (27%) screen display (19%) compilation (4%) MyTime (3%)
2009 Siphon (28%) general (26%) message (15%) screen display (9%) compilation (5%)
2010 multimedia (22%) general (19%) graph plot (15%) screen display (15%) compilation (10%)
2011 SDK (44%) general (19%) compilation (8%) screen display (8%) graph plot (8%)
2012 BTstack (30%) general (21%) graph plot (16%) UI (10%) screen display (9%)
2013 sync (39%) compilation (20%) general (16%) UI (7%) WordPress (6%)

from 1,000“independent”bug reports for each project group,
e.g., Mozilla, KDE. The independent bug report sets were
constructed as follows: since we have 10 projects from KDE,
we sampled 100 bugs from each KDE-related project. We
followed a similar process for Mozilla, Eclipse and Apache.
Android and iOS had smaller number of bug reports, so for
Android we sampled 100 bug reports from each project, and
for iOS we sampled 50 bug reports from each project.

We used LDA (as described in Section 2.4) on the sam-
pled sets; since there were only 2 bug reports on 1998 for
desktop and 1 for Android in 2007, we have omitted those
years. The preprocessing of desktop, Android, and iOS sets
resulted in 824,275 words (37,891 distinct), 238,027 words
(12,046 distinct) and 71,869 words (5,852 distinct), respec-
tively. In the next step, we used MALLET [22] for LDA
computation. We ran for 10,000 sampling iterations, the
first 1,000 of which were used for parameter optimization.
We modeled bug reports with K = 100 topics for desktop, 60
for Android and 30 for iOS; we choose K based on the num-
ber of distinct words for each platform; Section 6 discusses
caveats on choosing K. Finally, we labeled topics accord-
ing to the most representative words and confirmed topic
choices by sampling bug reports for each topic to ensure the
topic’s label and representative words set were appropriate.

4.2 Bug Nature and Evolution
How Bug Nature Differs Across Platforms. Table 3 shows
the topics extracted from the sampled data set. We found
that for desktop, application crash is the most common bug
type, and application logic bugs (failure to meet require-
ments) are the second most popular. For Android, bugs
associated with the user interface (GUI) are the most preva-
lent. For iOS, application logic bugs are the most prevalent.

How Bug Nature Evolves. To study macro-trends in how
the nature of bugs changes over time, we analyzed topic
evolution in each platform. For desktop, application logic
and crashes are a perennial presence, which is unsurprising.
However, while in the early years (before 2005), compilation

sets for brevity.

Table 4: Top words associated with major topics.

Label Most representative words
Desktop
crash crash fail call check log process item size expect event

state titl menu point block
application
logic

messag updat configur link control task access thread
directori cach method displai correct command modul

Android
UI android screen applic messag menu button text select

option error fail wrong mode crash icon
thread
handler

android app thread log type init intern phone zygot
event handler window displai looper invok

phone call call phone send account press devic server servic net-
work mobil stop receiv wait confirm lock

iOS
general phone file call updat crash touch applic support point

type menu post delet upgrad network
screen dis-
play

screen button displai view click error scroll bar game
imag left load tap keyboard landscap

compilation user run page receiv attach fail error compil mode
revision map enabl crash devic handl

bugs were a popular topic, after 2005 new kinds of bugs,
e.g., concurrency (topic “thread”) and multimedia (topics
“audio”, “video”) take center stage.

For Android, it is evident that in the beginning, devel-
opers were still learning how to use the platform correctly:
intents are a fundamental structure for intra- and inter-app
communication, and “intent” is a predominant topic in 2007
and 2008. The GUI (“UI”), concurrency (“thread handler”),
and telephony (“phone call”) are perennial issues.

For iOS, the GUI (“UI”) and display (“screen display”)
are perennial issues, but in contrast to Android, concur-
rency and the platform do not appear to pose as much dif-
ficulty, and in later years application bugs take over. How-
ever, compilation issues seem to be a perennial problem as
well, whereas for Android they are not. Table 4 shows the
major topics and the top keywords within each topic.

