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Abstract

Rigorous experiments and empirical studies hold the
promise of empowering researchers and practitioners to
develop better approaches for cyber security. For exam-
ple, understanding the provenance and lineage of poly-
morphic malware strains can lead to new techniques for
detecting and classifying unknown attacks. Unfortu-
nately, many challenges stand in the way: the lack of
sufficient field data (e.g., malware samples and contex-
tual information about their impact in the real world), the
lack of metadata about the collection process of the ex-
isting data sets, the lack of ground truth, the difficulty of
developing tools and methods for rigorous data analysis.

As a first step towards rigorous experimental methods,
we introduce two techniques for reconstructing the phy-
logenetic trees and dynamic control-flow graphs of un-
known binaries, inspired from research in software evo-
lution, bioinformatics and time series analysis. Our ap-
proach is based on the observation that the long evolution
histories of open source projects provide an opportunity
for creating precise models of lineage and provenance,
which can be used for detecting and clustering malware
as well.

As a second step, we present experimental methods
that combine the use of a representative corpus of mal-
ware and contextual information (gathered from end
hosts rather than from network traces or honeypots) with
sound data collection and analysis techniques. While
our experimental methods serve a concrete purpose—
understanding lineage and provenance—they also pro-
vide a general blueprint for addressing the threats to the
validity of cyber security studies.

1 Introduction

The experimental scientist carries the burden of proving
that results reported to the scientific community are valid.
Such proofs of validity are predicated on several condi-

tions: the availability of relevant data sets, the integrity of
data collection and analysis processes, the generalizabil-
ity of results. Establishing validity is particularly chal-
lenging in cyber security because of shortcomings in cur-
rent experimental methods and data sets. The technical,
legal, and ethical obstacles for sharing sensitive artifacts,
such as malware samples or sensitive information on net-
worked devices compromised by cyber attacks (e.g., IP
addresses or geolocation data), prevents independent ver-
ification of results. Additionally, the validation of such
experimental results requires a ground truth, e.g., sam-
ples that have been labeled, objectively, as belonging to
the same malware family. However, only the malware
creators have access to such objective information.

We illustrate these experimental challenges by dis-
cussing the threats to validity for reconstructing the lin-
eage and provenance of malware samples. Provenance
refers to “documenting the entities, systems, and pro-
cesses that operate on and contribute to data of in-
terest” [20]. In this paper, provenance reconstruction
means finding the compiler, development environment,
testing methods, operating system, author, and geo-
graphic/network source of an attack. Effective mecha-
nisms for detecting provenance—attributing an attack to
a responsible party—act as a powerful deterrent to po-
tential attackers. Lineage refers to the ancestors and de-
scendants of an artifact. Establishing lineage allows us to
piece together the timeline of an attack and helps us iden-
tify new variations of an old attack (e.g., mutations of a
known polymorphic virus) [15, 14]. The result of lineage
analysis is a phylogenetic tree that shows the evolution
relationship between artifacts.

While lineage and provenance hold the promise of im-
proving a variety of security tasks, from malware charac-
terization to threat detection and cyber-attack prevention,
these topics remain under active investigation. To ad-
vance this research, we propose two new techniques and
we outline the requirements for their experimental evalu-
ation. The first technique leverages open source reposito-
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ries for tuning lineage reconstruction algorithms that can
then be employed on malware. The second technique is
based on combining dynamic analysis with recent advan-
tages in time series analysis for classifying and detecting
malware. The effectiveness of these techniques depends
on the availability of training data that is representative
for the current malware landscape. Moreover, a rigorous
evaluation of this effectiveness must overcome the ob-
stacles for applying the techniques to all the relevant test
data (e.g., to packed malware samples) and the difficulty
of generalizing the results beyond the data set used in
the experiment (e.g., to malware for mobile platforms).
Overcoming these threats to the validity of lineage and
provenance reconstructions is challenging.

