
UNIVERSITY OF CALIFORNIA
RIVERSIDE

Dynamic Analysis Techniques for Effective and Efficient Debugging

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Yan Wang

August 2014

Dissertation Committee:

Dr. Rajiv Gupta , Co-Chairperson
Dr. Iulian Neamtiu, Co-Chairperson
Dr. Harsha V. Madhyastha
Dr. Zizhong Chen

Copyright by
Yan Wang

2014

The Dissertation of Yan Wang is approved:

Committee Co-Chairperson

Committee Co-Chairperson

University of California, Riverside

Acknowledgments

This dissertation would not have been possible without all people who have helped me

during my Ph.D. study and my life.

First, I am deeply indebted to my advisor, Dr. Rajiv Gupta, for supporting me

throughout the past five years. His patience, encouragement, and belief in my potential

during the difficult times when I did not believe in myself make this dissertation all

possible. I cannot thank him enough for his step by step mentoring from finding and

solving research problems to writing and presenting new ideas. I will never forget he is

the person that went over my papers tens of times with me for accuracy. Eventually all

his efforts make my doctoral study in UC Riverside the most rewarding and memorable

experience that I will cherish forever. Thanks, Dr. Gupta!

I am also deeply indebted to my co-advisor Dr. Iulian Neamtiu for his efforts

in helping me do good research. I will definitely remember forever that he is the per-

son that stayed up at 5 am with me several times for paper deadlines. His attitude

towards research has influenced me immensely in the past and in the future. Thanks,

Dr. Neamtiu!

Next, I would like to thank the members of my dissertation committee Dr.

Harsha V. Madhyastha and Dr. Zizhong Chen for being always supportive. Their

constructive comments make this dissertation much better. I also thank Dr. Laxmi N.

Bhuyan for his useful courses and help towards this dissertation.

I am also thankful for all my collaborators Dr. Harish Patil, Dr. Cristiano

Pereira and Dr. Gregory Lueck at Intel. I am so lucky to work with these knowledgeable

and excellent scholars. The collaboration with them is really valuable and has greatly

improved this dissertation.

iv

I would like to express my gratitude to all my lab-mates: Dennis Jeffrey, Vijay

Nagarajan, Chen Tian, Min Feng, Kishore K. Pusukuri, Changhui Lin, Sai Charan

Koduru, Bo Zhou, Vineet Singh, Amlan Kusum, Farzad Khorasani, Keval Vora, Pamela

Bhattacharya, Tanzirul Azim, YongJian Hu, Mehmet Esat Belviranli and Sambit Shukla

for helping me in many ways during my graduate study. You are priceless friends in

my life. Especially, I want to thank Min Feng and Changhui Lin for supporting and

encouraging me through the difficult times during my Ph.D. study.

I also want to thank my dear friends Yingyi, Zhixing, Yuan, Yanping, Sheng,

Bing, Le, Xiaojing, Ergude, Dung, Yi, Yang, Li, Yuanqi and Lijuan for helping and

enriching my life in Riverside and in the future.

Finally, I would like to thank my family. Their endless love and encouragement

help me overcome all kinds of difficulties I encountered during my study and my life. I

love you forever!

v

To my family and my love.

vi

ABSTRACT OF THE DISSERTATION

Dynamic Analysis Techniques for Effective and Efficient Debugging

by

Yan Wang

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, August 2014

Dr. Rajiv Gupta , Co-Chairperson
Dr. Iulian Neamtiu, Co-Chairperson

Debugging is a tedious and time-consuming part of software development. Therefore,

providing effective and efficient debugging tools is essential for improving programmers’

productivity. Existing tools for debugging suffer from various drawbacks – general-

purpose debuggers provide little guidance for the programmers in locating the bug

source, while specialized debuggers require knowledge of the type of bug encountered.

This dissertation makes several advances in debugging leading to an effective, efficient,

and extensible framework for interactive debugging of singlethreaded programs and de-

terministic debugging of multithreaded programs.

This dissertation presents the Qzdb debugger for singlethreaded programs that

raises the abstraction level of debugging by introducing high-level and powerful state

alteration and state inspection capabilities. Case studies on real reported bugs in popular

programs demonstrate its effectiveness. To support integration of specialized debugging

algorithms into Qzdb, a new approach for constructing debuggers is developed that

employs declarative specification of bug conditions and their root causes, and automatic

generation of debugger code. Experiments show that about 3,300 lines of C code are

generated automatically from only 8 lines of specification for 6 types of memory bugs.

vii

Thanks to the effective generated bug locators, for the 8 real-worlds bugs we have

applied our approach to, users have to examine just 1 to 16 instructions. To reduce the

runtime overhead of dynamic analysis used during debugging, relevant input analysis is

developed and employed to carry out input simplification and execution simplification

which reduce the length of analysed execution by reducing the input size and limiting the

analysis to subset of the execution. Experiments show that the relevant input analysis

algorithm for input simplification is both efficient and effective – it only requires 11% to

21% test runs of that needed by the standard delta debugging algorithm and generates

even smaller inputs.

Finally, to demonstrate that the above approach can also be used for debugging

multithreaded programs, this dissertation presents DrDebug, a deterministic and cyclic

debugging framework. DrDebug allows efficient debugging by tailoring the scope of replay

to a buggy execution region and an execution slice of a buggy region. Case studies of

real reported concurrency bugs show that the buggy execution region size is less than

1 million instructions and the lengths of buggy execution region and execution slice are

less than 15% and 7% of the total execution respectively.

viii

Contents

List of Figures xii

List of Tables xiv

1 Introduction 1
1.1 Qzdb: Interactive Debugger for Singlethreaded Programs 3

1.1.1 Debugging via State Alteration & State Inspection 4
1.1.2 Extensibility via Bug Specification & Debugger Generation . . . 5
1.1.3 Improved Efficiency via Failing Input & Execution Simplification 5

1.2 DrDebug: Interactive Debugger for Multithreaded Programs 7
1.3 Dissertation Organization . 8

2 The Qzdb Interactive Debugger for Singlethreaded Programs 10
2.1 Debugging Commands . 12

2.1.1 State Alteration Interfaces . 13
2.1.1.1 Switching Control Flow 13
2.1.1.2 Execution Suppression 14

2.1.2 State Inspection Interfaces . 15
2.1.2.1 Dynamic Slicing . 15
2.1.2.2 Conditional Breakpoints 17

2.1.3 State Rollback Interfaces . 18
2.2 Usage of Debugging Commands . 19

2.2.1 Localizing a Stack Smashing Bug 21
2.2.2 Localizing a Double Free Bug . 26
2.2.3 Localizing a Heap Buffer Overflow Bug 29
2.2.4 Localizing a Dangling Pointer Dereference 32
2.2.5 Localizing a NULL Pointer Dereference 35

2.3 Implementation . 36
2.4 Performance Evaluation . 38

2.4.1 Slicing Overhead . 39
2.4.2 Checkpointing Overhead . 41
2.4.3 Efficiency of State Rollback . 42
2.4.4 State Alteration Overhead . 43

2.5 Summary . 44

ix

3 Integrating Specialized Debuggers in Qzdb via Bug Specifications 45
3.1 Bug Specification . 48

3.1.1 Specifying Debuggers via Rules 48
3.1.2 Memory Debuggers in Practice 52

3.1.2.1 Double-free . 52
3.1.2.2 NULL Pointer Dereference 55
3.1.2.3 Unmatched Free . 57
3.1.2.4 Other Classes of Bugs 59

3.2 Formalism . 60
3.2.1 Syntax . 60
3.2.2 Operational Semantics . 63
3.2.3 Soundness . 68

3.3 Implementation . 68
3.3.1 Debugger Code Generation . 69
3.3.2 Online Debugging . 69

3.4 Experimental Evaluation . 74
3.4.1 Efficiency . 74
3.4.2 Debugger Effectiveness . 75
3.4.3 Performance . 77

3.5 Summary . 78

4 Improving the Efficiency of Qzdb via Input Simplification 79
4.1 Relevant Input Analysis . 80

4.1.1 Motivating example . 80
4.1.2 Definitions . 85
4.1.3 Role of Relevant Inputs . 85
4.1.4 Strength of Relevant Inputs . 88
4.1.5 Computation of Relevant Inputs 91
4.1.6 Implementation . 95
4.1.7 Performance Evaluation . 95

4.2 Delta Debugging using Relevant Input Analysis 96
4.2.1 Algorithm Details . 97
4.2.2 Comparison with Standard Delta Debugging 102
4.2.3 Experimental Evaluation . 103

4.3 Summary . 106

5 The DrDebug Interactive Debugger for Multithreaded Programs 107
5.1 Overview of DrDebug . 111
5.2 Computing Dynamic Slices . 114
5.3 Replaying Execution Slices . 117
5.4 Improving Dynamic Dependence Precision 119

5.4.1 Dynamic Control Dependence Precision 121
5.4.2 Dynamic Data Dependence Precision 122

5.5 Implementation . 124
5.6 Experimental Evaluation . 127

5.6.1 Case Studies . 127
5.6.2 Logging and Replay . 129
5.6.3 Slicing Overhead and Precision 132
5.6.4 Execution Slicing . 133

x

5.7 Summary . 134

6 Related Work 136
6.1 Fault Localization . 136

6.1.1 Techniques Employed by General Purpose Interactive Debuggers 136
6.1.2 Reverse Debugging Techniques 137
6.1.3 State Alteration Techniques . 139
6.1.4 Static and Dynamic Slicing Techniques 139
6.1.5 Techniques for Locating Memory-Related Errors 140
6.1.6 Statistical Debugging Techniques 141

6.2 Techniques for Input and Execution Simplification 142
6.2.1 Prior Forms of Relevant Input Analysis 142
6.2.2 Input Reduction via Delta Debugging 142
6.2.3 Execution Reduction Techniques 143

6.3 Runtime Verification Techniques . 144

7 Conclusions and Future Directions 146
7.1 Contributions of this Dissertation . 146

7.1.1 Can the effectiveness of general-purpose debuggers be improved
using dynamic analysis techniques? 146

7.1.2 Can an interactive debugger support systematic extensibility to
allow incorporation of specialized bug detection algorithms? . . . 147

7.1.3 Can a debugger built upon powerful dynamic analysis techniques
be made efficient enough to handle real-world bugs? 148

7.1.4 Can the developed approach for interactive debugging be extended
to handle multithreaded programs? 149

7.2 Future Directions . 150
7.2.1 Challenges for Android Platform 151
7.2.2 Dynamic Analysis Framework for Android Apps 153

Bibliography 157

A Soundness Proof 167

xi

List of Figures

1.1 The Qzdg debugger. 4
1.2 Extensibility via bug specification & debugger generation. 5
1.3 Improved efficiency via failing input & execution simplification. 6
1.4 DrDebug: interactive debugger for multithreaded programs. 7

2.1 Typical use of our debugger. 20
2.2 The main window of our debugger. 21
2.3 Slicing from the crash point. 25
2.4 Predicate switching. 25
2.5 Execution suppression. 25
2.6 Pruning a slice. 25
2.7 Double free example. 26
2.8 Heap buffer overflow example. 30
2.9 Dangling pointer dereference example. 32
2.10 NULL pointer dereference example. 34
2.11 Components of the Qzdb debugger. 36
2.12 Runtime savings due to rollback. 42

3.1 Overview of bug specification, detection and location. 49
3.2 Bug detection rules and auxiliary predicates. 51
3.3 Detecting, and locating the root cause of, a double-free bug in Tidy-34132. 53
3.4 Detecting, and locating the root cause of, a NULL pointer dereference

bug in Tar-1.13.25. 56
3.5 Detecting, and locating the root cause of, an unmatched free bug in

Cpython-870c0ef7e8a2. 58
3.6 Bug detection rules and auxiliary predicates for other classes of bugs. . 59
3.7 Syntax. 61
3.8 Definitions and shorthands for operational semantics. 62
3.9 Operational semantics (abstract machine states and reductions). 66
3.10 Actual bug specification input for double-free bugs. 68
3.11 Online debugging process. 70
3.12 State transition for a NULL pointer dereference bug. 70

4.1 Buggy code for illustrating relevant input analysis. 81
4.2 Comparing prior work results with our relevant input analysis. 82
4.3 Example illustrating the role of input values. 86
4.4 Dynamically computing relevant inputs of VAL(stoi). 92

xii

4.5 Body parse example. 94
4.6 Step 1: Removing irrelevant inputs. 98
4.7 Step 2: Generating the input decomposition tree. 99

4.8 Step 3: Searching for 1-minimal input – found S S N B / B P 101

5.1 Cyclic debugging with DrDebug. 108
5.2 Narrowing scope of execution for replay. 111
5.3 Dynamic slicing in DrDebug. 112
5.4 Dynamic slicing a multithreaded program. 116
5.5 An example of execution slice. 118
5.6 Control dependences in the presence of indirect jumps. 119
5.7 Spurious dependence example. 120
5.8 Dynamic slicer implementation. 125
5.9 DrDebug GUI showing a dynamic slice. 126
5.10 Logging times (wall clock) with regions of varying sizes for some PARSEC

benchmarks (‘native’ input). 130
5.11 Replay times (wall clock) with pinballs for regions of varying sizes for

some PARSEC benchmarks (‘native’ input). 131
5.12 Removal of spurious dependences: average percentages of reduction in

slice sizes over 10 slices for regions of length 1 million and 10 million
dynamic instructions: SPECOMP (medium, test input). 133

5.13 Execution slicing: average replay times (wall clock) for 10 slices for regions
of length 1 million dynamic instructions: PARSEC (‘native’ input). . . . 134

xiii

List of Tables

2.1 Major debugging commands. 12
2.2 Overview of benchmarks. 22
2.3 Run characteristics. 39
2.4 Slicing time and space overhead. 39
2.5 Time and space overhead: DU & CD 39
2.6 Checkpointing and rollback time and space overhead. 41
2.7 Suppression time overhead. 43

3.1 Detection points. 50
3.2 Debugger code generation efficiency: comparison of lines of specification

and generated debuggers for different bugs. 74
3.3 Overview of benchmark programs. 75
3.4 Debugging effort: instructions examined. 76
3.5 Execution times (from start to bug-detect), when running inside our de-

bugger. 77

4.1 Overview of benchmarks. 96
4.2 Execution times (from start to failure point), with relevant input analysis. 96
4.3 Summary of comparison with standard delta debugging. 104
4.4 Comparison with standard delta debugging after step 1. 104

5.1 Data race bugs used in our experiments. 128
5.2 Time and Space overhead for data race bugs with buggy execution region. 128
5.3 Time and space overhead for data race bugs with whole program execu-

tion region. 128

xiv

Chapter 1

Introduction

Debugging is a tedious and time-consuming process for software developers.

It has been observed that debugging-related tasks (i.e., locating bugs and correcting

programs) can take up to 70% of the total time expended on software development and

maintenance [51]. Therefore, providing effective and efficient debugging tools is essential

for improving developers’ productivity.

Extensive research has been conducted on debugging with the goal of devel-

oping debugging techniques and tools with diverse capabilities. General-purpose de-

buggers [26, 13] are in wide use, but they only provide low-level commands, and do

not sufficiently guide the programmer in narrowing the source of error; hence even with

their use, the task of debugging remains very tedious. Extending the capabilities of such

debuggers is also a daunting task. Another class of (more specialized) debuggers are

tools that have been designed to detect the presence of specific kinds of bugs such as

buffer overflows [18], dangling pointer dereferences [19], memory leaks [108] etc. How-

ever, programmers must first know the kind of bug present in the program to make use

of such specialized debuggers. Moreover, when faulty code is encountered during exe-

1

cution, its impact on program execution might be observed much later, making it hard

to locate the faulty code. Therefore programmers may still need to resort to general-

purpose debuggers to understand and fix the bug. To address the above drawbacks, this

dissertation presents a debugging framework with following characteristics:

(i) Powerful Dynamic Analysis Framework. The debugger is built around a pow-

erful dynamic analysis framework based upon dynamic binary instrumentation. This

allows incorporation of complex dynamic analyses needed to implement high-level com-

mands as well as simple dynamic analyses needed for implementing low-level commands.

The high-level commands allow the programmer to progressively narrow the bug to

smaller regions of the code and the low-level commands can be employed to understand

the detailed behavior of small section of code containing the bug. The debugger is ex-

tensible, because a new command can be added by simply extending the user interface

and implementing the dynamic analysis needed to implement the new command.

(ii) Integrating Specialized Debugging Techniques. To enable integration of

specialized debugging techniques with ease, a bug specification language is provided.

The user specifies new types of bugs1 using simple specifications and the code that

performs the dynamic analysis needed for the detection of the specified bugs is then

automatically generated. Once again, the powerful dynamic analysis framework on

which the debugger is based enables such extensibility to be supported in a systematic

fashion.

(iii) Runtime Efficiency. Since powerful dynamic analysis algorithms can incur high

runtime execution cost, a two-pronged approach is employed to speed up their use

1We define a bug to be a class of faults, for example, a double-free bug refers to all double-free faults
present in the program.

2

during cyclic debugging. First, checkpoint and rollback mechanisms are supported,

to allow cyclic debugging to be performed without having to repeatedly execute the

program from the start – the execution region of interest to the programmer can be

rerun multiple times. Second, a complementary approach that simplifies a failing input,

and its corresponding execution, is employed such that the length of program execution

over which dynamic analysis is performed can be greatly reduced.

The first part of this dissertation presents the Qzdb debugger for singlethreaded

applications which embodies the characteristics described above. It supports a wide

range state inspection and state alteration capabilities that help the programmer to

quickly narrow the bug to a small section of code. The second part of this dissertation

demonstrates that the above capabilities can also be transferred to tools for debugging

multithreaded applications by presenting the DrDebug debugger. DrDebug relies upon

the use of a record and replay component so that relevant parts of program execution

can be replayed deterministically. The remainder of this chapter provides an overview of

the debugging capabilities of Qzdb and DrDebug and the organization of the remainder

of the thesis.

1.1 Qzdb: Interactive Debugger for Singlethreaded Pro-

grams

The overview of the Qzdb debugger is shown in Figure 1.1. This debugger con-

sists of the debugging interface via which the programmer can debug an execution using

a wide range of high-level and low-level commands. The interface communicates with

the dynamic analysis framework that implements the corresponding dynamic analyses.

3

Breakpoint
…

Slice

Switch

Dynamic Slicing

 …

Predicate Switching

 …

High-level Commands

Dynamic Analysis Framework

Pin

Pintool 1

Pintool 2

Low-level Commands

Debugger Interpreter

PinADX

Command 1

Command 2

K
D

b
g Remote

Debugging
Protocol

GDB
 Load Symbol

Pintool N

Command N

 Program binary
+ input

 Program binary

Figure 1.1: The Qzdg debugger.

1.1.1 Debugging via State Alteration & State Inspection

The Qzdb debugger supports powerful, high-level state alteration and state in-

spection capabilities to raise the level of abstraction of debugging. The state alteration

commands dynamically switch the directions of conditional branches or suppress the

execution of statements, allowing programmers to narrow faulty code down to a func-

tion. The state inspection commands allow efficient examination of large code regions

by navigating and pruning dynamic slices and zooming-in on chains of dynamic depen-

dences. Finally, the programmer can zoom to a small set of statements in a slice by

breakpointing at those statements and examining program state.

4

Buffer Overflow
Specification

Double Free
Specification

Null Pointer Dereference
Specification

…

Bug Specifications

A
u

to
-G

e
n

e
rate

Buffer Overflow
Bug Detector & Locator

 …

Double Free
Bug Detector & Locator

Null Pointer Dereference
Bug Detector & Locator

Pintool 1

Pintool 2

Pintool N

Specification 1

Specification 2

Specification N

Generated Bug Detectors & Locators

Figure 1.2: Extensibility via bug specification & debugger generation.

1.1.2 Extensibility via Bug Specification & Debugger Generation

This dissertation makes Qzdb extensible by presenting a new approach for con-

structing debuggers based upon: declarative specification of bug conditions and their

root causes; and automatic generation of dynamic analysis required to perform bug

detection and location. For each bug class, bug conditions and their root causes are

specified declaratively, in first-order logic. As shown in Figure 1.2, this approach is

demonstrated by extending Qzdb with the capability to detect memory bugs such as

double free, buffer overflow, and null pointer dereference. Besides, to facilitate locating

bugs, the new concept of value propagation chains is introduced to reduce programmers’

burden by narrowing the fault to a handful of executed instructions. Finally, the de-

bugging interface is extended to allow the programmer to turn on and off the detection

and location of different kinds of bugs.

1.1.3 Improved Efficiency via Failing Input & Execution Simplification

This dissertation reduces the overhead of Qzdb by simplification of failing pro-

gram input and its dynamic execution using a technique we named relevant input analy-

sis. The overhead of dynamic analysis required for high-level commands (i.e., predicate

5

Original Input Simplified Input
Triggering

the Same Bug

Simplified Input
Triggering

the Same Bug

Input

Simplification

Execution

Simplification

Execution with
Original Input

Execution with Simplified
Input with the Same

Bug Triggered

Simplified Execution

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML+RDFa"

http://www.w3.org/MarkUp/DTD/xhtml-rdfa-1.dtd>

<html xmlns=http://www.w3.org/1999/xhtml

 xml:lang="en" version="XHTML+RDFa 1.0"

xmlns:dc="http://purl.org/dc/terms/"

xmlns:foaf="http://xmlns.com/foaf/0.1/"

xmlns:skos=http://www.w3.org/2004/skos/core#

xmlns:xsd="http://www.w3.org/2001/XMLSchema#">

<head profile="http://www.w3.org/xhtml/vocab">

<meta http-equiv="Content-Type"

content="text/html; charset=UTF-8">

<meta about="/frontpage"

property="sioc:num_replies"

content="0" datatype="xsd:integer">

<link rel="shortcut icon“

href="http://2013.datagyan.com/misc/favicon.ico"

type="image/vnd.microsoft.icon">

<meta content="The 24th IEEE International

Symposium on Software Reliability Engineering"

href="http://2013.datagyan.com/node/54">

<title>The 24th IEEE International Symposium on

Software Reliability Engineering|ISSRE 2013

</title>

<style type="text/css" media="all">

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML+RDFa"

http://www.w3.org/MarkUp/DTD/xhtml-rdfa-1.dtd>

<html xmlns=http://www.w3.org/1999/xhtml

xmlns:xsd="http://www.w3.org/2001/XMLSchema#">

<head profile="http://www.w3.org/xhtml/vocab">

<meta http-equiv="Content-Type"

content="text/html; charset=UTF-8">

<title>The 24th IEEE International Symposium on

Software Reliability Engineering|ISSRE 2013

</title>

<style type="text/css" media="all">

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML+RDFa"

http://www.w3.org/MarkUp/DTD/xhtml-rdfa-1.dtd>

<html xmlns=http://www.w3.org/1999/xhtml

xmlns:xsd="http://www.w3.org/2001/XMLSchema#">

<head profile="http://www.w3.org/xhtml/vocab">

<meta http-equiv="Content-Type"

content="text/html; charset=UTF-8">

<title>The 24th IEEE International Symposium on

Software Reliability Engineering|ISSRE 2013

</title>

<style type="text/css" media="all">

Figure 1.3: Improved efficiency via failing input & execution simplification.

switching, dynamic slicing) and automatically generated debuggers (i.e., generated dou-

ble free bug detector and locator) can be quite high, as extensive runtime monitoring

is needed for implementing them. This is particularly the case for long program execu-

tions. This dissertation tackles this problem by presenting relevant input analysis which

is used to accelerate the delta debugging [112, 111, 70] algorithm for input simplification

while guaranteeing that the same failure manifests on the simplified input. In addition,

execution simplication is employed to skip parts of execution that are irrelevant to the

encountered bug. Figure 1.3 gives an overview of the impact of input simplification and

execution simplification.

In summary, Qzdb’s novel capabilities assist the programmer during debugging

in the following ways. First, the programmer simplifies a failing input as well as its dy-

namic execution, and then starts debugging using the simplified execution. Second, the

programmer enjoys the advantages of many specialized yet auto-generated bug check-

6

DrDebug
 Program binary

+ input

Observe
program state

Root cause of
the bug?

Only Capture Bug Related
Program Execution

slice
pinball

Replay
Execution Slice

compute
 slice

record on/off

Capture
Execution Slice

Figure 1.4: DrDebug: interactive debugger for multithreaded programs.

ers with negligible programming effort while benefiting from value propagation chains

that perform root cause localization. Third, for complicated bugs, the programmer can

leverage the high-level state alteration and state inspection capabilities to speed up bug

fixing.

1.2 DrDebug: Interactive Debugger for Multithreaded Pro-

grams

With the advent of multicores, programmers must write parallel programs to

achieve increased performance. However, writing and debugging multithreaded pro-

grams is very difficult; hence this dissertation extends the above debugging framework

to multithreaded programs. Cyclic debugging for multithreaded programs poses multi-

ple challenges: depending on the location of the bug, it can take a very long time to

fast-forward and reach the buggy region; heap and stack locations, the outcome of sys-

tem calls, and thread schedules change between debugging sessions; some bugs are hard

7

to reproduce, in general and also under a debugger. To address these challenges DrDebug

supports a collection of tools based upon PinPlay, a capture and replay framework.

The overview of the DrDebug debugger is shown in Figure 1.4. The features of

DrDebug significantly increase the efficiency of debugging by tailoring the scope of replay

in two ways. First, the scope can be limited to a buggy execution region by recording

the execution in a region pinball (using a record on/record off capability) and then

replaying it during cyclic debugging. Second, while replaying the execution region, the

scope can be further narrowed to an execution slice of the buggy region by generating

a slice pinball and replaying it for debugging. With DrDebug, a highly precise dynamic

slice is computed that can then be browsed by the user by navigating the dynamic

dependence graph with the assistance of our graphical user interface. If the dynamic

slice is of interest to the user, it is used to compute an execution slice whose replay can

then be carried out efficiently as execution of code segments that do not belong to the

execution slice is skipped. DrDebug also allows the user to step from the execution of

one statement in the slice to the next while examining the values of variables in a live

debugging session.

1.3 Dissertation Organization

The remainder of this dissertation is organized as follows. Chapter 2 presents

the commands and the architecture of the Qzdb debugger for singlethreaded programs.

Chapter 3 shows how Qzdb can be extended to include techniques for specific types of

bugs – the user provides a declarative specification of a specific kind of bug (condi-

tions and root causes) while the automatic generator processes the specifications and

produces the implementations of dynamic analysis for corresponding bug detector and

8

locator. Chapter 4 presents the relevant input analysis technique used to simplify pro-

gram input as well as its dynamic execution to reduce the runtime overhead of dynamic

analysis. Chapter 5 presents DrDebug that extends the debugging framework used in

Qzdb to support debugging of multithreaded programs. Chapter 6 describes the related

work. Finally Chapter 7 summarizes the contributions of this dissertation and identifies

directions for future work.

9

Chapter 2

The Qzdb Interactive Debugger

for Singlethreaded Programs

To assist with debugging, programmers frequently make use of an interactive

debugger (e.g., GDB) whose use typically involves: state inspection, state alteration, and

code modification. The programmer executes the program on a failing input and uses

state inspection commands to examine program state at various points (e.g., by setting

breakpoints and examining values of variables when breakpoints are encountered). After

finding suspicious values, the programmer may apply state alteration to correct these

values and see how the program’s execution is affected. Alternatively, the programmer

may perform code modification such as commenting out suspicious statements [17] and

then recompile and rerun the program, to see how the program behavior is affected.

Some debuggers attempt to speed up this process, albeit for restricted scenarios: for

example, Visual Studio offers an Edit-and-Continue feature [101] for on-the-fly changes

to the program being debugged, but code modifications such as most changes to global

or stack data are not supported.

10

Both state alteration and code modification techniques help the programmer

in understanding and locating faulty code. While state alteration is a lightweight tech-

nique, code modification slows down debugging as it requires program recompilation

and reexecution. This can take a significant amount of time if the program runs for

long before exhibiting faulty behavior and the above process is performed repeatedly. A

debugger such as GDB supports simple state alteration commands for altering values of

variables. Thus the programmers often resort to code modification to locate the bug.

Our Qzdb interactive debugger addresses such issues by supporting commands

to reduce debugging effort and increase debugging speed. These commands allow the

programmer to narrow his/her focus successively to smaller and smaller regions of code.

The state alteration commands allow the programmer to narrow faulty code down to

a function. The state inspection techniques allow efficient examination of large code

regions by navigating and pruning dynamic slices and zooming in on chains of depen-

dences. Finally, the programmer can zoom to a small set of statements in a slice by

breakpointing at those statements and examining program state.

The commands in Qzdb speed up the iterative debugging process by reduc-

ing the need for code modifications, which require recompilation and reexecution. Its

state alteration commands allow the programmer to perform control flow alterations by

switching outcomes of conditional branches. Its execution suppression commands allow

skipping of statements during execution. That is, these commands effectively simulate

the effect of code modifications without the need for recompilation. In addition, since

Qzdb also supports checkpoint and rollback, the programmer can rollback to an earlier

execution point, specify state alterations, and then reexecute the program. A reexe-

cution from a checkpoint instead of from the beginning can greatly reduce the waiting

time associated with recompilation and reexecution for long executions.

11

2.1 Debugging Commands

Qzdb provides three kinds of debugging commands—state alteration, state

inspection, and state rollback—listed in Table 2.1. Of these, six commands—switch,

suppress, slice, record, prune, and instance are not found in commonly-used in-

teractive debuggers. Other commands are extended to support new debugging features.

State alteration commands are used to isolate bugs and help programmers efficiently

gain comprehension of program’s faulty behavior. State inspection commands help pro-

grammers focus on bug-related statements and present unexpected dependences to the

programmers and allow them to navigate along dependence edges. State rollback com-

mands enable the quick reexecution of the suspicious code region. Programmers use

these commands via the GDB command line or the GUI.

Summary Commands Description

State Alteration
switch switch the outcome of a predicate
suppress suppress the execution of a statement

State Inspection

record turn on/off recording for slicing
slice perform backward dynamic slicing
prune prune dynamic slices
sbreak create breakpoints in a slice
conditional conditionally capture memory bug
breakpoint related library calls (e.g., malloc, free)
instance print execution instance of a statement

State Rollback
checkpoint set up an incremental checkpoint
rollback rollback the program state

Table 2.1: Major debugging commands.

Qzdb can greatly relieve the burden of programmers. First, when a program

crashes, it can be difficult for the programmer to reason about the execution flow, e.g.,

when the crash happens because a library call destroys an auto-maintained stack or heap.

Qzdb captures the abnormal data dependences and presents them to the programmers

in an intuitive way. Second, it is the programmer’s responsibility to find suspicious

12

code and speculate about the root cause. Qzdb enables the programmer to focus on

bug-related statements and guides the examination of values and setting of breakpoints

guided by dynamic slicing. Third, even after discovering all the bug-related statements,

the programmer still has to understand and fix the bug. Qzdb enables the programmer to

quickly identify critical bug manifestation condition (e.g., a critical function invocation)

by leveraging state alteration and narrowing the fault to a small code region. Fourth, it

is common that a variable use is data-dependent on a far-away definition in a different

function or a source file. Navigating across source files is burdensome. Qzdb enables the

programmer to visually navigate captured dependences and reason about the execution.

2.1.1 State Alteration Interfaces

State alteration commands provide an easy way to alter the program execution

state dynamically and enable programmers to avoid repetitive program compilations and

executions. Qzdb supports state alterations to affect the flow of control and suppress

the execution of statements. These features are described next.

2.1.1.1 Switching Control Flow

The command switch file:line [all|once|n] is designed to switch the outcome

of the predicate in the lineth line in file file. Programmers can choose to switch the

outcome for every (all), next (once) or only the nth (n) instance of the predicate.

Using switch, programmers can dynamically change the outcome of a branch

and then check the difference in program state and result. When a program crashes

or deviates from the desired behavior, programmers use switch to invert the outcome

of the predicate dynamically. If the program behaves correctly after inversion, the

programmer can infer that there is an error in the predicate or the predicate is critical

13

to bug manifestation. Otherwise the predicate is likely unrelated to the error. If there

are several predicates in the execution trace of a failing run, all the predicates with which

the program works properly by following the inverted branch compose the critical bug

manifestation condition. That is, the bug disappears when the outcome of any of these

predicates changes, providing valuable clues to the programmer to understand the bug.

With the aid of switch, programmers avoid source code modification and recompilation

which are time-consuming.

2.1.1.2 Execution Suppression

The suppress file:line [all|once|n] command suppresses the execution of state-

ment at line line in file file. Programmers can choose to suppress every instance (all),

only the next instance (once), or only the nth (n) instance of the statement.

Like switch, suppress is useful for isolating a bug. A commonly-used debug-

ging strategy is to temporarily comment out a section of code and then check whether

the remaining part works as expected [17]. This approach involves recompilation of the

source code. The suppress command is designed to simplify this procedure. If the

programmer suspects that a statement or function is faulty, he can suppress its execu-

tion on-the-fly without having to modify the source code, recompile the program and

then rerun the program from beginning. For example, assume that the programmer has

forgotten to use a guarding predicate around some statements, causing the program to

crash. The programmer can use Qzdb to suppress the unguarded statements based on his

knowledge of the program. If the program then behaves as expected, the programmer

can now focus on fixing the code.

Programmers can first suppress a function call to identify a faulty function

and then suppress statements in the function to identify faulty code. By reducing the

14

suppression to finer granularities, the root cause of failure can be narrowed to a smaller

code section.

2.1.2 State Inspection Interfaces

2.1.2.1 Dynamic Slicing

Dynamic slicing commands include the following.

• record file:line on|off identifies the code region where dynamic slicing is required.

• slice stmt i variable|addr [size]|register constructs a backwards dynamic slice

for variable, memory region [addr, addr+size) or register, starting from the ith

execution instance of stmt. If no variable is specified, we generate a slice for

all the registers and variables used in current execution instance of stmt. Our

debugger assigns unique numbers to each generated slice and feeds this number

back to the programmer.

• prune id list is used to prune the idth slice by eliminating from the slice all the

dependence edges related to any variable or register in list.

• sbreak id s1[, s2, ...] is used to insert a breakpoint at sth1 (and sth2 ,...) statements in

the idth slice. The command sbreak all id inserts a breakpoint at each statement

in the idth slice. Breakpoints for sbreak are triggered when specific execution

instances are encountered.

• sdelete id is used to delete the idth slice.

• info slices is used to print a detailed report of all generated slices that have not

been deleted.

• instance file:line prints the execution instance of lineth line in file file.

15

With traditional debuggers, programmers navigate and conjecture the root

cause over the whole execution trace [26]. With our debugger, programmers can infer

the root cause in the pruned slices of variables with wrong values. These slices are much

smaller. The slice command is very efficient in locating the root causes of bugs. It

is common for a failing program to exhibit abnormal control or data dependences that

can be quickly identified by examining a slice that captures them. For example, for

a NULL pointer dereference bug, we can locate where the NULL pointer originates by

examining the backwards slice of the NULL pointer. The slice may also help determine

if the pointer was mistakenly set to NULL.

The slice command is also very useful for double free, heap and stack buffer

overflow bugs. These memory-related bugs are notoriously hard to find because the

source code of library functions is not available and the internal data structures (heap

and stack metadata) are transparent to programmers. Our debugger traces into library

calls and captures hidden dependences among internal data structures. For example,

when a heap buffer overflow bug destroys an internal data structure maintained by the

heap allocator, a dependence path from the place where the error is manifested to the

overflow point is found. Since library source code is unavailable to programmers, we do

not present dependences inside a library code. Instead, we squash the dependence edges

to statements inside the library functions to their call sites. For example, consider a

stack smashing bug inside a library call that causes a crash when the returning statement

is executed. We report a dependence edge from the returning statement to the call site

of library function.