4.3 Topics of High Severity Bugs
Our topic analysis so far has extracted topics from bug

reports at all severity levels, from feature requests to critical
bugs, which is useful for understanding the whole spectrum
of maintenance: adaptive, perfective, corrective, preventive.

Table 5: Top words and topic weight for high-severity bugs.

Label Top keywords Weight
Desktop
validation build tinderbox thread widget config shell crash

compon testcas loader script modul plugin
nightli

31%

compilationpatch call lib make click browser access compil
sourc action dialog branch trace failur displai

25%

crash crash local remov ui control web applic button
link connect request launch url render displai

22%

Android
thread
handler

android thread handler runtim zygot browser
sync pointer phone menu touch tlibdvm dalvik

66%

crash crash local remov ui control web applic button
link connect request launch url render displai

23%

security verifi warn loop execut destroi entri theme gc
timer trigger similar alloc hash plugin async

5%

iOS
crash crash local remov ui control web applic button

link connect request launch url render displai
52%

app
logic

blog post phone pad publish upload save photo
screen broken landscap delet refresh rotat sync

32%

make/
compile

patch call lib make click browser access compil
sourc action dialog branch trace failur displai

12%

Table 6: Top-5 topics for WordPress.
Platform # 1 # 2 # 3 # 4 # 5
Desktop site mgmt. style codex error msg. user mgmt.
Android null pointer post error upload fail user mgmt. codex
iOS post error error msg. upload fail landscape codex

In addition, we are interested in finding what the show-
stoppers (most pressing issues) were. Hence we extracted
topics for high-severity bugs, i.e., bugs with severity level
higher than 8 (Blocker and Critical on each platform). In
Table 5 we present the major topics among critical bugs and
the top keywords within each topic.

According to Table 5, in terms of the highest-weight is-
sues, there are marked differences across platforms. For
desktop, 56% of high-severity bugs are caused by valida-
tion (31%) and compilation (25%) issues. For Android, 66%
of high-severity bugs are thread handler and runtime re-
lated. For iOS, application crashes account for 52% of all
high severity bugs. Crashes are in fact a common high-
severity bug type for the other platforms as well, 22% on
desktop and 23% on Android.

4.4 Case Study: WordPress
We now focus on studying topic differences in a single

app that exists on all three platforms: WordPress. We chose
WordPress as our case study app for two reasons. First, it is
one of the most popular blogging tools, used by 21.5% of all
the websites—a content management system market share of
60.1% [31]. Second, WordPress is a cross-platform application
and mature on all three platforms—desktop, Android and
iOS—which reduces confounding factors (we employed the
same strategy in Section 3.4).

To study differences across platforms for WordPress, we
used the Section 2.4 process and set the number of topics K
to 80. Table 6 shows the resulting top-5 topics for each plat-
form. The power of topic analysis and the contrast between
platforms now becomes apparent. “Post error” and “upload
fail”are topics #2/#3 on Android, and #1/#3 on iOS: these
are bugs due to communication errors, since spotty network
connectivity is common on smartphones; “codex” (semantic
error) is a hot topic across all platforms, which is unsur-
prising and in line with our findings from Section 4.2. For
desktop, the #1 topic, “site management” is due to desktop-
specific plugins and features. Since the Android version of
WordPress is developed in Java, null pointer bugs stand out
(“null pointer” is topic #1 in Android).

4.5 Smartphone-specific Bugs
As mentioned in Section 1, smartphone software differs

substantially from desktop software in many regards: app
construction, resource constraints, etc. For example, the
data that smartphone software collects from rich sensors
such as GPS and accelerometer raises significant privacy
concerns that did not exist on the desktop platform. Fur-
thermore, due to device portability, issues such as perfor-
mance and energy bugs are significantly more important on
smartphone than on fixed platforms. Understandably, sig-
nificant research efforts have been dedicated to smartphone
bugs such as location privacy or energy consumption. Hence
we aimed to quantify the prevalence of energy, security, and
performance bugs in the topic model.