The problem of testing the effectiveness of lineage and
provenance techniques embodies the general challenges
of cyber security studies. We focus on data collection
and analysis rather than on the design of a test bed for
repeatable experimentation, which has been addressed in
the past [7, 2, 11]. In our experience, the data collection
and analysis methods are the main sources of threats to
the validity of experimental results in security. Further-
more, while past research has paid considerable attention
to data collected from honeypot deployments [5, 16] or
from the network [18, 24, 2], we focus on data gathered
on the end-hosts that are the targets of attacks in the real
world.

In summary, our contributions are threefold:

• We propose a solution to the concrete obstacles
faced by lineage and provenance research. Our ap-
proach combines techniques from machine learning
and time series analysis for reconstructing malware
lineage and provenance (Section 2).

• We identify the main obstacles for experimenting
with lineage and provenance techniques, and we
discuss several candidate approaches for address-
ing the threats to validity (Section 3). We also out-
line rigorous experimental methods for training and
evaluating our proposed techniques, based on the
collection and analysis of end-host data (Section 4).

• We describe the practice of reasoning about the gen-
eral threats to validity in empirical studies, and we
identify the challenges for overcoming these threats
in the context of cyber security studies (Section 5).

2 Provenance and Lineage Reconstruction

We now present an approach for reconstructing malware
provenance and lineage. Our approach uses informa-
tion available from a multitude of sources (e.g., open
source code repositories, malware repositories, contex-
tual data on malware propagation) and a variety of tech-
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Figure 1: Partial phylogenetic tree of the Linux kernel.

niques (e.g., static and dynamic analysis, context-based
analysis).

Phylogenetic trees. Originating from evolutionary bi-
ology, where they show the relationships between
species, phylogenetic trees are useful representations for
capturing the lineage and evolution of software artifacts,
both goodware and malware. Our approach is to em-
ploy phylogenetic trees constructed from the evolution
of open source programs to tune lineage reconstruction
techniques that can then be applied to malware.

Open source repositories provide excellent training
data for modeling the evolution of binary artifacts and
reconstructing their phylogenetic trees. We now have
access to the source code of large, long-lived programs
such as the Linux kernel, BSD operating systems, Send-
mail; their release histories span hundreds of versions
and 15–20 years of evolution. By simply compiling this
source code, we obtain a complete phylogenetic tree of
binary artifacts.

In Figure 1 (left) we present a partial phylogenetic tree
of the Linux kernel, where boxes represent versions, and
arrows indicate the ancestor-descendant relationship; for
legibility we omit intermediate versions, e.g., between
2.0.34 and 2.0.40. By comparing the object code of the
same function across multiple versions in the phyloge-
netic tree, we can determine (i) effective similarity mea-
sures between binary artifacts, which will help identify
viruses in the same family; (ii) lineage, i.e., the direct
descendants, hence the direction of the evolution; (iii)
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Figure 2: Partial phylogenetic tree of the Korgo worm
family.

heredity, i.e., how traits are passed from ancestors to
descendants. In Figure 1 (right) we show heredity in-
formation between binary artifacts by focusing on func-
tion foo() in versions 2.1.0, 2.2.0, and 2.3.0. We can
view each binary as being characterized by a set of traits,
which can be determined through static or dynamic anal-
ysis. Some of these traits are passed to the descendants
(in gray), while some traits are not (in black). Traits serve
as markers for each version in the phylogenetic tree.

Static analysis. Techniques for constructing control
flow graphs, inspired from the design and implementa-
tion of compilers, provide the opportunity to identify sev-
eral traits for static analysis, such as the content and or-
der of basic blocks (i.e., sequential code without control
flow statements). Other examples of static traits include
dataflow information, memory access patterns, system
call numbers and system call arguments. As an alter-
native to such semantic analysis, code n-grams can be
used for capturing the sequence of instructions in the bi-
nary [14].

In the next phase, we use these classifiers to establish
lineage and heredity for malware, for those cases where
malware lends itself to static analysis, as follows: extract
traits for known samples from certain malware families
and use these as training sets for the classifier; given an
unlabeled malware sample, the classifier will identify the
closest family and variant for that sample.