During debugging, programmers often have high confidence that the program

performs correctly for some execution segments. In that case, they can focus on the most

suspicious region first. The record command allows recording the concerned code region

16

and slicing based on the partial def-use information. Further, programmers may have

high confidence on the correctness of some values. For example, they may know that a

loop variable i has nothing to do with the failure. The dynamic slice can be pruned to

exclude the dependences due to such values. The prune command removes dependence

edges corresponding to variables or special registers in list. Thus, the record and prune

commands greatly limit slice sizes and save programmers’ time and effort.

The sbreak command facilitates setting breakpoints efficiently. It generates a

breakpoint which is only triggered when the specific execution instance in the slice

is reached. Programmers frequently step through the program execution to reason

about the control/data flow and find faulty code. With the help of sbreak all, the

programmer is able to only step through the statements and execution instances in the

slice. Because all the statements influencing the value of a variable are included in the

slice, stepping only through the statements in the slice reduces programmers’ effort.

2.1.2.2 Conditional Breakpoints

Existing debuggers (e.g., GDB) provide conditional breakpoints; however, the

condition must be defined at source code level, which is not available to programmers

for library functions. Thus, conditional breakpoints must be set at each call site, which

is time consuming and inflexible. Therefore we provide a command breakpoint lib func

[if condition] that triggers a breakpoint at the call site of lib func when condition is

satisfied. The condition allows selective and efficient capture of critical library function

invocations. The condition has the forms:

• if argN|ret==value triggers a breakpoint when the N th argument or return value

equals the given value.

17

• if write/read/access addr [size] triggers a breakpoint when the function writes/read-

s/accesses specified memory location.

Extended conditional breakpoints are very useful for memory-related bugs. For example,

there may be three possibilities if a program crashes at a free— double free, unmatched

free (i.e., freeing an unallocated pointer), or heap buffer overflow. The programmer

can check for a double-free bug using breakpoint free if arg1==fail addr to see if

this memory region has been freed before. If a previous free with the same address is

caught, this indicates a double-free bug. Otherwise, if no previous deallocation is found,

programmers can use breakpoint malloc if ret==fail addr to see if crash is due to

deallocation of unallocated memory. Programmers can use breakpoint strcpy/memcpy

if arg1==addr or breakpoint strcpy/memcpy if write addr to find if the specified

memory location is modified in strcpy/memcpy, to find buffer overflow bugs.

2.1.3 State Rollback Interfaces

The checkpoint command creates a checkpoint and the debugger assigns an

id to it. The command rollback id is used to go back to a previous checkpoint and re-

execute from that point. The command info checkpoints prints the list of checkpoints

and cdelete id deletes a checkpoint.

Traditional checkpointing [50] records/restores memory/register states and is

inadequate for us. First, if the programmer rolls back the execution when recording is

turned on, the recorded def-use information will wrongly include the rolled-back por-

tion of the execution, thus slices generated based on this information will be incorrect.

Second, rolling back the program state to a previous checkpoint will cause inconsis-

tency between the statement execution instances in the previously-generated slice and

in the restored program. Our debugger extends the traditional incremental checkpoint-

18

ing mechanism to support state alteration and state inspection. In addition to recording

(restoring) the memory and register states, we also record (restore) the execution in-

stances. This extension maintains the consistency between generated slices and program

state.

The checkpoint and rollback commands are particularly useful for iterative

debugging. Without state rollback, programmers have to restart the execution every

time they go over the possible faulty area or when they want to modify the program

execution (e.g., altering input, switching a predicate, or suppressing a function call).

Moreover, on systems such as Linux, the addresses of stack- and dynamically-allocated

regions vary from run to run due to address space randomization for security. Therefore

it is troublesome to diagnose bugs related to dynamically allocated regions (e.g., double

free and heap buffer overflow) and stack (e.g., stack smash). Thanks to the checkpoint

command, programmers can go back to a previous point and rerun the program from

there, while keeping all addresses of dynamically allocated regions unchanged. The

rollback command keeps the addresses the same when programmers rerun the program

from a checkpoint.

2.2 Usage of Debugging Commands

This section describes how different types of commands are used during the

debugging process and then demonstrates their use in context of a set of hard-to-locate

bugs from real programs. Figure 2.1 overviews the debugging process based upon the

supported commands. Let us assume that the execution of the program has failed on

an input. First, the programmer enters commands that will later allow detailed state

inspection and program reexecution. Then the program is executed from the beginning

19

Set Checkpoints
Set Record points

Set Breakpoints

from

Perform State
Inspection

Compute Slices
Examine Slices

Prune Slices

Introduce State
Alteration Commands

Switch Commands
Suppress Commands

Begin point

Enabling Commands
Put State Inspection

Enabling Commands

Modify State Inspection

Select Begin point
 Rollback Execution
 to Begin point

Begin point = Program
Start

Execute Program

Figure 2.1: Typical use of our debugger.

until execution stops due to an error or a breakpoint is encountered. The user can

now perform state inspection, starting with computing a backward dynamic slice. The

programmer can prune the slice based on the knowledge of the program; next, internal

execution states can be probed by setting breakpoints at statements in the slice. Based

upon the insights gained, the programmer may choose to use state inspection commands

and/or apply state alteration techniques to further understand program behavior. By

rolling back the execution to an earlier checkpoint, and reexecuting the program from

that point, the programmer can observe the impact of state alteration by examining

program state. This is an iterative process which eventually leads to location of faulty

code. This iterative process does not require program recompilation or reexecution from

the beginning.

20

Figure 2.2: The main window of our debugger.

Next, we present case studies of using Qzdb, based upon five different kinds of

memory-related bugs listed in Table 2.2, taken from BugNet [76].

2.2.1 Localizing a Stack Smashing Bug

Figure 2.2 shows a stack buffer overflow bug (also referred to as stack smashing)

in ncompress-4.2.4. Line numbers are shown on the left. The bug is triggered when the

length of the input filename (pointed to by fileptr at line 880) exceeds the size of array

tempname defined at line 884 which stores the file name temporarily. The program

crashes when the comprexx function tries to return to its caller because the return

address of comprexx is overwritten at line 886 in the strcpy function.

21

Program Name LOC Error Type Error Location

ncompress-4.2.4 1.4K Stack Smashing compress42.c:886
Tidy-34132 35.9K Double Free istack.c:031
bc-1.06 10.7K Heap Buffer Overflow storage.c:176
Ghostscript-8.12 281.0K Dangling Pointer Use ttobjs.c:319
Tar-1.13.25 28.4K NULL Pointer Use incremen.c:180

Table 2.2: Overview of benchmarks.

Without our debugger it is extremely difficult for programmers to figure out

why the program crashes when it executes the return statement (at line 946). First, be-

cause the program counter is corrupted, existing debuggers (e.g., GDB) cannot report

the exact crash point. Our debugger reports the exact location by tracking the modi-

fication to the program counter and reporting its current and previous values. Second,

the program crashes because a library call destroys the auto-maintained stack, neither

of which are visible to the programmer; hence it is difficult to reason about the bug from

the source code. Our debugger captures the hidden data dependence and presents it to

the programmer.

Returning to our example, with our debugger the programmer knows that the

program crashed at line 1252 (shown in Figure 2.3) and the program counter is modified

at this crash point. Next, the program can be restarted and additional checkpoints

introduced for later use. The programmer can also enable tracing at the beginning of

main and turn it off at the crash point to later get the whole slice.

With our enhanced dynamic slicing, if the programmer omits variables in the

slice criterion, the debugger computes dynamic slices for all registers and variables used

in a statement. This is very useful for memory-related bugs because there is no need

(evenworse, sometimes it is very difficult) for the programmer to figure out which vari-

ables or memory regions are used at the crash point. If we use the statement line

number (1252) and instance (1) as the slice criterion, the generated slice is as shown in

22

Figures 2.2 and 2.3. If the programmer omits the instance, the latest execution instance

is used by default. All statements in the slice are highlighted in yellow (e.g., lines 1252

and 886) so programmers can focus on them.

To further help reason about the execution flow, our debugger captures and

presents the concrete control/data dependence relationships. Our debugger also allows

programmers to navigate the dependence edges and quickly identify unexpected con-

trol/data flow. To get the dependence relationships, users click on the left expansion

mark of a statement in the slice. The dependence edges from statement stmt1 are shown

as follows:

instance1 → file2 : line2 instance2 due to Memory/ControlDependence

which means that the instanceth1 execution of stmt1 is data/control dependent on the

instanceth2 execution of statement at line2 in file2. For example, by clicking the left

expansion mark of line 886 in Figure 2.2, all the dependence edges originating from this

statement in slice 0 are shown just below the source line (in red). From the first line just

below line 886, we can see that its first execution instance is data-dependent on the first

execution instance of statement at line 815 due to variable fileptr[0]. The programmer

can navigate backwards along the dependence edge by clicking the “Activate dependent

statement” button (e.g., jump directly to the definition point of fileptr[0] at line 815).

That is, programmers can navigate backwards from the current statement to the de-

pended statement (predicate in case of control dependence, definition point in case of

data dependence) in one click, even when the current program point is in a different

function or a different source file from the depended statement. Source code navigation

along dependence edges can greatly enhance programmers’ debugging efficiency.

23

Following the dependence edges from the crash point of line 1252, the program-

mer knows that it is data-dependent on strcpy called at line 886 due to an unexpected

write access to addresses 0xbf8a9a8c, 0xbf8a9a88, and bf8a9a84 (see the first three de-

pendence edges below line 1252 in Figure 2.3). Experienced programmers will know

that there is something wrong with the invocation of strcpy. They can rollback the

program state to a previous checkpoint, and then use execution suppression to suppress

the abnormal data flow and verify that the root cause is strcpy invocation.

Because the crash point is also control dependent on the statement at line

827 (see fourth dependence edge below line 1252, and line 827 in Figure 2.4), less-

experienced programmers may navigate along this dependence edge. If the programmer

navigates to line 828, the invocation location of comprexx, he can quickly narrow the

faulty region by either applying suppression (line 828, Figure 2.5) or predicate switching

(lines 825 or 827, Figure 2.4). In both cases the crash goes away. Therefore, the

programmer will have high confidence that comprexx is faulty. Note that comprexx may

be invoked multiple times, e.g., when ncompress detects multiple files in a folder. Using

our debugger, the programmer can easily control which instance to alter. With the help

of state alteration, the programmer can quickly zoom into the faulty function comprexx.

Next, the programmer can rollback to a previous checkpoint and rerun the program up

to the beginning of this function, and then efficiently step through comprexx with the

help of sbreak all.

When using slicing, the programmer can use the prune command to reduce the

size of slices as shown in Figure 2.6. For example, by pruning the slice by fileptr, 17% of

the original statements in slice 0 are pruned away, and 37% of the dependence edges are

eliminated. Programmers can also generate slices limited to function comprexx by simply

recording just the execution of comprexx—doing so reduces the number of statements in

24

Figure 2.3: Slicing from the crash point.

Figure 2.4: Predicate switching.

Figure 2.5: Execution suppression.

Figure 2.6: Pruning a slice.

25

istack.c:
025: AttVal *DupAttrs(TidyDocImpl* doc, AttVal *attrs) {
033: *newattrs = *attrs;
034: newattrs → next = DupAttrs(doc, attrs → next); ...

/* double free due to the missing of the following statement*/
039: newattrs → php=attrs → php? \

CloneNode(doc, attrs → php):NULL;
041:}
057: void PushInline(TidyDocImpl* doc, Node *node) {...
092: istack → attributes = DupAttrs(doc, node → attributes); }
097: void PopInline(TidyDocImpl* doc, Node *node) {
142: if (lexer → istacksize > 0) {...
147: while (istack→attributes){ ...
151: FreeAttribute(doc, av); }
parser.c:
128: Node* DiscardElement(TidyDocImpl* doc, Node *element) {
132: if (element){...
136: FreeNode(doc, element); }
140:}
309: Node *TrimEmptyElement(TidyDocImpl* doc, Node *element) {
311: if (CanPrune(doc, element)){...
316: return DiscardElement(doc, element); }

Figure 2.7: Double free example.

slice 0 by 60% and dependence edges by 62%. Therefore, effective use of partial logging

can greatly reduce slice sizes.

2.2.2 Localizing a Double Free Bug

Tidy-34132 contains a double-free memory bug which manifests itself when the

input HTML file contains a malformed font element, e.g., of the form <font color="red"<?font>.

The relevant code for this bug is presented in Figure 2.7. The program constructs a node

structure for each element (e.g., font) in the HTML file. An element may contain mul-

tiple attributes corresponding to the attributes field of the node structure, which is a

pointer to the attribute structure. The program pushes a deep copy of the node structure

onto the stack when encountering an inline element (i.e., font in our test case) by call-

26

ing PushInline (line 057). The deep copy is performed by duplicating the dynamically

allocated structure pointed by each field in the node structure as well as fields of fields

recursively. For example, the program duplicates the node’s attributes fields and fields of

the attributes structures, as shown in line 092. However, the program makes a shallow

copy of the php field in the attribute structure by mistake in line 033 because of the

missing statement, as shown in line 039. All the copies of node structure pushed onto

the stack by PushInline will be subsequently popped out in function PopInline (line

097), where all the allocated regions will be freed recursively. In some situations, due to

the shallow copy, the php fields of some node structures will contain dangling pointers.

If some element in the HTML file is empty and can be pruned out, the program removes

the node from the markup tree and discards it by calling TrimEmptyElement (line 309)

which eventually calls DiscardElement on line 316. Node deletion is just a reverse pro-

cess of node deep copy, i.e., free all the dynamic allocated memory regions in the node

structure in a recursive fashion, including the structures pointed by the php fields. With

some special HTML files as input, the program crashes when it tries to trim the empty

font element because the php field of the attributes field of the font element has been

freed in PopInline.

Since the bug is very complicated, debugging is very time-consuming with

traditional debuggers. Programmers can identify the bug much easier with the help

of our debugger. Although a double-free bug may manifest itself far away from the

second free, the program happens to crash at the second free in our test case. As

mentioned before, a program crash at free can be caused by three kinds of bugs—double

free, unmatched free, or heap buffer overflow. The programmer can use breakpoint

free/malloc/memcpy/strcpy if condition to identify the exact bug type. In our test

case, the command breakpoint free if arg1==second free ptr captures the position of

27

the first free quickly. The zoom component of our approach now reveals its power, as the

reported crash point can be far from the second free. The programmer uses the slice

command to get the dynamic slice of the memory units used at the crash point and

then pinpoint the root cause with the state alteration, inspection and rollback interfaces

introduced in our debugger.

As we can see, fixing this bug (line 039 in istack.c) calls for far more program

comprehension than the positions of the two free calls (line 136 in parser.c), which is

the best bug report that existing automatic debugging tools (e.g., Memcheck [79]) can

achieve. Suppose the programmer has already known the positions of the two free calls

with the help of either our debugger or automatic debugging tools. To figure out under

which condition the bug manifests itself and then remove the defect, the programmer

still needs to resort to debuggers. This example illustrates a normal situation where

automatic debugging techniques lag far behind the requirements raised from practical

debugging. They can only be a supplement to debuggers rather than a substitute.

The programmer can quickly gain program understanding and fix bugs with

the help of our debugger in this case. Suppose the programmer has known the position

of the two free’s, with the help of either our debugger or other automatic debugging

tools. First, the programmer can generate a dynamic slice for the two variables used in

the first and second free respectively. Then she can easily find out where the shallow

copy comes from by following the data dependence edges related to those variables. For

example, by following only two hops along the data dependence edges in the generated

slice for the variable used in the first free, she can find out that the shallow copy comes

from line 033. However, the DupAttrs function is expected to generate a deep copy of

a given attribute, then the programmer figures out that some statements which should

generate the deep copy is missed in this function and she can fix this bug quickly.

28

The programmer can also leverage state alteration to gain more program com-

prehension and then fix the bug. For example, she can use the switch command to

switch some predicates in the dynamic slice of the crash point (the second free) for

better understanding the program behavior and crash condition. For this particular

bug, switching the last execution instance of the predicate at line 132, 142, or 311 will

make the program function properly. Hence, we can infer that a combination of those

predicate is the bug manifestation condition and the bug will disappear with any pred-

icate unsatisfied. The programmer can also suppress some functions in the slice of the

crash point to isolate the bug. Suppression of the final invocation of TrimEmptyEle-

ment, PopInline, PushInline or DiscardElement in our test case can eliminate the crash,

which suggests that an abnormal data flow is avoided by following any of the execution

suppression. From the result of state alteration, the programmer will know that the

program crashes if the last processed element is an inline and prunable element. This

provides valuable hints to the programmer.

In the next chapter we show how this double free bug can be detected with

trivial programming efforts (3 lines of bug specification), and located much faster with

the help of value propagation chains which allow programmers to only examine 16 in-

structions (vs. 4,687 instructions with dynamic slicing).

2.2.3 Localizing a Heap Buffer Overflow Bug

Figure 2.8 shows a bug in bc-1.06. The program fails with a memory corruption

error at line 557. The root cause is the incorrect predicate at line 176, where the variable

v count is misused instead of the desired one, a count. The variable v count stands for

the total number of variables seen so far, while the variable a count represents the size

of the variable arrays which stores a structure for each array seen so far. When the

29

storage.c:
153: void more arrays () {...
166: a count += STORE INCR;
167: arrays = bc malloc (a count*sizeof(bc var array *));

/* correct one: for (; indx < a count; indx++)*/
176: for (; indx < v count; indx++)
177: arrays[indx] = NULL;
util.c:
542: int lookup (char *name, int namekind) {...
553: id = find id (name tree, name);
554: if (id == NULL){

/* We need to make a new item. */
557: id = (id rec *) bc malloc (sizeof (id rec)); /*crash point*/

...}
566: switch (namekind){
569: case ARRAY:
576: id→a name = next array++;
577: a names[id→a name] = name;
578: if (id→a name < MAX STORE) {
580: if (id→a name >= a count)
581: more arrays ();

Figure 2.8: Heap buffer overflow example.

program encounters a new array and the variable arrays is full, it will call the function

more arrays to dynamically reallocate a larger array (line 167), copy data from the old

array to the new array, and initialize all unused units to NULL (line 177). When there

are more variables than the size of arrays (i.e., v count > a count), the heap object

arrays is overflowed and the metadata maintained by the heap allocator is corrupted.

After that, if the program encounters a new symbol, it allocates a new data structure

for this symbol at line 557, where program crashes abnormally because of the corrupted

metadata.

To figure out what causes the memory corruption, the programmer can restart

the program, save checkpoints at some early points, and start tracing to enable the

dynamic slicing. She can repeat the program execution until the program crashes

again. She then can get the dynamic slice of the memory units used at the crash

30

point (0x0805dcc0 in our test case). Unexpectedly, the crash point directly depends on

the statement at line 177, which is supposed to write NULL to some units in arrays.

The programmer cannot find any relationship between the statement and the crash

point if she only follows the source code level control/data flow. The captured hidden

dependence provides effective guidance to the programmer who then can expedite the

debugging procedure by focusing on the abnormal dependence in the slice.

To verify whether the statement at line 177 is the root cause, the programmer

can go back to a previous execution point by rollback checkpoint id and rerun the code

before the statement. She then can use the suppress command to suppress execution

of the specific instance of statement 177 in the slice of the crash point. She may also

switch the predicate at line 176 to suppress the execution of statement 177. As it turns

out, the program works properly with statement 177 suppressed. Therefore, now the

programmer knows that either statement 177 or the statements influencing it (e.g., line

176) are wrong. By concentrating on the suppressed statement 177, she can easily find

that the suppressed statement tries to write memory unit 0x0805dcc0 which is out of

the scope of array and thereby should not be modified here. Next, the programmer can

focus on the statements which affect the execution of statement 177 using the slice

command with statement 177 as slicing criterion. The root cause of the heap buffer

overflow bug can be pinpointed easily by examining the first statement (statement 176)

in the generated slice.

Next chapter illustrates how the heap buffer overflow bug in bc-1.06 can be

detected and located much faster via declarative specification of bug conditions and

their root causes, and automatic generation of debugger code. Chapter 4 instead shows

how this long failure inducing input (1310 chars) can be greatly simplified (190 chars)

via relevant input analysis based delta debugging techniques, then instead of the original

31

ttobjs.c:
213: #define ALLOC ARRAY(ptr, old count, count, type) \
214: (old count >= count ? 0 : \
215: !(free aux(mem, ptr), ptr = \
216: mem→alloc bytes(mem, (count) * sizeof(type),”ttobjs.c”)))

294: Context Create(void* context, void* face) {
302: PExecution Context exec =(PExecution Context) context; ...
319: if(ALLOC ARRAY(exec→glyphIns, exec→maxGlyphSize,
319: maxp→maxSizeOfInstructions, Byte) || ...)
357: goto Fail Memory ;
gsalloc.c
717: i free object(gs memory t * mem, void *ptr, ...) {
728: pp = (obj header t *) ptr - 1;
729: pstype = pp→o type; ...
770: finalize = pstype→finalize; /*crash point*/
igc.c:
157: gs gc reclaim(vm spaces * pspaces, bool global)
ttinterp.c:
708: in Ins ROLL () {
719: args[0] = B;

Figure 2.9: Dangling pointer dereference example.

long input (1310 chars), programmers start the debugging task with the simplified input

(190 chars).

2.2.4 Localizing a Dangling Pointer Dereference

A dangling pointer dereference bug in Ghostscript-8.12 is shown in Figure 2.9.

In this buggy program, all execution contexts share the same glyph buffer (exec→glyphIns

at line 319). When an execution completes, its context data structure will be reclaimed

in the garbage collection function gs gc reclaim at line 157 in file igc.c. However, the

shared glyph buffer and its metadata structure obj header t are reclaimed improperly.

The o type field of the obj header t struct is a union of an integer and a pointer to

the gs memory struct type s structure. Before the context is reclaimed, the o type field

functions as a pointer to the gs memory struct type s structure storing a finalization

32

function for the glyph buffer. After the context is reclaimed, it is reused (or destroyed)

as an integer, and written in function Ins ROLL at line 719.

When a new execution context is created in function Context Create at line

294, the original glyph buffer is freed in function free aux at line 215 if the current glyph

buffer’s size is less than the max size of instructions in the newly created context. The

program calls i free object at line 717 and a larger glyph buffer is created at line 216.

However, because the shared glyph buffer has been reclaimed when the previous context

completed (at line 157), the program crashes when it tries to free the glyph buffer at line

717 by referencing a dangling pointer pstype at line 770. The pointer pstype is supposed

to store a pointer to the gs memory struct type s structure that keeps a finalization

function for the glyph buffer. When it is reused wrongly as an integer, it is first written

at line 157 in file igc.c and next at line 719 in file ttinterp.c.

As we can see, this bug is very complicated (e.g., the depth of call stack at

the crash point is as high as 20). Unfortunately, such complexity is typical of many

real-world bugs, and few automatic debugging techniques can help find and fix them.

As a consequence, programmers still have to use debuggers to pinpoint the root cause

and rectify the bug. As we will illustrate shortly, our debugger greatly reduces the

programmers’ effort required to remedy this bug.

To debug the program, the programmer can restart the program execution

and create a checkpoint at some early point before the crash point (e.g., line 770 in

file ttobjs.c). Suppose the program crashes at the nth execution of function i free object

(n=133,177 in our test case). The programmer may want to suppress the whole function

execution using command suppress i free object 133177 or switch the last encountered

predicate (at line 214). The program will work in the right manner after the execu-

tion suppression or predicate switching, which implies that the metadata of the glyph

33

create.c:
800: create archive (void){...
806: if (incremental option){...
812: collect and sort names ();
names.c:
713: add hierarchy to namelist (struct name *name, dev t device){
715: char *path = name→name;
716: char *buffer = get directory contents (path, device);
765: ...}
772: collect and sort names{...
809: add hierarchy to namelist (name, statbuf.st dev);
820: ...}
increment.c:
173: get directory contents (char *path, device) {...

/* for scanning directory*/
180: char *dirp = savedir (path); ...
204: if (children != NO CHILDREN)
205: for (entry = dirp;
206: entrylen = strlen (entry))!= 0;//crash point
207: entry +=entrylen +1)

{...}

Figure 2.10: NULL pointer dereference example.

buffer may be modified unexpectedly somewhere and thereby cannot be used to free

the glyph buffer. Next, the programmer can focus on why and where the metadata are

unexpectedly modified.

To find out where the metadata are modified, the programmer can use the

slice command to get the slice of the variable pstype. With the help of generated slice,

he can easily figure out that pstype is data dependent on the variable pp and pp→o type

at line 729, and the variable pp→o type depends on the write statement at line 719

in function Ins ROLL, which is abnormal since the pp→o type field should function as

a pointer to the gs memory struct type s structure now and it should not be written

in the Ins ROLL function, where it serves as an integer. Based on this valuable clue,

programmers can track the root cause at line 157 by iterating these steps.

34

2.2.5 Localizing a NULL Pointer Dereference

A NULL pointer dereference bug in Tar-1.13.25 causes the program to crash

when the user tries to do an incremental backup of a directory without having read

access permission to it. The sketch of the bug is shown in Figure 2.10. When option

“-g” is used to create an incremental backup, the program execution will follow the

true branch at line 806. The function collect and sort names then constructs a sorted

directory tree by indirectly calling the function get directory contents to collect all the

files recursively for each directory given in the command line. If the user does not have

read access to the specified directories, the function savedir will unexpectedly return a

NULL pointer, causing the program to crash at line 206 in function strlen. Generally,

the source code/debugging info for system libraries (e.g., strlen here) is unavailable to

programmers/debuggers, making it difficult for programmers to understand the bug by

following/single-stepping the source code execution.

With the help of our debugger, the programmer can get significant insight into

the cause of the failure in a very efficient manner. First, he can construct a dynamic

slice of the crash point (e.g., line 206). Then he can find out where this NULL pointer

comes from by following only two hops along the data dependence edges in the slice. Al-

ternatively, he can leverage state alteration to understand the crash condition and then

fix it. He may choose some suspicious predicates in the slice to switch. For instance, the

program does not crash if the predicate at line 806 or line 204 is switched. The program-

mer will know that this bug manifests itself when both predicates evaluate to true, and

it disappears when any of them does not hold. In fact, this bug does only concern incre-

mental backup. Furthermore, the failure disappears by suppressing the fifth invocation

of add hierarchy to namelist or the second invocation of function get directory contents,

35

Remote
Debugging
Protocol Pin

K
D

b
g

G
D

B

Dynamic
Slicing

Debug Interpreter

PinADX

 Program binary
+ input

 Load Symbol

 Program binary

Switch &
Suppress

Checkpoint &
Rollback

Breakpoint

Figure 2.11: Components of the Qzdb debugger.

both of which are in the backward slice of the crash point. To better identify the failure,

programmer can shrink the suppression scope by only suppressing some lines in the

crash function. All the clues can help the programmer understand the crash condition

and bug nature, and finally fix it. That is to say, dynamic slices help the programmer

to find out unexpected or abnormal data dependence, while state alteration and state

rollback interfaces help him to quickly understand the failure condition and bug nature,

and finally fix it.

Next chapter shows how this bug can be detected with the help of 1 line of bug

specification, and located efficiently (just examine 4 instructions) via declarative bug

specification and debugger generation.

2.3 Implementation

The prototype implementation of the Qzdb interactive debugging strategy,

shown in Figure 2.11, consists of GDB-based [26] and Pin-based [62] components. The

user interacts with the GDB component via a command line interface or a KDbg [48]

based graphical interface. The Pin-based component implements our new debugging

36

commands. The GDB component communicates with the Pin-based component via

PinADX [61], a debugging extension of Pin. The Pin-based component implements the

new capabilities via dynamic binary instrumentation. The extended KDbg provides an

intuitive interface for switching predicates, suppressing execution, setting breakpoints,

turning recording on/off, and inspecting and stepping through slices.

Predicate switching. Upon receiving switch commands, we use Pin to first

invalidate existing instrumentation involving specified code regions and then reinstru-

ment the code to switch the results of predicates by swapping their fall-through and

jump targets.

Execution suppression. After the programmer issues a suppress command,

existing instrumentation is invalidated and new instrumentation is added to skip over the

suppressed execution instance of the instruction. The instruction is executed normally

if it is not the suppressed execution instance. If all instances are to be suppressed, the

instruction is deleted using Pin.

Dynamic slicing. We implement the slice command by instrumenting the

code to record the PC, dynamic instance, as well as memory region(s) and register(s)

read and written by instructions. We instrument both user and library code. We turn

off recording when record off is encountered. For limiting the time and space overhead

of dynamic data dependence graph construction, we use the limited preprocessing (LP)

method by Zhang et al. [120]. For accurately capturing dynamic control dependences,

we use the online algorithm by Xin and Zhang [106]. The immediate postdominator

information is extracted using Diablo [16].

Conditional breakpoint. To implement the extended conditional breakpoint

command we invalidate the existing instrumentation and then reinstrument each func-

tion call to first check whether the function name is the same as the specified lib func.

37

If so, the instrumentation code evaluates the given condition (if any) and triggers a

generated breakpoint if it is satisfied.

Checkpointing and rollback. Undo-log based incremental checkpoints [50]

are adopted to keep only the modifications between two checkpoints and save space.

When a checkpoint command is received, we first save the state of all registers main-

tained by Pin. Subsequently we record the original value of each modified memory cell

by instrumenting each memory write operation. Upon a rollback command, we restore

the logged values to their memory cells and registers. Because Pin cannot track into

system calls, we handle system calls and I/O as follows. The system calls’ side effects are

detected by analysing commonly-used system calls and recording the memory regions

read/written by each system call. For file I/O, whenever a checkpoint is generated,

we record the file pointer positions for all open file descriptors. When the program is

rolled-back, we restore file pointer positions, so file reads and writes proceed from cor-

rect offsets on reexecution. We do not handle interactive I/O specially, but rather offer

the expected semantics for reexecution. For example, for the console, after a roll-back,

the user must type the input again, and output messages will be printed again. In our

experience, this approach works well in practice.

2.4 Performance Evaluation

Next we show that the time and space overheads for state alteration, inspection,

and rollback are acceptable for interactive debugging. To quantify these overheads, we

have conducted experiments with the programs from Table 2.2. Since our objective is

to measure time and space costs, we used a passing test case to run each application

to completion. Table 2.3 shows the run characteristics including number of executed

38

Program Test Case Description
Dynamic Executed Null Pin

Instructions Time (sec)

ncompress-4.2.4 compress a folder(148KB) 10278947 0.33
Tidy-34132 check a HTML file(104 lines) 2125726 0.56
bc-1.06 interpret a source file(121 lines) 1846427 0.44
Ghostscript-8.12 PS to PDF conversion(18KB) 3909749 0.47
Tar-1.13.25 create an archive(789K) 4654490 0.51

Table 2.3: Run characteristics.

Program
Baseline Pay-Once Time and Space Overhead Slice Time Overhead

Time DU CD LP (sec)
(sec) Time Space Time Space Time AVG MIN MAX

(sec) (MB) (sec) (MB) (sec)

ncompress 0.33 5.83 93.63 2.88 63.19 3.28 37.19 13.56 71.52
Tidy 0.56 9.45 12.81 4.62 17.60 0.24 31.14 11.43 46.59
bc 0.44 5.58 11.52 2.63 13.51 0.20 14.44 11.53 21.70
Ghostscript 0.47 8.28 24.43 4.93 25.58 0.53 20.44 2.95 45.04
Tar 0.51 7.23 24.78 3.33 25.14 0.06 6.69 7.74 15.04

Table 2.4: Slicing time and space overhead.

Program
Time Overhead Space Overhead

MS/(1K instructions) KB/(1K instructions)

ncompress-4.2.4 0.85 15.62
Tidy-34132 6.62 14.65
bc-1.06 4.45 13.88
Ghostscript-8.12 3.38 13.10
Tar-1.13.25 2.27 10.98

Average 3.51 13.65

Table 2.5: Time and space overhead: DU & CD

instructions and the “Null Pin”1 running time. All experiments were conducted on

a DELL PowerEdge 1900 with 3.0GHz Intel Xeon processor and 3GB RAM, running

Linux, kernel version 2.6.18.

2.4.1 Slicing Overhead

The time and space overhead for slicing are presented in Table 2.4. For each

program, we turned on the recording to collect definition/use information and detect

dynamic control dependences for the whole execution. We then applied limited prepro-

1Null pin running time means running time with Pin without any instrumentation.

39

cessing (LP) to the generated def-use information to get a summary of all downward

exposed definitions of memory addresses and registers for each trace block. Using the

generated trace and summary, we computed slices for the last twenty statements.

The Pay-Once Time and Space Overhead columns 3–7 in Table 2.4 show the

time and space overhead which is only incurred once and amortized over all subsequent

slice computations. The pay-once time overhead is further broken down into time over-

head for recording definition/use (DU), control dependence (CD), and preprocessing of

the generated def-use information (LP). The pay-once space overhead is broken down

into space overhead for definition/use information recording (DU) and control depen-

dence (CD) as the space overhead for LP is relatively insignificant.

The average (AVG), minimum (MIN), and maximum (MAX) slice computation

times are given in the Slice Time Overhead column. We observe that the time overhead

for slicing is not greatly dependent on the position of the slice criterion. Instead, it

is dominated by the nature of the slice criterion and program behavior. Most slice

computations can be done in 1 min., which is acceptable considering the large amount

of time spent on debugging.

The time and space overhead of both def-use information recording and control

dependence detection per 1K instructions are given in the second and third columns of

Table 2.5, respectively. The time overhead ranges from 0.85ms to 6.62ms per 1K instruc-

tions and the average overhead is 3.51ms per 1K instructions. The space overhead ranges

from 10.98KB to 15.62KB per 1K instructions and the average overhead is 13.65KB per

1K instructions. We believe that the pay-once time and space overheads for dynamic

slicing are acceptable.

40

Program
Time MS/1K Space KB/1K Rollback

Checkpoints (sec) instructions (KB) instructions Time
(MS)

ncompress 11 8.93 0.87 28547.6 2.78 356.17
Tidy 3 9.31 4.38 233.4 0.11 4.02
bc 2 6.06 3.28 45.1 0.02 0.04
Ghostscript 4 8.52 2.38 788.9 0.20 12.30
Tar 5 7.40 1.80 189.6 0.04 0.22

Table 2.6: Checkpointing and rollback time and space overhead.

2.4.2 Checkpointing Overhead

The time and space overhead of checkpointing are given in Table 2.6. This data

corresponds to checkpointing every one million instructions. The second column shows

the number of checkpoints generated. The total program execution time with incre-

mental checkpointing is given in the third column. The fifth column presents the total

space overhead of the generated checkpoints. The time needed to rollback a program

from the end to the beginning, which represents the largest distance the programmer

can rollback the program, is shown in the last column. The benchmarks reveal that, the

larger the size of the generated checkpoints, the longer it takes to rollback the program;

ncompress incurs the largest space overhead for the 11 checkpoints and it requires the

longest time to rollback the program to the beginning.

The time and space overhead of incremental checkpointing per 1K instructions

is given in the fourth and sixth columns of Table 2.6, respectively. As we can see,

the time overhead ranges from 0.87ms to 4.38ms per 1K instructions, while the space

overhead ranges from 0.02KB to 2.78KB per 1K instructions. Compared to the time and

space overhead of recording and control dependence shown in Table 2.5, the time and

space overhead per 1K instructions for incremental checkpointing is much lower. This is

because only memory write instructions need to be lightly instrumented for incremental

checkpointing, while both memory and register read and write instructions need to be

41

0.59

0.40

0.30 0.24
0.20 0.17

0.63

0.44
0.35

0.29
0.26 0.23

0.69

0.53
0.45

0.40 0.37 0.34

0.82

0.70
0.64 0.61 0.58 0.57

1.09 1.05 1.04 1.03 1.02 1.02

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1 2 3 4 5 6

N
o

rm
al

iz
ed

 R
u

n
n

in
g

Ti
m

e

Rollback Times

CK 18

CK 17

CK 15

CK 11

CK 3

Figure 2.12: Runtime savings due to rollback.

heavily instrumented for both def-use information recording and control dependence

detection.