We found that energy-related bugs (containing keywords
such as “power,”“battery,”“energy,”“drain”) as a topic only
ranked high (in top-5) once, in 2010 for Android—the reason
was the release of Android platform version 2.2 (Froyo) in
2010, which contained a higher number of energy bugs; 7 in
all other years, energy did not appear as a topic in top-20.

For security bugs, keywords within the topic included “se-
curity,” “vulnerability,” “permission,” “certificate”, “attack”.
We found that, although such bugs are marked with high
severity, their representation among topics was low. We did
not find them in top-5 topics; the highest was rank 7 in 2009
and rank 11 in 2010, in Android. For iOS we could not find
security bugs among the top-20 topics.

For performance bugs, associated keywords included “per-
formance,” “slow,” “latency,” “lagging”. We could not find
performance-related topics in top-20 for Android or iOS.

5. ACTIONABLE FINDINGS
We now discuss how our findings can help point out po-

tential improvements.

5.1 Addressing Android’s Concurrency Issues
Android’s GUI framework is single threaded and requires

the application developer to manage threads manually, of-
fering no thread-safety guarantees. For example, to build
a responsive UI, long-running operations such as network
and disk IO have to be performed in background threads
and then the results posted to the UI thread’s event queue;
as a consequence, the happens-before relationship between
GUI and other events is not enforced, leading to concur-
rency bugs [20]. In contrast, the iOS framework handles
concurrency in a safer manner by using GCD (Grand Cen-
tral Dispatch) to manage inter-thread communication; as a
result, there are fewer concurrency bugs on iOS.

Hence there is an impetus for (1) improving the Android
platform with better orchestration of concurrency, (2) im-
proving programing practice e.g., via the use of AsyncTask

as suggested by Lin et al. [19], and (3) constructing analyses
for Android race detection [20].

5.2 Improving Android’s Bug Trackers
Many of the Android projects we have examined (27 out

of 38) are hosted on, and use the bug tracking facilities of,
Google Code, in contrast to desktop programs, whose bugs
are hosted on traditional bug trackers such as Bugzilla, JIRA
and Trac. On Google Code, bug tracking is conveniently in-
tegrated with the source code repository. However, Google
Code’s tracker has no support for: (1) bug component—

7E.g., Android platform issues #8478, #9307 and #9455.

while easier for new users to file bugs as there is no need to fill
in bug components, the lack of a component makes it harder
for developers to locate the bug; and (2) bug resolution—
they use labels instead. These aspects complicate bug man-
agement (triaging, fixing).

Hence there is an impetus for improving bug tracking in
Google Code, which will in turn improve the bug fixing pro-
cess for the projects it hosts.

5.3 Improving the Bug-fixing Process on All
Platforms

As Figure 2 in Section 3.1 shows, the overlap between
bug reporters and bug owners is higher on desktop projects.
This is good for speeding up the bug-fixing process since
usually bug reporters are more familiar with the bugs they
report [7]. Smartphone projects’ development teams should
aim to increase this overlap.

According to Sections 3.2 and 3.3, Android projects have
the lowest workload (highest OwnerFixed rate), and the low-
est fix rate as well, which suggests a need for improving
developer engagement.

The ReporterTurnover rate on Android and iOS is higher
than that of desktop (Figure 3c, Section 3.2)—this indicates
that there are many new users on smartphone apps, which
can potentially increase product quality [6]. Hence desktop
projects can improve the bug-fixing process by encouraging
more users to report issues in the bug tracking system [36],
e.g., via automatic bug reporting [32].

Furthermore, bug reports containing attachments, e.g.,
stack traces, tend to be fixed sooner [4,12]. Yet, few Android
bug reports have a system trace (logcat) or crash report at-
tached. Hence the Android bug-fixing process would benefit
from automatically attaching the logcat to the bug report,
which is also recommended in previous research [14].