We illustrate a malware phylogenetic tree using the
Korgo worm family (named W32.Korgo.* in Symantec’s
nomenclature [26]). Each variant infects Windows sys-
tems by exploiting a vulnerability in the LSAS service,
which represents the distiguishing feature of the Korgo
family. In Figure 2 we present several variants of the
Korgo worm; arrows indicate ancestor-descendant rela-
tionships, while the date next to each variant represents
contextual information (first reported date, as per Syman-
tec’s list of threats and risks [26]); for example, Korgo.E,
first reported on 06/01/04, is a variant of Korgo.D, first
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Figure 3: Representing a control flow graph as a time
series.

reported on 05/31/04. In our approach, the common trait
of Korgo family members is exploiting the LSAS vul-
nerability; we use the techniques honed on open source
software to extract this common trait and establish Ko-
rgo’s lineage and heredity.

Dynamic analysis. Because this static analysis ap-
proach does not work on packed malware, we describe
a second technique, based on dynamic analysis. We run
the unknown binary and record its dynamic control flow
graph. Next, we convert this graph into a time series,
where each data point corresponds to the node in the
graph and the time it was observed; the amplitude of each
data point corresponds to the node’s topological rank in
the control flow graph. We illustrate this in Figure 3;
on the left we have the control-flow graph, on the right
we have the corresponding time series. Each node in the
control-flow graph has an associated id (1..6), and this id
is used as the amplitude in the time series. On the right-
hand side of the figure, we see the results, as a time se-
ries, of executing the program; the x-axis represents time,
i.e., completion of a basic block, while the y-axis repre-
sents the id of the basic block just completed. Recent
dynamic analysis work has found that different strains of
malware from the same family exhibit similar dynamic
control flow graphs [12]. Therefore, when translating the
graphs into time series, the time series will be similar.

The last step in our approach is to reconstruct mal-
ware lineage, based on clustering and similarity metrics,
e.g., by exploiting recent advances in time series analy-
sis (motifs, search and similarity measures) [1, 6]. Tech-
niques based on time-series similarity can also be em-
ployed for malware detection and even for preventing
zero-day attacks: if the time series of an artifact of un-
known origin is highly similar to the time series of known
malware, the artifact could possibly be a new, previously-
unknown strain of an existing virus family.

Contextual analysis. The binary samples are usually
not enough for reconstructing the complete lineage and
provenance of malware families. For example, malware
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creators can employ obfuscation techniques for packing
the executable code and for randomizing the system call
sequences, which reduces the accuracy of static and dy-
namic analysis techniques. Additional contextual infor-
mation is needed to understand when each variant has
appeared in the wild and how it has propagated from host
to host. Such information can be derived from field data,
e.g., network traces or infection reports, collected from
multiple sensors around the world, as explained in Sec-
tion 4.

These sensors could provide the timestamps required
to establish heredity relationships (parent-child), as simi-
larity metrics alone cannot establish the direction of evo-
lution (as illustrated in the Korgo example). Time-series
similarity techniques are well-suited for reconstructing
the timeline of a malware family’s evolution.

3 Challenges for Rigorous Experimental
Studies

Drawing meaningful conclusions from the results of our
lineage and provenance techniques hinges on our ability
to train and benchmark them rigorously, to ensure that
the experimental results are accurate indicators for how
well these techniques would perform in the real world.
Such rigorous experimental methods place several re-
quirements on the experimenters and the data sets they
use. For example, representative field data is essential for
training classifiers and conducting empirical studies, and
the ground truth must be available, for validating the ex-
perimental results. Metadata describing the data collec-
tion process and the experimental procedures is also re-
quired for ensuring the repeatability of experiments and
the independent verification of results. These prerequi-
sites are difficult to achieve for experimental studies in
computer security.

3.1 Candidate Approaches
A number of existing approaches make headway toward
rigorous experimentation. For example, the Emulab [11]
and DETER [2] test beds make it easier for researchers
to ensure that their experimental processes are repeat-
able. However, the lack of representative field data and
of a uniform benchmarking methodology continue to
threaten the validity of cyber security studies. Unlike in
the fields where benchmarking is well established, such
as computer architecture, systems, or databases, the data
sets used for validating computer-security research are
often mentioned in a single publication and then forgot-
ten. This, in itself, represents a threat to the validity of
these studies, as it does not accommodate meaningful
comparisons against prior work, and raises a barrier to
generalizing the conclusions [22].