2.4.3 Efficiency of State Rollback

As mentioned in Section 2.1.3, our state rollback command replaces the rolled-

back part of execution by altered program execution (e.g., due to feeding it a different

input or switching control flow) in the log. Thus, programmers have no need to rerun

the program from the beginning. Of course, to rollback the program state, programmers

have to incur the checkpointing overhead during the initial full run. In this experiment,

we emulate a traditional debugging process and compare the running time with and

without use of state rollback. We consider a run of bc that takes 118 seconds in Null Pin

mode and executes 36.2×1010 instructions. A checkpoint is made every 2∗1010 instruc-

tions leading to 19 checkpoints numbered from 0 to 18. We compare the execution time

with use of rollback to different checkpoints (CK 3, CK 11, CK 15, CK 17, CK 18) for

varying number of times (1 through 6) with the execution time without use of rollback.

The execution times with rollback, normalized with respect to the corresponding times

42

Program
Baseline Suppress with Recording and Suppress with Checkpointing
(seconds) Checkpointing (seconds) Only (milliseconds)

ncompress 0.33 0.60 (182.13%) 3.33 (1.01%)
Tidy 0.56 0.13 (22.51%) 24.00 (4.29%)
bc 0.44 0.23 (52.02%) 6.67 (1.52%)
Ghostscript 0.47 0.35 (74.04%) 24.80 (5.28%)
Tar 0.51 0.09 (18.21%) 1.85 (0.36%)

Table 2.7: Suppression time overhead.

without rollback, are shown in Figure 2.12. We observe that the execution time savings

due to use of rollback are substantial and higher for more recent checkpoints (e.g., CK

18) and the savings increase with the number of times rollback is performed (e.g., roll-

back six times). However, if the rollback is performed to an early checkpoint (e.g., CK

3), its benefit disappears.

2.4.4 State Alteration Overhead

The time overhead of execution suppression is given in Table 2.7. We consider

two scenarios. The first scenario simulates the case where the programmer suppresses

a statement with both recording and incremental checkpointing turned on, while in the

second scenario only incremental checkpointing is turned on. The data presented is

averaged over suppressing 10 statements spread around the middle of the execution.

We observe that performing execution suppression in the first scenario incurs substan-

tially higher runtime overhead. This is because in this scenario an execution suppression

command invalidates many existing instrumentations, leading to more future reinstru-

mentation costs, and higher runtime overhead. From Table 2.7, we can see that the

average time overhead incurred by execution suppression ranges from 0.36% to 182.13%

compared to the baseline. This overhead is acceptable and a worthy trade-off for the

benefits of our approach. We omit presenting the overhead for predicate switching as

43

it is similar to the overhead of execution suppression due to similarities in their imple-

mentations.

2.5 Summary

This chapter has presented the Qzdb debugger for debugging singlethreaded

programs; Qzdb offers powerful state alteration and state inspection capabilities. State

alteration commands enable programmers to narrow down the potential faulty code and

ascertain their conjectures efficiently. State inspection commands enable programmers

to comprehend program behavior and the nature of the bug rapidly. In addition to the

above high-level commands, Qzdb also supports all low-level commands supported by

GDB. Case studies on real reported bugs as well as performance evaluation demonstrate

the effectiveness and efficiency of Qzdb.

The next two chapters are aimed at making Qzdb extensible and efficient respec-

tively. To make the basic debugging framework extensible (especially for memory-related

bugs) a new approach is presented for constructing debuggers based on declarative spec-

ification of bug conditions and root causes, and automatic generation of debugger code.

To make the debugging framework more efficient, a new dynamic analysis called relevant

input analysis is developed for enabling input and execution simplification.

44

Chapter 3

Integrating Specialized Debuggers

in Qzdb via Bug Specifications

This chapter presents a novel approach that allows Qzdb to be extended via

integration of algorithms for detection of specific kinds of bugs. This approach is il-

lustrated by considering memory-related bugs. Since the detection of memory-related

bugs is tedious using general-purpose debuggers [26, 51, 113, 31], programmers use tools

tailored to specific kinds of bugs (e.g., buffer overflows [71, 18], dangling pointer deref-

erences [19], and memory leaks [108, 83]); however, to use the appropriate tool the pro-

grammer needs to first know what kind of bug is present in the program. Second, when

faulty code is encountered during execution, its impact on program execution might

be observed much later (e.g., due to a program crash or incorrect output), making it

hard to locate the faulty code. Third, debuggers are also written by humans, which has

two main disadvantages: (a) adding support for new kinds of bugs entails a significant

development effort, and (b) lack of formal verification in debugger construction makes

debuggers themselves prone to bugs.

45

The above challenges are addressed in this chapter using a novel approach

for constructing debuggers for memory-related bugs. We allow bugs and their root

causes to be specified declaratively, using just 1 to 4 predicates, and then use automated

translation to generate an actual debugger that works for arbitrary C programs running

on the x86 platform. We have proved that bug detection is sound with respect to a

low-level operational semantics, i.e., bug detectors fire prior to the machine entering an

error state. Our work introduces several novel concepts and techniques, described next.

Declarative debugger specification. In our approach, bugs are specified via

detection rules, i.e., error conditions that indicate the presence of a fault, defined as First-

order logic predicates on abstract states. In Section 3.1 we show how bug specifications

can be easily written. Using detection rules as input, we employ automated translation

to generate the debugger implementation; thanks to this translation process, explained

in Section 3.3.1, from 8 lines of specification about 3,300 lines of C code are generated

automatically.

Debugger soundness. We use a core imperative calculus that models the

C language with just a few syntactic forms (Section 3.2.1) to help with specification

and establishing correctness. We define an operational semantics (Section 3.2.2) which

models program execution as transitions between abstract states Σ; abstract states form

the basis for specifying debuggers in a very concise yet effective way. Next, we define

error states for several memory bugs, and use the operational semantics (which contains

transitions to legal or error states) to prove that the detectors are sound (Appendix A).

Value propagation chains. In addition to bug detection rules, our specifi-

cations also contain locator rules, which define value propagation chains pointing to the

root cause of the bug. These chains drastically simplify the process of detecting and

locating the root cause of memory bugs: for the 8 real-world bugs we have applied our

46

approach to, users only have to examine just 1 to 16 instructions to locate the bugs

(Section 3.4.2).

Prior efforts in this area include memory bug detectors, algorithmic debugging,

and monitoring-oriented programming; we provide a comparison with related work in

Chapter 6. However, to the best of our knowledge, our work is the first to combine

a concise, declarative debugger specification style with automatic generation of bug

detectors and locators, while providing a correctness proof.

The approach presented has the following advantages:

1. Generality. As we show in Section 3.1, bug specifications consist of 1 to 4 predicates

per bug. Thus, specifications are easy to understand, scrutinize, and extend.

Formal definitions of program semantics and error states show that bug detection

based on these bug specifications is correct.

2. Flexibility. Instead of using specialized tools for different kinds of bugs, the user

generates a single debugger that still distinguishes among many different kinds of

bugs. Moreover, bug detectors can be switched on and off as the program runs.

3. Effectiveness. Bug detectors continuously evaluate error conditions and the user

is informed of the error condition (type of bug) encountered before it manifests,

e.g., via program crash. Bug locators then spring into action, to indicate the value

chains in the execution history that are the root causes of the bug, which allow

bugs to be found by examining just a handful of instructions (1 to 16), a small

fraction of the instructions that would have to be examined when using dynamic

slicing.

47

3.1 Bug Specification

Figure 3.1 provides an overview of our approach. As the program executes,

its execution is continuously monitored and x86 instructions are mapped to low-level

operational semantics states Σ (described in Section 3.2.2). For most memory bugs,

programmers use an abstraction of the semantics (execution trace σ and redex e), to

write bug specifications; the full semantics is available to specify more complicated bugs.

Bug detectors and bug locators are generated automatically from specifica-

tions. During debugging, detectors examine the current state to determine when an

error condition is about to become true, i.e., the abstract machine is about to enter an

error state. When that is the case, locators associated with that error condition report

the error and its root cause (location) to the programmer. Our debugger is able to

simultaneously detect multiple kinds of bugs, as illustrated by the stacked detectors and

locators in the figure.

We now present the user’s perspective to our approach. Specification is the

only stage where the user needs to be creatively involved, as the rest of the process

is automatic, thanks to code generation. We first describe the specification process

(Section 3.1.1). Next, we illustrate how our approach is used in practice for memory bugs

(Section 3.1.2) and other kinds of bugs (Section 3.1.2.4). Later on (Section 3.4.2), we

demonstrate the effectiveness of our approach by comparing it with traditional debugging

and slicing techniques.

3.1.1 Specifying Debuggers via Rules

Traces and redexes. To simplify specification, for most memory bugs, the program-

mers can describe bugs by just referring to traces σ and redexes e. The trace σ records

48

Bug$Detector$

Σn#2% Σn#1% Σn% Error%

Error$$
state%

Opera0onal$
seman0cs%

Bug$Locator$

Σm%

Root$causes%

…%

σm,em%
%

σn#2,en#2%
%

σn#1,en#1%
%

σn,en%
%

Trace,$redex%

Bug$specifica0on$

Genera1on%

Genera1on%

Figure 3.1: Overview of bug specification, detection and location.

the execution of relevant memory operation events—write for memory writes, malloc

for allocation, free for deallocation—which are germane to memory bugs. Redexes e

indicate the expression to be reduced next, such as function entry/exit, allocation/deal-

location, memory reads and writes; when e is a memory operation, it contains a location

r signifying the pointer to be operated on, e.g., freed, read from, or written to. The

scarcity of syntactic forms for redexes and execution trace events provide a simple yet

powerful framework for specifying C memory bugs.

Rules. To specify a bug kind, the user writes a rule (triple):

<detection point, bug condition, value propagation>.

The first two components, detection point and bug condition, specify a bug detector,

while the third component, value propagation, specifies a bug locator. Figure 3.2 shows

how detection points, bug conditions and bug locators are put together to form rules and

specify six actual classes of memory bugs. We now proceed to defining each component

of a rule.

49

Detection Point Next Reduction e Semantics

deref r r ∗r memory read
deref w r r := v memory write
deref r ∗r/r := v memory access
free r free r deallocation
call z v z v function call
ret z v ret z e function return

Table 3.1: Detection points.

Detection points specify the reductions where bug detection should be performed,

as shown in Table 3.1. The programmer only needs to specify the detection point

(left column). Our debugger will then evaluate the bug condition when the operational

semantics’s next reduction is e (middle column). For example, if the programmer wants

to write a detector that fires whenever memory is read, she can use deref r r as a

detection point. Detection points which can match multiple reduction rules, coupled

with the simple syntax of our calculus, make for brief yet effective specification; for

example, using a single detection point, deref r, the user will at once capture the

myriad ways pointers can be dereferenced in C.

Bug conditions are First-order logic predicates which allow memory bugs to be spec-

ified in a concise, declarative manner, by referring to the detection point and the trace

σ. First, in Figure 3.2 (bottom) we define some auxiliary predicates that allow more

concise definitions for bug detectors. Allocated(r) checks whether pointer r has been

allocated. The low-level semantics contains mappings of the form r 7→ (bid, i), i.e., from

pointer r to the block bid and index i it points to; Bid(r) returns r’s block in this

mapping. Therefore, Allocated(r) is true if the block r is currently pointing into a block

bid that according to the trace σ has previously been allocated, i.e., it contains a malloc

event for this bid; ‘ ’ is the standard wildcard pattern. Freed(r, r1) is true if the block

bid that r is currently pointing into has been freed, i.e., the trace σ contains a free event

50

Detection Detection Bug VPC

Rules Point Condition

[unmatched-free] detect〈σ; free r〉 : ¬Allocated(r) ∨ r 6= Begin(r) V PC(r)

[double-free] detect〈σ; free r〉 : Allocated(r) ∧ Freed(r, r1) V PC(r),

V PC(r1)

[dangling-pointer-deref] detect〈σ; deref r〉 : Allocated(r) ∧ Freed(r, r1) V PC(r),

V PC(r1)

[null-pointer-deref] detect〈σ; deref r〉 : r = NULL V PC(r)

[heap-buffer-overflow] detect〈σ; deref r〉 : Allocated(r) ∧ ¬Freed(r,) V PC(r)

∧(r < Begin(r) ∨ r ≥ End(r))

[uninitialized-read] detect〈σ; deref r r〉 : ¬FindLast(,write, r, ,)

Auxiliary predicates
Allocated(r)

.
= ∃ (,malloc, , bid) ∈ σ : bid = Bid(r)

Freed(r, r1)
.
= ∃ (, free, r1, bid) ∈ σ : bid = Bid(r)

Figure 3.2: Bug detection rules and auxiliary predicates.

for this bid. Note that free’s argument r1, the pointer used to free the memory block, is

not necessarily equal to r, as r could be pointing in the middle of the block while r1 is

the base of the block (cf. Section 3.2.2).

With the auxiliary predicates at hand, we define First-order logic conditions

on the abstract domain, as illustrated in the bug condition part of Figure 3.2. Note

that FindLast(ts, event) is a built-in function that traverses the trace backwards and

finds the last matching event according to given signature. For example, a dangling

pointer dereference bug occurs when we attempt to dereference r whose block has been

freed before; this specification appears formally in rule [dangling-pointer-deref],

i.e., the bug is detected when the redex is ∗r or r := v and the predicate Allocated(r)∧

Freed(r, r1) is true. Note that r1 is a free variable here and its value is bound to the

pointer which is used to free this block for the first time.

Bug locators. The last component of each rule specifies value propagation chains

(VPC) which help construct bug locators. The VPC of variable v in a program state

Σ is the transitive closure of value propagation edges ending at Σ for variable v. The

51

VPC is computed by backward traversal of value propagation edges ending at Σ for

variable v. Note that dynamic slicing does not distinguish data dependences introduced

by computing values from dependences introduced by propagating existing values. Value

propagation edges capture the latter—a small subset of dynamic slices.

For each bug kind, the VPC specifies how the value involved in the bug mani-

festation relates to the bug’s root cause. For example, in [double-free], the root cause

of the bug can be found by tracing the propagation of r (the pointer we are trying to

free) and r1 (the pointer that performed the first free). In [null-pointer-deref], it

suffices to follow the propagation of the current pointer r which at some point became

NULL.

3.1.2 Memory Debuggers in Practice

We now provide a comprehensive account of how our approach helps specify,

detect and locate the root causes of memory bugs using three examples of actual bugs in

real-world programs—double free bug in Tidy-34132 (previously studied in Chapter 2),

and NULL pointer dereference bug in Tar-1.13.25 (previously studied in Chapter 2),

and unmatched free bug in Cpython-870c0ef7e8a2.

3.1.2.1 Double-free

Attempting to free an already-freed pointer is a very common bug. In Fig-

ure 3.2, the rule [double-free] contains the specification for the bug: when the redex

is free r and the predicates Allocated(r) and Freed(r, r1) are both true, we conclude

that r has already been freed.

In the previous chapter, we already shown how different types of commands

introduced by Qzdb were used to detect a double free bug in Tidy-34132. Here we show

52

C code Relevant events added
to the trace σ

istack.c:
025: AttVal *DupAttrs(TidyDocImpl* doc, AttVal *attrs) {
032: newattrs = NewAttribute();
033: *newattrs = *attrs;
034: newattrs → next = DupAttrs(doc, attrs → next); ...
/*the following statement is missing in buggy code*/
Bug detection rules and auxiliary predicates
n 039:newattrs → php=attrs → php? \

CloneNode(doc, attrs → php):NULL;
041:}
057: void PushInline(TidyDocImpl* doc, Node *node) {...
092: istack → attributes =

DupAttrs(doc, node → attributes);
094:}
097: void PopInline(TidyDocImpl* doc, Node *node) {...
147: while (istack→attributes){ ...
151: FreeAttribute(doc, av); }
parser.c:
128: Node*

DiscardElement(TidyDocImpl* doc, Node *element){
132: if (element){...
136: FreeNode(doc, element); }
140:}
309: Node *

TrimEmptyElement(TidyDocImpl* doc,Node *element){
311: if(CanPrune(doc, element)){...
316: return DiscardElement(doc, element);}

malloc, n, 1H

write, p, ,
return value of malloc

write, node, , p
write, node, , node
write, php, , node
write, ∗php, , php
write, attrs→ php, , ∗php
write, newattrs→ php, ,

attrs→ php
write, node, , newattrs→ php
write,mem, , node
write, ptr, ,mem
free, ptr, 1H

write, node, , attrs→ php
write,mem, , node
write, ptr, ,mem

bug detected at free(ptr)

Value propagation chain

Figure 3.3: Detecting, and locating the root cause of, a double-free bug in Tidy-34132.

53

how this double free bug can be detected and located much faster with the techniques

presented in this chapter. The relevant source code for this bug is presented in the left

column of Figure 3.3. The program constructs a node structure for each element (e.g.,

font) in the HTML file. An element may contain multiple attributes corresponding to

the attributes field of the node structure, which is a pointer to the attribute structure.

The program pushes a deep copy of the node structure onto the stack when

encountering an inline element (i.e., font in our test case) by calling PushInline (line 057).

The deep copy is created by duplicating the dynamically allocated structure pointed to

by each field in the node structure as well as fields of fields recursively. However, the

programmer makes a shallow copy of the php field in the attribute structure by mistake

in line 033 because of a missing statement, as shown in line 039. All the copies of

node structure pushed onto the stack by PushInline will be subsequently popped out in

function PopInline (line 097), where all the allocated regions will be freed recursively.

In some situations, due to the shallow copy, the php field of some node structures will

contain dangling pointers. If some element in the HTML file is empty and can be pruned

out, the program removes the node from the markup tree and discards it by calling

TrimEmptyElement (line 309), which eventually calls DiscardElement at line 316. Node

deletion is just a reverse process of node deep copy—it will free all the dynamically-

allocated memory regions in the node structure in a recursive fashion, including the

structures pointed to by the php fields. When providing certain HTML files as input,

the program crashes when it tries to trim the empty font element because the php field

of the attributes field of the font element has been freed in PopInline.

The second column of Figure 3.3 shows the events added to our trace σ during

execution (irrelevant events are omitted). As we can see, the bug condition specified in

rule [double-free] is satisfied because σ contains events malloc, n, 1H , and free, ptr, 1H

54

(1H is the heap block id), indicating that block 1H has been allocated and then freed,

which makes Allocated(r) ∧ Freed(r, r1) true.

As presented in the previous chapter, the root cause of the double-free bug is

the shallow copy in line 033, and the fix (line 039 in istack.c) calls for far more program

comprehension (why, when and how the two different pointers wrongly point to the

same heap block) than just the positions of the two free calls (line 136 in parser.c),

which is the best bug report that current automatic debugging tools (e.g., Valgrind)

can achieve. With the help of our bug locators, programmers need to examine just 16

instructions to figure out how and when the two pointers used in free point to the same

memory region by following the value propagation chains for the two pointers (the two

pointers can be the same in some situations, in which case the two value propagation

chains are exactly the same). We show the value propagation chains for this execution

in the bottom of Figure 3.3; in our actual implementation, this value chain is presented

to the user. Note that the value of the pointer ptr used in the free function is first

generated in function malloc and propagates to pointer p in function MemAlloc, and so

on. The right child of node attrs→ php is exactly the place where the shallow copy

comes from (shallow copy from attrs→ php to newattrs→ php). Hence, with the help

of our bug locators, programmers can quickly understand the root cause and fix the

bug (allowing programmers to only examine 16 instructions vs. 4,687 instructions with

dynamic slicing, as shown in Section 3.4).

3.1.2.2 NULL Pointer Dereference

In Figure 3.2, the rule [null-pointer-deref] is used to express and check

for NULL pointer dereference bugs. We use the NULL pointer dereference bug in Tar-

1.13.25 (detailed in Chapter 2) to show how the simple rule [null-pointer-deref]

55

C code Relevant events added
to the trace σ

savedir.c:
76: char * savedir (const char *dir){

DIR *dirp;
85: dirp = opendir (dir);
86: if (dirp == NULL)
87: return NULL;
129:...}
increment.c:
173: get directory contents (char *path){...
180: char *dirp = savedir (path); ...
205: for (entry = dirp; entrylen =
206: strlen (entry))!= 0; //crash
207: entry +=entrylen +1)

write, dirp, , savedir retval
write, entry, , dirp
write, str, , entry

bug detected at strlen(str)

Value propagation chain

Figure 3.4: Detecting, and locating the root cause of, a NULL pointer dereference bug
in Tar-1.13.25.

detects and locates the NULL pointer dereference bug. Tar-1.13.25 crashes when the

user tries to do an incremental backup of a directory without having read access per-

missions to it. A source code excerpt containing the bug is shown in the first column of

Figure 3.4. If the user does not have read access to the specified directories, the function

savedir will return a NULL pointer. This causes the program to crash at line 206 when

passing this NULL pointer (entry) to function strlen.

With the help of our debugger, programmers can figure out the bug type, and

get significant insight about the failure via bug locators. The trace of an execution

which triggers this bug is shown on the right side of Figure 3.4. The NULL pointer bug

detector will detect this bug when the NULL pointer is dereferenced in strlen. The value

propagation chain of the NULL pointer, shown on the bottom of Figure 3.4, indicates

where the NULL pointer originates (line 87 in savedir.c) and how it propagates to the

crash point. Programmers can locate and fix this NULL pointer dereference bug very

quickly with the value propagation chain. As we can see, compared to the debugging

56

process presented in Chapter 2, the debugging process with automatically generated

NULL pointer dereference bug detector and locator is much more targeted, thus much

more effective.

3.1.2.3 Unmatched Free

Attempting to free an illegal pointer is a very common bug. In Figure 3.2, the

rule [unmatched-free] contains the declarative specification for the bug: whenever

the evaluation reaches a point where the next expression is free r, if at least one of

two conditions is met, the rule fires. If Allocated(r) is false, the program tries to free

something that has not been allocated in heap (e.g., blocks allocated in stack). If

r 6= Begin(r), the program attempts to free a pointer that has been allocated in heap,

but instead of pointing to the malloc’d block (i.e., the base), r points somewhere in the

middle of the block.

The real-world Python interpreter Cpython-870c0ef7e8a2, contains an unmatched

free bug (freeing something that has not been allocated) that leads to a crash. The bug

manifests when the type. getattribute function is misused (e.g., type. getattribute (str,

int)) in the input Python program. The type. getattribute (typeName, attrName) func-

tion finds the attribute associated with attrName in typeName’s attribute list. However,

passing a type name, e.g., int, as attribute name crashes the program.

A source code excerpt containing the bug is shown in the first column of

Figure 3.5. Encountering a type. getattribute (typeName, attrName) statement, the

Python interpreter invokes the type getattro function at line 2483 to find the attribute

associated with name in type’s attribute list at line 2517. When no attribute is found,

an error message will be printed at line 2551 by calling PyErr Format; PyErr Format will

eventually call PyUnicode Ready to prepare an Unicode string and print it. PyUnicode Ready

57

C code Relevant events
added to trace σ

unicodeobject.c:
1353:PyUnicode Ready(PyObject *unicode){...
1389: PyUnicode CONVERT BYTES(...)
1405:free((PyASCIIObject*)unicode→wstr);
1479: ...}
typeobject.c:
2483: type getattro(type, PyObject* name){
/*the following statements are missing in buggy code*/
2488: if (!PyUnicode Check(name)) {...
2492: return NULL;}
2517:attribute = PyType Lookup(type, name);
2551:PyErr Format(PyExc AttributeError,
2552:“type object ‘%.50s’ has no attribute ‘%U’”,
2553: type→tp name, name);

write, ptr, ,
unicode→wstr

bug detected
at free(ptr)

Value propagation chain

Figure 3.5: Detecting, and locating the root cause of, an unmatched free bug in Cpython-
870c0ef7e8a2.

converts the Unicode string stored in unicode→wstr buffer, and then finally frees the

buffer. However, the programmer has wrongly assumed that the name object at line

2483 must be an object of type PyUnicodeObject or subclass of it (e.g., PyASCIIObject),

and has forgotten to add a type check at line 2488. When a type name is passed as the

attribute name, the unicode at line 1405 is an object of type PyTypeObject, rather than

PyASCIIObject. Thus, the programmer thinks free is invoked on PyASCIIObject’s wstr

field when in fact it is invoked on PyTypeObject’s tp itemsize field.

The second column shows the relevant events added to σ. As we can see there

is no event malloc, n, to make Allocated(r) true. The value propagation chain of ptr,

shows how the wrong value of ptr is propagated from unicode→ wstr, which is a global

variable and initialized before the execution of main, rather than dynamically allocated.

58

Rules Detection Point Bug Condition

[possible-leak] detect〈H;σ; ret main v〉 : dom(H) 6= ∅
[definite-leak] detect〈H;P ;σ; ret main v〉 : ∃ bid ∈ H : ¬(∃ r 7→ (bid,) ∈ P)

[leak-in-ts] detect〈H;σ; ret ts v〉 : ∃ bid ∈ H : FindLast(k, call, ts,)

∧ Time(bid) > k

[gc-bug] detect〈H;F ;σ; ret gc v〉 : ¬((∀ bid ∈ H : IsAlive(bid))

∧ (∀ bid ∈ F : ¬IsAlive(bid)))

Auxiliary predicates IsAlive(bid)
.
= bid & 0x1 = 1

Figure 3.6: Bug detection rules and auxiliary predicates for other classes of bugs.

3.1.2.4 Other Classes of Bugs

While the core of our work is centered around the six classes of memory bugs

we have just presented, programmers can use our approach to easily specify debuggers

for other classes of bugs. We now proceed to briefly discuss examples of such classes;

the bug specifications are presented in Figure 3.6.

Memory leaks. The rule [possible-leak] specifies possible leaks as follows: if main

is about to exit while the heap H contains one or more blocks that have not been freed,

i.e., the heap domain is not empty, the rule fires.

With rule [definite-leak], we report leakages if, at the end of program exe-

cution, the heap H contains some blocks that no pointer in P points to. In other words,

if there is no live pointer pointing to a block, we report the block as a definite leak.

The rule [leak-in-ts] can be used to detect leaks in transactions. For simplic-

ity, we assume that the scope of a transaction spans the entire body of a function denoted

by metavariable ts. The programmer can easily specify that all the blocks allocated in-

side the transaction (body of ts) should be freed at the end of the transaction. We

report leaks if, when function ts returns, the heap H contains some blocks which are al-

located inside this function and have not been freed yet. Note that FindLast(k, call, ts,)

59

matches the latest event which calls function ts, and the free variable k is bound to the

timestamp for this event. Time(bid) > k checks whether this block is allocated inside

this function (or transaction).

Garbage collector bugs. [gc-bug] illustrates how to specify one of the basic cor-

rectness properties for garbage collector implementations, that the alive bits are set

correctly. Consider, for example, a mark-and-sweep garbage collector that uses the least

significant bit of each allocated block to mark the block as alive/reachable (bit = 1) or

not-alive (bit = 0). We can check whether the alive bits are set correctly at the end of

a GC cycle before resetting them (bit = 0), as shown in rule [gc-bug]: all blocks in H

are marked as alive and all blocks in F are marked as freed.

3.2 Formalism

We now present our formalism: a core imperative calculus that models the

execution and memory operations of C programs. We introduce this calculus for two

reasons: (1) it drastically simplifies programmer’s task of expressing bugs in C programs,

by reducing the language to a few syntactic constructs and the dynamic semantics to a

handful of abstract state transitions, and (2) it helps prove soundness.1

3.2.1 Syntax

We adopt a syntax that is minimalist, yet expressive enough to capture a wide

variety of bugs, and powerful enough to model the actual execution. The syntax is

shown in Figure 3.7. A program consists of a list of top-level definitions d. Definitions

1Soundness refers to detectors being correct with respect to the operational semantics to help catch
specification errors; it does not imply that we certify the correctness of auto-generated and manually-
written code for the Pin-based implementation, which operates on the entire x86 instruction set.

60

Definitions d ::= main e
| var g = v in d
| fun f(x) = e in d

Expressions e ::= v | x | let x = v in e
| let x = salloc n in e
| e; e | e e | ret z e
| if0 e then e else e
| malloc n | free r
| ∗ e | e := e | e+p e | e+ e

Values v ::= n | z | r
Global symbols f, g, z ∈ GSym
Indexes i, j ::= n
Pointers r ∈ Loc
Integers n
Variables x

Figure 3.7: Syntax.

can be main, whose body is e, global variables g initialized with value v, and functions

f with argument x (which is a tuple in the case of multiple-argument functions) and

body e.

Expressions e can take several syntactic forms: values v, explained shortly;

variable names x (which represent local variables or function arguments, but not global

variables); let bindings; stack allocations let x = salloc n in e, where variable x is either

a local variable or a function argument, n is its size (derived from the x’s storage size),

and e is an expression; sequencing e; e and function application e e; function return

ret z e; conditionals if0 e then e else e; malloc n, allocating n bytes in the heap; free r,

deallocating a heap block; pointer dereference ∗ e; assignment e := e; pointer arithmetic

e +p e, and integer arithmetic e + e. Values v can be integers n, global symbols z, or

pointers r. Indexes, e.g., i, j, are integers and are used to specify the offset of a pointer

in a memory block. Pointers r range over locations Loc, and are used as keys in a pointer

map, as described next; note that we do not assume a specific type (e.g., integer, long)

for pointers, as it is not relevant for defining the abstract machine.

61

Definitions
Block id bid ∈ Bid
Block contents b ::= v0, . . . , vn−1

Heap H ::= ∅
| bid 7→ (b, n, k), H

Freed blocks F ::= ∅ | (bid, h), F
| (bid, s), F

Stack frame S ::= ∅
| bid 7→ (b, n, k), S

Stack S ::= ∅ | S, S
Pointers P ::= ∅ | r 7→ (bid, i), P
Timestamp k ::= n
Events ev ::= write, r, v, f

| n == n′

| malloc, n, bid
| free, r, bid
| call, z, v
| ret, z, v

Timed events ν ::= (k, ev)
Traces σ ::= ∅ | ν ∪ σ
Value origin f ::= gen | z | r
Expressions e ::= ...

Evaluation contexts
E ::= [] | let x = E in e

| E e | v E | ret z E
| E; e | v; E
| malloc E | salloc n E
| free E
| E := e | r := E | ∗E
| E +p e | r +p E
| E + e | n+ E
| if0 E then e else e

Shorthands
Given P [r 7→ (bid, i)]
Bid(r)

.
= bid

Idx(r)
.
= i

Given H[bid 7→ (b, n, k)] ∨ S[bid 7→ (b, n, k)]
and P [r 7→ (bid, i)], b = v0, . . . , vn−1

Begin(r)
.
= bid

End(r)
.
= bid+ n

Size(r)
.
= n

Time(bid)
.
= k

Block(r)
.
= b

Given H[bid 7→ (b, n, k)] ∨ S[bid 7→ (b, n, k)]
and P [r 7→ (bid, i)], b = v0, . . . , vn−1

and Begin(r) ≤ r < End(r)
V alue(r)

.
= vi

bid fresh
.
= bid /∈ Dom(H)∧

bid /∈ Dom(F)∧
bid /∈ Dom(S)

popStack(S, F)
.
= F ∪

(∪
bid∈dom(S)

(bid, s))

orig(v, f)
.
=

 gen, if v is a const. n
z, if, v is a gvar. z
f, otherwise

Figure 3.8: Definitions and shorthands for operational semantics.

62

3.2.2 Operational Semantics

The operational semantics consists of state and reduction rules. The semantics

is small-step, and evaluation rules have the form:

〈H;F ;S;P ; k;σ; f ; e〉 −→ 〈H ′;F ′;S′;P ′; k′;σ′; f ′; e′〉

which means expression e reduces in one step to expression e′, and in the process of

reduction, the heap H changes to H ′, the freed blocks set F changes to F ′, the stack S

changes to S
′
, the pointer map P changes to P ′, the timestamp changes from k to k′,

the trace changes from σ to σ′ and the value origin f changes to f ′. We now provide

definitions for state elements and then present the reduction rules.

Definitions. In Figure 3.8 we present the semantics and some auxiliary definitions. In

our memory model, memory blocks b of size n are allocated in the heap via malloc n or on

the stack via salloc n. Block id’s bid are keys in the domain of the heap or the stack; we

denote their domain Bid, and represent elements in Bid as 1H , 2H , 3H , . . . (which indi-

cates heap-allocated blocks) and 1S , 2S , 3S , . . . (which indicates stack-allocated blocks).

Memory blocks are manually deallocated from the heap via free r and automatically

from the stack when a function returns (the redex is ret z v). All the deallocated

heap and stack blocks are stored in F—the “freed” set—as (bid, h) and (bid, s) re-

spectively. Block contents b are represented at byte granularity, i.e., v0, . . . , vn−1 ; a

freshly-allocated block is not initialized, and is marked as junk . The heap H contains

mappings from block id’s bid to tuples (b, n, k); tuples represent the block contents b,

the block size n and the timestamp k when the block was created. A stack frame S

consists of mappings bid 7→ (b, n, k), just like the heap. The stack S is a sequence of

stack frames.

63

We keep a pointer map P with entries r 7→ (bid, n), that is, a map from

references to block id bid and offset n. Timestamps k are integers, incremented after

each step. The trace σ records timed events ν, i.e., (timestamp, event) pairs. Events

ν can be memory writes write, r, v, f which indicate that value v, whose origin was f ,

was written to location r; if -conditions n == n′ which indicate that the value of the if

guard n was n′, allocations malloc, n, bid, deallocations free, r, bid, function calls call, z, v

and function return ret, z, v. At each step we keep a value origin f that tracks where the

last value v comes from: a constant, a global variable, or the prior step(s), as explained

shortly. Runtime expressions e are the expressions defined in Figure 3.7.

We use several notational shorthands to simplify the definition of the rules;

they are shown in the right part of Figure 3.8. Given a pointer r, we can look it up in

the heap H or stack S, extract its bid and index i, and contents v0, . . . , vn−1 . We now

explain the shorthands: Bid(r) is the block id; Idx(r) is the pointer’s offset; Begin(r) is

the beginning address of a block r refers to; End(r) is the end address of a block; Size(r)

is the size of the block; Time(bid) is the timestamp at which the block was allocated;

Block(r) is the whole block contents; V alue(r) is the value stored in the memory unit

pointed to by r; “bid fresh” means the bid is not in the domain of H, F , and S, and bid

has never been used before; popStack(S, F) is used to deallocate all the blocks in the

stack S, i.e., for all bid ∈ dom(S), add (bid, s) to F .

We define the origin of a value v, denoted orig(v, f), as follows: given a prior

origin f , if v is a constant n, then the origin of value v is gen (value v is newly generated

here); if v is a variable z, then the origin of value v is z (value v is propagated from

variable z); otherwise, the origin of value v is f , i.e., the prior origin, indicating it is the

result of a prior computation. This origin information is instrumental for constructing

bug locators, as it helps track value propagation and hence bug root causes.

64

We use evaluation contexts E to indicate where evaluation is to take place next;

they are modeled after expressions (shown in the left bottom of Figure 3.8), and allow

us to keep reduction rule definitions simple.

Evaluation rules. The reduction rules are shown in the top of Figure 3.9. The rule

[let] is standard: when reducing let x = v in e, we perform the substitution e[x/v]. The

rule [let-salloc] is used to model the introduction of local variables and function

arguments; it is a bit more complicated, as it does several things: first it allocates a

new block bid of size n on the stack, initialized to junk, then it picks a fresh r and

makes it point to the newly allocated block bid and index 0, and finally substitutes all

occurrences of x with r. The allocation rule, [malloc], is similar: we model allocating

n bytes by picking a fresh bid, adding the mapping [bid 7→ (junk , n, k) to the heap,

creating a fresh pointer r that points to the newly-allocated block at offset 0, recording

the event (k,malloc, n, bid) in the trace σ, and updating the f to gen, meaning r is

newly generated at this step. The deallocation rule, [free], works as follows: we first

identify the bid that r points to, and then remove the bid 7→ (b, n, k1) mapping from the

heap, and add the (bid, h) tuple to F ; we record the event by adding (k, free, r, bid) to

the trace.