5.4 Challenges for Projects Migrating to GitHub
For our examined period, we found that many smartphone

projects have“migrated” to GitHub: 7 Android projects and
3 iOS projects have fully migrated to GitHub (source code
and bug tracking), while 10 Android projects only moved
the source code repositories to GitHub. 8 The rationale was
developers’ concern with Google Code’s lack of features com-
pared to GitHub, e.g., forks and pull requests, source code
integration [2, 25]. However, the issue tracking system on
GitHub lacks several critical features, e.g., severity, compo-
nent (instead they only use labels); furthermore, bug reports
cannot have attachments; a bug report template is missing
as well. Unless GitHub adds those missing bug management
features, the projects will suffer, as it is harder for developers
to manage and ultimately fix the bugs.

6. THREATS TO VALIDITY
We now discuss possible threats to the validity of our study.

Selection bias. We only chose open source applications
for our study, so the findings might not generalize to closed-
source projects.

We studied several cross-platform projects (Chrome, Fire-

fox, WordPress, and VLC) to control for process. However, we
did not control for source code size—differences in source
code size might influence features such as FixTime.

Data processing. For the topic number parameter K,
finding an optimal value is an open research question. If K

8For details please visit our online supplementary material.

is too small, different topics are clustered together, if K is
too large, related topics will appear as disjoint. In our case,
we manually read the topics, evaluated whether the topics
are distinct enough, and chose an appropriate K to yield
disjoint yet self-contained topics.

Google Code does not have support for marking bugs as
reopened (they show up as new bugs), whereas the other
trackers do have support for it. About 5% of bugs have
been reopened in desktop, and the FixTime for reopened
bugs is usually high [28]. This can result in FixTime values
being lower for Google Code-based projects than they would
be if bug reopening tracking was supported.

IDs v. individuals. Some projects (especially large
ones) have multiple individuals behind a single ID, as we
showed in Section 3.2. Conversely, it is possible that a sin-
gle individual operates using multiple IDs. This affects the
results in cases where we assume one individual per ID.

7. RELATED WORK
Software engineering researchers have begun to explore

smartphone bugs, but a study comparing bug reports/fix-
ing processes/nature between the desktop and smartphone
platforms was missing.

Smartphone bug studies. Maji et al. [17] compared
defects and their effect on Android and Symbian OS. They
found that development tools, web browsers and multimedia
apps are the most defect-prone; and most bugs require only
minor code changes. Their study was focused on the relation
between source code and defects, e.g., bug density, types of
code changes required for fixes. We also analyze bugs in
Android Platform, but we mainly focus on bug-fixing process
features. Besides Android Platform, we also consider 87 other
projects on Android, desktop and iOS.

Syer et al. [29] compared 15 Android apps with 2 large
desktop/server applications and 3 small Unix utilities on
source code metrics and bug fixing time. We examined 38
Android projects, 34 desktop projects and 16 iOS projects.
Besides fixing time, we also consider other features, e.g.,
severity, description length; we also analyze topics and re-
porter/owner trends for each platform.

Zhang et al. [35] tested three of Lehman’s laws on VLC and
ownCloud for desktop and Android. Their work was based on
source code metrics, e.g., code churn, total commits. Our
work focuses on bug reports/nature/fixing process.

Our own prior work [5] studied bug reports on Android
platform and apps. The study found that for Android app
bugs (especially security bugs), bug report quality is high
while bug triaging is still a problem on Google Code. While
there we compared bug report features across Android apps,
in this work we compare bug-fixing process features across
three platforms, study topics, and study feature evolution.

Topic modeling. Topic models have been used widely in
software engineering research. Prior efforts have used topic
model for bug localization [24], source code evolution [30],
duplicate bug detection [27] and bug triaging [33].