The security research community emphasized the cur-
rent need for representative data in a “data wish list,”
compiled by Camp et al. [3]. In addition to specific data
that is currently unavailable, the authors identify the need
for a data-sharing process that facilitates the collection of
metadata and that addresses privacy and legal concerns.

Synthetic data. Some benchmarking efforts in the past
have addressed these concerns by generating synthetic
input data—a technique widely used for assessing the
performance of computer systems [8, 23]. For example,
the Lincoln Laboratory evaluation of intrusion detection
systems [18] uses synthetic attack and background data,
generated from statistical distributions observed in net-
work traffic from several Air Force bases. This approach
provides considerable flexibility, because the data gener-
ators allow an experimenter to explore all the behavioral
corner cases of the system-under-test. When assessing
system security, however, synthetic data has a short-lived
relevance because the cyber threat landscape changes at
a fast pace.

McHugh [21] criticizes the Lincoln Laboratory data
set for the lack of information on the validation of test
data, such as measures of similarity with the original traf-
fic traces. Another threat to validity lies in the difficulty
to generalize the results, i.e., to conclude that similar be-
haviors should be expected when exposing the systems-
under-test to real world data. For example, the false pos-
itive rate of intrusion detection systems is influenced by
background noise, which should be consistent with the
background data that the system is likely to encounter
in a real deployment. McHugh observes that the exper-
imenter has the burden of proof for showing that the ar-
tificial environment does not affect the outcome of the
experiment. These lessons endure in the community: the
PREDICT data repository [9] was also criticized for the
lack of adequate metadata, and Camp et al. [3] empha-
size the need for metadata that allows experimenters to
distinguish meaningful conclusions from spurious obser-
vations.

Field data. A similar challenge of establishing repre-
sentativeness applies to benchmarks based on field data,
gathered from production systems; an example would
be data on threats to obsolete versions of operating sys-
tems and applications. Such data collections must be
updated frequently in order to account for changes in
the cyber threat landscape. A more subtle challenge for
a benchmark that incorporates raw field data is to al-
low the experimenter to control for factors that might
affect the interpretation of the results. Even when the
experimental results are statistically significant, owing
to the large amount of data analyzed, their validity can
still be questioned in cases where small changes in the
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collection process (e.g., input sources or sampling al-
gorithms) can drastically alter the outcome of the ex-
periment. The benchmark should provide the collection
metadata needed for establishing the real-world situa-
tions that each data set is representative of. Moreover,
in order to make it possible for future projects to repro-
duce the experimental results, the benchmark must pro-
vide tools for recording the experiment metadata: the
hypotheses tested and their accept/reject criteria, the ex-
perimental design (e.g., the unpacker used to pre-process
the data, the static/ dynamic analysis tools employed, the
classification features and their rationale), the scripts and
procedures used for data analysis, the statistical appara-
tus employed.

Security-oriented field data must necessarily include
sensitive artifacts, such as dangerous binaries (e.g., mal-
ware) and data that could reveal personally identifiable
information (e.g., hosts that have been compromised by
attackers). For example, several research efforts in the
past have collected malware samples from honeypot de-
ployments [5, 16] and information about the real-world
behavior of malware from network traces [18, 24, 2].
Drawing conclusions from such experiments is challeng-
ing: in the first case the researchers must prove that the
honyepot instrumentation did not alter the experimental
results, and in the second case the network packets reveal
only certain aspects of malware behavior.

A more representative image of the cyber threat land-
scape could be painted by malware samples and behav-
ioral data collected on a large number of end-hosts—
enterprise and consumer PCs that are the victims of cy-
ber attacks. In the rare cases where a research project is
able to collect such data, by instrumenting a representa-
tive sample of end hosts and by establishing data man-
agement agreements with their users, the resulting data
set is not easy to share with other researchers. For ex-
ample, the IP addresses of hosts initiating network-based
attacks could point to personal computers that have been
infected with malware, while the country codes of the at-
tack destinations reveal further sensitive information. Bi-
nary samples of malware collected in this manner cannot
be made publicly available. Such ethical and scientific
challenges have prevented, so far, the establishment of
a representative corpus of data for cyber security bench-
marking and experimentation.