The function call rule, [call], works as follows: create an empty stack frame

S and push it onto the stack, then rewrite z v to be let x = salloc n in (x := v; e), which

means we allocate a new block for the function argument x on the stack, and set up the

next reductions to assign (propagate) the value v to x, and then evaluate the function

body e; we record the call by adding (k, call, z, v) to the trace, and propagate v’s origin;

we assume each function body e contains a return expression ret z e′. The converse

rule, [return], applies when the next expression is a return marker; it pops the current

65

Evaluation

[let] 〈H;F ;S;P ; k;σ; f ; let x = v in e〉 −→ 〈H;F ;S;P ; k + 1;σ; f ; e[x/v]〉
[let-salloc] 〈H;F ;S, S;P ; k;σ; f ; let x = salloc n in e〉 −→ r /∈ Dom(P)

〈H;F ;S, S[bid 7→ (junk , n, k)];P [r 7→ (bid, 0)]; k + 1;σ; f ; e[x/r]〉 ∧ bid fresh

[malloc] 〈H;F ;S;P ; k;σ; f ; malloc n〉 −→ r /∈ Dom(P)

〈H[bid 7→ (junk , n, k)];F ;S;P [r 7→ (bid, 0)]; k + 1; ∧ bid fresh

σ, (k,malloc, n, bid); gen; r〉
[free] 〈H] bid 7→ (b, n, k1);F ;S;P [r 7→ (bid, 0)]; k;σ; f ; free r〉 −→

〈H;F ∪ (bid, h);S;P ; k + 1;σ, (k, free, r, bid); f ; 0〉
[call] 〈H;F ;S;P ; k;σ; f ; z v〉 −→ z = λx.e, S = ∅

〈H;F ;S, S;P ; k + 1;σ, (k, call, z, v); orig(v, f);
let x = salloc n in (x := v; e)〉

[return] 〈H;F ;S, S;P ; k;σ; f ; ret z e〉 −→ F ′ = popStack(S, F)

〈H;F ′;S;P ; k + 1;σ, (k, ret, z, v); orig(v, f); v〉
[read] 〈H;F ;S;P ; k;σ; f ; ∗r〉 −→ 〈H;F ;S;P ; k + 1;σ; r; v〉 V alue(r) = v ∧ v 6= junk

[assign] 〈H[bid 7→ (b, n, k1];F ;S[bid 7→ (b, n, k1];P [r 7→ (bid, i)]; k;σ; f ; r := v〉 b′ = b[i 7→ v]

−→ 〈H[bid 7→ (b′, n, k1];F ;S[bid 7→ (b′, n, k1];P ; k + 1;
σ, (k,write, r, v, orig(v, f)); orig(v, f); v〉 ∧ v 6= junk

[int-op] 〈H;F ;S;P ; k;σ; f ;n1 + n2〉 −→ 〈H;F ;S;P ; k + 1;σ; gen;n3〉 n3 = n1 + n2

[ptr-arith] 〈H;F ;S;P ; k;σ; f ; r +p n〉 −→ Bid(r) = bid,

〈H;F ;S;P [r2 7→ (bid, i+ n)]; k + 1;σ; gen; r2〉 Idx(r) = i, r2 /∈ Dom(P)

[if-t] 〈H;F ;S;P ; k;σ; f ; if0 n then e1 else e2〉 −→
〈H;F ;S;P ; k + 1;σ, (k, n == 0); f ; e1〉 n = 0

[if-f] 〈H;F ;S;P ; k;σ; f ; if0 n′ then e1 else e2〉 −→
〈H;F ;S;P ; k + 1;σ, (k, n == n′); f ; e2〉 n′ 6= 0

[cong] 〈H;F ;S;P ; k;σ; f ;E[e]〉 −→ 〈H ′;F ′;S
′
;P ′; k′;σ′; f ′;E[e′]〉 〈H;F ;S;P ; k;σ; f ; e〉 −→

〈H ′;F ′;S
′
;P ′; k′;σ′; f ′; e′〉

Error rules

[bug-unmatched-free] 〈H;F ;S;P [r 7→ (bid, j)]; k;σ; f ; free r〉 −→ Error (bid /∈ Dom(H)
∧(bid, h) /∈ Dom(F))
∨ r 6= Begin(r)

[bug-double-free] 〈H;F ;S;P [r 7→ (bid, 0)]; k;σ; f ; free r〉 −→ Error (bid, h) ∈ Dom(F)

[bug-dang-ptr-deref] 〈H;F ;S;P [r 7→ (bid, j)]; k;σ; f ; ∗r〉 −→ Error (bid, h) ∈ Dom(F)

[bug-dang-ptr-deref2] 〈H;F ;S;P [r 7→ (bid, j)]; k;σ; f ; r := v〉 −→ Error (bid, h) ∈ Dom(F)

[bug-null-ptr-deref] 〈H;F ;S;P ; k;σ; f ; ∗r〉 −→ Error r = NULL

[bug-null-ptr-deref2] 〈H;F ;S;P ; k;σ; f ; r := v〉 −→ Error r = NULL

[bug-overflow] 〈H;F ;S;P [r 7→ (bid, j)]; k;σ; f ; ∗r〉 −→ Error bid ∈ Dom(H)∧
(r < Begin(r) ∨ r ≥ End(r))

[bug-overflow2] 〈H;F ;S;P [r 7→ (bid, j)]; k;σ; f ; r := v〉 −→ Error bid ∈ Dom(H)∧
(r < Begin(r) ∨ r ≥ End(r))

[bug-uninitialized] 〈H;F ;S;P ; k;σ; f ; ∗r〉 −→ Error V alue(r) = junk

Figure 3.9: Operational semantics (abstract machine states and reductions).

66

frame S off the stack, deallocates all the blocks allocated in S before, record the return

by adding (k, ret, z, v) to the trace, and updates the f to orig(v, f).

Dereferencing, modeled by the rule [read], entails returning the value pointed

to by r, and updating the f to be r, denoting that the origin of value v comes from r.

When assigning value v to the location pointed to by r (which resides at block id bid

and index i), modeled by the rule [assign], we change the mapping in the heap or stack

(whichever r points to) to b′, that is the block contents value at index i is replaced by

v; we also record the write by adding (k,write, r, v, orig(v, f)) to the trace, and record

the assignment-induced value propagation by setting f to orig(v, f).

Integer arithmetic ([int-op]) does the calculation, and updates the f to gen

to mark the fact that n3 is newly generated here; actually this rule is only necessary

for purposes of value propagation, as most components of Σ remain unchanged. Pointer

arithmetic ([ptr-arith]) is a bit more convoluted: we first find out bid and i—the

block id and index associated with r, create a fresh r2 that now points to block bid and

index i+ n and add it to P and finally update the f to gen, to record that r2 is newly

generated here.

The conditional rules [if-t] and [if-f] are standard, though we record the

predicate value and timestamp, i.e., (k, n == 0) and (k, n! = n′), respectively, into the

trace; predicate values serve as a further programmer aid. The congruence rule, [cong],

chooses where computation is to be applied next, based on the shape of E.

Error rules. The bottom of Figure 3.9 shows the error state reduction rules. When

one of these rules applies, the abstract machine is about to enter an error state—in our

implementation, the debugger pauses the execution (breakpoint) just before entering an

error state. These rules are instrumental for proving soundness (Appendix A) as they

67

define Allocated(r) = exists event(, malloc, , bid) in Trace suchthat (bid == Bid(r))
define Freed(r , r1) = exists event(, free , r1 , bid) in Trace suchthat (bid == Bid(r))
[double free] detect <Trace; free r>: Allocated(r) && Freed(r, r1) :VPC(r), VPC(r1)

Figure 3.10: Actual bug specification input for double-free bugs.

indicate when bug detectors should fire. For brevity, we only define error rules and

prove soundness for the bugs in Figure 3.2. We now proceed to describing the error

rules. [bug-unmatched-free] indicates an illegal free r is attempted, i.e., r does not

point to the begin of a legally allocated heap block. [bug-double-free] indicates an

attempt to call free r a second time, i.e., the block pointed to by r has already been freed.

[bug-dang-ptr-deref] and [bug-dang-ptr-deref2] indicate attempts to dereference

a pointer (for reading and writing, respectively) in an already-freed block. Similarly,

[bug-null-ptr-deref] and [bug-null-ptr-deref2] indicate attempts to dereference

(read from/write to) a null pointer. Rules [bug-overflow] and [bug-overflow2]

indicate attempts to access values outside of a block. Rule [bug-uninitialized] applies

when attempting to read values inside an uninitialized block (allocated, but not yet

written to).

3.2.3 Soundness

Intuitively, our soundness property states that bug detectors fire when the un-

derlying machine is about to enter an error state. The proof can be found in Appendix A.

3.3 Implementation

We now describe our implementation; it consists of an offline translation part

that generates the detectors and locators from a bug specification, and an online debug-

ger that runs the program and performs detection/location.

68

3.3.1 Debugger Code Generation

From bug specification rules, described in Section 3.1.1, automated translation

via Flex[38] and Bison[39] is used to generate a detector and locator pair. We illustrate

this process using Figure 3.10 which contains the full bug specification text for double-

free bugs as written by the developer.

The translator first generates two helper functions for the Allocated and Freed

predicates, respectively. The Allocated helper function parses the tracked event trace

(realized by the state monitoring runtime library, explained shortly) to find out whether

the block associated with r is allocated in the heap. The generated detector checks

whether the block pointed to by pointer r is allocated in the heap and freed later

whenever the program’s execution reaches the start of the free function.

Each generated locator computes several value propagation chains based on the

bug specification. For example, as shown in Figure 3.10, two value propagation chains

are computed for the two pointers (r and r1) which are used to deallocate the same

memory block. Each write event write, r, , z in the captured trace represents a value

propagation edge from z to r. Value propagation chains are computed by traversing

the value propagation edges back starting from the error detection point, until gen is

encountered.

3.3.2 Online Debugging

Figure 3.11 shows an overview of the online debugger. The implementation

runs as two separate processes (GDB and Pin) and consists of several parts: a GDB

component, that provides a command-line user interface and is responsible for inter-

preting the target program’s debugging information; a state monitoring component,

69

Pin

Running Program

Code Data

Abstract State Machine

Detector &
Locator 1

State Monitoring Detector Control

…
Detector &
Locator N

Pintool.so

Remote
Debugging

Protocol

Binary

GDB

 Load
executable

Lo
ad

sy
m

b
o

ls

 Programmer

 Pin API

Figure 3.11: Online debugging process.

C code Our calculus Assembly code

int w;
int ∗∗p;
p=(int∗∗)
malloc(4);
∗p=0;

w=∗∗p;

let w addr=salloc 4 in
let p addr=salloc 4 in

p addr:=malloc 8;

∗p addr:=0;

w addr:=∗∗∗p addr;

call malloc
mov %eax,−0x10(%ebp)
mov − 0x10(%ebp),%eax
movl $0x0, (%eax)
mov − 0x10(%ebp),%eax
mov (%eax),%eax
mov (%eax),%eax
mov %eax,−0xc(%ebp)

Detection points Tracked pointer mapping Additions to σ

deref w/deref p addr
deref r /deref p addr
deref w/deref ∗p addr
deref r /deref p addr
deref r /deref ∗p addr

P [%eax 7→ (1H , 0)]
P [−0x10(%ebp) 7→ (1H , 0)]
P [%eax 7→ (1H , 0)]
P [(%eax) 7→ (x, x)]
P [%eax 7→ (1H , 0)]
P [%eax 7→ (x, x)]

(malloc, n, 1H)
(write, p addr, ,malloc retval)
(write, ∗p addr, , gen)
bug detected at deref ∗ p addr

Figure 3.12: State transition for a NULL pointer dereference bug.

70

that tracks program execution and translates it into the abstract machine state of our

calculus; and a detector control component that helps programmers turn detectors on

and off on-the-fly. The generated bug detectors, together with the state monitoring

and detector control component are linked and compiled to a pintool (a shared library)

which is dynamically loaded by the Pin dynamic binary instrumentation tool. Both

our state monitoring component and automatically-generated bug detectors are real-

ized by instrumenting the appropriate x86 instructions in Pin. The GDB component

communicates with the Pin-based component via GDB’s remote debugging protocol.

The detector control module allows programmers to turn detectors on and off

at runtime. When the program’s execution reaches a detection point, all the detectors

associated with that detection point are evaluated in the specified order. Whenever

any specified bug condition is satisfied, i.e., a bug is detected, our implementation first

calls PIN ApplicationBreakpoint to generate a breakpoint at the specified statement, and then

generates a bug report which consists of all the concerned events in the bug specification,

as a well as the source file name and line number.

The state monitoring component, a runtime library, observes the program ex-

ecution at assembly code level and maps it back to transitions and state changes in the

abstract machine state (e.g., H, P , σ) described in Section 3.2.2. Figure 3.12 shows

a NULL pointer dereference bug to illustrate how the native x86 execution is mapped

to the abstract state transitions in our calculus, as well as the detection points in the

detection rules. The three columns in the top half show the code in C, in our calculus,

and assembly. Because C implicitly uses dereferenced pointers for stack variables (e.g.,

p=1 in C is really ∗(&p)=1), and our calculus makes the implicit dereference explicit,

code in our calculus needs one more dereference than code in C (e.g., w:=∗∗∗p in our

calculus corresponds to w=∗∗p in C). In the second column of the top of Figure 3.12 we

71

append the addr suffix to variables from the first column (e.g., p becomes p addr) to

avoid confusion.

As we can see, the x86 execution has a straightforward mapping to the state

transition in our calculus. For example, the execution of the first mov (%eax), %eax in-

struction is mapped back to the [read] evaluation rule with r being p addr (where r

is stored in register eax here), while the second mov (%eax),%eax is mapped back to the

same rule with r being *p addr in our calculus. Meanwhile, each binary instruction has

a natural mapping to the detection points (shown in the first column of the bottom

half of Figure 3.12). For example, the first mov (%eax),%eax instruction corresponds to

both deref r p addr and deref p addr detection points. That is, all the bug detectors

associated with deref r r or deref r detection points are evaluated when the program

is about to execute this instruction.

We generate the recording infrastructure after parsing the specifications, and

only activate the required event trackers (e.g., we only activate malloc and free event

trackers for double-free bugs).

Next we describe maintaining state transitions for the pointer mapping P . A

block id is assigned to each allocated block, and the block id is increased after each

allocation. Unique block ids ensure the detection of dangling pointer dereference bugs

even when a memory block is reused. Each pointer is bound with the block id and index

of the block pointed to by shadow memory. We implement the pointer mapping transi-

tion by propagating the shadow value of each pointer along with the pointer arithmetic

operation. Although we only need the mapping for pointers, we temporarily maintain

mapping information for registers. The second column in the bottom of Figure 3.12

shows an example of how the pointer mapping is changed by propagating the shadow

value for the execution of assembly code given in the third column in the top of Fig-

72

ure 3.12. For example, the malloc function returns the address of the allocated block

(e.g., the block id is 1H) in the register %eax, we shadow %eax to (1H , 0), denoted by

P [%eax 7→ (1H , 0)] in Figure 3.12. The mapping info is propagated from register %eax

into p after the execution of mov %eax,−0x10(%ebp), denoted by P [−0x10(%ebp) 7→ (1H , 0)]

in Figure 3.12, which means that pointer p points to the first element inside block 1H .

Suppose two bug detectors are generated based on the buffer overflow and NULL pointer

dereference specifications in Figure 3.2. Then when the program’s execution reaches the

first mov (%eax),%eax instruction, we are at a deref r detection point (r is stored inside

register %eax), and pointer mapping information for register %eax contains the pointer

mapping information for r here(P [%eax 7→ (1H , 0)]). By evaluating the two detectors,

none of the bug conditions are satisfied. The pointer mapping for register %eax is set

to invalid (denoted by (x,x) in Figure 3.12) due to the assignment. The execution con-

tinues to the second mov (%eax),%eax instruction, and the NULL pointer dereference bug

is reported because r == 0 is satisfied here (r is stored in register %eax and its value

equals zero).

Value origin tracking is implemented similarly to pointer mapping. Each vari-

able and register is tagged with a shadow origin of its value, and whenever the next

expression to reduce is r := v, we update the origin (shadow value) of r to be the origin

of v, and we record r and its new origin in the trace.

Storing all the tracked events and value propagations in memory may cause

the debugger to run out of memory for long-running programs. Older events, which are

unlikely to be accessed, can be dumped to disk and reloaded into memory if needed.

However, we did not encounter this problem for our examined programs.

73

Bug Type
Bug Specification Generated Debugger

(LOC) (LOC)

Unmatched Free 2 2.3K
Double Free 3 2.4K
Dangling Pointer Dereference 3 2.4K
NULL Pointer Dereference 1 2.2K
Heap Buffer Overflow 3 2.3K
Uninitialized Read 1 2.2K

Total 8 3.3K

Table 3.2: Debugger code generation efficiency: comparison of lines of specification and
generated debuggers for different bugs.

3.4 Experimental Evaluation

We evaluate our approach on several dimensions: efficiency, i.e., the manual

programming effort saved by automated generation; effectiveness/coverage, i.e., can we

(re)discover actual bugs in real-world programs?; and performance overhead incurred

by running programs using our approach.

3.4.1 Efficiency

We measure the efficiency of our debugger code generation by comparing the

lines of code of the bug specification and the generated C implementation. For each kind

of bug, we specify the bug detector and bug locator as shown in Figure 3.2. Table 3.2

shows the comparison of lines of codes for bug specification and generated debugger for

each kind of bug and all bugs combined.

Since detectors use the same model (detection point and predicates on the ab-

stract machine state), and share the code for the state monitoring library, the generated

code for all detectors combined is 3.3 KLOC, while for a single detector, the code size

ranges from 2.2 to 2.4 KLOC. Note that the generated implementations are orders of

magnitude larger than the bug specifications.

74

Program Name LOC Bug Type Bug Location Bug Source

Tidy-34132 35.9K Double Free istack.c:031 BugNet [76]
Tidy-34132 35.9K NULL Pointer Dereference parser.c:161 BugNet [76]
bc-1.06 17.0K Heap Buffer Overflow storage.c:176 BugNet [76]
Tar-1.13.25 27.1K NULL Pointer Dereference incremen.c:180 gnu.org/software/tar/
Cpython-870c0ef7e8a2 336.0K Unmatched Free typeobject.c:2490 bugs.python.org
Cpython-2.6.8 336.0K Double Free import.c:2843 bugs.python.org
Cpython-08135a1f3f5d 387.6K Heap Buffer Overflow imageop.c:593 bugs.python.org
Cpython-83d0945eea42 271.1K NULL Pointer Dereference pickle.c:442 bugs.python.org

Table 3.3: Overview of benchmark programs.

3.4.2 Debugger Effectiveness

A summary of benchmarks used in our evaluation is shown in Table 3.3; each

benchmark contains a real reported bug, with the details in columns 3–5. We now

provide brief descriptions of the experience with using our approach to find and fix

these bugs. Note that three of the bugs were presented in detail in Section 3.1.2, hence

we focus on the remaining five bugs.

In addition to the double-free bug, Tidy-34132 also contains a NULL pointer

dereference which manifests when the input HTML file contains a nested frameset, and

the noframe tag is unexpectedly included in the inner frameset rather than the outer

one, which causes function FindBody to wrongly return a NULL pointer. Bc-1.06 fails

with a memory corruption error due to heap buffer overflow (variable v count is misused

because of a copy-paste error, detailed in Chapter 2). Cpython-2.6.8 has a double-free

memory bug when there is a folder in the current directory whose name is exactly the

same as a module name, and this opened file is wrongly closed twice, resulting in double-

freeing a FILE structure. Cpython-08135a1f3f5d crashes due to a heap buffer overflow

which manifests when the imageop module tries to convert a very large RGB image to

an 8-bit RGB. Cpython-83d0945eea42 fails due to a NULL pointer dereference when

the pickle module tries to serialize a wrongly-initialized object whose write buf field is

NULL.

75

Program Name Traditional Debugging Dynamic Slicing VPC

Tidy-34132-double-free 28,487 4,687 16
Tidy-34132-null-deref 55,777 13,050 4
bc-1.06 42,903 19,988 1
Tar-1.13.25 74 7 4
Cpython-870c0ef7e8a2 20,719 13,136 2
Cpython-2.6.8 1,083 444 10
Cpython-08135a1f3f5d 270,544 135,366 1
Cpython-83d0945eea42 11,916 7,285 2

Table 3.4: Debugging effort: instructions examined.

It can be easily seen that the benchmark suite includes bugs from our detector

list and that all the bugs come from widely-used applications. Thus, this benchmark

suite is representative with respect to debugging effectiveness evaluation.

All the bugs were successfully detected using the debuggers gener-

ated from the specifications in Figure 3.2. However, we did find several cases

of false positives. Because our approach is based on Pin, which cannot track code ex-

ecution into the kernel for system calls, our generated debuggers detected some false

positives (uninitialized reads). This limitation can be overcome by capturing system

call effects [74], a task we leave to future work.

We now quantify the effectiveness of our approach by showing how locators

dramatically simplify the process of finding bug root causes. We have conducted the

following experiment: we compute the number of instructions that would need to be

examined to find the root cause of the bug in three scenarios: traditional debugging, dy-

namic slicing [120], and our approach. We present the results in Table 3.4. Traditional

debugging refers to using a standard debugger, e.g., GDB, where the programmer must

trace back the execution starting from the crash point to the point that represents the

root cause. For the bugs considered, this would require tracing back through the execu-

tion of 74 to 270,544 instructions, depending on the program. When dynamic slicing is

employed, the programmer traces back the execution along dynamic dependence edges,

76

Program Name Null Pin Bug Detect Bug Detect&VP
seconds seconds (factor) seconds (factor)

Tidy-34132-double-free 0.77 6.05 (7.9x) 7.62 (9.9x)
Tidy-34132-null-deref 0.62 4.52 (7.3x) 5.58 (9.0x)
bc-1.06 0.62 4.61 (7.4x) 5.70 (9.2x)
Tar-1.13.25 1.08 5.89 (5.5x) 7.43 (6.9x)
Cpython-870c0ef7e8a2 3.95 59.21 (15.0x) 80.84 (20.5x)
Cpython-2.6.8 3.31 33.16 (10.0x) 41.35 (12.5x)
Cpython-08135a1f3f5d 2.95 32.03 (10.9x) 40.13 (13.6x)
Cpython-83d0945eea42 3.17 54.21 (17.1x) 63.83 (20.1x)

Table 3.5: Execution times (from start to bug-detect), when running inside our debugger.

i.e., only a relevant subset of instructions need to be examined. Breadth-first traversal

of dependence chains until the root cause is located leads to tracing back through the

execution of 7 to 135,366 instructions, depending on the program. In contrast, in our

approach, the programmer will trace back through the execution along value propaga-

tion chains which amounts to the examination of just 1 to 16 instructions. Hence, our

approach reduces the debugging effort significantly, compared to traditional debugging

and dynamic slicing.

3.4.3 Performance

The focus of our work was efficiency and effectiveness, so we have not opti-

mized our implementation for performance. Nevertheless, we have found that the time

overheads for generated monitors and locators are acceptable for interactive debugging.

When measuring overhead, we used the same failing input we had used for the effective-

ness evaluation. We report the results in Table 3.5. We also use the “Null Pin” running

time (the program running time under Pin without our debugger/instrumentation) as

the baseline, which is shown in the second column, and the time overhead with all de-

tectors on is in the third column. The fourth column shows the time overhead with all

detectors on as well as value propagation tracking on. All experiments were conducted

77

on a DELL PowerEdge 1900 with 3.0GHz Intel Xeon processor and 3GB RAM, running

Linux, kernel version 2.6.18.

From Table 3.5, we can see that the time overhead incurred by all bug detectors

ranges from 5.5x to 17.1x compared to the baseline, while the time overhead incurred

by all bug detectors and value propagation ranges from 6.9x to 20.5x. We believe this

overhead is acceptable and a worthy tradeoff for the benefits of our approach.

When running the programs inside our debugger we have found that (1) run-

ning time increases linearly with the number of bug detectors enabled, and (2) even with

the overhead imposed by our dynamic approach with all detectors and value propaga-

tion on, real-world programs took less than 81 seconds to crash on inputs that lead to

bug manifestation. These results demonstrate that the overhead is acceptable and our

approach appears promising for debugging tasks on realistic programs.

3.5 Summary

This chapter has presented a novel approach to constructing memory debuggers

from declarative bug specifications. We have showed that many categories of memory

bugs can be specified in an elegant and concise manner using First-order logic; we

then prove that bug specifications are sound, i.e., they do not miss bugs that manifest

during execution. We have showed that from the concise bug specifications, debuggers

that catch and locate these bugs can be generated automatically, hence programmers

can easily specify new kinds of bugs. We have illustrated our approach by generating

debuggers for six kinds of memory bugs. Experiments with using our approach on

real-world programs indicate that it is both efficient and effective.

78

Chapter 4

Improving the Efficiency of Qzdb

via Input Simplification

The overhead of Qzdb can be quite high, because expensive runtime monitoring

is needed for both high-level commands (i.e., predicate switching, dynamic slicing) and

automatically generated debuggers (i.e., generated double free bug detector & locator).

This is particularly the case for long program executions. This chapter tackles this

problem by presenting a dynamic analysis, named relevant input analysis, and uses its

result to enhance the delta debugging [112, 111, 70] algorithm for simplifying a failing

program input as well as its dynamic execution with the guarantee that the same failure

manifests in the simplified execution. Thus, instead of the original long execution,

programmers start the debugging task with the simplified execution.

The relevant input analysis characterizes the role and strength of inputs in the

computation of different values during a program execution. The role indicates whether

a computed value is derived from an input value or its computation is simply influenced

by an input value. The strength indicates if role relied upon the precise value of the

79

input or it is among one of many values that can play a similar role. The relevant

input analysis is then used to prune, as well as guide, and hence accelerate, the delta

debugging [112, 70] algorithm.

4.1 Relevant Input Analysis

4.1.1 Motivating example

Prior relevant input analyses such as lineage tracing [114, 14, 6] identify the

subset of inputs that contribute to a specified output by considering data dependence

only [114], both data dependence and control dependence [14], or both data depen-

dence and strict control dependence [6]. However, they do not characterize the role and

strength of inputs in the computation of different values during execution.

An example, presented next, motivates the approach and illustrates the effec-

tiveness of our relevant input analysis. The example is extracted from the real NULL

pointer dereference bug in Tidy-34132 (previously studied in Chapter 3). The relevant

parts of the code are shown in Figure 4.1. In this simplified view, an HTML document

contains a Header section (represented by ‘H’) and a frameset section (represented by

‘S’, lines 4–6). The frameset section holds one or more Frame elements (represented by

‘F’), specifying the layout of views in the user agent window. In addition, the frameset

section can contain a Noframes element (represented by ‘N’) to provide alternate content

for browsers that do not support frames or have frames disabled (line 23). Noframes

must contain a Body element (represented by ‘B’). Framesets can be nested to any level.

The body element can contain multiple Paragraphs (represented by ‘P’). All the para-

graphs should be included in the body element. When this property is violated, the

program calls HandlePsOutsideBody (lines 51–56) to fix it. HandlePsOutsideBody sim-

80

parser .c:
1 void ParseHtmlDoc() {
2 doc=malloc(sizeof(Doc));
3 doc−>seeEndBody=FALSE;
4 doc−>head=ParseHead();
5 doc−>fS=NULL;
6 ParseFrameSet(NULL); }
7 void ParseFrameSet(Node∗p)
8 { Node ∗fS=NULL;
9 char c=GetChar(fin);
10 if (c==’S’) {
11 fS=NewNode(fSTag);
12 if (p) AddChild(p,fS);
13 if (doc−>fS==NULL)
14 doc−>fS=fS;
15 c=PeekChar(fin);
16 while(c==’S’
17 || c==’F’) {
18 if (c==’S’)
19 ParseFrameSet(fS);
20 else ParseFrame(fS);
21 c=PeekChar(fin);
22 }
23 ParseNoFrame(fS);
24 c=GetChar(fin);
25 if (c==’/’) ... }
29 }
30 void ParseNoFrame(Node ∗fS)
31 { char c=GetChar(fin);
32 if (c==’N’) {
33 Node ∗noF=NewNode(noFTag);
34 AddChild(fS,noF);
35 HandlePsOutsideBody();
36 ParseBody(noF);
37 HandlePsOutsideBody();
38 c=GetChar(fin);
39 if (c==’/’) ... }
44 }
45 void ParseFrame(Node ∗fS)
46 { char c=GetChar(fin);
47 if (c==’F’) {
48 Node ∗f=NewNode(fTag);
49 AddChild(fS,f); }
50 }
51 void HandlePsOutsideBody()
52 { if (doc−>seeEndBody==true)
53 { Node ∗body= FindBody();
54 ParseParagraphs(body); }
55 else ConsumeParagraphs();
56 }
57 void ParseBody(Node ∗noF)
58 { char c=GetChar(fin);
59 if (c==’B’) {
60 Node ∗body=NewNode(bTag);
61 AddChild(noF,body);
62 ParseParagraphs(body);
63 c=GetChar(fin);

64 if (c==’/’) {
65 c=GetChar(fin);
66 if (c==’B’)
67 doc−>seeEndBody=true;
68 else Warn (...); }
69 else Warn (...); }
70 else Ungetc(c, fin); }
71 Node ∗FindBody()
72 { Node ∗node=doc−>fS;
73 if (node==NULL) return NULL;
74 node=node−>firstChild;
75 while(node &&
76 node−>type!=noFTag)
77 node=node−>sibling;
78 if (node) {
79 node=node−>firstChild;
80 while(node &&
81 node−>type!=bTag)
82 node=node−>sibling; }
83 return node;
84 }
85 void ParseParagraphs(Node ∗b)
86 { char c=GetChar(fin);
87 while(c==’P’) { ...
90 ParseTextNode(p);
91 c=GetChar(fin);
92 if (c==’/’){
93 c=GetChar(fin);
94 if (c!=’P’) Warn (...); }
95 else Warn (...);
96 c=GetChar(fin); }
97 Ungetc(c, fin);
98 }
99 Node ∗NewNode(NodeType type)
100 { Node ∗node=malloc(...);

...
104 node−>sibling=NULL;
105 return node; }
106 void AddChild(Node∗p,Node∗c)
107 { if (p>lastChild!=NULL)
108 p−>lastChild−>sibling=c;
109 else p−>firstChild=c;
110 p−>lastChild=c;
111 }
112 void ParseTextNode(Node∗p)
113 { char c=GetChar(fin);
114 if (c==’”’) {
115 c=GetChar(fin);

...
118 c=GetChar(fin);
119 if (c!=’”’) Warn (...); }
120 else Ungetc(c, fin);

}
121 char GetChar(Stream ∗fp) {
122 if (fp−>r ptr>=fp−>r end)
123 return RefillBuf (fp);
124 return ∗(fp−>r ptr++); }

Figure 4.1: Buggy code for illustrating relevant input analysis.

81

Original input:

S S F F N B P ” a ” / P / B P ” b ” / P / N / S / S

Inputs labeled with occurrence frequency:
S1 S2 F 1 F 2 N1 B1 P 1 ”1 a1 ”2 /1 P 2 /2 B2 P 3 ”3 b1 ”4 /3 P 4 /4 N2 /5 S3 /6 S4

Compute relevant input/lineage for failure point–1078(p is NULL):
Result of lineage [114]: {}

Result of Penumbra [14]:
{} | {S1, S2, F 1, F 2, N1, B1, P 1, ”1, /1, /2, B2, P 3}

Result of lineage with strict control dependence[6]:
{S1, S2, F 1, F 2, N1, B1, P 1, ”1, /1, /2, B2, P 3}

Result of our approach:
{S2=→NULL(node →sibling@104)} ∧ {S1=, S2=, F 1, F 2, N1=, B1=, P 1, ”1, /1, /2=,
B2=→true(doc→seeEndBody@67), P 3=} ∧ {S1, S2, F 1, F 2, N1, B1, P 1, ”1, /1, /2, B2, P 3}

Figure 4.2: Comparing prior work results with our relevant input analysis.

ply discards those paragraphs when a body element has not been encountered. When

the end of the body has been parsed, HandlePsOutsideBody moves such paragraphs

into the body element by adding all paragraphs after the body as children of body (line

53–54). The function FindBody (line 71–84) retrieves the body node. There is a bug

in FindBody: the wrong assumption that noframe is always included in the outermost

frameset. So when the noframe and body are included in an inner frameset, FindBody

will wrongly return a NULL pointer, which causes a program crash at line 107 (p is

NULL here).

Given a failure-inducing input, shown at the top of Figure 4.2), the program

crashes at the eighth execution of line 107, denoted as 1078. Consider the computation

of the relevant input for variable p at failure point 1078. The results of relevant input

analyses, both as computed by prior work [114, 14, 6], as well as our algorithm, are given

in Figure 4.2. As the program crashes when parsing the third P in the input, all the

unprocessed inputs (“b”/P/N/S/S) are successfully excluded by all approaches. Lineage

82

computation [114] only considers data dependence, and it gives an empty lineage be-

cause no input propagates into p at 1078 via data dependence edges only. Penumbra [14]

can be configured to consider either data dependences only, or both data and control

dependences. Thus, it can generate two relevant input sets: one is empty just as lineage

computation [114] or a set that includes almost all the parsed inputs. Subsequent im-

provements of lineage computation [6] consider both data dependences and strict control

dependences, and produce the same relevant input set as Penumbra when configured

considering both data and control dependences. By examining the program execution,

we discover that the reason why lineage computation with strict control dependence and

Penumbra include nearly all the inputs is because of the data and control dependences

involving the index of buffer (fp→ r ptr) at line 124.

It is a common programming practice to maintain a buffer to store the input

data and then process the data in the buffer. The program in Figure 4.1 maintains such

a buffer and parses inputs based on the buffer (GetChar, Ungetc, PeekChar operate on

this buffer). Hence whenever an input is read (e.g., line 86 reads the third P used in

the predicate at line 87 just before the crash point), it is data dependent on the last

modification of the index of the input buffer (fp → r ptr at line 124). Because this

buffer index is increased after an input is read at line 124, and line 124 is (strict) control

dependent on the predicates which guard the execution of GetChar, i.e., GetChar at

line 118 is (strict) control dependent on line 114, and GetChar at line 91 is (strict)

control dependent on line 87, such data and control dependence chains explain why

nearly all the processed inputs are included in the relevant input. Naturally, such broad

and imprecise information is not very useful.

Relevant input analysis is based upon two observations. First, data depen-

dences incurred by operand (later defined as value dependence) should be treated dif-

83

ferently from data dependence incurred by index or pointer (later defined as address

dependence) which is used to select the operand (i.e., different dependences/inputs have

different roles). Second, each dependence/input has different strength regarding the con-

cerned output value. The relevant input analysis characterizes the role and strength that

dependence/inputs play in the computation of different values during a program execu-

tion. Going back to the example in Figure 4.1, the result of our relevant input analysis is

shown at the bottom of Figure 4.2. As we can see, instead of one, we present three sets:

the first set includes only inputs which the concerned value p is derived from (inputs

contribute to p only through value dependence); the second set includes inputs which

influence p through control dependence and value dependence; and the third set includes

inputs which influence p through address, control, and value dependence. Inputs labeled

with = in the three sets have a strong impact on the value of p. Specifically, in order

to trigger or understand this bug, two conditions must be satisfied: (1) the NULL value

must be generated somewhere; (2) the program execution must reach a point where this

NULL value gets dereferenced. The S2=→NULL(node→sibling@104) in our first set

exactly shows that the NULL value of p is propagated from (node → sibling) at line

104, and this NULL value again is generated because of the second frameset (S2=). The

S1=, S2=, N1=, B1=, /2=, B2=→true(doc→seeEndBody@67), P 3= in the second set

shows that in order to cause the execution to reach this failure point, we must exactly

have such inputs: SSNB/BP (which turns out to be the minimal input to trigger the

same bug). As we can see, our relevant input analysis provides valuable information for

aiding program comprehension, debugging, test case generation, etc.