Han et al. [11] studied how fragmentation manifests across
the Android platform and found that labeled-LDA performed
better than LDA for finding feature-relevant topics. Their
work focused on two vendors, HTC and Motorola; we com-
pare bug topics between desktop, Android and iOS.

Martie et al. [21] studied topic trends on Android Platform

bugs. They revealed that features of Android are more prob-
lematic in a certain period. They only analyzed bug trends
in the Android Platform project; in our study, we examined 87

additional projects on Android, desktop and iOS.

8. CONCLUSIONS
We have conducted a study to understand how bugs and

bug-fixing processes differ between desktop and smartphone
software projects. A quantitative analysis has revealed that,
at a meta level, the smartphone platforms are still matur-
ing, though on certain bug-fixing measures they fare better
than the desktop. By comparing differences due to plat-
forms, especially within the same project, researchers and
practitioners could get insights into improving products and
processes. After analyzing bug nature and its evolution, it
appears that build/compile processes stand to be improved
on desktop/iOS, as does concurrency on Android.

9. ACKNOWLEDGMENTS
This work was supported in part by National Science

Foundation grants CNS-1064646 and CCF-1149632. This re-
search was sponsored by the Army Research Laboratory and
was accomplished under Cooperative Agreement Number
W911NF-13-2-0045 (ARL Cyber Security CRA). The views
and conclusions contained in this document are those of the
authors and should not be interpreted as representing the
official policies, either expressed or implied, of the Army Re-
search Laboratory or the U.S. Government. The U.S. Gov-
ernment is authorized to reproduce and distribute reprints
for Government purposes notwithstanding any copyright no-
tation here on.

10. REFERENCES
[1] Investigating konqueror bugs, 2014.

http://www.konqueror.org/investigatebug/.
[2] G. Art. Moving from google code to github.

http://evennia.blogspot.com/2014/02/moving-from-
google-code-to-github.html.

[3] A. Bachmann and A. Bernstein. When process data
quality affects the number of bugs: Correlations in
software engineering datasets. In MSR’10.

[4] N. Bettenburg, S. Just, A. Schröter, C. Weiss,
R. Premraj, and T. Zimmermann. What makes a good
bug report? In FSE’08, pages 308–318, 2008.

[5] P. Bhattacharya, L. Ulanova, I. Neamtiu, and S. C.
Koduru. An empirical analysis of bug reports and bug
fixing in open source android apps. In CSMR’13.

[6] T. Bissyande, D. Lo, L. Jiang, L. Reveillere, J. Klein,
and Y. Le Traon. Got issues? who cares about it? a
large scale investigation of issue trackers from github.
In ISSRE’13, pages 188–197, Nov 2013.

[7] S. Breu, R. Premraj, J. Sillito, and T. Zimmermann.
Information needs in bug reports: Improving
cooperation between developers and users. CSCW’10.

[8] E. Giger, M. Pinzger, and H. Gall. Predicting the fix
time of bugs. In RSSE’10, pages 52–56, 2010.

[9] L. Gomez, I. Neamtiu, T. Azim, and T. Millstein.
Reran: Timing- and touch-sensitive record and replay
for android. In ICSE ’13.

[10] P. J. Guo, T. Zimmermann, N. Nagappan, and
B. Murphy. Characterizing and predicting which bugs
get fixed: An empirical study of microsoft windows. In
ICSE’10, pages 495–504, 2010.

[11] D. Han, C. Zhang, X. Fan, A. Hindle, K. Wong, and
E. Stroulia. Understanding android fragmentation
with topic analysis of vendor-specific bugs. WCRE’12.

[12] P. Hooimeijer and W. Weimer. Modeling bug report
quality. In ASE’07, pages 34–43, 2007.

[13] C. Ikehara, J. He, and M. Crosby. Issues in
implementing augmented cognition and gamification
on a mobile platform. In FAC, volume 8027, pages
685–694. 2013.

[14] S. Just, R. Premraj, and T. Zimmermann. Towards
the next generation of bug tracking systems. In
VLHCC’08, pages 82–85, 2008.