3.2 Problems for Lineage and Provenance

These challenges for collecting and sharing security-ori-
ented data result in a number of fundamental threats to
the validity of lineage and provenance studies. The first
step in determining lineage is clustering samples into
malware families. Prior approaches have used classifi-
cation features such as the similarity of string signatures

or of dynamic call graphs to identify viruses in the same
family [12]. The inability of current tools to unpack ob-
fuscated code or to compute dynamic call graphs, which
makes it difficult to expose the connection between inde-
pendent variables, e.g., the traits chosen as classification
features, and dependent variables, e.g., malware families.

The second step in reconstructing the lineage involves
assembling a phylogenetic tree. This tree indicates, for
example, not only that Korgo.E and Korgo.F are muta-
tions of Korgo.D, but also that Korgo.D precedes Ko-
rgo.E, which precedes Korgo.F. Tree construction de-
pends on comparing the distance between classification
features and on using contextual information (e.g., time
when a virus was first reported, semantics reconstructed
by dynamic analysis and expert analysis). The lack of
relevant information from malware factories, on their de-
velopment processes and dissemination strategies, pre-
vents us from establishing a ground truth for validating
lineage results.

Similarly, provenance techniques aim to use the exe-
cutable information to reconstruct the development en-
vironment (e.g., compiler or IDE) used to produce mal-
ware. For example, different C++ compilers use different
virtual-method table layouts, and, similarly, code seg-
ment layouts produced by C compilers differ as well;
this further helps identify the toolset used for develop-
ing the malware. However, malware written in assembly
contains no such distinguishing information, which pre-
vents these environment-reconstruction techniques from
operating on all the relevant training data. Additionally,
pinpointing the geographical or network location where
the attack was launched requires contextual information,
collected worldwide, on the dissemination of the threat.
The challenges for collecting such contextual informa-
tion in a comprehensive manner [22, 10] further compli-
cate provenance analysis.

4 Experimentation on End-Host Data

Without the ability to reproduce an experiment, it is
impossible to conclude that the results generalize be-
yond the data set used in the experiment [17]. In other
words, experimental results that cannot be verified inde-
pendently lack external validity. Moreover, the data sets
must be updated continuously to ensure that the data is
relevant to the current cyber threat landscape—i.e., to en-
sure the content validity of experiments. These, as well
as other threats to validity (described in more detail in
Section 5), are often caused by the data collection pro-
cess and the experimental methods employed [22].

For lineage and provenance, collecting and studying
end-host data facilitates experiments that can yield gen-
eral and representative results. For example, malware
samples and contextual information collected on end
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Data set Sources

Malware samples 200 countries
Binary reputation 50 million machines
Anti-virus telemetry 130 million machines

Table 1: Data sets included in WINE [10].

hosts around the world provide a diverse data set for ex-
perimentation, likely to cover a large number of malware
families. Reconstructing the timeline of cyber attacks,
for lineage and provenance studies, can also benefit from
observations made on end hosts, because network traces
may not reveal which member of a malware family was
released first (e.g, different members of the same mal-
ware family may produce similar network traffic) and be-
cause the malicious behavior may not be reproducible in
the lab (e.g., bots usually become inoperative after their
command and control nodes have been neutralized). This
example further emphasizes the need to update the cor-
pus of field data continuously, in order to reflect the fre-
quent changes in the cyber threat landscape.

Updating the data sets in this manner is in appar-
ent conflict with the reproducibility requirement. For-
tunately, this conflict is superficial. We should focus on
defining a predictable process for data collection, while
preserving the reference data sets employed in prior ex-
periments. This would facilitate experiments that pro-
duce representative results, based on the freshest data,
and that also remain reproducible in the future.