84

4.1.2 Definitions

Our relevant input analysis tracks dynamic dependences, originating from

points where the program reads the inputs, and categorizes them to distinguish the

ways in which they impact the computation of values. Given the ith execution of state-

ment s (denoted as si), we use VAL(stoi) to denote the value computed at si, and

during this computation, m variables are used (denoted as sfr1, sfr2, sfrk, ..., sfrm).

The predicate on which si is control-dependent, is denoted as predj . Statement s itself

can also be a predicate, in which case, VAL(stoi) denotes the evaluated result of this

predicate (TRUE/FALSE). We now describe the three categories.

• Value Dependence – VAL(stoi)
v←VAL(sfrk): VAL(stoi) is value dependent upon

VAL(sfrk) if the latter is used as an operand for computing the former;

• Address Dependence – VAL(stoi)
a←VAL(sfrk): VAL(stoi) is address dependent upon

VAL(sfrk) if the latter is used to select the address whose contents are used as an

operand for computing the former. These dependences arise due to the presence

of pointers and arrays; and

• Control Dependence – VAL(stoi)
c←VAL(predj): stoi is dynamically control depen-

dent [25, 106] upon predj , i.e., VAL(predj) causes the execution of stoi.

4.1.3 Role of Relevant Inputs

We treat all the external inputs to a program (e.g., file, stdin, network) as

concerned inputs. For simplicity, we model the input as a string, and the newly-arriving

inputs are simply appended to this string. The relevant inputs for a value VAL computed

in a program execution that reads a set of inputs INPUTS are represented as follows:

85

C Code Execution Trace DERIVED ∧ CINFLUENCED ∧ AINFLUENCED

1 int data [100];
2 int posSum=0;
3 int negSum=0;
4 int dt;
5 int i ;
6 int num=0;

7 while(! feof (fin))
8 {

9 if (num>=100)
10 break;

11 fscanf (...& dt);

12 data[num]=dt;

13 num++;

14 }
15 i=0;
16 while(i<num)
17 {
18 dt=data[i];

//end marker
19 if (dt==0)
20 break;

21 if (dt>0)
22 posSum+=dt;

23 else
24 negSum+=dt;

25 i++;
26 }

27 print posSum;
28 print negSum;

21 posSum=0; VAL(posSum) ← {} ∧ {} ∧ {}
31 negSum=0; VAL(negSum) ← {} ∧ {} ∧ {}
61 num=0; VAL(num) ← {} ∧ {} ∧ {}
71 while(!feof(fin)) VAL(!feof(fin)) ← {} ∧ {} ∧ {}
91 if(num>=100) VAL(num>=100) ← {} ∧ {} ∧ {}
111 fscanf(...&dt);//3 VAL(dt) ← {3} ∧ {} ∧ {}
121 data[num]=dt; VAL(data[num]) ← {3} ∧ {} ∧ {}
131 num++; VAL(num) ← {} ∧ {} ∧ {}
72 while(!feof(fin)) VAL(!feof(fin)) ← {} ∧ {} ∧ {}
92 if(num>=100) VAL(num>=100) ← {} ∧ {} ∧ {}
112 fscanf(...&dt);//-15 VAL(dt) ← {-15} ∧ {} ∧ {}
122 data[num]=dt; VAL(data[num]) ← {-15} ∧ {} ∧ {}
132 num++; VAL(num) ← {} ∧ {} ∧ {}
73 while(!feof(fin)) VAL(!feof(fin)) ← {} ∧ {} ∧ {}
93 if(num>=100) VAL(num>=100) ← {} ∧ {} ∧ {}
113 fscanf(...&dt);//0 VAL(dt) ← {0} ∧ {} ∧ {}
123 data[num]=dt; VAL(data[num]) ← {0} ∧ {} ∧ {}
133 num++; VAL(num) ← {} ∧ {} ∧ {}
74 while(!feof(fin)) VAL(!feof(fin)) ← {} ∧ {} ∧ {}
151 i=0; VAL(i) ← {} ∧ {} ∧ {}
161 while(i<num) VAL(i<num) ← {} ∧ {} ∧ {}
181 dt=data[i];//3 VAL(dt) ← {3} ∧ {} ∧ {}
191 if(dt==0)//end? VAL(dt==0) ← {3} ∧ {} ∧ {}
211 if(dt>0) VAL(dt>0) ← {3} ∧ {3} ∧ {}
221 posSum+=dt; VAL(posSum) ← {3} ∧ {3} ∧ {}
251 i++; VAL(i) ← {} ∧ {3} ∧ {}
162 while(i<num) VAL(i<num) ← {} ∧ {3} ∧ {}
182 dt=data[i];//-15 VAL(dt) ← {-15} ∧ {3} ∧ {3}
192 if(dt==0) VAL(dt==0) ← {-15} ∧ {3} ∧ {3}
212 if(dt>0) VAL(dt>0) ← {-15} ∧ {3,-15} ∧ {3}
241 negSum+=dt; VAL(negSum) ← {-15} ∧ {3,-15} ∧ {3}
252 i++; VAL(i) ← {} ∧ {3,-15} ∧ {3}
163 while(i<num) VAL(i<num) ← {} ∧ {3,-15} ∧ {3}
183 dt=data[i];//0 VAL(dt) ← {0} ∧ {3,-15} ∧ {3,-15}
193 if(dt==0)//end VAL(dt==0) ← {0} ∧ {3,-15} ∧ {3,-15}
201 break;

271 print posSum; VAL(posSum) ← {3} ∧ {3} ∧ {}
281 print negSum; VAL(negSum) ← {-15} ∧ {3,-15} ∧ {3}

Figure 4.3: Example illustrating the role of input values.

86

VAL ← DERIVED ∧ CINFLUENCED ∧ AINFLUENCED

• Value VAL is derived from inputs belonging to DERIVED ⊆ INPUTS if there is a

chain of value dependences from each input in DERIVED to VAL:

{r | r ∈ INPUTS ∧ ∃ VAL v← . . .
v← READ(r)}

• Value VAL is control influenced by inputs belonging to CINFLUENCED ⊆ INPUTS

if there is a chain of value and/or control dependences from each input in CIN-

FLUENCED to VAL such that at least one control dependence is present in the

chain:

{r | r ∈ INPUTS ∧ ∃ VAL
v/c←− . . . v/c←− READ(r)}

• Value VAL is address influenced by inputs belonging to AINFLUENCED ⊆ INPUTS

if there is a chain of value, and/or control, and/or address dependences from

each input in AINFLUENCED to VAL such that at least one address dependence is

present in the chain:

{r | r ∈ INPUTS ∧ ∃ VAL
v/c/a←− . . .

v/c/a←− READ(r)}

We illustrate the aforementioned relevant input notions with an example in

Figure 4.3 (note that we do not consider the strength of inputs for now). The code

fragment on the left contains two loops. The first loop reads a sequence of numbers into

the data[] array. The input consists of a sequence of positive and negative integers

which is terminated by the value 0. The second loop scans the array and computes the

sum of positive numbers (posSum) and sum of negative numbers (negSum). Finally the

values of posSum and negSum are printed out. In the right column the execution trace and

relevant inputs of computed values is presented for the input sequence {3, -15, 0}. The

87

results of our analysis show that the DERIVED sets of posSum and negSum are found to be

{3} and {-15} due to chains of value dependence. The CINFLUENCED set for posSum is

{3} due to control/value dependence chain 221
c← 191

v← 181
v← 121

v← 111(READ(3)).

AINFLUENCED set for posSum is empty because no relevant inputs are propagated along

address/control/value dependence chain. The CINFLUENCED set for negSum is {3,-15}

due to chains of control/value dependences along which the values 3 and -15 are tested by

predicates eventually causing the execution of statement 241. Note that AINFLUENCED

set for negSum is {3} because of such address/control/value chain:

241
v← 182

a← 251
c← 191

v← 181
v← 121

v← 111(READ(3))

4.1.4 Strength of Relevant Inputs

Next we show that we can further qualify the inputs by determining their

strength in computing other values. In particular, we determine if the computed values

rely upon the precise value of an input, or the input value is among one of many values

that can cause similar behavior. For this purpose a specific input value r will appear in

the DERIVED, CINFLUENCED, or AINFLUENCED sets as r= (to indicate that computed

value depends upon the precise value of r) or simply r (to indicate that potentially

other values will lead to similar behavior as r). We now present the situations in

which the above attributes can be associated when dynamic value dependences, control

dependences, and address dependences are encountered.

Value Dependence. When the DERIVED set of a computed value VAL contains an

input value r= it means that to keep VAL unchanged, we need the exact value of r

(VAL is highly likely to be changed if the input value r is changed); otherwise DERIVED

simply contains r (VAL may change if we change the input value r). The example below

88

illustrates the propagation of value 10 input by the read statement. When the value

10 is first read into x and later copied to another variable y (strong value dependence),

the corresponding DERIVED sets contain 10= (strong value dependence maintains the

strength of inputs). However, when the value of z is computed from the value of x at

line 3 (weak value dependence), z’s DERIVED set contains 10 (weak value dependence

weakens the strength of inputs). Besides, because 10 has already been weakened at

line 3, when the value of z is later copied to w, w contains 10 instead of 10= (strong

value dependence only maintains the strength of inputs). Similarly, when x is used in

the predicate at line 5 (or 6, respectively) and it tests whether x is equal (not equal,

respectively) to a precise input value 10 and when the predicate outcome is true (false,

respectively), the DERIVED set will contain 10= (strong value dependence maintains the

strength of inputs); otherwise, DERIVED will simply contain 10 (line 7).

1: read x; VAL(x) ← {10=} ∧ {} ∧ {}

2: y = x; VAL(y) ← {10=} ∧ {} ∧ {}

3: z = f(x); VAL(z) ← {10} ∧ {} ∧ {}

4: w = z; VAL(w) ← {10} ∧ {} ∧ {}

5: if(x==10) true VAL(x==10) ← {10=} ∧ {} ∧ {}

6: if(x!=10) false VAL(x!=10) ← {10=} ∧ {} ∧ {}

7: if(x > 0) VAL(x > 0) ← {10} ∧ {} ∧ {}

Control Dependence. If a predicate tests whether the value of a variable is equal

(not equal, respectively) to a precise input value r, then the CINFLUENCED set of a

statement that is control dependent upon the true (false, respectively) outcome of the

predicate will contain r=; otherwise CINFLUENCED will simply contain r. The example

below illustrates the propagation of value 0= input by the read statement and thus

89

contained in DERIVED set of x. The value 0= is propagated to the CINFLUENCED sets

of values of w and y via control dependences.

1: read x; VAL(x) ← {0=} ∧ {} ∧ {}

2: z = x; VAL(z) ← {0=} ∧ {} ∧ {}

3: if (x==0) VAL(x==0) ← {0=} ∧ {} ∧ {}

4: w = z; VAL(w) ← {0=} ∧ {0=} ∧ {}

5: y = 1; VAL(y) ← {0= →1(y@5)} ∧ {0=}∧{}

6: if(y < 100) VAL(y < 100) ← {0} ∧ {0}∧{}

Consider a predicate that tests if an input value is precisely equal to constant c1, and if

the predicate is true, it sets another variable to a constant value c2. Such a computation

essentially maps the value of c1 to the value c2, i.e., c2 is derived from c1. Therefore

in this situation we also propagate input value c1 from the DERIVED set of a predicate

to the DERIVED set of a control dependent statement that assigns c2. The propagation

also captures the mapping by including c1 → c2 in the DERIVED set. In the above

example, 0= is propagated from DERIVED set of predicate (x==0) to the DERIVED

set of y’s value by inclusion of 0= →1(y@5). Note that in such chains all values are

exact values. Note that if y is later used in line 6 (weak value dependence), DERIVED

and CINFLUENCED sets include 0 instead of 0= (weak value dependence weakens the

strength of inputs).

Address Dependence. If the value of a variable v used to select the address whose

content (e.g., ∗v) is used as operand exactly relies on some input r, then the AINFLU-

ENCED set of computed value VAL contain r= (changing the value of r will highly likely

change the value of v and then ∗v); otherwise AINFLUENCED will simply contain r

(changing value of r may change the value of v and then ∗v). The example below illus-

90

trates the propagation of value 10 input by the read statement. When the value 10 is

first read into x and later used to select the address, the computed value z’s AINFLU-

ENCED set contains 10=. On the other hand, when a value of y is computed from the

value of x and then used to select address, the computed value w’s AINFLUENCED set

contains 10. When z is tested in predicate if(z > 0), the AINFLUENCED set for this

predicate contains 10, rather than 10=.

1: read x; VAL(x) ← {10=} ∧ {} ∧ {}

2: z = buf[x]; VAL(z) ← {50=} ∧ {} ∧ {10=}

3: y = f(x); VAL(y) ← {10} ∧ {} ∧ {}

4: w = buf[y]; VAL(w) ← {40=} ∧ {} ∧ {10}

5: if(z > 0) VAL(z > 0) ← {50} ∧ {} ∧ {10}

4.1.5 Computation of Relevant Inputs

The dynamic value analysis is performed by instrumenting the program such

that for each instruction that is executed, the relevant input sets of the computed value

are found according to the dynamic dependences of the executed instruction. Figure 4.4

shows how the DERIVED (DER), CINFLUENCED (CINF) and AINFLUENCED (AINF) sets

are computed via propagation of relevant input information along all dynamic depen-

dences (Value, Address, and Control). The] operation in the figure is a modification

of traditional union. When two values derived from same input are encountered, the

stronger condition is retained:

{c=}] {c} = {c=}

Similarly, when two chains are encountered such that one is a prefix of another,

then the longer chain is retained as it represents a stronger condition.

91

Initialize: DER(stoi) ← CINF(stoi) ← AINF(stoi) ← φ;
Compute DER(stoi) ∧ CINF(stoi) as follows:
for each prior statement execution on which

VAL(stoi) is directly dependent do

– Value Dependence

case VAL(stoi)
v←VAL(sfrk):

case stoi : . . . = sfrk:
case stoi : if (sfrk == c1) TRUE:
case stoi : if (sfrk ! = c1) FALSE:
DER(stoi) ← DER(stoi)] DER(sfrk)
CINF(stoi) ← CINF(stoi)] CINF(sfrk)
AINF(stoi) ← AINF(stoi)] AINF(sfrk)
otherwise:

DER(stoi) ← DER(stoi)] DER(sfrk)[c
= . . . /c]

CINF(stoi) ← CINF(stoi)] CINF(sfrk)[c
= . . . /c]

AINF(stoi) ← AINF(stoi)] AINF(sfrk)[c
= . . . /c]

– Address Dependence

case VAL(stoi)
a←VAL(sfrk):

case stoi : . . . = ∗sfrk:
case stoi : ∗sfrk = . . .:
case stoi : if (∗sfrk == c1) TRUE:
case stoi : if (∗sfrk ! = c1) FALSE:
AINF(stoi) ← AINF(stoi)] DER(sfrk)
] CINF(sfrj)] AINF(sfrk)

otherwise:

AINF(stoi) ← AINF(stoi)] DER(sfrk)[c
= . . . /c]

] CINF(sfrk)[c
= . . . /c]] AINF(sfrk)[c

= . . . /c]
– Control Dependence

case VAL(stoi)
c←VAL(predj):

case stoi : . . . = sfrk:
case stoi : if (. . .):
CINF(stoi) ← CINF(stoi)] DER(predj)] CINF(predj)
otherwise:

CINF(stoi) ← CINF(stoi)] DER(predj)[c
= . . . /c]

] CINF(predj)[c
= . . . /c]

DER(stoi) ← DER(stoi)] CHAIN, such that

case stoi : stoi = c2 is TRUE dependent

on predj : if(var == c1):
case stoi : stoi = c2 is FALSE dependent

on predj : if(var! = c1):
CHAIN={c=1 . . .→ c2(stoi@s)|c=1 . . . ∈ DER(predj)}

otherwise: CHAIN = φ
endfor

Figure 4.4: Dynamically computing relevant inputs of VAL(stoi).

92

{c= → d(var@s)}] {c=} = {c= → d(var@s)}

The S[c= . . . /c] operation used in Figure 4.4 is used to drop the = label (i.e.,

weaken the strength of inputs), and it is defined as follows:

S[c= . . . /c] = {c | c ∈ S ∨ c= . . . ∈ S}

For example,

{c=1 , c=2 → d(var@s), c3}[c= . . . /c] = {c1, c2, c3}

In Figure 4.5 we present the results of the above analysis when it is applied to a

code segment that parses a string and if the string is “body,” then seeBody is set to true.

The input in this case is contained in name[] and we assume that it is indeed the string

“body” terminated by “\0”. The first loop in the code fragment compares the input

string with “body” which is stored in str. If there is an exact match, we exit the loop af-

ter setting cmp to 0. A chain of mappings \0=→0(cmp@12)→BODY(tag@27)→true(seeBody@29)

finally leads us to statement return seeBody (line 30).

Both DERIVED and CINFLUENCED sets of seeBody at statement 301 capture

very useful information. The chain \0=→0(cmp@12)→BODY(tag@27)→true(seeBody@29)

in DERIVED set indicates how \0 is mapped to 0 for cmp first, and then eventually to

true for seeBody. The CINFLUENCED indicates that the exact characters in “body”

must be encountered as the set contains b=, o=, d=, y=, and \0=. As we can see, such

information will be very useful for program comprehension and fault localization.

93

C Code Execution Trace DERIVED ∧ CINFLUENCED ∧ AINFLUENCED

1 Parse(char∗name)
2{
3 seeBody=false;
4 str =”body”;
5 int cmp;
6 int i=0;
7 c=name[i];

8 while(c==str[i])
9 {
10 if (c == ’\0’)
11 {
12 cmp = 0;

13 break;
14 }
15 i++;

16 c=name[i];
17 }

18 if (c!=str [i])
19 {
20 if (c>str[i])
21 cmp= 1;

22 else
23 cmp=−1;
24 }

25 tag=OTHER;

26 if (cmp==0)
27 tag=BODY;

28 if (tag==BODY)

29 seeBody=true;

30 ret seeBody;
31}

11 Parse(node) // node→name="body\0"
31 seeBody=false; VAL(31)←{} ∧ {} ∧ {}
41 str="body"; VAL(41)←{} ∧ {} ∧ {}
61 i=0; VAL(61)←{} ∧ {} ∧ {}
71 c=name[i];//‘b’ VAL(71)←{b=} ∧ {} ∧ {}
81 while(c==str[i]) VAL(81)←{b=} ∧ {} ∧ {}
101 if (c == ‘\0’) VAL(101)←{b} ∧ {b=} ∧ {}
151 i++; VAL(151)←{} ∧ {b} ∧ {}
161 c=name[i];//‘o’ VAL(161)←{o=} ∧ {b=} ∧ {b}
82 while(c==str[i]) VAL(82)←{o=} ∧ {b=} ∧ {b}
102 if (c == ‘\0’) VAL(102)←{o} ∧{b=,o=} ∧ {b}
152 i++; VAL(152)←{} ∧ {b,o} ∧ {b}
162 c=name[i];//‘d’ VAL(162)←{d=} ∧ {b=,o=} ∧ {b,o}
83 while(c==str[i]) VAL(83)←{d=} ∧ {b=,o=} ∧ {b,o}
103 if (c == ‘\0’) VAL(103)← {d} ∧ {b=,o=,d=} ∧ {b,o}
153 i++; VAL(153)←{} ∧ {b,o,d} ∧ {b,o}
163 c=name[i];//‘y’ VAL(163)←{y=} ∧ {b=,o=,d=} ∧ {b,o,d}
84 while(c==str[i]) VAL(84)←{y=} ∧ {b=,o=,d=} ∧ {b,o,d}
104 if (c == ‘\0’) VAL(104) ← {y} ∧ {b=,o=,d=,y=} ∧ {b,o,d}
154 i++; VAL(154)←{} ∧ {b,o,d,y} ∧ {b,o,d}
164 c=name[i];//\0 VAL(164)←{\0=} ∧ {b=,o=,d=,y=} ∧ {b,o,d,y}
85 while(c==str[i]) VAL(85)←{\0=} ∧ {b=,o=,d=,y=} ∧ {b,o,d,y}
105 if (c == ‘\0’) VAL(105)←{\0=}

∧ {b=,o=,d=,y=,\0=}∧ {b,o,d,y}
121 cmp= 0; VAL(121)←{\0=→0(cmp@12)}

∧ {b=,o=,d=,y=,\0=}∧ {b,o,d,y}
181 if (c!= str[i]) VAL(181)←{\0=} ∧ {b=,o=,d=,y=} ∧ {b,o,d,y}
251 tag=OTHER; VAL(251)←{} ∧ {} ∧ {}
261 if (cmp==0) VAL(261)←{\0=→0(cmp@12)}

∧ {b=,o=,d=,y=,\0=} ∧ {b,o,d,y}
271 tag=BODY; VAL(271)←{\0=→0(cmp@12)→BODY(tag@27)}

∧ {b=,o=,d=,y=,\0=} ∧ {b,o,d,y}
281 if (tag==BODY) VAL(281)←{\0=→0(cmp@12)→BODY(tag@27)}

∧ {b=,o=,d=,y=,\0=} ∧ {b,o,d,y}
291 seeBody=true; VAL(291)←{\0=→0(cmp@12)→BODY(tag@27)

→true(seeBody@29)}
∧ {b=,o=,d=,y=,\0=} ∧ {b,o,d,y}

301 ret seeBody; VAL(301)←{\0=→0(cmp@12)→BODY(tag@27)

→true(seeBody@29)}
∧ {b=,o=,d=,y=,\0=} ∧ {b,o,d,y}

Figure 4.5: Body parse example.

94

4.1.6 Implementation

We have implemented the relevant input analysis using the Pin dynamic in-

strumentation framework. As shown in Figure 4.4, we need to update DERIVED, CIN-

FLUENCED and AINFLUENCED sets for each written value based on the relevant input

sets of used values and the control-dependent predicate. To get more accurate control

dependence, we adopted the online dynamic control dependence detection algorithm in

[106]. To speed up the look-up of relevant input sets for each dependent value, we bound

each computed value with its relevant input sets by shadow memory. To save space and

allow efficient set operations, we stored all distinct computed relevant input sets in a

balanced binary tree, and then only stored the pointer to each set in shadow memory.

The CHAIN was implemented similarly to save time and space.

4.1.7 Performance Evaluation

Next we use several real programs (listed in Table 4.1) to investigate whether

the time overhead of our technique is acceptable. The experiments were conducted on

a machine with a 3.0GHz Intel Xeon processor and 3GB RAM, running Linux, kernel

version 2.6.18. We also use the “Null Pin” time overhead as the baseline, which is shown

in the second column, and the time overhead with relevant input analysis on is given

in the third column. From Table 4.2, we can see that the time overhead incurred by

our technique ranges from 31.7x to 39.2x compared to the baseline, which is reasonable

compared to related work [114, 106].

95

Program LOC Bug Source Program Description

Tidy-34132 35.9K BugNet [76] HTML checking & cleanup
bc-1.06 10.7K BugNet [76] Arbitrary-precision Calculator
Expat-1.95.3 11.9K sourceforge.net/p/expat/bugs XML parser

Table 4.1: Overview of benchmarks.

Program name Null Pin Time Relevant Input Analysis Time Overhead
seconds seconds (factor)

Tidy-34132 1.08 37.4 (34.6x)
bc-1.06 0.73 28.6 (39.2x)
Expat-1.95.3 0.48 15.2 (31.7x)

Table 4.2: Execution times (from start to failure point), with relevant input analysis.

4.2 Delta Debugging using Relevant Input Analysis

From the results of the preceding section it is clear that relevant input analysis

can help in understanding program behavior. Therefore, in this section we show that

the results of analysis can be used to develop an enhanced delta debugging [112, 15]

algorithm. Given a program input on which the execution of a program fails, delta

debugging automatically simplifies the input such that the resulting simplified input

causes the same failure. In particular, it finds a 1-minimal input, i.e., an input from

which removal of any entity causes the failure to disappear. This is achieved by carrying

out a search in which: new simpler inputs are generated; the program is executed

to determine if same failure is caused by the simpler input; and the above steps are

repeatedly applied until the input cannot be simplified any further.

We now present a new delta debugging algorithm, called IDTHDD (Input

Decomposition Tree-based Hierarchical Delta Debugging), that uses the result of relevant

input analysis to accelerate the search for the 1-minimal input. This is achieved with

the following three steps:

96

• Step 1: Removal of Irrelevant Inputs. The input is simplified by removing

entities that do not appear in the relevant input set of the wrong value identifying

the failure (e.g., wrong output or reference causing a crash).

• Step 2: Construct Input Decomposition Tree. From the dynamic depen-

dence chop, that includes all dependence chains from input entities to faulty value,

we derive a tree that represents a hierarchical decomposition of the entire input

into subsets of input entities.

• Step 3: Search for 1-Minimal Input. The decomposition tree enables a pruned

search (relative to the default delta debugging) for finding a 1-minimal input.

4.2.1 Algorithm Details

Next we will present the three steps in detail and illustrate our algorithm on

the program in Figure 4.1. To better illustrate our algorithm, we use a longer failing

input which has 59 entities; after removal of irrelevant inputs failing input size is 10,

and finally the 1-minimal input size is 7.

Step 1: Remove Irrelevant Inputs. On a failing run, the failure is revealed either

because the program crashes or it generates a wrong output. In either case, at some

point in execution, a wrong value is produced and detected. Since the goal of input

simplification is to reproduce the same failure, we can reduce the original input by

removing all irrelevant input entities, i.e., those entities that do not appear in the relevant

input set of the wrong value. We further try to reduce the input size by generating

multiple inputs of different sizes from the relevant input set of the wrong value. In

particular, we generate the following inputs and select the first input that reproduces

the same failure. The DER=, CINF= and AINF= sets include only those subsets of

97

Original input:

H ” t ” / H S F F F S F F N P ” a ” / P P ” b ” / P B P

” c ” / P P ” d ” / P / B P ” e ” / P P ” f ” / P / N / S / S

Inputs labeled with ocurrence frequency:
H1 ”1 t1 ”2 /1 H2 S1 F 1 F 2 F 3 S2 F 4 F 5 N1 P 1 ”3a1”4/2P 2 P 3 ”5 b1 ”6 /3 P 4 B1 P 5 ”7 c1 ”8

/4 P 6 P 7 ”9 d1 ”10 /5 P 8 /6 B2 P 9 ”11 e1 ”12 /7 P 10 P 11 ”13 f1 ”14 /8 P 12 /9 N2 /10 S3 /11 S4

Relevant inputs for 10714 (Failure point, p is NULL) :
VAL(10714) ←

{S2=→NULL(node→sibling@104)}
∧ {H1, ”1, /1, S1=, F 1=, F 2=, F 3=, S2=, F 4, F 5, N1=, P 1, ”3, /2, P 3, ”5, /3, B1=,

P 5, ”7, /4, P 7, ”9, /5, /6=, B2=→true(doc→seeEndBody@67), P 9=}
∧ { H1, ”1, /1, S1, F 1, F 2, F 3, S2, F 4, F 5, N1, P 1, ”3, /2, P 3, ”5, /3, B1, P 5, ”7,

/4, P 7, ”9, /5, /6, B2, P 9 }

Construct and try simpler inputs:
First input constructed from: DER=={S2}

−→ S −→ original failure cannot be reproduced.

Second input constructed from: DER=∪ CINF== {S1, F 1, F 2, F 3, S2, N1, B1, /6, B2, P 9}
−→ S F F F S N B / B P −→ original failure is reproduced !!

Resulting simpler input following step 1: −→ S F F F S N B / B P

Figure 4.6: Step 1: Removing irrelevant inputs.

input entities from DER, CINF , and AINF that are attributed with =.

First Input: DER=

Second Input: DER= ∪ CINF=

Third Input: DER= ∪ CINF= ∪ AINF=

Fourth Input: DER ∪ CINF= ∪ AINF=

Fifth Input: DER ∪ CINF ∪ AINF=

Sixth Input: DER ∪ CINF ∪ AINF

In Figure 4.6 we show the impact of removing irrelevant inputs for our running

example. The original, 59-entities input is reduced to a simple 10-entities failing input.

Note that it is possible that none of the subsets can reproduce the original fault because

the removal of irrelevant parts may result in a malformed input. In this case, our

algorithm simply defaults to the standard delta debugging algorithm.

98

���
��

���������	

�
�

��������� ��� 	

��
�

�����
�
�

����

��
�

����

��
�

��� ��� �

��� ���
�

��

��� � ��� �

��� � ��� � ��
�

�� ��� �

��� � ��� �

Figure 4.7: Step 2: Generating the input decomposition tree.

Step 2: Construct Input Decomposition Tree. Next, for the input obtained in

the previous step, an input decomposition tree is constructed that hierarchically decom-

poses the input as follows. The root of the tree represents the wrong value computed

in the failing run and its children represent a subset of other values computed during

execution upon which the root value is dependent. Moreover, while the root is labeled

with the entire input on which it is dependent, its children are labeled with disjoint

subsets of inputs labeling the root node. The inputs labeling each child node of the root

node are similarly further decomposed among their children and so on. Finally, each

leaf node represents a read of an input value.

Thus, each level in the tree represents a decomposition of the input into disjoint

subsets such that at the root node all inputs are in a single partition while at each

subsequent level the inputs are decomposed into increasing number of disjoint subsets.

During delta debugging, from the input decomposition at a given level in the tree,

simpler inputs will be constructed by excluding or including each subset as a unit. This

reduces the search space explored by delta debugging and thus accelerates the search

for a 1-minimal input.

99

Figure 4.7 shows the input decomposition tree for our running example. As we

can see, while the input associated with the root node is the entire input found in Step

1 (SFFFSNB/BP), each of the leaf nodes has a single input entity attached to it, which

is the specific entity that was read by the leaf node. Internal nodes correspond to larger

subsets of the input set. Note that although the leaf nodes at levels other than the last

level are shown once, these nodes must be viewed as being repeated at later levels so

that each level represents a decomposition of the entire input.

The input decomposition tree is derived from the dynamic dependence sub-

graph consisting of dynamic dependence chains originating from the input entities and

terminating at the faulty value, produced as follows:

• Construct a breadth first spanning tree starting from the faulty value as the root

and continuing until all inputs the faulty value is dependent on (i.e., inputs iden-

tified in Step 1) have been included in the tree. Collapse chains such that no node

in the tree has only a single child.

• Label each node with its input subset which is simply the set of inputs that are

reachable from the node via the edges in the spanning tree. Note that for any given

level in the spanning tree, each node at that level will be labeled by a disjoint input

subset since the input sets are computed using the paths that exist in the spanning

tree, i.e., no input is reachable from multiple nodes at the same level in the tree.

Step 3: Search for 1-Minimal Input. We now turn to discussing how the input

decomposition tree is used to search for a 1-minimal input. We apply hierarchical delta

debugging according to levels in the spanning tree. At each level when delta debugging

is applied, each distinct input subset at that level is viewed as a single entity, i.e., it is

either entirely included in or entirely excluded from a generated input. This is similar

100

Level Step Test case Result

1
1 ∇21 P

√

2 ∇22 S F F F S N B / B
√

Go to next level

2
3 ∇21 N B / B P

√

4 ∇22 S F F F S P
√

Go to next level

3

5 ∇21 N B / B P
√

6 ∇22 S F F F S P
√

Increase granularity
7 ∇51 S N B / B P

√

8 ∇52 S F F F N B / B P
√

9 ∇53 S F F F S B / B P
√

10 ∇54 S F F F S N B P
√

11 ∇55 S F F F S N B / P
√

Go to next level

4

12 ∇21 S N B / B P
√

13 ∇22 S F F F S N B P
√

Increase granularity
14 ∇41 F S N B / B P

√

15 ∇42 S F F S N B / B P × Reduce to complement
16 ∇31 S N B / B P

√

17 ∇32 S F F S N / B P
√

18 ∇33 S F F S N B B P
√

Go to next level

5
19 ∇21 F S N B / B P

√

20 ∇22 S F S N B / B P × Reduce to complement

6
21 ∇21 F S N B / B P

√

22 ∇22 S S N B / B P × Done - 1-minimal
input found !!

Figure 4.8: Step 3: Searching for 1-minimal input – found S S N B / B P .

to the hierarchical delta debugging [70]; although the source of hierarchy is altogether

different. When applying delta debugging to each level of the input decomposition

tree, we only try each complementary set instead of first trying delta sets and then

complementary sets. This is based on the observation that step 1 already successfully

pruned large failure irrelevant chunks from the input.

Taking the spanning tree given in Figure 4.7 as input, the input simplification

using delta debugging is illustrated in Figure 4.8. We consider the root as being level

0. Therefore the figure shows inputs derived from level 1 onward. At levels 1, 2, and 3

delta debugging generates 2, 2, and 7 simpler inputs; but none of them cause a failure.

Thus, we go to level 4 where the fourth simpler input reproduces the failure. This input

is further simplified by applying delta debugging at level 5 which yields a simpler input

that is further simplified at level 6, yielding the 1-minimal input (SSNB/BP).

101

As we can see, when we apply delta debugging to the input decomposition tree,

for leaf nodes we have two choices: always include the leaf node in the generated input

(called IDTHDD), or reconsider this leaf node again when we go to next level (called as

IDTHDD*). Figure 4.8 adopts the first choice. That is, assuming we are applying delta

debugging to level l in the input decomposition tree, each simpler input we try consists

of two parts: the input generated by delta debugging at level l, and inputs from leaf

nodes in upper levels. For example, all inputs tested at level 2 include the leaf node

in level 1 (“P”) in Figure 4.8. Because all nodes which read input from outside will

be the leaf node in the input decomposition tree, IDTHDD* guarantees that we can

get 1-minimal input. Intuitively, IDTHDD* can generate smaller (or equal) inputs with

more test runs, compared with IDTHDD. However, as our experiments (discussed soon)

show, IDTHDD is already good enough to get similar minimized input with much fewer

test runs, compared to IDTHDD*.

4.2.2 Comparison with Standard Delta Debugging

As already shown, for our running example, the original input of size 59 is

converted to a simpler 1-minimal input of size 7 and during this process the program is

executed on 17 different inputs (on 2 inputs in step 1, and on 15 inputs in step 3). We

now compare these results with those obtained by standard delta debugging. We found

that to identify a 1-minimal input, the standard delta debugging algorithm required

executing the program on 222 different inputs. Moreover, it yielded a 1-minimal input

whose size is 24 (H””/HSSNPPBP””/PP””/P/BP) in contrast to the 1-minimal input

of size 7 (SSNB/BP) generated by our algorithm. Thus, pruning the search space using

relevant input analysis is very effective in both reducing the size of the input and the

number of executions required.

102

We observe that removal of irrelevant inputs by Step 1 is very useful in finding

smaller 1-minimal inputs. This can be explained as follows. In general, for a given

original input, there may be many 1-minimal inputs that can be derived from it. The

larger the original input, the more likely it is that the sizes of these 1-minimal inputs vary

significantly. Since the search for 1-minimal input terminates as soon as the first such

input is found, we may end up with one of the larger 1-minimal inputs when standard

delta debugging is used. On the other hand, our algorithm engages in the search for

a 1-minimal input only after it has eliminated the irrelevant inputs. Starting from an

already simpler (i.e., smaller) input is likely to yield a smaller 1-minimal input. This

is indeed what happened in the above example. After the irrelevant inputs have been

removed, the input’s size is 10 which is much smaller than 24, size of the 1-minimal

input found by standard delta debugging.

Finally, note that finding the 1-minimal input of size 7 from the input of size

10 produced after step 1 (i.e., SFFFSNB/BP) required our algorithm to perform 15

executions of the program. On the other hand, if standard delta debugging is applied

to this size 10 input (i.e., SFFFSNB/BP), it finds the same 1-minimal input as our

algorithm after 37 executions of the program. Thus, guiding the search using the input

decomposition tree also improves the efficiency of the search significantly (i.e., 15 vs. 37

executions).