[15] A. K. Karlson, S. T. Iqbal, B. Meyers, G. Ramos,
K. Lee, and J. C. Tang. Mobile taskflow in context: A
screenshot study of smartphone usage. In CHI’10.

[16] KPMG. 2013 technology industry outlook survey,
2013.
http://www.kpmg.com/US/en/IssuesAndInsights/
ArticlesPublications/Documents/technology-outlook-
survey-2013.pdf.

[17] A. Kumar Maji, K. Hao, S. Sultana, and S. Bagchi.
Characterizing failures in mobile oses: A case study
with android and symbian. In ISSRE’10.

[18] A. Lamkanfi and S. Demeyer. Filtering bug reports for
fix-time analysis. In CSMR’12, pages 379–384, 2012.

[19] Y. Lin, C. Radoi, and D. Dig. Retrofitting
concurrency for android applications through
refactoring. In FSE’14, 2014.

[20] P. Maiya, A. Kanade, and R. Majumdar. Race
detection for android applications. In PLDI’14.

[21] L. Martie, V. Palepu, H. Sajnani, and C. Lopes.
Trendy bugs: Topic trends in the android bug reports.
In MSR’12, pages 120–123, 2012.

[22] A. K. McCallum. MALLET: A Machine Learning for
Language Toolkit. http://mallet.cs.umass.edu, 2002.

[23] A. Mockus, R. T. Fielding, and J. D. Herbsleb. Two
case studies of open source software development:
Apache and mozilla. TOSEM, 11(3), July 2002.

[24] A. T. Nguyen, T. T. Nguyen, J. Al-Kofahi, H. V.
Nguyen, and T. Nguyen. A topic-based approach for
narrowing the search space of buggy files from a bug
report. In ASE’11, pages 263–272, Nov 2011.

[25] G. Rodola. Goodbye google code, i’m moving to
github.
http://grodola.blogspot.com/2014/05/goodbye-google-
code-im-moving-to-github.html.

[26] M. Rönkkö and J. Peltonen. Software industry survey
2013, 2013. http://www.softwareindustrysurvey.org/.

[27] P. Runeson, M. Alexandersson, and O. Nyholm.
Detection of duplicate defect reports using natural
language processing. In ICSE’07.

[28] E. Shihab, A. Ihara, Y. Kamei, W. Ibrahim, M. Ohira,
B. Adams, A. Hassan, and K.-i. Matsumoto. Studying
re-opened bugs in open source software. Emp. Soft.
Eng., 18(5):1005–1042, 2013.

[29] M. D. Syer, M. Nagappan, A. E. Hassan, and
B. Adams. Revisiting prior empirical findings for
mobile apps: An empirical case study on the 15 most
popular open-source android apps. In CASCON’13.

[30] S. W. Thomas, B. Adams, A. E. Hassan, and
D. Blostein. Modeling the evolution of topics in source
code histories. In MSR’11, pages 173–182, 2011.

[31] W3Techs. Usage of content management systems for
websites, 2013.
http://w3techs.com/technologies/overview/
content management/all/.

[32] J. Webb. 6 third party tools for automatic bug
creation and more.
http://www.pivotaltracker.com/community/tracker-
blog/6-third-party-tools-for-automatic-bug-creation-
and-more.

[33] X. Xie, W. Zhang, Y. Yang, and Q. Wang. Dretom:
Developer recommendation based on topic models for
bug resolution. In PROMISE’12, pages 19–28, 2012.

[34] J. Xuan, H. Jiang, Z. Ren, and W. Zou. Developer
prioritization in bug repositories. In ICSE’12.

[35] J. Zhang, S. Sagar, and E. Shihab. The evolution of
mobile apps: An exploratory study. In DeMobile’13.

[36] M. Zhou and A. Mockus. What make long term
contributors: Willingness and opportunity in oss
community. In ICSE’12, pages 518–528, 2012.