An example of a field-gathered data corpus, suitable
for lineage and provenance studies, is the WINE bench-
mark, curated by Symantec Research Labs [10]. The
WINE data sets include malware samples, binary repu-
tation and anti-virus telemetry (see Table 1). The mal-
ware collection includes representative samples of both
packed and unpacked malware (e.g., viruses, worms,
bots), which are used for creating Symantec’s anti-virus
signatures. The binary reputation data provide informa-
tion on unknown binaries (i.e., files for which an anti-
virus signature has not yet been created) that are down-
loaded by users who opt in for Symantec’s reputation-
based security program. The anti-virus telemetry records
occurrences of known threats, for which Symantec has
created signatures and which are detected by anti-virus
products. The WINE data sets also specify the collection
metadata, specifying when, where and how the informa-
tion was recorded.

The malware data set provides a large number of varia-
tions of each malware family, collected around the world,
which improves the accuracy of lineage reconstructions
and ensures that results are representative of real-world
attacks. Furthermore, the contextual information in-

cluded in the binary reputation and anti-virus telemetry
data can reveal when a particular malware strain first ap-
peared, and what effect did the release of security patches
and anti-virus signatures have on the production of addi-
tional variants from the same family. The order in which
the various strains have appeared in the wild is relevant
for lineage reconstruction, while their dissemination pat-
terns are relevant for provenance reconstruction.

The measures of similarity between time series, de-
scribed in Section 2, can potentially unlock additional
secrets of this contextual information. By construct-
ing time series of binary download rates, as recorded in
WINE’s binary reputation data set, we can identify pat-
terns that are unique to certain types of malware. For
example, while security patches pushed by software ven-
dors are likely to trigger similar behavioral alarms as
malware that tries to subvert the operating system’s pro-
tections, the dissemination mechanisms of patches and
malware are different. Similarly, malware that spreads
through an aggressive spam campaign is likely to exhibit
a higher download rate than legitimate software products,
which rely on traditional marketing approaches.

To ensure the reproducibility of these experiments, we
must preserve both the data sets employed and metadata
on the experimental procedure. However, simply archiv-
ing the input data and then logging the steps taken during
the experimental procedure (e.g., by recording the inter-
active terminal sessions) is not sufficient for achieving
reproducibility. We can fill this this gap by maintaining
a lab book1 that documents the experimental hypothesis
and the purpose of each procedural step.

Threats to validity. The techniques described in Sec-
tion 2 can benefit from tuning on open source software
and from training and validation using representative
end-host data. Including malware families with many
variants ensures that the results are representative of the
technique’s performance on real-world malware.

Generalizing the conclusions of such a study is more
challenging. For example, we hypothesize that our lin-
eage analysis techniques can reconstruct the lineage of
JavaScript and Flash malware, which often propagates
through social networks. However, we are currently un-
able to validate this hypothesis because the data sets cur-
rently available—including WINE—lack representative
field data on attacks against social networks. Collecting
such data on a large scale requires establishing many de-
coy accounts on the social networks, as well as accessing
the system logs from their data centers. For example, the
spam blacklist compiled by a social network can provide
the ground truth for malware detection studies.

1Keeping a lab book is common practice in other experimental
fields, such as applied physics or cell biology.
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Similarly, we lack representative data on mobile plat-
forms, such as iOS or Android. It is challenging to de-
velop a data collection infrastructure for these platforms;
for example, we must take into account the limited com-
putational and input capabilities of mobile devices and
the costs of network bandwidth.

5 Discussion

The problem of testing the effectiveness of lineage and
provenance techniques embodies the general challenges
of cyber security studies. The conclusions drawn from
any empirical study are subject to multiple threats to va-
lidity: construct validity, content validity, internal valid-
ity, and external validity [25, 13]. For studies in cyber
security, these threats are difficult to overcome, owing
to the unique properties of security data sets and anal-
ysis methods. In this section we review the high-level
requirements for ensuring the validity of cyber security
experiments.