4.2.3 Experimental Evaluation

A summary of benchmarks used in our evaluation is shown in Table 4.1; each

benchmark contains a real reported bug in a widely-used program, with the details in

columns 2-4. Tidy-34132 contains a NULL pointer dereference bug. It has a similar

bug trigger condition as the example in Figure 4.1: a noframe tag is included in an

103

Program
Test Case DDMIN IDTHDD IDTHDD*

chars # test # minimized # test # minimized # test # minimized
runs input size runs input size runs input size

Tidy 2018 852 50 176 44 405 39
bc 1310 10800 191 1194 190 4185 190
Expat 1138 1785 63 216 52 393 49

Table 4.3: Summary of comparison with standard delta debugging.

Program

Step 1 DDMIN on IDTHDD IDTHDD*
Test Case Simplified Input -Step3 -Step3

chars # test # simplified # test # minimized # test # test
runs input runs input runs runs

Tidy 2018 3 124 378 44 173 402
bc 1310 2 399 8372 190 1192 4183
Expat 1138 2 125 896 56 214 391

Table 4.4: Comparison with standard delta debugging after step 1.

inner frameset and some paragraphs are wrongly placed outside body. Bc-1.06 fails

with a heap buffer overflow bug caused by a code clone error (detailed in Chapter 2).

Expat-1.95.3 fails when XML DTD is not defined and an empty function pointer is

dereferenced to allocate memory for an entity name.

Comparison with standard delta debugging. The comparison of our approach

with standard delta debugging is summarized in Table 4.3. The size of original failure-

inducing input is given in the second column. The number of test runs and size of

minimized input for standard delta debugging is given in third and fourth column re-

spectively. The fifth (seventh, respectively) and sixth (eighth, respectively) columns

show the number of test runs and size of minimized input for IDTHDD (IDTHDD*).

As we can see, for Tidy-34132, IDTHDD only requires 176 test runs and pro-

duces a smaller input with size 44, while standard delta debugging needs to run 852

different inputs to produce the a minimized input with size 50. For the bug in bc-1.06,

IDTHDD greatly outperforms standard delta debugging with 9 times fewer test runs

than standard delta debugging, while generating a slightly smaller input. For Expat-

104

1.95.3 IDTHDD generates a smaller input (52 vs. 63 characters) than standard delta

debugging with much fewer test runs (8 times fewer) than standard delta debugging.

For each of the three bugs, IDTHDD* generates a smaller input than IDTHDD, but

requires more test runs.

To further evaluate how our relevant input analysis helps with delta debugging,

the detailed comparison of our approach with standard delta debugging is presented in

Table 4.4. The third and fourth columns show the number of test runs and size of

simplified input for step 1 of our algorithm. The seventh (eighth, respectively) column

shows the number of test runs for step 3 of IDTHDD (IDTHDD*, respectively). To show

the effectiveness of input decomposition tree-based delta debugging, we also show the

number of test runs and size of minimized input by applying standard delta debugging

to the simplified input after step 1. As we can see, step 1 alone reduces the input size

from 2018 to 124 for Tidy-34132 (16x smaller) with 3 test runs, and from 1138 to 125

for Expat-1.95.3 (9x smaller) with 2 test runs.

By comparing step 3 of IDTHDD with standard delta debugging, we can see

that IDTHDD generates smaller (or equal) inputs with fewer test runs for the three

bugs (e.g., 1192 test runs vs. 8372 runs for bc-1.06, and 214 test runs vs. 896 runs for

Expat-1.95.3).

Comparison with hierarchical delta debugging. Our approach has several ad-

vantages compared to hierarchical delta debugging (HDD) [70]. First, HDD requires

that the initial failure-inducing input be well-formed; otherwise, the parser which HDD

is based on will fail. Note that HDD only generates syntactically valid input. However,

it is common that programs often fail because of ill-formed input. For example, the

original failure-inducing inputs for Tidy-34132, Expat-1.95.3 and the program in Fig-

105

ure 4.1 are ill-formed, so HDD would fail for such kind of bugs. Second, HDD users

must provide infrastructure for input parsing, unparsing a configuration, and pruning

nodes from the input tree for different languages, which turns out to be non-trivial [70].

4.3 Summary

This chapter has presented a technique that greatly reduces the runtime over-

head of dynamic analysis by helping the programmers focus on a much smaller input

as well as a much simpler program execution while guaranteeing that the same bug is

manifested as original longer failing input. To accelerate the search for a smaller input, a

novel relevant input analysis is presented, which, for a particular execution, determines

the role inputs play in deriving values, controlling branch predicate outcomes, and se-

lecting referenced addresses. This information is used for delta debugging. Experiments

show that relevant input analysis significantly narrows down the scope of inputs that are

relevant for computing a value during execution. The benefits of narrowing the scope

were demonstrated by developing an effective and efficient delta debugging algorithm.

The preceding chapters have shown how Qzdb overcomes the drawbacks of

other general-purpose debuggers by supporting both high-level and low-level commands,

providing means for extensibility as well as improved efficiency. The next chapter will

show that the basic principles embodied in Qzdb can be extended to the debugging of

multithreaded programs.

106

Chapter 5

The DrDebug Interactive Debugger

for Multithreaded Programs

In this chapter we show that the approach taken by Qzdb can be extended

to handle multithreaded programs. Cyclic debugging in the context of multithreaded

programs poses multiple additional challenges:

1. Depending on the location of the bug, it can take a very long time to fast-forward

and reach it.

2. Many aspects of the program state, such as heap/stack location, outcome of system

calls, thread schedule, change between debugging sessions, due to thread nonde-

terminism.

3. Some bugs are hard to reproduce, in general and also under a debugger.

To address these additional challenges this chapter introduces a Deterministic

replay based Debugging framework, or DrDebug for short. It is a collection of tools based

on the program capture and replay framework called PinPlay [84]. PinPlay uses the Pin

dynamic instrumentation system. PinPlay consists of two pintools: (i) a logger that

107

pinball

Logger
(w/ fast
forward)

Replayer

PinADX

 Program binary
+ input

Observe program
state/ reach failure

Form/Refine a
hypothesis about
the cause of the

bug

Capture Buggy Region

Replay-based Cyclic Debugging

Figure 5.1: Cyclic debugging with DrDebug.

captures the initial architecture state and non-deterministic events during a program

execution in a set of files collectively called a pinball; and (ii) a replayer that runs on a

pinball repeating the captured program execution therein.

Our proposed PinPlay-based cyclic debugging process is outlined in Figure 5.1.

It involves two phases: (i) capturing the buggy region in a pinball using the PinPlay

logger; and (ii) replaying the pinball and using Pin’s advanced debugging extension

PinADX [61] to do cyclic debugging. Our debugger addresses various debugging chal-

lenges as follows:

1. The programmer uses the logger to fast-forward to the buggy region and then

starts logging until the bug appears. Thus the generated pinball captures only an

execution region that includes both the root-cause and the symptom of the bug.

During replay-based debugging, each session starts right at the entry of the buggy

region avoiding the need for fast-forwarding.

2. The programmer observes the exact same program state (heap/stack location,

outcome of system calls, thread schedule, shared memory access order etc.) during

108

multiple debug sessions based on the replay of the same execution region (region

pinball).

3. If the logger manages to capture a buggy pinball, it is guaranteed that the bug

will be reproduced on each iteration of cyclic debugging. For hard-to-reproduce

bugs, the logger can be combined with bug-exposing tools such as Maple [110] to

expose and record the bug.

PinPlay also enables deterministic analysis of multithreaded programs via pin-

tools built for analysis during replay. PinADX can make the analysis available to the

user as a set of extended debugger commands. Using these two capabilities, we have

designed a practical (efficient and highly precise) dynamic slicer for multithreaded pro-

grams. The dynamic slice of a computed value identifies all executed statements that

directly or indirectly influence the computation of the value via dynamic data and con-

trol dependences [52]. In this chapter we greatly advance the practicality of dynamic

slicing by (i) slicing execution regions to control the high cost of slicing, (ii) making

a slice available across multiple debug sessions, (iii) allowing forward navigation of a

slice in a live debugging session, (iv) improving its precision, and (v) handling multi-

threaded programs. The result is a replay debugging tool, consisting of GDB with a

KDbg graphical user interface, that allows users to interactively query the statements

affecting a variable value at a specific statement. Slices found once are usable across

multiple debug sessions because of PinPlay’s repeatability guarantee.

The key contributions of this chapter are as follows:

1. A working debugger (GDB) with a graphical user interface (KDbg) that allows

deterministic cyclic debugging based on replay of pinballs for multithreaded pro-

grams. All regular debugging commands (except state modification) continue to

109

work. In addition, new commands for execution region (region pinball) recording

and dynamic slicing are made available.

2. Handling of dynamic program slicing for multithreaded programs. The slicing

works for a recorded region from a program execution. We have implemented new

optimizations to make interactive slicing practical and developed analysis to make

the computed slices highly precise.

3. Leveraging PinPlay’s capabilities, we have developed a logging tool for capturing

an execution slice which allows us to replay the execution of statements included

in a dynamic slice efficiently by skipping the execution of code regions that do

not belong to the slice. Programmers can load a previously generated slice and

step forward from the execution of one statement in the slice to the next while

examining values of program variables at each point. Such support is not provided

in any prior dynamic slicing tool as they merely permit examination of slice after

program execution.

4. We modified the Maple tool-chain [67] for recording the buggy executions it ex-

poses. The resulting pinball can be readily used by DrDebug .

Both PinPlay and dynamic slicing can incur a large run-time overhead. How-

ever, thanks to our support for execution region, this overhead is incurred only within the

buggy region. The overhead actually seen by the users will depend on the lengths of their

buggy region. In a study of 13 buggy open source programs [77] the buggy region length

(called Window size in the paper) was typically less than 10 million instructions, and

at most 18 million instructions. In our experiment with eight 4-threaded PARSEC [8]

program runs, on average, regions with 100 million instructions in the main thread (541

million instructions in all threads) could be logged in 29 seconds and replayed in 27

110

�� ��

�
�
�
��
�

(a) Original execution

�� ��

�����	

�	��

���
���

����

(b) Replaying execution region

�� ��

�����

	�
����

������

�����

(c) Replaying execution slice

Figure 5.2: Narrowing scope of execution for replay.

seconds. We also found the overhead for region-based slicing to be quite reasonable – a

few seconds to a few minutes for regions of average length 6 million instructions. Case

studies of real reported concurrency bugs show the effectiveness of execution region and

execution slice – the lengths of buggy execution region and execution slice are less than

15% and 7% of the total execution respectively.

5.1 Overview of DrDebug

Debugging begins once a pinball that captures a failing run is available. This

initial pinball is either generated automatically, using a testing tool, or with the assis-

tance of the programmer. In the former case we use the Maple bug exposing tool then

capture the corresponding pinball. In the latter case, we provide GDB commands/GUI

buttons so the programmer can fast-forward to the buggy region and then manually

capture the pinball. DrDebug is designed to achieve two objectives: replay efficiency -

so that it can be used in practice; and location efficiency - so that the user’s effort in

locating the bug can be reduced.

Replay efficiency. In designing DrDebug , one of our key objectives is to speed up

debugging by increasing the speed of replay. This is particularly important for long

program executions. We tackle this problem by narrowing the scope of execution that

111

��������	
�����

���

��
���
�������

���	

��
�

�������
�
�
�
�

�
�
�

�����

�����

�
��

(a) Replay execution region; compute dynamic slices.

�����

����	��

���

������

�����

������

����	��

�

(b) Generate slice pinball from region pinball.

�������

���	

��
�

�������

�
�
�
�

�
�
�

���

����������	
�

�	�����

(c) Replay execution slice and debug by examining state.

Figure 5.3: Dynamic slicing in DrDebug.

is captured by the pinball using the notions of Execution Region and Execution Slice in

DrDebug.

• Execution Region - instead of collecting the pinball for an entire execution, users

can focus on a (buggy) region of execution by specifying its start and end points.

The region pinball is then drives replay-based debugging.

• Execution Slice - when studying the program behavior along a dynamic slice,

instead of replaying the entire execution region, we exclude the execution of parts

of the region that are not related to the slice. This is enabled by replaying using

the region pinball and performing relogging to collect the slice pinball.

Figure 5.2 shows how the scope of execution that is replayed is narrowed down by the

aforementioned two techniques. This greatly increases the speed of replay and makes

replay based debugging practical for real world applications.

112

Location efficiency. To assist in locating the root cause of failure, we provide the

user with a dynamic slicing capability. The components of the dynamic slices and their

usage are (see Figure 5.3):

• When the execution of a program is replayed using the region pinball, our slicing

pintool collects dynamic information that enables the computation of dynamic

slices. Requests for dynamic slices are made by the programmer and the computed

slices can be browsed or traversed going backwards along the dynamic dependences

using our KDbg-based graphical user interface (see Figure 5.3(a)).

• A dynamic slice of interest found in the preceding step can be saved by the user.

This slice essentially identifies a series of points in the program’s execution at

which the user wishes to examine the program state in greater detail. To prepare

for this examination, we generate the slice pinball that only replays the execution

of statements belonging to the slice. The relogger is responsible for generating the

slice pinball from the computed slice by replaying using the region pinball (see

Figure 5.3(b)).

• Finally, the user can replay the execution slice using the slice pinball. During

this execution, breakpoints are automatically introduced allowing the user to step

from the execution of one statement in the slice to the next. At each of these

points, the user can examine the program state to understand program behavior

(see Figure 5.3(c)).

In contrast to prior work on dynamic slicing, we make the following contribu-

tions. First, we develop a dynamic slicing algorithm that not only handles multithreaded

programs, but is integrated with the replay system. Second, we provide a graphical in-

terface which allows the user to browse a dynamic slice by traversing it backwards and

113

examine the program state along the dynamic slice by single stepping-forward as the

program executes. Finally, we have developed extensions for capturing dynamic data

and control dependences that make the dynamic slice more precise. Next, we present

each of these contributions in greater detail.

5.2 Computing Dynamic Slices

The dynamic slice of a computed value is defined to include the executed

statements that played a role in the computation of the value. It is computed by taking

the transitive closure over data and control dependences starting from the computed

value and going backwards over the dynamic dependence graph. As the execution of

a multithreaded program is being replayed, the user can request the computation of a

dynamic slice for a computed value at any statement via our debugging interface. The

steps in computing the dynamic slice are as follows:

(i) Collect Per Thread Local Execution Traces. During replay, for each thread,

we collect its local execution trace that includes the memory addresses and registers

defined (written) and used (read) by each instruction. This information is needed to

identify dynamic dependences.

(ii) Construct the Combined Global Trace. Prior to slice computation, we com-

bine all per-thread traces into a single fully ordered trace such that each instruction

honors its dynamic data dependences including all read-after-write, write-after-write,

and write-after-read dependences. The construction of this global trace requires the

knowledge of shared memory access ordering to guarantee that inter-thread data de-

pendences are also honored by the global trace. This information is already available

114

in a pinball, as it is needed for replay. The combined global trace is thus based on the

topological order of the graph, in which each execution instance is represented as a node,

and an edge from node n to m means that n happens before m either in program order

or in shared memory access order.

(iii) Compute Dynamic Slice by Backwards Traversing the Global Trace. A

backward traversal of the global trace is carried out to recover the dynamic dependences

that form the dynamic slice. We adopted the Limited Preprocessing (LP) algorithm

proposed by Zhang et al. [121] to speed up the traversal of the trace. This algorithm

divides the trace into blocks and by maintaining summary of downward exposed values,

it allows skipping of irrelevant blocks.

Next we illustrate our algorithm on the program in Figure 5.4. The code

snippet is shown in Figure 5.4(a), where two threads, T1 and T2, operate on three

shared variables (x, y, z). The code region (from line 11 to line 13) is wrongly assumed

to be executed atomically in T2 by the programmer. However, because of the data race

between statements at line 6 and line 12, x is modified unexpectedly in T1 by statement

at line 6, causing the assertion to fail at line 13 in T2 (see Figure 5.4(b)). To help figure

out why the assertion failed, the programmer can compute the backwards dynamic slice

for k at line 13 in thread T2.

Figure 5.4(b) shows the individual trace for each thread. We collect the def-use

information, i.e., the variables (memory locations and registers) defined and used, for

each instruction. For example, 121 defines k by using k (defined at 101) and x (defined

at 61). In addition to the per thread local traces and the shared memory access ordering

used to compute the slice are also shown in Figure 5.4(b). The shared memory access

orders are shown by the inter-thread dashed edges – for example, edge from 61 to 121

115

�� ��

� �����

�����	���

������� ����

�����������

�������� ��
���

�����������

���������

�������� ��������

�������	�����

������� �����

�� �� ������

���������������

�
 ���� !������

"

(a) Example code.

�
�
������

�
�
�������

�
�
�	�����

�
�������

������������������� �������������������

�
�
�������

�
�
�����	�

��
�
�������

�
�

�������

�
�
���������

��
�
��������

��
�
���������

�

�
������

�

������

�
�

�

�

�

�����������	�

���	���	����

�	

����	�������

�

(b) Per thread traces and shared memory ac-
cess order.

�
�

���������

�
�

����������

�
�

��������	
��

��
�
��������

��
��
�
������

�
�

��������

�
�

��������

�
�

��������

�
�

���������

�
�
����������

�
�
�	���������

��
�
�����
��

��
�
������

��

��

��

��

(c) Global trace

�
�
�����

��
�
�	
��� ��

�
�����

��
�
������
���

�
�
�����

�
�

���

��

�

�

�

��

�
�
���

��
�
�����

�

�

�

�

������������� !

� ����"��

(d) Slice for k at 131.

Figure 5.4: Dynamic slicing a multithreaded program.

116

means the write of x at 61 in T1 happens before the read of x at 121 in T2. The intra-

thread program orders are shown by solid edges – for example, edge 111 → 121 means

that 111 happens before 121 in T2 by program order. The combined global trace for all

threads shown in Figure 5.4(c) is a topological order of all the traces in Figure 5.4(b).

Using the global trace, we can then compute a backwards dynamic slice for

the multithreaded program execution via a backwards traversal of the global trace to

recover dependences which should be included in the slice. When we construct the global

trace in step 2, we always try to cluster traces for each thread to the extent possible

to improve the locality of the LP algorithm (e.g., after considering 11, we continue to

consider 21 and stop at 31 because of the incoming edge from 71 to 31). The slice for k

at 131 is shown in Figure 5.4(d). As we can see, the dynamic slice captures exactly the

root cause of the concurrency bug: x is unexpectedly modified at 61 in T1 when T2 is

executing an atomic region (assumed by the programmer).

Once a dynamic slice has been computed, the user can examine and navigate

the slice using our graphical user interface. In addition, when an interesting slice has

been found, the user may wish to engage in deeper examination of how the program

state is effected by the execution of statements included in the slice as program execution

proceeds. For this purpose, the user can save the slice and take advantage of replaying

the execution slice as described in the next section.

5.3 Replaying Execution Slices

Prior work has used dynamic slices for postmortem analysis, after program

execution, as slices identify those statement executions that influence the computation

of a suspicious value via control and data dependences. However, the programmer may

117

�
�
�������

�
�
��	����

�

�
����

��
�
��������

��
�
�����

��
�
���������
�

�� ��

�
�
����

�
�
�����

�
�
����

�
�
	��

�
�
 ��

�
�
 � ���

!
�
���

(a) Code exclusion regions.

��
�
�����

��
�
�	
����

��
�
����

��
�
�����������

�� ��

�
�

����

�
�

����

�
�

��
 �
�

���
������

�� !��

"��

������

(b) Injecting values during replay.

Figure 5.5: An example of execution slice.

wish to examine the concrete values of variables at statement instances in the slice to see

how these statements impact program state. Therefore we support the idea of replaying

an execution slice which provides two key features.

• First, the user can examine the values computed along the slice in a live debugging

session. In fact we allow the user to step through the execution of the program

from one statement in the slice to the next statement in the slice.

• Second, for efficiency, only the part of computation that forms the slice is replayed.

To implement this feature we leverage PinPlay’s relogging and code exclusion

features.

PinPlay’s relogger can run off a pinball and then generate a new pinball by

excluding some code regions. Given a slice, DrDebug can exclude all the code regions

which are not in the slice and generate a slice pinball. PinPlay’s relogger maintains a

per-thread exclusion flag to support local exclusion regions for each thread. Given an

exclusion code region [startPc : sinstance : tid, endPc : einstance : tid) for thread tid,

relogger sets the exclusion flag and turns on the side-effects detection when sinstanceth

execution of startPc is encountered, and then resets the flag when the einstanceth

execution of endPc is reached in thread tid.

118

C code Assembly code
1 P(FILE∗ fin, int d){
2 int w;
3 char c=fgetc(fin);
4 switch(c){
5 case ’a’ :
/∗ slice criterion ∗/
6 w = d + 2;
7 break;
8 case ’b’ :
9 w = d − 2;
10 ... }
11}

3 call fgetc
mov %al,−0x9(%ebp)

4 ...
mov 0x8048708(,%eax,4),%eax
jmp ∗%eax

6 mov 0xc(%ebp),%eax
add $0x2,%eax
mov %eax,−0x10(%ebp)

7 jmp 80485c8
8 ...

[Imprecise] slice for w at line 61 Refined slice

�
�
�����������

�
�
��������	�
���

�
�
��� ���	��
�

�
�
���� �����

���

�

��

Figure 5.6: Control dependences in the presence of indirect jumps.

To enable generation of the slice pinball, we output a special slice file which,

in addition to the normal slice file, also identifies the exclusion code regions. As shown

in Figure 5.5(a), we identify all the exclusion code regions (shown as dashed boxes) for

each thread, and output such information to the special slice file. The relogger leverages

this file to generate the slice pinball. Relogger detects the side-effects of excluded code

regions using the same algorithm PinPlay adopted for system call side-effects detec-

tion [75]. When DrDebug runs off the slice pinball, all the excluded code regions will

be completely skipped and their side-effects are restored by injecting modified memory

cells and registers as shown in Figure 5.5(b).

5.4 Improving Dynamic Dependence Precision

The utility of a dynamic slice depends upon the precision with which dynamic

dependences are computed. We observe that prior dynamic dependence detection al-

119

C code Assembly code

1 P(FILE∗ fin, int d){
2 int w, e;
3 char c=fgetc(fin);
4 e= d + d;
5 if (c==’t’)
6 Q();
/∗ slice criterion ∗/
7 w=e;
8 }
9 Q()
10 {
11 ...
12 }

3 call fgetc
mov %al,−0x9(%ebp)

4 mov 0xc(%ebp),%eax
add %eax,%eax

5 cmpb $0x74,−0x9(%ebp)
jne 804852d

6 call Q
804852d:

7 mov %eax,−0x10(%ebp)

9 Q()
10 push %eax
...

12 pop %eax

[Imprecise] slice for w at line 71 Refined slice

�
�
��������	�
���

�
�
�����
����	�

��
�
�����������

�	�

�

�
�
������ �����

��� �����������
����

��
�
���� !"�����

#
�
�� ����$%$

�$$�����������

&'

&'
���

���

�

�
�
������ �����

��	
����������
����

�
�
�� �������

����
����
���

�

Figure 5.7: Spurious dependence example.

gorithms (e.g., [107, 106, 121, 117]) which leverage binary instrumentation frameworks

(e.g., Pin [62], Valgrind [80]) have two sources of imprecision. First, in the presence

of indirect jumps, these algorithms fail to detect certain dynamic control dependences

causing statements to be missed from the dynamic slice. Second, due to the presence

of save and restore operation pairs at function entry and exit points, spurious data

dependences are detected causing the dynamic slices to be unnecessarily large. Next we

address these sources of imprecision. To the best of our knowledge, we are the first to

observe and propose solutions to mitigate these problems.

120

5.4.1 Dynamic Control Dependence Precision

For accurately capturing dynamic control dependence in the presence of re-

cursive functions and irregular control flow, we use the online algorithm by Xin and

Zhang [106]. However, using this algorithm in the context of a dynamic binary instru-

mentation framework poses a major challenge, as it assumes the availability of pre-

computed static immediate post-dominator information for each basic block. Due the

presence of indirect jumps, accurate static construction of the control flow graph is not

possible. As a result, the post-dominator information precomputed statically is impre-

cise and the dynamic control dependences computed are imprecise as well. In prior

works [117, 106, 107] this problem is addressed by restricting the applicability of the

slicing tool to binaries generated using a specific compiler which limits the applicability

of the tool.

Let us illustrate the problem caused by an indirect jump using the example in

Figure 5.6. The code snippet is shown in the top left column, and the top right column

shows its assembly code. The switch-case statement is translated to the indirect jump:

jmp ∗%eax. Without the dynamic jump target information, in general, the static analyzer

cannot figure out the possible jump targets for a indirect jump. Thus, the statically

constructed CFG will be missing control flow edges from statement 4 to statements 6

and 9. This inaccurate CFG leads to an imprecise dynamic slice shown in the bottom

left column with missing control dependence 61 → 41.

To achieve wide applicability and precision we take the following approach in

DrDebug . We implement a static analyzer based on Pin’s static code discovery library

– this allows DrDebug to work with any x86 or Intel64 binary. Further, we develop an

algorithm to improve the accuracy of control dependence in the presence of indirect

121

jumps. Initially we construct an approximate static CFG and as the program executes,

we collect the dynamic jump targets for the indirect jumps and refine the CFG by adding

the missing edges. The refined CFG is used to compute the immediate post-dominator

for each basic block which is then used to dynamically detect control dependences. This

leads to the accurate slice shown in the bottom right column in Figure 5.6.

5.4.2 Dynamic Data Dependence Precision

Besides memory to memory dependences, we need to maintain the dependences

between registers and memory to perform dynamic slicing at the binary level. Dynamic

slices may include many spurious dependence edges when registers are saved/restored

upon at function entry/exit. More specifically, at each function entry, registers used

inside this function are saved on the stack, and later restored from the stack in reverse

order when the function returns to its caller.

Consider the example in Figure 5.7. The top left and top right columns show a

C code snippet and its corresponding assembly code respectively. Register eax is used in

function Q, and its value is saved/restored onto/from stack at line 10/12. Considering an

execution where c’s value is ‘t’ at line 3, let us compute a slice for w at the first execution

of statement at line 7. As variable e is used to compute w in 71 and its value is stored

in eax, we continue to backwards traverse the trace to find the definition of register

eax. As value of eax is saved/restored onto/from stack at the entry/exit of Q; we will

establish data dependence edges 71 → 121, 121 → 101, and 101 → 41 due to eax. If only

data dependences are considered, we get longer data dependence chains than needed.

Since a dynamic slice is a transitive closure of both control and data dependences, we

may wrongly include many spurious data and control dependences because of such data

dependence chains. In the Figure 5.7 example, because all statements (e.g., 101 and

122

121) in function Q are directly or indirectly control dependent on predicate 51 which

guards the execution of function Q, a slice for w at 71 will wrongly include 31 and 51

(as shown in the bottom left column) as well as all other statements on which 31 and

51 are dependent.

We call a pair of instructions that are only used to save/restore registers a

save/restore pair and data/control dependences which are introduced by such pairs as

spurious dependences. To improve the precision of the dynamic slice, we propose to

precisely identify save/restore pairs and prune the spurious data/control dependence

resulting from them.

Dynamically identifying save/restore pairs. One possible way is to have the com-

piler generate special markers for the save/restore pairs so they can be easily identified

at runtime. This approach would limit the applicability of DrDebug since DrDebug is

designed to work with any unmodified x86 or Intel64 binary. Therefore we use a dy-

namic algorithm for detecting as many save/restore pairs as possible without the help

of the compiler. Our algorithm handles the following complexities caused by the com-

piler. First, the compilers can use either push (pop) or mov instruction to save (restore)

the value of a register. Moreover, push/pop instructions are not exclusively used to

save/restore registers. Second, it is not easy to know how many push (pop) or mov

instructions are exactly used to save (restore) registers at the entry (exit) of a function.

Our algorithm works as follows:

• Statically identify potential save and restore instructions. The first MaxSave

push/mov reg2mem instructions at the start of a function and the last MaxSave

pop/mov mem2reg instructions at the end of a function are identified as potential

save and restore instructions respectively. MaxSave is a tunable parameter.

123

• Dynamically verify that the pairs are used to save and restore registers. For each

potential save instruction, we record register/memory pair and the saved value

from the register. For each potential restore instruction, we record register/mem-

ory pairs and the restored value from the stack. An identified save/restore pair

must satisfy two conditions: (1) save copies the value of a register r to stack lo-

cation s at the entry of a function; and (2) restore copies the same value from s

back to r at the exit of the same function. In the example of Figure 5.7, 101 and

121 are recognized as a save/restore pair for eax.

Pruning spurious data dependences. With recognized save/restore pairs, we prune

spurious data dependence by bypassing data dependences caused by such save/restore

pairs. Take the slice in the bottom left column in Figure 5.7 as an example. Because 71

→ 121, 121 → 101, 101 → 41, and 101 and 121 are recognized as a save/restore pair for

eax, we bypass the data dependence chain and add a direct edge 71 → 41. In this way,

the refined slice for w at 71 will not include 31, 51, and all other statements on which

31 and 51 are dependent, as shown in the bottom right column.

5.5 Implementation

The implementation of DrDebug consists of Pin-based and GDB-based compo-

nents. The Pin-based component consists of the PinPlay library (available for down-

load [86]) and the Dynamic Slicing module. The programmer interfaces with the GDB

component via a command line interface or a KDbg based graphical interface. The

GDB component communicates with the Pin-based component via PinADX. PinPlay’s

logger is leveraged to generate a (region) pinball and then PinPlay’s replayer can deter-

ministically replay the execution for multithreaded program by running off such pinball.

124

�����

���������	
	��	��	�

�	�	����

�����������	������������

���	�������	����������

�	���������	�

���

������	
��

��
�

����	
��

��	����

������

������������

�

Figure 5.8: Dynamic slicer implementation.

During the replay, driven by a slice command from GDB-based component, the dynamic

slicing module computes a slice and then PinPlay’s relogger is leveraged to generate a

slice pinball. Finally the user can single step/examine just statements in the slice when

PinPlay’s replayer runs off the slice pinball.

Dynamic Slicer. The implementation of the dynamic slicing module is shown in Fig-

ure 5.8. We implement a static analysis module based on Pin’s static code discovery

library to conduct analysis to generate the control flow graph and compute the im-

mediate post dominator information. Given immediate post dominators information,

the Control Dependence Detection submodule [106] detects the dynamic control depen-

dences. The Global Trace Construction submodule tracks individual thread traces and

then constructs the global trace based on the shared memory access orders which were

captured by the PinPlay’s logger to enable deterministic replay. When the user issues a

slice command, the Slicer & Code Exclusion Regions Builder submodule computes the

slice by backwards traversing the global trace and then outputs the slice in two forms:

a normal slice file used for slice navigation and browsing in KDbg; and another slice

formatted as a sequence of code exclusion regions for use by the relogger to generate the

slice pinball.

125

������

���	���
�

Figure 5.9: DrDebug GUI showing a dynamic slice.

GUI. The extended KDbg provides an intuitive interface for selecting interesting re-

gions for logging, and computing, inspecting and stepping through slices during replay.

Figure 5.9 shows a screen-shot of our interface – all the statements in the slice are high-

lighted in yellow. The programmer can access the concrete inter-thread dependences

and navigate backwards along dependence edges by the clicking on the Activate button

of the dependent statement.

Integration with Maple. Maple [110] is a coverage-driven testing tool-set for mul-

tithreaded programs. One of the usage models it supports helps when a programmer

accidentally hits a bug for some input but is unable to reproduce the bug. Maple has two

phases (i) a profiling phase where a set of inter-thread dependencies, some observed and

126

some predicted, are recorded, and (ii) an active scheduling phase that runs the program

on a single processor and controls thread execution (by changing scheduling priorities)

to enforce the dependencies recorded by the profiler. The active scheduler does multiple

runs until the bug is exposed.

Since Maple is based on Pin, it is an ideal candidate for integration with

DrDebug . We changed the active scheduler pintool in Maple to optionally do PinPlay-

based logging of the buggy execution it exposes. We had to make sure, using Pin’s

instrumentation ordering feature, that the active scheduler’s thread control does not

interfere with PinPlay logger’s analysis.

We have successfully recorded multiple buggy executions for the example pro-

grams in the Maple distribution. The pinballs generated could be readily replayed and

debugged under GDB. We have pushed the changes we made to Maple’s active scheduler

back to the Maple sources [67].

5.6 Experimental Evaluation

5.6.1 Case Studies

We studied 3 real concurrency bugs from three widely used multithreaded

programs. The bug descriptions are detailed in the last column of Table 5.1. The case

studies mainly serve two purposes: (a) quantify the execution region sizes (i.e., the

number of executed instructions) that need to be logged and replayed later in order

to capture and fix each bug; (b) DrDebug has reasonable time and space overhead for

real concurrency bugs with both whole program execution (i.e., execution region from

program beginning to failure point) and buggy execution region (e.g., execution region

from root cause to failure point).

127

Program Program Type Bug Bug Description
Name Description Source

PBZIP2-0.9.4 Parallel file compressor Real [115] A data race on variable
fifo → mut between main
thread and the compressor
threads.

Aget-0.57 Parallel downloader Real [109] A data race on variable
bwritten between downloader
threads and the signal han-
dler thread.

mozilla-1.9.1 Web browser Real [44] A data race on variable
rt → scriptF ilenameTable.
One thread destroys a
hash table, and an-
other thread crashes in
js SweepScriptF ilenames
when accessing this hash
table.

Table 5.1: Data race bugs used in our experiments.

Program #executed #instructions Logging Overhead Replay Slicing
Name instructions (%instructions) Time Space Time Time

in slice pinball (sec) (MB) (sec) (sec)

PBZIP2 11186 1065 (9.5%) 5.7 0.7 1.5 0.01
Aget 108695 51278(47.2%) 8.4 0.6 3.9 0.02
mozilla 999997 100 (0.01%) 9.9 1.1 3.6 1.2

Table 5.2: Time and Space overhead for data race bugs with buggy execution region.

Program #executed #instructions Logging Overhead Replay Slicing
Name instructions (%instructions) Time Space Time Time

in slice pinball (sec) (MB) (sec) (sec)

PBZIP2 30260300 11152 (0.04%) 12.5 1.3 8.2 1.6
Aget 761592 79794 (10.5%) 10.5 1.0 10.1 52.6
mozilla 8180858 813496 (9.9%) 21.0 2.1 19.6 3200.4

Table 5.3: Time and space overhead for data race bugs with whole program execution
region.

128

Table 5.2 shows the time and space overhead with buggy execution region

for each bug. For each bug, we captured the execution from the root cause to the

failure point, and then computed a slice for the failure point during deterministic replay.

The number of executed instructions is shown in the second column, while the number

of instructions captured in the slice pinball, as well as the percentage of number of

instructions in the slice pinball over total executed instruction, are presented in the

third column. The time and space overhead for logging is shown in the fourth and fifth

column respectively. The sixth column shows the time to replay the captured buggy

region pinball, and the time for slicing is shown in the seventh column. As we can

see, all concurrency bugs we studied can be reproduced with region size of 1 million

instructions. Besides, the time overhead for logging, replay, and slicing is reasonable.

The time and space overhead with whole execution for each bug is shown in

Table 5.3. For each bug, we captured the execution from the beginning of program to

the failure point, simulating that novice programmers tend to capture large execution

regions. As we can see, all concurrency bugs can be reproduced from the program

beginning, with maximal region size of 31 million instructions. The logging, replay, and

slicing time overhead is acceptable, considering the large amount of time programmers

spend on debugging.

5.6.2 Logging and Replay

We first present results from log/replay time evaluations using 64-bit pre-built

binaries with suffix ’pre’ for version 2.1 of the PARSEC [8] benchmarks run on the native

input. The goal of our evaluations was to find the logging/replay time for regions of

varying sizes. We first evaluated the 4-threaded runs to find a region in the program

where all four threads are created. We then chose an appropriate skip count for the

129

2 1

25

1 2

33

7 11 10 12 9

44

7 6

89

31
37

29

59

47 46

34
23

158

106

129

75

120

84

97

71

44

202

144

237

124.875

0

50

100

150

200

250

PA
R

SE
C

 4
T

ru
n

s:
 R

e
gi

o
n

 lo
gg

in
g

ti
m

e
 in

 s
e

co
n

d
s

 log:10M log:100M log:500M log:1B

Average region (all threads) instruction count :
 log:10M : 37 million
 log:100M: 541 million
 log:500M: 2.3 billion
 log:1B : 4.5 billion

Figure 5.10: Logging times (wall clock) with regions of varying sizes for some PARSEC
benchmarks (‘native’ input).

main thread in each program which put us in the region where all threads are active.

The regions chosen were not actually buggy but if they were, we can get an idea of the

time to log them with PinPlay logger. For logging time evaluation, we specified regions

using a skip and length for the main thread. The evaluations were done on a pool of

machines with 16 Intel Xeon (“Sandy Bridge E”) processors (hyper-threading OFF) and

128GB of physical memory running SUSE Linux Enterprise Server 10.

Figure 5.10 presents the real/wall-clock time for logging regions of varying

length values in the main thread. We only show the results for 5 “apps” and 3 “kernels”

from the PASEC benchmark suite. For each benchmark we show the logging (with

bzip2 pinball compression) time in seconds for regions of length 10 million to 1 billion

dynamic instructions in the main thread. The total instructions in the region from all

threads were 3-4 times more than the length in the main thread. The times shown do

not include the time to fast-forward (using skip) to the region but just the time reported

by the PinPlay logger between the start and the end of each region. Since the logger

130

1 3

16

1 2

34

12
18

11
5 7

29

1 2

105

28
35

27

19

29

17

4 5

132

83

52

43
37

44

35

5
8

142

105

60
55

0

20

40

60

80

100

120

140

160

PA
R

SE
C

:
4

T
R

e
gi

o
n

 p
in

b
al

ls
:

R
e

p
la

y
ti

m
e

 in
 s

e
co

n
d

s

 replay:10M replay:100M replay:500M replay:1B

Average pinball sizes:
 log:10M : 23 MB
 log:100M: 56 MB
 log:500M: 86 MB
 log:1B : 105 MB

Figure 5.11: Replay times (wall clock) with pinballs for regions of varying sizes for some
PARSEC benchmarks (‘native’ input).

does only minimal instrumentation before the region, the fast-forwarding can proceed

at Pin-only speed. Figure 5.11 shows the time to replay the pinballs generated.

Both logging and replay times take from a few seconds (length 10 million) to

a couple of minutes (length 1 billion). The actual times users see in practice depend

on the length of the buggy region for their specific bug. In a study of 13 open source

buggy programs reported in [77] the buggy region length (called Window size in the

paper) was less than 10 million instructions for most programs with maximum being 18

million. We showed similar analysis result for some real buggy programs earlier in this

section.

As described in [84], logging is more expensive than replay. However, logging

will typically be done only once for capturing the buggy region. Replay will be done

multiple times for cyclic debugging but since that is interlaced with user interaction and

periods of user inactivity/thinking breaks, the replay overhead will be hardly noticeable

(at least in our experience).

131

Finally, note that the pinballs (in tens to hundreds of MB in size) are small

enough to be portable, so a buggy pinball can be transferred from one developer to

another or from a customer site to a vendor site. The pinball size is not directly a

function of region length but depends on memory access pattern and amount of thread

interaction [84]. Hence pinballs for regions with length more than 1 billion instructions

need not be substantially larger. In fact, sizes of pinballs for the entire execution of

the five programs are in the range 4MB–145MB, much smaller than most region pinball

sizes.

5.6.3 Slicing Overhead and Precision

There are two components to the slicing overhead: the time to collect dynamic

information needed for efficient and precise dynamic slicing and the time to actually

perform slicing. For the 8 PARSEC programs we tested, the average dynamic infor-

mation tracing time for region pinballs with 1 million instructions (main thread) was

51 seconds. Once collected, the dynamic information can be used for multiple slicing

sessions as PinPlay guarantees repeatability. For evaluating slicing time we computed

slices for the last 10 read instructions (spread across five threads) for each region pinball.

For the regions with 1 million instructions (main thread), the average size of the slice

found was 218 thousand instructions and the average slicing time was 585 seconds.

We also measured the reduction in dynamic slice sizes achieved by pruning

spurious dependences by identifying save/restore pairs. As the sizes of 10 dynamic slices

for the 8 PARSEC programs are only slightly influenced with the spurious dependences

prune, we omit the results here. Instead, we evaluated the effect of spurious dependences

prune with five programs (ammp, apsi, galgel, mgrid, and wupwise) from SPECOMP

2001 benchmarks [4]. Figure 5.12 shows that, on average, dynamic slice sizes are reduced

132

11.4

1.12

2.92

29.76

2.24

9.49
8.53

1.97

3.6

15.48

1.95

6.31

0

5

10

15

20

25

30

35

mgrid_m wupwise_m ammp_m apsi_m galgel_m Average

SP
EC

O
M

P
 4

T
ru

n
s:

 A
ve

ra
ge

 p
e

rc
e

n
t

o
f

re
d

u
ct

io
n

 in
 s

lic
e

si

ze
s

slice:1M slice:10M

Figure 5.12: Removal of spurious dependences: average percentages of reduction in slice
sizes over 10 slices for regions of length 1 million and 10 million dynamic instructions:
SPECOMP (medium, test input).

by 9.49% (6.31%) for 1 million (10 million) instructions region pinballs (MaxSave is set

to 10 here).

5.6.4 Execution Slicing

When an execution slice is replayed using the slice pinball, the execution of code

regions not included in the slice is skipped, making the replay faster. In Figure 5.13 we

present the average replay time for 10 execution slice pinballs and the replay time for

original, unsliced, pinball for regions of length 1 million instructions (main thread). Also

included are average count of dynamic instructions in the slice pinballs as a percentage

of total instructions in the full region pinball. As we can see, on average only 41% of

dynamic instructions from a region pinball are included in an average slice. This makes

the replay 36% faster on average. The results also show that the programmer will need

to step through the execution of only 41% of executed instructions to localize the bug.

133

0.30

2.10
2.30

0.70

0.30

4.40

3.40

2.10
1.95

0.19

1.76

0.99

0.36 0.30

4.36

1.23

0.69

1.23

0.0

1.0

2.0

3.0

4.0

5.0
PA

R
SE

C
:

(4
T)

 R
e

gi
o

n
 a

n
d

 S
lic

e
 p

in
b

al
ls

:
R

e
p

la
y

ti
m

e
 in

se

co
n

d
s

region-replaytime:1M avg-slice-replaytime:1M

Average instruction count for
slice pinball (% of region) :
blackscholes: 22%
bodytrack: 32%
fludanimate: 23%
swaptions: 10%
vips: 81%
canneal: 99%
dedup: 30%
streamcluster: 27%
Average : 41%

Figure 5.13: Execution slicing: average replay times (wall clock) for 10 slices for regions
of length 1 million dynamic instructions: PARSEC (‘native’ input).

Thus cyclic debugging via slice pinball and execution slices greatly enhances debugging

efficiency.

5.7 Summary

Cyclic debugging of multithreaded programs is challenging mainly due to run-

to-run variation in program state. In this chapter, a set of program record/replay

based tools was developed to address the above challenge. Through the development

of DrDebug, it was demonstrated that the approach taken by Qzdb can be extended to

multithreaded programs. While all capabilities of Qzdb were not included, Drdebug does

extend substantial subset of new features of Qzdb to multithreaded programs. First, it

provides tools for creating dynamic slices, checkpointing just the statements in a given

dynamic slice, and navigating through the slice recording. By focusing on a buggy region

instead of the entire execution and use of execution slices, DrDebug makes the time for

134

recording, replaying, and dynamic slicing quite reasonable. Finally, like Qzdb, DrDebug

works in conjunction with a real debugger (GDB) and with a graphical user interface

front-end (KDbg).

135

Chapter 6

Related Work

The focus of this dissertation is on developing effective and efficient interactive

debuggers which also accelerate fault localization. First, prior work on fault localization

is presented, including work performed in context of interactive debuggers as well as

stand alone fault localization tools and techniques. Second, prior work on improving

efficiency via input and execution simplification are discussed and compared with the

relevant input analysis based approach presented in this dissertation. Finally, prior work

on runtime verification is summarized and contrasted with the bug specification based

debugger generation presented in this dissertation.

6.1 Fault Localization

6.1.1 Techniques Employed by General Purpose Interactive Debuggers

GDB [26] provides low-level state alteration and inspection commands (e.g.,

breakpoint, print, and set) allowing the programmers to stop the program at points

of interest and then inspect or alter the internal execution states. Chern et al. [13]

improve breakpointing by allowing control-flow breakpoints. However, because such

136

debuggers [26, 13] only provide low-level commands, and do not sufficiently guide the

programmer in narrowing the source of error, even with their use the task of debugging

remains very tedious. Extending the capabilities of such debuggers is also challenging.

Whyline [51] allows programmers to ask “why?” and “why not?” questions

about program outputs and provides possible explanations based on program analysis,

including static and dynamic slicing. In comparison to Qzdb and DrDebug, Whyline

has several drawbacks. First, Whyline only supports postmortem analysis, while Qzdb

and DrDebug support both backward navigation along dependence edges as well as

forward single-stepping of the slice in a live debugging session. Second, since it is

not integrated with a record/replay system, unlike DrDebug, Whyline does not support

deterministic cyclic debugging. Third, programmers can only ask questions regarding

program outputs, while with Qzdb and DrDebug programmers can compute a slice for

any variable or register of interest.

Other debugging enhancements can be found in the following lines of work.

Techniques have been developed to automatically generate breakpoints based upon au-

tomated fault location [33, 113]. The vsdb interactive debugger uses symbolic execution

to display all possible symbolic execution paths from a program point [31]. Coca [21]

allows programmers to query the execution trace. Gu et al. [29] propose a bug query

language allowing programmers to fix their bugs by referring to similar resolved bugs.

While these capabilities are complementary to ones presented in this dissertation, it

should be noted that none of them take advantage of state alteration techniques.

6.1.2 Reverse Debugging Techniques

GDB also provides state rollback mechanism through the checkpoint and

restart commands by employing the fork system call, but it does not provide such

137

support for remote debugging. Moreover, its space overhead is prohibitively high due its

use of the fork-based mechanism for checkpointing. In contrast, Qzdb uses incremental

logging to reduce the space overhead.

UndoDB-gdb [99] does a much more efficient implementation of the record/re-

play and reverse debugging features. UndoDB “uses a ‘snapshot-and-replay’ technique,

which stores periodic copy-on-write snapshots of the application and non-deterministic

inputs”(quoted from [99]). TotalView debugger [98] has support for reverse debugging

with ReplayEngine. It apparently works by forking multiple processes at different points

in the recorded region and attaching to the right process on a ‘step back’ command.

The checkpoints in all the above debuggers are specific to a debug session and

do not help with cyclic debugging. The real purpose of the reverse debugging commands

is to find the points in the execution that affect a buggy outcome. Dynamic slicing is a

more systematic way to find the same information that allows more focussed backward

navigation. We believe reverse debugging can be supported in the DrDebug tool-chain

by recording multiple pinballs and then replaying forward using the right pinball. Doing

this using PinPlay’s user-level checkpointing feature can be much more efficient than

using operating system features (e.g., the fork mechanism).

VMWare supports replay debugging in their “Workstation” product between

2008 and 2011 [105]. Recording can be done either using a separate VMWare Worksta-

tion user-interface or with Microsoft’s Visual Studio debugger. The recording overhead

is extremely low because only truly non-reproducible events are captured by observing

the operating system from a virtual machine monitor. However, the program is run on

a single processor. That could make capturing certain multithreaded bugs hard. Also,

the replay-based debugging works only with the virtual machine configuration where it

was created. The record/replay framework DrDebug uses (PinPlay) does not require any

138

special environment such as the virtual machine. Recording can be done in a program’s

native environment and then the recording can be replayed and debugged on any other

machine.

6.1.3 State Alteration Techniques

Many state alteration techniques have been developed in the context of auto-

mated fault location [116, 43, 10], in contrast to their integration in interactive debuggers

as carried out in this dissertation. Zhang et al. [116] proposed predicate switching to

constrain the search space of program state changes explored during bug location. Cor-

rupted memory location suppression [43] attempts to identify the root cause of memory

bugs by iteratively suppressing the potential cause of the memory failure. The statement

involved in the final suppression is then highly likely to be the root cause of the memory

bug. In [44], execution suppression is extended to identify the root cause for concurrency

bugs. Jeffrey et al. [42] proposed value replacement to automatically pinpoint erroneous

code. Chandra et al. [10] reports repair candidates based on value replacement. Gu

et al. [29] proposed a bug query language allowing programmers to fix their bugs by

referring to similar resolved bugs. In contrast, Qzdb generalizes the state alteration

based automatic fault localization techniques (i.e., predicate switching and execution

suppression) by introducing them into a general-purpose debugger.

6.1.4 Static and Dynamic Slicing Techniques

Static and dynamic slicing [97, 104, 54, 73, 51, 52, 53, 119, 120, 106, 122, 1, 12,

30, 32] have been widely recognized as being helpful for debugging. Static slicing [97, 104]

calculates all the program statements that may influence the value of the specified

variable at a particular program point, directly and indirectly, via static control and

139

data dependences. Static slicing has been extended for concurrent programs in [54, 73].

Dynamic slicing [52, 53, 97, 122] calculates all the program statements that actually

affect the value of the specified variable at a particular program point during a specific

dynamic execution via dynamic control and data dependence. Dynamic slices are a

subset of static slices. A series of efforts have been aimed at improving the effectiveness

and efficiency of dynamic slicing [120, 106, 119, 1, 12, 30, 32].

Thin Slicing [93] only considers data dependences which helps compute and

copy a value to the specified variable. Tallam et al. extended dynamic slicing to detect

data races [94]. Weeratunge et al. [102] presented dual slicing by leveraging both passing

and failing runs. However, unlike DrDebug, neither approach is designed to be integrated

with a record/replay system. Moreover, the dynamic slicing algorithm used by DrDebug

is highly precise via its use of CFG refinement via dynamic jump targets and bypass-

ing of spurious data dependence resulting from save/restore pairs. Slice pruning [118]

eliminates unnecessary dependences according to programmers’ feedback. However, the

time overhead is unacceptable in an interactive debugging scenario because of the time-

consuming value profiling and the costly calculation of alternate set and confidence for

each statement. Qzdb generalizes the idea of slice pruning to only exclude dependence

edges from the generalized slice that are related to user-specified variables.

6.1.5 Techniques for Locating Memory-Related Errors

Purify [35] and Valgrind [79] detect the presence of memory bugs via dynamic

binary instrumentation. CCured [78] uses type inference to classify pointers and applies

dynamic checks according to the classification for memory safety. Rx [87] recovers from

a crash by rolling back the execution and reexecuting after changing the execution

environment. AccMon [124] detects memory-related bugs by capturing violations of

140

program counter based invariants. DieHard tolerates memory errors through randomized

memory allocation and replication [7]. Exterminator dynamically generates runtime

patches based upon runtime information [82]. Nagarakatte et al. use compile-time

transformations for ensuring spatial [71] and temporal safety [72] of programs written in

C. Bond et al.’s approach [9] tracks the origins of unusable values; however, it can only

track the origin of Null and undefined values while our VPCs capture not only origin,

but propagation for any specified variable.

MemTracker [100] provides a unified architectural support for low-overhead

programmable tracking to meet the needs for different kinds of bugs. FindBugs [36]

leverages bug patterns to locate bugs. Algorithmic (or declarative) debugging [91] is an

interactive technique where the user is asked at each step whether the prior computation

step was correct [92]. Program synthesis has been used in prior work to automatically

generate programs from specifications at various levels: types [65], predicates or asser-

tions/goals [66]; however no prior work on synthesis has investigated specification at the

operational semantics level in the context of debugging.

6.1.6 Statistical Debugging Techniques

Renieris and Reiss [90] identify faulty code by considering differences in state-

ments executed by passing and failing runs. Tarantula [46, 47] prioritizes statements

based on their appearance frequency in failing runs versus passing runs. Liblit et. al.

presented Cooperative Bug Isolation [57, 58, 59] that locates bug root causes based on

statistical analysis of program executions. Liu et. al. presented SOBER [60] which

models evaluation patterns of predicates in both passing and failing program runs re-

spectively and identifies a predicate as bug-related if its evaluation pattern in failing

runs differs significantly from that in passing ones. In general, these approaches rely on

141

a large test suite (including enough passing and failing runs) that may not be available

in practice.

6.2 Techniques for Input and Execution Simplification

6.2.1 Prior Forms of Relevant Input Analysis

Prior relevant input analyses such as lineage tracing [114, 14, 6] identify the

subset of inputs that contribute to a specified output by considering data dependence

only [114], both data dependence and control dependence [14], or both data dependence

and strict control dependence [6]. However, none of these approaches differentiate the

role and strength inputs play in computing a specified value. The relevant input analysis

presented in this dissertation characterizes the role and strength of inputs play in the

computation of different values during a program execution. Moreover, we are the first to

leverage the result of relevant input analysis to speed up the delta debugging algorithm

which can greatly simplify failing input as well as the program execution.

6.2.2 Input Reduction via Delta Debugging

Given a program input on which the execution of a program fails, delta de-

bugging [112] automatically simplifies the input such that the resulting simplified input

causes the same failure. This technique can then be applied to passing and failing

executions to automatically identify cause-effect chains [111].

Hierarchical Delta Debugging [70] leverages the structure inside program in-

puts to accelerate the search for minimal input. The hierarchical input decomposition

technique presented in this dissertation has several advantages in comparison to hierar-

chical delta debugging (HDD) [70]. First, HDD requires that the initial failure-inducing

142

input be well-formed; otherwise, the parser which HDD is based on will fail. Note that

HDD only generates syntactically valid input. However, it is common that programs

often fail because of ill-formed input. Second, HDD users must provide infrastructure

for input parsing, unparsing a configuration, and pruning nodes from the input tree for

different languages, which turns out to be non-trivial [70].

6.2.3 Execution Reduction Techniques

Several existing works on execution reduction [123, 95, 56, 40] either reduce

the tracing overhead during replay [123, 95] or replay overhead [56, 40]. In [123] and

[95] authors support tracing and slicing of long-running multi-threaded programs. They

leverage meta slicing to keep events that are in the transitive closure of data and control

dependences with respect to the event specified as slicing criterion. However, the slicing

criterion can only be events (e.g., I/O) captured during the logging phase. On the other

hand, DrDebug can reduce the replay pinball for any variable. Lee et al. [56] proposed

a technique to record extra information during logging and then leveraged it to reduce

the replay log in unit granularity based on programmers’ annotation of unit. DrDebug’s

execution region enables programmers to only log and fast forward to the reasonable

small buggy region during replay. Thus, DrDebug can reduce the region pinball to a

slice pinball at finer granularity without requiring unit annotations by the programmer.

LEAN [40] presents an approach to remove redundant threads with delta debugging

and redundant instructions with dynamic slicing while maintaining the reproducibility

of concurrency bugs. However, the overhead of delta debugging can be very high as

it requires repeated execution of replay runs. More importantly, none of these works

support stepping through a slice in a live debugging session.

143

6.3 Runtime Verification Techniques

Monitor-oriented programming (MOP) [69] and Time Rover [96] allow correct-

ness properties to be specified formally (e.g., in LTL, MTL, FSM, or CFG); code gen-

eration is then used to yield runtime monitors from the specification. Monitor-oriented

programming (MOP) [11, 69] combines formal specification with runtime monitoring.

In MOP, correctness properties can be specified in LTL, as a FSM, or as a CFG. Then,

from a specification, a low-overhead runtime monitor is synthesized to run in AspectJ

(i.e., use aspect-oriented programming [49] in JavaMOP [11]) or on the PCI bus (in Bus-

MOP [85]) to monitor the program execution and detect violations of the specification.

Time Rover [20, 96] combines LTL, MTL and UML specification with code generation

to yield runtime monitors for formal specifications.

PQL [68] and PTQL [27] allow programmers to query the program execution

history, while tracematches [2] allows free variables in trace matching on top of AspectJ.

GC assertions [89] allow programmers to query the garbage collector about the heap

structure. Jinn [55] synthesizes bug detectors from state machine for detecting foreign

function interface.

Ellison and Roşu [22] define a general-purpose semantics for C with applications

including debugging and runtime verification; in our semantics we only expose those

reduction rules that help specify memory debuggers, but our approach works for the

entire x86 instruction set and sizable real-world programs including library code.

Compared to all these approaches, the work on bug specification presented in

this dissertation differs in several ways. The prior approaches are adept at specifying

properties and generating runtime checkers (which detect what property has been vio-

lated). In contrast the approach presented in this dissertation points out where,why, and

144

how a property is violated; it also introduces value propagation chains to significantly

reduce the effort associated with bug finding and fixing.

145

Chapter 7

Conclusions and Future

Directions

7.1 Contributions of this Dissertation

The main contributions of this dissertation are in making interactive debug-

gers effective, extensible, and efficient for singlethreaded and multithreaded programs

via the design and prototyping of the Qzdb and DrDebug debuggers. The innovations

in interactive debugging are made possible by a series of novel dynamic analysis tech-

niques developed in this dissertation. In conclusion, the following research questions are

addressed in this dissertation.

7.1.1 Can the effectiveness of general-purpose debuggers be improved

using dynamic analysis techniques?

Existing general-purpose debuggers [26, 13] only provide low-level commands,

and do not effectively guide the programmer in narrowing the root cause of bugs, thus

it is very tedious to debug practical programs. Through the development of the Qzdb

146

debugger, this dissertation shows that an interactive debugger built around a powerful

dynamic analysis framework can overcome the above drawbacks. Qzdb supports com-

mands that allow the programmer to narrow down the bugs’ location successively to

smaller and smaller code regions based upon high-level commands supported via so-

phisticated dynamic analysis techniques. Qzdb supports state alteration commands to

affect the control flow and suppress the execution of statements/functions, allowing the

programmer to quickly narrow faulty code down to a function. The state inspection

techniques allow efficient examination of large code regions by navigating and pruning

dynamic slices and zooming in on chains of dependences. Finally, the programmer can

zoom to a small set of statements in a slice by single stepping at those statements and

examining program state. The debugger is extensible as a new command can be added

by simply extending the user interface and implementing the dynamic analysis needed

to implement the new command. Case studies based on real reported bugs demonstrate

Qzdb can greatly speed up bug understanding and fixing.

7.1.2 Can an interactive debugger support systematic extensibility to

allow incorporation of specialized bug detection algorithms?

Since the detection of specific kinds of bugs (e.g., memory-related bugs) is

tedious using general-purpose debuggers [26, 13], programmers use tools tailored to

specific kinds of bugs (e.g., buffer overflows [71, 18], dangling pointer dereferences [19],

and memory leaks [108, 83]). However, to use the appropriate tool the programmer needs

to first know what kind of bug is present in the program. Second, even given the bug

report from specialized bug detector, programmers may still need to resort to general-

purpose debuggers to understand and finally fix the bug (e.g., why is a dereferenced

pointer NULL and how did the NULL value propagates to the failure point?). Finally,

147

inclusion of such capabilities in existing general-purpose debuggers is also a daunting

task.

This dissertation addresses the above challenge by presenting a novel approach

for constructing debuggers automatically from bug specifications for memory-related

bugs. With the presented bug specification language, programmers can declaratively

specify bugs and their root causes, using just 1 to 4 predicates for all the 6 bugs types

studied. The automated translation was used to generate an actual debugger that works

for arbitrary C programs running on the x86 platform. The bug detection has been

proven to be sound with respect to a low-level operational semantics, i.e., bug detectors

fire prior to the machine entering an error state.

In addition to bug detection rules, programmers can also specify locator rules

that rely upon the novel concept of value propagation chain. Value propagation chains

capture data dependences introduced by propagating (copying) existing values—a small

subset of dynamic slices. For each bug kind, the value propagation chain specifies how

the value involved in the bug manifestation relates to the bug’s root cause. These chains

drastically simplify the process of detecting and locating the root cause of memory bugs.

For the real-world programs we have studied, programmers have to examine just 1 to

16 instructions.

7.1.3 Can a debugger built upon powerful dynamic analysis techniques

be made efficient enough to handle real-world bugs?

As expensive dynamic analysis techniques are needed for both high-level com-

mands (i.e., predicate switching, dynamic slicing) and automatically generated debug-

gers (i.e., generated double free bug detector and locator), the overhead of Qzdb can be

high. This is particularly true for long program executions. This dissertation alleviates

148

this problem by simplifying a failing program input as well as its dynamic execution

with the guarantee that the same failure manifests in the simplified execution. Then

programmers begin the debugging task with the simplified execution instead of the orig-

inal long execution. This dissertation again achieves input and execution simplification

by presenting a novel dynamic analysis, named relevant input analysis, and uses its

result to enhance the delta debugging algorithm.

The relevant input analysis characterizes the role and strength of inputs in the

computation of different values during a program execution. The role indicates whether

a computed value is derived from an input value or its computation is simply influenced

by an input value. The strength indicates if role relied upon the precise value of the

input or it is among one of many values that can play a similar role. The relevant input

analysis is then used to prune, as well as guide, and hence accelerate, the delta debugging

algorithm. The latter automatically simplifies the input such that the resulting simplified

input (specifically, 1-minimal input, i.e., an input from which removal of any entity

causes the failure to disappear) causes the same failure. Experiments show that relevant

input analysis based input simplification algorithm is both efficient and effective – it only

requires 11% to 21% of test runs needed by the standard delta debugging algorithm and

generates even smaller inputs.

7.1.4 Can the developed approach for interactive debugging be ex-

tended to handle multithreaded programs?

Debugging multithreaded programs poses additional challenges: it may take a

very long time to fast-forward to the beginning of a buggy region and program states (the

outcome of system calls, thread schedule, shared memory access order, etc.) vary from

run to run. To address these challenges, this dissertation presents DrDebug, allowing

149

deterministic and efficient cyclic debugging based upon PinPlay, a record and replay

framework. Deterministic and efficient cyclic debugging with DrDebug is achieved by

repeated replay of buggy execution region or an execution slice of a buggy region.

With the help of execution region, only the buggy regions get replayed during

each debugging session, avoiding repeated and time-consuming fast-forwarding to the

begin of buggy region. In addition, execution slices can improve the debugging efficiency

even further by skipping bug-irrelevant program execution (i.e., statements not in the

slice of the failure point) during replay. DrDebug also allows the user to step from the

execution of one statement in the slice to the next while examining the values of variables

in a live debugging session. Case studies of real reported concurrency bugs show that the

buggy execution region size is less than 1 million instructions and the lengths of buggy

execution region and execution slice are less than 15% and 7% of the total execution

respectively.

7.2 Future Directions

While the capabilities and efficiency of Qzdb and DrDebug could be further

enhanced, a major direction for future work is the application of the principles we

described to create a debugger for applications developed for mobile platforms.

With the fast-growing and highly-competitive mobile application ecosystems,

user experience is crucial for the survival of a mobile application (“app”). Thus, it is

important to provide effective and efficient debugging support for software developed for

mobile apps. However, prior software research on mobile systems has mainly focused on

security [3, 23, 24], testing [5, 63], performance [88, 103], and specialized bug detection

tools (e.g., data race detection [37, 64]), and only a few attempts have been made to

150

provide general-purpose debugging support [28, 34]. Therefore, it would be interesting

and beneficial to extend the techniques we have developed in this dissertation to leading

smartphone platforms such as Android [41], by building a dynamic analysis framework,

and then developing effective debugging support such as dynamic slicing and relevant

input analysis.

7.2.1 Challenges for Android Platform

The differences between mobile apps and desktop (or server) programs intro-

duce many debugging challenges, as described below:

• Android apps are largely written in Java and compiled to DEX bytecode, which is

executed by the Dalvik VM interpreter. Thus, a dynamic analysis framework for

the Android platform needs to be implemented, e.g., via Dalvik VM instrumenta-

tion (monitoring and instrumenting app execution when the Dalvik VM interprets

the bytecode).

• Android apps can invoke native libraries (provided by the Android Framework or

third-party) written in C/C++, and can be executed directly without the need of

interpretation by Dalvik VM. Therefore, the execution of native libraries cannot

be monitored by a Dalvik VM instrumentation based dynamic analysis framework.

For accurate dynamic analysis, a native code (binary) instrumentation framework

is required (e.g., Pin).

• Android implements JIT compilation for most apps. Similar to native libraries,

such JIT code execution escapes the dynamic monitoring by a Dalvik VM-based

dynamic analysis framework, so JIT compilation must either be turned off (as pre-

vious work [37]) or tracked differently via a native code (binary) instrumentation

framework (e.g., Pin).

151

• The Dalvik VM optimizes the bytecode during running (e.g., JIT), so static anal-

ysis (e.g., post-dominator analysis needed for dynamic control dependence detec-

tion) on app bytecode might not always be accurate.

• The IPC message passing system of Android allows apps to share messages through

intents; data can be shared via “Bundles.” Thus, the dynamic analysis framework

needs to capture external influence due to IPC (e.g., to correctly identify inter-apps

data/value/address dependence caused by IPC).

• Android apps have much richer types of user inputs (complex gestures, GPS,

other physical sensors) than pc/server programs. The dynamic analysis framework

should be able to capture those rich inputs.

• Some inputs (e.g., complex gestures) have strict timing constraints, and chang-

ing the timing between events may yield wrongly-identified gestures, finally wrong

behavior. Such strict timing constraints impose tremendous challenges for the dy-

namic analysis framework (which inevitably incurs high runtime overhead). Thus,

the instrumented/monitored runs may violate the original timing constraints, and

very likely interfere with app execution.

• Mobile platforms have limited memory/disk resources. The dynamic analysis

framework needs to cope with such resource limitations.

• Finally, Google has introduced a new runtime, ART, from Android 4.4, which actu-

ally compiles the app bytecode into native binary during installation. With ART,

a dynamic analysis framework based on a binary instrumentation framework, e.g.,

Pin is preferable. With ART, both app bytecode and Android framework/third

party native libraries are compiled to native code and executed directly; thus the

dynamic analysis framework based on a binary instrumentation framework can

capture the entire execution.

152

7.2.2 Dynamic Analysis Framework for Android Apps

The dynamic analysis framework should support efficient def-use tracing and

online control dependence detection, which are the core components of many dynamic

analysis techniques (e.g., dynamic slicing, relevant input analysis, and information flow

tracking).

In the presence of inter-process communication (which is widely used between

different Android apps), the dynamic analysis can be conducted in two different ways:

• system tracking: tracking all related apps as well as their interactions via IPC.

By adding dependence edges between the sender/receiver of IPC, we can build

a system-wide dependence graph, and thus conduct system-wide dynamic analy-

sis. This option incurs higher runtime and space overhead, while providing more

accurate dynamic analysis.

• process tracking: only tracking the app of interest, and then capturing the system

as well as all other apps’ external influence manually (e.g., core system components

have given information flow semantics) or with the help of users’ specification (i.e.,

the system and all other apps can be treated as a black box). This option is more

runtime efficient but sacrifices accuracy.

Dependence Tracking for Dynamic Slicing. The execution of bytecode,

as interpreted by the Dalvik VM, can be monitored to gather the def-use trace and

control dependence information. Due to the limited memory and space resources on

mobile devices, all results (including per-thread def-use trace, shared memory access

ordering, and detected control dependence) should be saved on a pc/server for storage

and processing.

153

As Android apps are multi-threaded, there is a need to track the shared memory

access ordering which can be captured via a software implementation of a hardware

approach [81]. Shared memory access ordering is needed to construct the global def-

use trace. The logcat utility can be modified to dump the per-thread def-use trace.

Intermediate post dominator for each basic block is needed for online control dependence

detection. Redexer [45], an OCaml-based DEX code rewriter, can be used to create the

initial post dominator tree, and the intermediate post dominator for each basic block is

computed based on the post dominator tree. The online control dependence detection

algorithm proposed by Xin et al. [106] can be implemented by modifying the Dalvik

VM.

In addition to the bytecode, native code must also be monitored and analyzed.

There can be four kinds of native code: system libraries, third-party libraries, internal

VM methods, and JIT compilation. The JIT compilation can be disabled to handle the

fourth case. However, for system and third-party libraries and internal VM methods,

an instrumentation framework for native code (e.g., Pin) is needed to allow accurate

def-use tracing and control dependence detection.

Integration with a Record/Replay System. As both def-use tracing and

online control dependence detection require heavy-weight instrumentation, they will in-

cur significant perceivable delays to the user. Even worse, Android apps inputs (e.g.,

complex gestures) have strict timing constraints, and changing the timing between events

(because of the execution of instrumented analysis) may yield wrongly identified ges-

tures. Thus, the dynamic analysis framework must be integrated with a record/replay

system such as RERAN [28]. RERAN satisfies two requirements: (a) imperceivable

(or tolerable) recording delay; and (b) ensuring the same gestures are identified during

record/injected during replay. With the integration of such a record/replay system,

154

the def-use tracing and online control dependence detection can be performed during

the replay phase. The users can interact with the apps only during recording phase

(with negligible delays), and then the tracked event sequences are injected during replay

phase, during which the def-use tracing and online control dependence detection can be

performed.

Relevant Input Analysis. Compared to inputs for desktop or server pro-

grams, mobile app inputs are much richer and more challenging to capture. Rules can

be developed to capture different external sensor inputs (GPS, accelerometer, camera,

etc.), and then save the captured inputs to a pc/server.

Due to memory resource constraints, at this point it is infeasible to conduct

online relevant input analysis on mobile devices. Once the program inputs, def-use trace

and control dependences are saved on a pc/server, a forward traversal of the trace can be

carried out to build the value dependence, address dependence and control dependence,

and then roles and strength of inputs are characterized based on the dependence.

The relevant input analysis can be very useful for program comprehension, and

its result has many other applications:

• Delta Debugging: simplifying failure-inducing inputs (e.g., gestures) can identify

which user gestures triggered a bug. The relevant input analysis can accelerate

delta debugging (e.g., 1-minimal input searching).

• Test Case Generation: generating inputs covering different branches/paths based

on existing inputs (e.g., gestures).

• Security: data dependences may be obfuscated as control dependences to avoid

detection. The relevant input analysis helps capture obfuscated vulnerabilities.

In summary, the principles and capabilities developed in this dissertation would

155

be useful in the context of a mobile platform like Android; however, many challenges

must be overcome to develop a debugging tool for Android.

156

Bibliography

[1] H. Agrawal, J. R. Horgan, S. London, and W. E. Wong. Fault localization using
execution slices and dataflow tests. Proceedings of the 6th IEEE International
Symposium on Software Reliability Engineering, pages 143–151, October 1995.

[2] C. Allan, P. Avgustinov, A. S. Christensen, L. Hendren, S. Kuzins, O. Lhoták,
O. de Moor, D. Sereni, G. Sittampalam, and J. Tibble. Adding trace matching
with free variables to aspectj. In Proceedings of the 20th Annual ACM SIGPLAN
Conference on Object-oriented Programming, Systems, Languages, and Applica-
tions, OOPSLA ’05, pages 345–364, 2005.

[3] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le Traon,
D. Octeau, and P. McDaniel. Flowdroid: Precise context, flow, field, object-
sensitive and lifecycle-aware taint analysis for android apps. In Proceedings of the
35th ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, PLDI ’14, pages 259–269, 2014.

[4] V. Aslot, M. Domeika, R. Eigenmann, G. Gaertner, W. B. Jones, and B. Parady.
SPEComp: A new benchmark suite for measuring parallel computer performance.
In In Workshop on OpenMP Applications and Tools, pages 1–10, 2001.

[5] T. Azim and I. Neamtiu. Targeted and depth-first exploration for systematic test-
ing of android apps. In Proceedings of the 2013 ACM SIGPLAN International
Conference on Object Oriented Programming Systems Languages & Applica-
tions, OOPSLA ’13, pages 641–660, 2013.