Construct validity requires using metrics and mea-
sures that actually model the hypotheses. For exam-
ple, when measuring software complexity via program
analysis, we know how to pick a good metric from a
bad one: the number of distinct paths through a func-
tion [19] ensures construct validity, while the number of
comments in that function does not. Choosing metrics
for security, however, is challenging. Consider, for ex-
ample, the problem of determining whether a binary of
unknown provenance is malicious or not. As malware
creators overwhelmingly employ packing techniques to
obfuscate their code, complexity-based metrics are only
as good as our ability to unpack to obfuscated code be-
fore conducting static analysis. We could overcome this
challenge through dynamic analysis techniques, which
execute the unknown binary in order to record its be-
havior. The binary must be executed in a sandboxed
environment (e.g., a virtual machine) to avoid the risk
of infecting the test bed and of spreading to other hosts.
However, attackers increasingly adopt anti-virtualization
techniques [4], which cause the virus to exhibit a differ-
ent behavior when running inside a virtual machine and
further thwart detection efforts. Existing program analy-
sis techniques are therefore relevant for only a subset of
today’s malware, and the size of this subset is difficult to
assess without field data from production systems.

Content validity requires excluding irrelevant data
points and including all the relevant ones. For instance,
including partially-unpacked malware samples among
inputs would lead to erroneous conclusions about the
detection rate of an analysis tool. Conversely, recent

zero-day attacks are usually excluded from studies of
the malware landscape, but they should not be. More-
over, for training and validating malware detection tools,
we must also include goodware samples among the in-
puts. Unfortunately, a well-defined partition between
malware and goodware (i.e., a ground truth) is not likely
to be available for cyber-security studies, except in small-
scale red-teaming experiments. Today, most binaries
suspected of carrying malicious payloads are convicted
through automated techniques, without involving human
analysts, and using this data as a point of reference for
testing new algorithms confounds the interpretation of
false positive and false negative rates [17]. Moreover, as
the cyber threat landscape changes at a fast pace, the con-
clusions based on yesterday’s data are not necessarily rel-
evant for today’s attacks, hence the lack of continuously-
updated data sets [3, 22] undermines content validity for
security studies.

Internal validity requires that a study be properly con-
structed, such that a causal connection can be established
between independent and dependent variables. For ex-
ample, when analyzing unknown binaries on an infected
system, the analysis is tainted, and, as a result, we might
incorrectly classify goodware as malware. This is often
a challenge for studying end-host data, because the data
collection process must ensure that the host instrumenta-
tion is tamper resistant. It is the duty of the experimenter
to control for variables that might influence the interpre-
tation of the result and to ensure that changes in depen-
dent variables can only be caused by changes in indepen-
dent variables. When measuring system performance,
this is usually achieved by using synthetic data genera-
tors [8, 23], which can be tuned to vary a single input
variable at a time. However, synthetic data generators
have a limited relevance for security (see Section 3.1),
which undermines the internal validity of studies con-
structed in this manner [21].

External validity requires that the results of a study
generalize to systems and data sets outside the scope of
the study. External validity is gravely threatened in the
realm of security: studies on old data do not generalize
to current data; studies on certain malware types, e.g.,
trojans do not generalize to polymorphic viruses; and
studies on network-based attacks do not generalize to
host-based attacks. Moreover, as the malware has spread
to social networks and smartphones, the scarcity of field
data in these domains further undermines the external va-
lidity of studies based on the existing security-oriented
data sets.
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6 Conclusions

In this paper, we present the common threats to the va-
lidity of cyber security experiments and evaluations, and
the challenges for overcoming them. For example, the
obfuscation and anti-virtualization techniques frequently
employed by malware creators often prevent analysis,
which undermines the construct validity of security-
oriented studies. The lack of ground truth about real-
world malware threatens the studies’ content validity.
Frequent changes in the malware landscape reduce the
relevance of evaluations based on synthetic data, affect-
ing external validity, while field data makes it difficult to
control for all the variables that could influence the inter-
pretation of the result, threatening internal validity.

To ground these methodological challenges in a con-
crete problem, we present new techniques for recon-
structing malware lineage and provenance, and the chal-
lenges for validating these techniques experimentally.
We emphasize the advantages of analyzing field data,
collected on end hosts around the world, for addressing
the threats to the validity of lineage and provenance re-
construction.
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