[6] T. Bao, Y. Zheng, Z. Lin, X. Zhang, and D. Xu. Strict control dependence and
its effect on dynamic information flow analyses. In Proceedings of the 19th Inter-
national Symposium on Software Testing and Analysis, ISSTA ’10, pages 13–24,
2010.

[7] E. D. Berger and B. G. Zorn. DieHard: Probabilistic memory safety for unsafe
languages. ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 158–168, June 2006.

[8] C. Bienia. Benchmarking Modern Multiprocessors. PhD thesis, Princeton Univer-
sity, January 2011.

[9] M. D. Bond, N. Nethercote, S. W. Kent, S. Z. Guyer, and K. S. McKinley. Tracking
bad apples: reporting the origin of null and undefined value errors. In Proceedings

157

of the 22nd annual ACM SIGPLAN conference on Object-oriented programming
systems and applications, OOPSLA ’07, pages 405–422, 2007.

[10] S. Chandra, E. Torlak, S. Barman, and R. Bodik. Angelic debugging. In Proceeding
of the 33rd international conference on Software engineering, pages 121–130. ACM,
2011.

[11] F. Chen and G. Roşu. Mop: An efficient and generic runtime verification frame-
work. In Proceedings of the 22Nd Annual ACM SIGPLAN Conference on Object-
oriented Programming Systems and Applications, OOPSLA ’07, pages 569–588,
2007.

[12] T. Y. Chen and Y. Y. Cheung. Dynamic program dicing. Proceedings of the IEEE
International Conference on Software Maintenance, pages 378–385, September
1993.

[13] R. Chern and K. De Volder. Debugging with control-flow breakpoints. In Proceed-
ings of the 6th international conference on Aspect-oriented software development,
AOSD ’07, pages 96–106, 2007.

[14] J. Clause and A. Orso. Penumbra: automatically identifying failure-relevant inputs
using dynamic tainting. In Proceedings of Symposium on Software Testing and
Analysis, pages 249–260, 2009.

[15] H. Cleve and A. Zeller. Locating causes of program failures. 27th International
Conference on Software Engineering, pages 342–351, May 2005.

[16] B. De Bus, B. De Sutter, L. Van Put, D. Chanet, and K. De Bosschere.
Link-time optimization of arm binaries. In Proceedings of the 2004 ACM SIG-
PLAN/SIGBED Conference on Languages, Compilers, and Tools for Embedded
Systems (LCTES‘04), pages 211–220, 7 2004.

[17] Ibm tutorial on debugging–debugging using comments. https://www-
927.ibm.com/ibm/cas/hspc/Resources/ Tutorials/debug 2.shtml.

[18] D. Dhurjati and V. Adve. Backwards-compatible array bounds checking for c with
very low overhead. In Proceedings of the 28th international conference on Software
engineering, ICSE ’06, pages 162–171, 2006.

[19] D. Dhurjati and V. Adve. Efficiently detecting all dangling pointer uses in pro-
duction servers. In Proceedings of the International Conference on Dependable
Systems and Networks, DSN ’06, pages 269–280, 2006.

[20] D. Drusinsky. The temporal rover and the atg rover. In Proceedings of the 7th
International SPIN Workshop on SPIN Model Checking and Software Verification,
pages 323–330, 2000.

[21] M. Ducassé. Coca: an automated debugger for c. In Proceedings of the 21st
international conference on Software engineering, ICSE ’99, pages 504–513, 1999.

[22] C. Ellison and G. Rosu. An executable formal semantics of c with applications. In
Proceedings of the 39th Annual ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, POPL ’12, pages 533–544, 2012.

158

[23] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, and A. N.
Sheth. Taintdroid: An information-flow tracking system for realtime privacy
monitoring on smartphones. In Proceedings of the 9th USENIX Conference on
Operating Systems Design and Implementation, OSDI’10, pages 1–6, 2010.

[24] A. P. Felt, H. J. Wang, A. Moshchuk, S. Hanna, and E. Chin. Permission re-
delegation: Attacks and defenses. In USENIX Security Symposium, 2011.

[25] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program dependence graph
and its use in optimization. ACM Trans. Program. Lang. Syst., 9(3):319–349, July
1987.

[26] Gdb page. http://www.gnu.org/software/gdb/.

[27] S. F. Goldsmith, R. O’Callahan, and A. Aiken. Relational queries over pro-
gram traces. In Proceedings of the 20th Annual ACM SIGPLAN Conference on
Object-oriented Programming, Systems, Languages, and Applications, OOPSLA
’05, pages 385–402, 2005.

[28] L. Gomez, I. Neamtiu, T. Azim, and T. Millstein. Reran: Timing- and touch-
sensitive record and replay for android. In Proceedings of the 2013 International
Conference on Software Engineering, ICSE ’13, pages 72–81, 2013.

[29] Z. Gu, E. Barr, and Z. Su. Bql: capturing and reusing debugging knowledge.
In Proceeding of the 33rd international conference on Software engineering, pages
1001–1003. ACM, 2011.

[30] N. Gupta, H. He, X. Zhang, and R. Gupta. Locating faulty code using failure-
inducing chops. IEEE/ACM International Conference on Automated Software
Engineering, pages 263–272, November 2005.

[31] R. Hähnle, M. Baum, R. Bubel, and M. Rothe. A visual interactive debugger based
on symbolic execution. In Proceedings of the IEEE/ACM international conference
on Automated software engineering, ASE ’10, pages 143–146, 2010.

[32] C. Hammer, M. Grimme, and J. Krinke. Dynamic path conditions in dependence
graphs. Proceedings of the 2006 ACM SIGPLAN Symposium on Partial Evaluation
and Semantics-Based Program Manipulation, pages 58–67, January 2006.

[33] D. Hao, L. Zhang, L. Zhang, J. Sun, and H. Mei. Vida: Visual interactive debug-
ging. In Proceedings of the 31st International Conference on Software Engineering,
ICSE ’09, pages 583–586, 2009.

[34] S. Hao, D. Li, W. G. Halfond, and R. Govindan. Sif: A selective instrumentation
framework for mobile applications. In Proceeding of the 11th Annual International
Conference on Mobile Systems, Applications, and Services, MobiSys ’13, pages
167–180, 2013.

[35] R. Hastings and B. Joyce. Purify: Fast detection of memory leaks and access
errors. Proceedings of the USENIX Winter Technical Conference, pages 125–136,
1992.

[36] D. Hovemeyer and W. Pugh. Finding bugs is easy. pages 132–136, 2004.

159

[37] C.-H. Hsiao, J. Yu, S. Narayanasamy, Z. Kong, C. L. Pereira, G. A. Pokam,
P. M. Chen, and J. Flinn. Race detection for event-driven mobile applications. In
Proceedings of the 35th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’14, pages 326–336, 2014.

[38] http://flex.sourceforge.net/. Flex homepage.

[39] http://www.gnu.org/software/bison/. Bison homepage.

[40] J. Huang and C. Zhang. Lean: simplifying concurrency bug reproduction via
replay-supported execution reduction. In Proceedings of the ACM international
conference on Object oriented programming systems languages and applications,
OOPSLA ’12, pages 451–466, 2012.

[41] IDC. Android pushes past 80% market share while windows phone shipments leap
156.0% year over year in the third quarter, Novemeber 2013.

[42] D. Jeffrey, N. Gupta, and R. Gupta. Fault localization using value replacement.
International Symposium on Software Testing and Analysis, pages 167–178, July
2008.

[43] D. Jeffrey, N. Gupta, and R. Gupta. Identifying the root causes of memory bugs
using corrupted memory location suppression. IEEE International Conference on
Software Maintenance, pages 356–365, September 2008.

[44] D. Jeffrey, Y. Wang, C. Tian, and R. Gupta. Isolating bugs in multithreaded
programs using execution suppression. Software: Practice and Experience,
41(11):1259–1288, 2011.

[45] Jinseong Jeon and Kristopher Micinski and Jeffrey S. Foster. Redexer, September
2013. http://www.cs.umd.edu/projects/PL/redexer/index.html.

[46] J. A. Jones and M. J. Harrold. Empirical evaluation of the tarantula automatic
fault-localization technique. Proceedings of the 20th IEEE/ACM International
Conference on Automated Software Engineering, pages 273–282, November 2005.

[47] J. A. Jones, M. J. Harrold, and J. Stasko. Visualization of test information to assist
fault localization. Proceedings of the 24th International Conference on Software
Engineering, pages 467–477, May 2002.

[48] Kdbg page. http://www.kdbg.org/.

[49] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M. Loingtier,
and J. Irwin. Aspect-oriented programming. In ECOOP’97, pages 220–242, 1997.

[50] S. T. King, G. W. Dunlap, and P. M. Chen. Debugging operating systems
with time-traveling virtual machines. In Proceedings of the annual conference
on USENIX Annual Technical Conference, ATEC ’05, 2005.

[51] A. J. Ko and B. A. Myers. Debugging reinvented: Asking and answering why and
why not questions about program behavior. In Proceedings of the 30th Interna-
tional Conference on Software Engineering, ICSE ’08, pages 301–310, 2008.

[52] B. Korel and J. Laski. Dynamic program slicing. Information Processing Letters,
29(3):155–163, October 1988.

160

[53] B. Korel and J. Rilling. Application of dynamic slicing in program debugging.
Proceedings of the International Symposium on Automated Analysis-Driven De-
bugging, pages 43–58, May 1997.

[54] J. Krinke. Context-sensitive slicing of concurrent programs. In Proceedings of
the 9th European software engineering conference held jointly with 11th ACM
SIGSOFT international symposium on Foundations of software engineering,
ESEC/FSE-11, pages 178–187, 2003.

[55] B. Lee, B. Wiedermann, M. Hirzel, R. Grimm, and K. S. McKinley. Jinn: Syn-
thesizing dynamic bug detectors for foreign language interfaces. In Proceedings
of the 2010 ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’10, pages 36–49, 2010.

[56] K. H. Lee, Y. Zheng, N. Sumner, and X. Zhang. Toward generating reducible re-
play logs. In Proceedings of the 32nd ACM SIGPLAN conference on Programming
language design and implementation, PLDI’11, pages 246–257, 2011.

[57] B. Liblit. Cooperative bug isolation. Ph.D. Thesis, The University of California,
Berkeley, 2004.

[58] B. Liblit, A. Aiken, A. Zheng, and M. Jordan. Bug isolation via remote program
sampling. ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 141–154, June 2003.

[59] B. Liblit, M. Naik, A. Zheng, A. Aiken, and M. Jordan. Scalable statistical bug
isolation. ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 15–26, June 2005.

[60] C. Liu, X. Yan, L. Fei, J. Han, and S. Midkiff. SOBER: Statistical model-based
bug localization. ACM SIGSOFT Software Engineering Notes, 30(5):286–295,
September 2005.

[61] G. Lueck, H. Patil, and C. Pereira. Pinadx: an interface for customizable de-
bugging with dynamic instrumentation. In Proceedings of the Tenth International
Symposium on Code Generation and Optimization, CGO ’12, pages 114–123, 2012.

[62] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J.
Reddi, and K. Hazelwood. Pin: Building customized program analysis tools with
dynamic instrumentation. In Proceedings of the 2005 ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI ’05, pages 190–200,
2005.

[63] A. Machiry, R. Tahiliani, and M. Naik. Dynodroid: An input generation system
for android apps. In Proceedings of the 2013 9th Joint Meeting on Foundations of
Software Engineering, ESEC/FSE 2013, pages 224–234, 2013.

[64] P. Maiya, A. Kanade, and R. Majumdar. Race detection for android applications.
In Proceedings of the 35th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’14, pages 316–325, 2014.

[65] D. Mandelin, L. Xu, R. Bod́ık, and D. Kimelman. Jungloid mining: Helping to
navigate the api jungle. In Proceedings of the 2005 ACM SIGPLAN Conference

161

on Programming Language Design and Implementation, PLDI ’05, pages 48–61,
2005.

[66] Z. Manna and R. Waldinger. A deductive approach to program synthesis. ACM
Trans. Program. Lang. Syst., 2(1):90–121, Jan. 1980.

[67] Maple sources. https://github.com/jieyu/maple.

[68] M. Martin, B. Livshits, and M. S. Lam. Finding application errors and secu-
rity flaws using pql: A program query language. In Proceedings of the 20th
Annual ACM SIGPLAN Conference on Object-oriented Programming, Systems,
Languages, and Applications, OOPSLA ’05, pages 365–383, 2005.

[69] P. O. Meredith, D. Jin, D. Griffith, F. Chen, and G. Roşu. An overview of the
MOP mop-jsttt11 framework. International Journal on Software Techniques for
Technology Transfer, pages 249–289, 2011.

[70] G. Misherghi and Z. Su. Hdd: Hierarchical delta debugging. In Proceedings of the
28th International Conference on Software Engineering, ICSE’06, pages 142–151,
2006.

[71] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic. Softbound: highly
compatible and complete spatial memory safety for c. In Proceedings of the 2009
ACM SIGPLAN conference on Programming language design and implementation,
PLDI ’09, pages 245–258, 2009.

[72] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic. Cets: Compiler enforced
temporal safety for c. In Proceedings of the 2010 International Symposium on
Memory Management, ISMM ’10, pages 31–40, 2010.

[73] M. G. Nanda and S. Ramesh. Interprocedural slicing of multithreaded programs
with applications to java. ACM Trans. Program. Lang. Syst., 28(6):1088–1144,
Nov. 2006.

[74] S. Narayanasamy, C. Pereira, H. Patil, R. Cohn, and B. Calder. Automatic logging
of operating system effects to guide application-level architecture simulation. In
Proceedings of the Joint International Conference on Measurement and Modeling
of Computer Systems, SIGMETRICS ’06/Performance ’06, pages 216–227, 2006.

[75] S. Narayanasamy, C. Pereira, H. Patil, R. Cohn, and B. Calder. Automatic logging
of operating system effects to guide application-level architecture simulation. In
Proceedings of the joint international conference on Measurement and modeling of
computer systems(SIGMETRICS), SIGMETRICS’06, pages 216–227, 2006.

[76] S. Narayanasamy, G. Pokam, and B. Calder. Bugnet: Continuously recording
program execution for deterministic replay debugging. pages 284–295, 2005.

[77] S. Narayanasamy, G. Pokam, and B. Calder. Bugnet: Continuously recording pro-
gram execution for deterministic replay debugging. In Proceedings of the 32nd an-
nual international symposium on Computer Architecture(ISCA), ISCA’05, pages
284–295, 2005.

162

[78] G. C. Necula, S. McPeak, and W. Weimer. CCured: type-safe retrofitting of
legacy code. Symposium on Principles of Programming Languages, pages 128–
139, January 2002.

[79] N. Nethercote and J. Seward. Valgrind: A framework for heavyweight dynamic
binary instrumentation. Proceedings of the ACM SIGPLAN 2007 Conference on
Programming Language Design and Implementation, pages 89–100, June 2007.

[80] N. Nethercote and J. Seward. Valgrind: A framework for heavyweight dynamic
binary instrumentation. pages 89–100, 2007.

[81] R. H. B. Netzer. Optimal tracing and replay for debugging shared-memory parallel
programs. In Proceedings of the ACM/ONR Workshop on Parallel and Distributed
Debugging, pages 1–11, 1993.

[82] G. Novark, E. D. Berger, and B. G. Zorn. Exterminator: Automatically correcting
memory errors with high probability. pages 1–11, 2007.

[83] G. Novark, E. D. Berger, and B. G. Zorn. Efficiently and precisely locating memory
leaks and bloat. In Proceedings of the 2009 ACM SIGPLAN conference on Pro-
gramming language design and implementation, PLDI ’09, pages 397–407, 2009.

[84] H. Patil, C. Pereira, M. Stallcup, G. Lueck, and J. Cownie. PinPlay: A framework
for deterministic replay and reproducible analysis of parallel programs. In CGO
’10: Proceedings of the 2010 International Symposium on Code Generation and
Optimization, CGO’10, pages 2–11, 2010.

[85] R. Pellizzoni, P. Meredith, M. Caccamo, and G. Rosu. Hardware runtime monitor-
ing for dependable cots-based real-time embedded systems. In Proceedings of the
29th IEEE Real-Time System Symposium (RTSS’08), RTSS’08, pages 481–491,
2008.

[86] Program record/replay (PinPlay) toolkit. http://www.pinplay.org.

[87] F. Qin, J. Tucek, Y. Zhou, and J. Sundaresan. Rx: Treating bugs as allergies
– a safe method to survive software failures. ACM Transactions on Computer
Systems, 25(3):Article 7 (1–33), August 2007.

[88] L. Ravindranath, J. Padhye, S. Agarwal, R. Mahajan, I. Obermiller, and
S. Shayandeh. Appinsight: Mobile app performance monitoring in the wild. In
Proceedings of the 10th USENIX Conference on Operating Systems Design and
Implementation, OSDI’12, pages 107–120, 2012.

[89] C. Reichenbach, N. Immerman, Y. Smaragdakis, E. E. Aftandilian, and S. Z.
Guyer. What can the gc compute efficiently?: a language for heap assertions at
gc time. In Proceedings of the ACM international conference on Object oriented
programming systems languages and applications, OOPSLA ’10, pages 256–269,
2010.

[90] M. Renieris and S. Reiss. Fault localization with nearest neighbor queries. Pro-
ceedings of the 18th IEEE International Conference on Automated Software Engi-
neering, pages 30–39, October 2003.

163

[91] E. Y. Shapiro. Algorithmic Program DeBugging. MIT Press, Cambridge, MA,
USA, 1983.

[92] J. Silva. A survey on algorithmic debugging strategies. Adv. Eng. Softw.,
42(11):976–991, Nov. 2011.

[93] M. Sridharan, S. J. Fink, and R. Bodik. Thin slicing. In Proceedings of the 2007
ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion, PLDI ’07, pages 112–122, 2007.

[94] S. Tallam, C. Tian, and R. Gupta. Dynamic slicing of multithreaded programs
for race detection. In ICSM’08, pages 97–106, 2008.

[95] S. Tallam, C. Tian, R. Gupta, and X. Zhang. Enabling tracing of long-running
multithreaded programs via dynamic execution reduction. In Proceedings of the
2007 international symposium on Software testing and analysis, ISSTA ’07, pages
207–218, 2007.

[96] Time rover homepage. http://www.time-rover.com.

[97] F. Tip. A survey of program slicing techniques. Journal of Programming Lan-
guages, 3(3):121–189, September 1995.

[98] Reverse debugging with replayengine. http://www.roguewave.com/ products/to-
talview/replayengine.aspx.

[99] Undodb page. http://undo-software.com/product/undodb-man-page.

[100] G. Venkataramani, I. Doudalis, Y. Solihin, and M. Prvulovic. Memtracker: An
accelerator for memory debugging and monitoring. ACM Trans. Archit. Code
Optim., 6(2):5:1–5:33, July 2009.

[101] Visual studio debugger–edit and continue. http://msdn.microsoft.com/en-
us/library/bcew296c.aspx.

[102] D. Weeratunge, X. Zhang, W. N. Sumner, and S. Jagannathan. Analyzing concur-
rency bugs using dual slicing. In Proceedings of the 19th international symposium
on Software testing and analysis, ISSTA’10, pages 253–264, 2010.

[103] X. Wei, L. Gomez, I. Neamtiu, and M. Faloutsos. Profiledroid: Multi-layer pro-
filing of android applications. In Proceedings of the 18th Annual International
Conference on Mobile Computing and Networking, Mobicom ’12, pages 137–148,
2012.

[104] M. Weiser. Program slicing. IEEE Transactions on Software Engineering,
10(4):352–357, July 1984.

[105] Vmware’s replay debugging offering. http://www.replaydebugging.com/.

[106] B. Xin and X. Zhang. Efficient online detection of dynamic control dependence. In
Proceedings of the 2007 international symposium on Software testing and analysis,
ISSTA ’07, pages 185–195, 2007.

164

[107] B. Xin and X. Zhang. Memory slicing. In Proceedings of the eighteenth inter-
national symposium on Software testing and analysis, ISSTA’09, pages 165–176,
2009.

[108] G. Xu, M. D. Bond, F. Qin, and A. Rountev. Leakchaser: Helping programmers
narrow down causes of memory leaks. In Proceedings of the 32Nd ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI ’11,
pages 270–282, 2011.

[109] J. Yu and S. Narayanasamy. A case for an interleaving constrained shared-memory
multi-processor. In Proceedings of the 36th annual international symposium on
Computer architecture, ISCA’09, pages 325–336, 2009.

[110] J. Yu, S. Narayanasamy, C. Pereira, and G. Pokam. Maple: a coverage-driven
testing tool for multithreaded programs. In OOPSLA ’12: Proceedings of the 27th
Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA’12, pages 485–502, 2012.

[111] A. Zeller. Isolating cause-effect chains from computer programs. 10th International
Symposium on the Foundations of Software Engineering, pages 1–10, November
2002.

[112] A. Zeller and R. Hildebrandt. Simplifying and isolating failure-inducing input.
IEEE Transactions on Software Engineering, 28(2):183–200, February 2002.

[113] C. Zhang, D. Yan, J. Zhao, Y. Chen, and S. Yang. Bpgen: An automated break-
point generator for debugging. In Proceedings of the 32Nd ACM/IEEE Interna-
tional Conference on Software Engineering - Volume 2, ICSE ’10, pages 271–274,
2010.

[114] M. Zhang, X. Zhang, X. Zhang, and S. Prabhakar. Tracing lineage beyond re-
lational operators. In Proceedings of the 33rd International Conference on Very
Large Data Bases, VLDB ’07, pages 1116–1127, 2007.

[115] W. Zhang, C. Sun, and S. Lu. ConMem: Detecting severe concurrency bugs
through an effect-oriented approach. ACM SIGPLAN Notices, 45(3):179–192,
March 2010.

[116] X. Zhang, N. Gupta, and R. Gupta. Locating faults through automated pred-
icate switching. Proceedings of the 28th International Conference on Software
Engineering, pages 272–281, May 2006.

[117] X. Zhang, N. Gupta, and R. Gupta. Pruning dynamic slices with confidence. ACM
SIGPLAN Conference on Programming Language Design and Implementation,
pages 169–180, June 2006.

[118] X. Zhang, N. Gupta, and R. Gupta. Pruning dynamic slices with confidence. ACM
SIGPLAN Conference on Programming Language Design and Implementation,
pages 169–180, June 2006.

[119] X. Zhang and R. Gupta. Cost effective dynamic program slicing. ACM SIGPLAN
Conference on Programming Language Design and Implementation, pages 94–106,
June 2004.

165

[120] X. Zhang, R. Gupta, and Y. Zhang. Precise dynamic slicing algorithms.
IEEE/ACM International Conference on Software Engineering, pages 319–329,
May 2003.

[121] X. Zhang, R. Gupta, and Y. Zhang. Precise dynamic slicing algorithms.
IEEE/ACM International Conference on Software Engineering, pages 319–329,
May 2003.

[122] X. Zhang, H. He, N. Gupta, and R. Gupta. Experimental evaluation of using
dynamic slices for fault location. Proceedings of the 6th International Symposium
on Automated Analysis-Driven Debugging, pages 33–42, September 2005.

[123] X. Zhang, S. Tallam, and R. Gupta. Dynamic slicing long running programs
through execution fast forwarding. In Proceedings of the 14th ACM SIG-
SOFT international symposium on Foundations of software engineering, SIG-
SOFT ’06/FSE-14, pages 81–91, 2006.

[124] P. Zhou, W. Liu, L. Fei, S. Lu, F. Qin, Y. Zhou, S. P. Midkiff, and J. Torrellas. Ac-
cMon: Automatically detecting memory-related bugs via program counter-based
invariants. 37th Annual International Symposium on Microarchitecture, pages 269–
280, December 2004.

166

Appendix A

Soundness Proof

We use Σ as a shorthand for a legal state 〈H;F ;S;P ; k;σ; f ; e〉, and Error as

a shorthand for an error state. Hence, the condensed form of the reduction relation for

legal transitions is Σ −→ Σ′, while transitions Σ −→ Error represent bugs. We name

state Σ as Σe = 〈He;Fe;Se;Pe; ke;σe; fe; e〉, and Σ′ as Σ′e = 〈H ′e;F ′e;S
′
e;P

′
e; k
′
e;σ
′
e; f
′
e; e
′〉.

If expression e generates an event, we name it as νe, that is, σ′e = σe, νe.

At a high level, our notion of soundness can be expressed as follows: if the

abstract machine, in state Σ, would enter an error state next, which is the “ground

truth” for a bug, then the user-specified bug detectors, defined in terms of just e and σ,

must fire.

The proof of soundness relies on several key definitions and lemmas. We first

define well-formed states, then prove that reductions to non-error states preserve well-

formedness, and finally the soundness theorem captures the fact that the premises of

error transition rules in fact satisfy the user-defined bug specification, hence bugs will

be detected. Well-formed states are defined as follows:

Definition A.0.1 (Well-formed states). A state Σ = 〈H;F ;S;P ; k; σ; f ; e〉 is well-

167

formed if:

1. H ∩ F = ∅

2. (H ∪F) ∩ (∪
S∈S

S) = ∅

The first part says that block id’s cannot simultaneously be in the heap H and in the

freed set F , while the second part ensures that block id’s cannot simultaneously be both

in the heap H (or the freed set F) and in the stack S.

Lemma A.0.2 (Empty initial state). Suppose the initial state, denoted Σ0, is 〈H0;F0;S0;P0; k0;σ0; f0; a〉.

In this state the heap, stack, and freed set are empty, i.e.:

1. H0 = ∅

2. S0 = ∅

3. F0 = ∅

Proof. The lemma holds by construction.

Lemma A.0.3 (Well-formed initial state). Σ0 is well-formed.

Proof. The lemma follows immediately from Definition A.0.1.

Next, we introduce a lemma to prove that non-error transitions keep the state

well-formed.

Lemma A.0.4 (Preservation of well-formedness). If Σ is well-formed and Σ −→ Σ′,

and Σ′ is not an error state, then Σ′ is well-formed.

The proof is by induction on the reduction Σ −→ Σ′. Intuitively, this lemma states

that, since the state always stays well-formed during non-error reductions, memory

bugs cannot “creep in” and manifest later, which would hinder the debugging process.

168

Lemma A.0.5 (Trace prefixes). If expression a is reduced before expression b, then:

1. σa is a prefix of σb, denoted as σa v σb.

2. Fa ⊆ Fb.

Proof. By induction on the length of the reduction.

Lemma A.0.6 (Order of events). Suppose the current state is Σe = 〈He;Fe;Se;Pe; ke;σe; fe; e〉,

i.e., the redex is e, and there exists an event νa ∈ σe. Then the expression a generating

event νa has already been reduced (which implies a is reduced before e).

Proof. By contradiction.

Intuitively, Lemmas A.0.5 and A.0.6 show that reduction order is consistent

with the order of corresponding events in the trace σ.

Lemma A.0.7. Suppose we are in state

Σe = 〈He;Fe;Se;Pe; ke;σe; fe; free re〉

i.e., the redex is e = free re, and we have Bid(re) /∈ Dom(He)∧(Bid(re), h) /∈ Dom(Fe).

Then there does not exist an event νa = (ka,malloc, na, bida) ∈ σe such that bida =

Bid(re).

Proof. Suppose there exists an event νa = (ka,malloc, na, bida) ∈ σe such that bida =

Bid(re). It is easy to see that the expression generating νa is a = malloc na and the

reduction rule is [malloc]. bida = Bid(re) ∈ Dom(H ′a) by rule [malloc]. Expression

a is reduced before e by Lemma A.0.6. There are two subcases:

(a) there exists an expression c = free rc reduced after a and before e, where

Bid(rc) = bida = Bid(re). Because expression c does not get stuck, the rule applied

169

must be rule [free]. Then (Bid(re), h) = (Bid(rc), h) ∈ Dom(F ′c) by rule [free]. By

Lemma A.0.5, F ′c ⊆ Fe, then (Bid(re), h) = (Bid(rc), h) ∈ Dom(Fe): a contradiction.

(b) there does not exist an expression c = free rc reduced after a and before e,

where Bid(rc) = bida = Bid(re), then Bid(re) = bida ∈ Dom(He): a contradiction.

Theorem A.0.8 (Soundness). Let the current state be Σ, where Σ 6= Error, the current

trace be σ and the redex be e. Suppose p is a bug detector, i.e., a predicate on σ and e,

and [Bug-p] is an error rule associated with the detector. If the machine’s next state is

an Error state ([Bug-p] Σ −→ Error) then the detector fires, i.e., predicate p is true.

Proof. By induction on the reduction Σ −→ Σ′. Proceed by case analysis. Suppose the

last reduction rule applied is R, there are nine cases for R.

case [bug-unmatched-free] :

The redex must be an expression b such that b = free rb, and (Bid(rb) /∈ Dom(Hb)∧

(Bid(rb), h) /∈ Dom(Fb))∨ rb 6= Begin(rb) is true by the premise of the rule [bug-

unmatched-free]. There are two subcases:

case Bid(rb) /∈ Dom(Hb) ∧ (Bid(rb), h) /∈ Dom(Fb) holds :

By Lemma A.0.7, there does not exist an event

νa = (ka,malloc, na, bida) ∈ σb such that bida = Bid(rb), thus ¬Allocated(rb)

holds, hence p holds and detector [unmatched-free] fires.

case rb 6= Begin(rb) holds :

It is easy to see that the predicate for the unmatched free bug specified in

Figure 3.2 fires if this error state is encountered; expression b corresponds

to the detection point free rb, and ¬Allocated(rb) ∨ rb 6= Begin(rb) holds,

hence p holds and detector [unmatched-free] fires.

170

case [bug-double-free] :

The redex must be b = free rb, and (Bid(rb), h) ∈ Dom(Fb) holds by the premise

of the rule [bug-double-free]. By Lemma A.0.2, F0 = ∅, hence there must

exist an expression a, reduced before b, that changes F . The only rule which

changes F is rule [free]. That is, there exists an expression a = free ra, and

νa = (ka, free, ra, bida) ∈ σ′a, such that (bida, h) = (Bid(rb), h) ∈ Dom(Fb), and

bida ∈ Dom(Ha) by rule [free]. By Lemma A.0.5, σ′a v σb, so νa ∈ σb.

Similarly, by Lemma A.0.2, H0 = ∅; hence there must exist an expression c re-

duced before a and its corresponding reduction rule expands H (the only rule is

[malloc]). That is, c = malloc nc, and νc = (kc,malloc, nc, bidc) ∈ σ′c, such that

bidc = bida ∈ Dom(Ha). By Lemma A.0.5, σ′c v σb, so νc ∈ σb.

It is easy to see that the detector [double-free] specified in Figure 3.2 fires if this

error state is encountered (expression b corresponds to the detection point free rb,

and the Allocated(rb) and Freed(rb) auxiliary predicates are true, because of the

existence of event νc and νa in σb respectively, hence p holds).

case [bug-dang-ptr-deref] :

The redex must be b = ∗rb, and (Bid(rb), h) ∈ Dom(Fb) holds by the premise of

the rule [bug-dang-ptr-deref]. Similarly to the previous case, there exists an

expression a = free ra reduced before b, where νa = (ka, free, ra, bida) ∈ σb, and

bida = Bid(rb), and there exists an expression c = malloc nc reduced before a,

where νc = (kc,malloc, nc, bidc) ∈ σb, and bidc = Bid(rb).

It is easy to see that the detector [dangling-pointer-deref] specified in Fig-

ure 3.2 fires if this error state is encountered (expression b corresponds to the

detection point deref rb, and the Allocated(rb) and Freed(rb) auxiliary predicate

171

is true because of the existence of event νc and νa in σb respectively, hence p

holds).

case [bug-dang-ptr-deref2] :

The redex must be b = rb := vb, and (Bid(rb), h) ∈ Dom(Fb) by the premise of

the rule [bug-dang-ptr-deref2]. The proof is similar to case [bug-dang-ptr-

deref], hence the detector [dangling-pointer-deref] fires.

case [bug-null-ptr-deref] :

The redex must be b = ∗rb, and r = NULL by the premise of the rule [bug-null-

ptr-deref]. It is easy to see that p holds and the detector [null-pointer-

deref] specified in Figure 3.2 fires if this error state is encountered (expression b

corresponds to the detection point deref rb).

case [bug-null-ptr-deref2] :

The redex must be b = rb := vb, and r = NULL by the premise of the rule

[bug-null-ptr-deref2]. The proof is similar to case [bug-null-ptr-deref]

hence the detector [null-pointer-deref] fires (expression b corresponds to the

detection point deref rb).

case [bug-overflow] :

The redex must be b = ∗rb, and Bid(rb) ∈ Dom(Hb) ∧ (rb < Begin(rb) ∨ rb ≥

End(rb)) by the premise of the rule [bug-overflow]. Similarly, we can prove

that there exists an expression a = malloc na reduced before b, where νa =

(ka,malloc, na, bida) ∈ σb, and bida = Bid(rb). Suppose there is an expression

c = free rc reduced after a and before b, where νc = (kc, free, rc, bidc) ∈ σb,

and bidc = bida. Then (Bid(rb), h) = (bidc, h) ∈ Dom(F ′c) by rule [free]. By

172

Lemma A.0.5, (Bid(rb), h) = (bidc, h) ∈ Dom(Fb). Because state Σb is well-

formed by Lemma A.0.3 and A.0.4, then Fb ∩Hb = ∅ by Definition A.0.1. Thus

Bid(rb) = bidc /∈ Dom(Hb): a contradiction.

Thus, there is no such expression c and no corresponding event νc in σb.

It is easy to see that the detector [heap-buffer-overflow] specified in Figure 3.2

fires if this error state is encountered (expression b corresponds to the detection

point deref rb, and the Allocated(rb) holds because of the existence of event

νa, and ¬Freed(rb) is true due to the non-existence of νc in σb. Meanwhile,

(rb < Begin(rb) ∨ rb ≥ End(rb)) is trivially satisfied.

case [bug-overflow2] :

The redex must be b = rb := vb, and Bid(rb) ∈ Dom(Hb)∧ (rb < Begin(rb)∨ rb ≥

End(rb)) by the premise of the rule [bug-overflow2]. The proof is similar to case

[bug-overflow] hence the detector [heap-buffer-overflow] fires (expression

b corresponds to the detection point deref rb).

case [bug-uninitialized] :

The redex must be b = ∗rb, and V alue(rb) = junk by the premise of the rule

[bug-uninitialized]. By the definition of V alue(r), we get Bid(rb) ∈ Dom(H)∨

Bid(rb) ∈ Dom(S). There are two subcases:

case Bid(rb) ∈ Dom(H) :

By Lemma A.0.2, H0 = ∅, there must be some expression a reduced before b

and its corresponding reduction rule expands H (the only rule is [malloc]).

That is, there is a = malloc na, and νa = (ka,malloc, na, bida) ∈ σ′a, such that

bida = Bid(rb), and H ′a[bida 7→ (junk , na, ka)]. That is, V alue(rb) = junk

173

in state Σ′a.

Suppose there exist intervening reductions which change the V alue(rb) after

a and before b. Because the only rule which can change the value of a memory

block is rule [assign], all such expressions should have the form: r := v and

follow rule [assign]. Without loss of generality, let us consider one of such

possible expression, e.g., c = rc := vc and νc = (kc,write, rc, vc, fc) ∈ σ′c, such

that rc = rb. By rule [assign], vc 6= junk, so V alue(rb) 6= junk in state Σb:

a contradiction.

Thus, there is no such expression c and no corresponding event νc in σb.

It is easy to see that the detector [uninitialized-read] specified in Fig-

ure 3.2 fires if the uninitialized read error state is encountered (expression b

corresponds to the detection point derefr rb, and FindLast(,write, rb, ,) is

false because of the non-existence of event νc in σb; hence because ¬FindLast(,write, rb, ,)

holds, p holds).

case Bid(rb) ∈ Dom(S) :

Similarly, there must be an expression a = let x = salloc na in e, such that

bida = Bid(rb), and S
′
a[bida 7→ (junk , na, ka)]; the proof is similar to the

prior subcase.

174

